空预器密封技术介绍
空气预热器(刷式密封)PPT
刷式密封与传统空预器密封的区别 刷式密封技术解决了传统空预器密封技术这一薄弱之处,该密封系统由排 列紧密的耐高温金属丝组成的刷形密封片组成,具有优异的密封性能、良 好的回弹性及较小的摩擦阻力,与密封配合面可以过盈接触,长期使用, 泄漏量可以维持在较小范围内。
空气预热器模型图
空预器的分类
空气预热器
传热式空预器
蓄热式空预器
管式空气预热器 (用于较小的机组)
回转式空气预热器 (用于较大的机组)
★受热面回转式
风罩回转式
空预器的分类
回转式空气预热器是现在各大电厂锅炉上普遍采用的烟气尾端换热装置。 与管式空气预热器相比,回转式空气预热器具有结构紧凑、体积小、换热 面密度高、整机质量轻、金属耗用量少、利于安装布置、低温腐蚀较管式换 热器轻等特点,适于在大型锅炉上使用。 但回转式空气预热器的缺点是漏风量大,工况良好时为6%~8%,安装结 束后一般为8% ~12%,运行一段时间后为15%~30%,远远大于管式换热 器5%以下的漏风量。 另外回转式空气预热器的结构复杂、制造工艺和安装要求高、运行维护工 作量大,热态自动控制也较为困难。较高的漏风量引起预热器入口风压降低、 风机电流升高,预热器后的过量空气系数升高、尾部排烟气温降低、锅炉热 效率降低、燃煤损耗增加,锅炉达不到额定负荷。
回转式空气预热器的结构和工作原理
空预器的漏风原因及分类 空预器的转子是转动的,在转子与空预器上下壳体及圆周壳 体之间存在一定距离的间隙。由于冷风侧和热风侧各个仓室 之间的流体压力、温度和流速的差异,造成了流体在不同仓 室之间的相互泄漏,即空预器内部漏风。 空气预热器漏风主要可以分为以下两类: (1)携带漏风。携带漏风主要是因为空气预热器在转动过程中, 一部分驻留在换热元件中的空气被携带到烟气中去,一部分驻 留在换热元件中的烟气被携带到空气中去。这种情况造成的 漏风量很小,但这种漏风是空气预热器的构造无法避免的。 (2)直接漏风。直接漏风主要是由于空气预热器结构本身为保 证安全运行而使烟气与空气之间存在一定的间隙;同时,由于烟 气和空气之间存在压差也会产生漏风。直接漏风主要包括径 向漏风、轴向漏风、旁路漏风、中心筒漏风。径向漏风占直 接漏风量的80%左右,主要是因为转子上、下端温度差异而发 生蘑菇状变形,进而造成密封间隙的增大和漏风率的增加。
空预器风密封技术
空预器“蘑菇状”变形图示
预热器运行时,转子的 上下端面存在温度差, 即沿着转子高度方向上 的温度梯度 引起了转子 的热态蘑菇状变形,转 子上端面外凸,下端面 内凹。
变形量计算
根据空预器转子的下沉规律我们可以得知, 转子半径越大热态时转子下沉量越大,转 子高度越厚转 子热态下沉量会相对减小, 空预器冷热两端的温度差越大转子下沉量 越大。由此可以通过公式 来进行 粗略的 计算。 δ=0.006 t • R 2/H
空预器漏风分析
分析回转式空气预热器的热态漏风间隙时,首先分析空预器的转子的变 形情况。由于转子的不断转 动,转子上表面持续受到热风侧的高温烟 气的加热,温度较高;而转子的下表面也连续受到冷风侧一、 二次冷 风的冷却,温度较低。这样就使得转子的上部热膨胀大于下部的热膨胀, 由于转子的下端受到推 力轴承、中心驱动装置、支撑横梁的支撑作用, 使得转子在受热后的热态变形为向下部膨胀。这种膨胀 的结果使得转 子中心的上表面较冷态时升高,并且由于转子上部的径向膨胀大于下部, 使得转子的上部 受到的热膨胀径向力矩大于转子下部。这种力矩致使 转子以下部为原点发生向下、向外的翻转变形。加 之转子的自重力矩, 更加速了转子的这种行似"蘑菇状"的热态变形。 在这种"蘑菇状"的热态 变形中,空预器转子的外周发生向下的沉降现象,而转子中心发生隆起。 这就使得热态时转子下部的三角形漏风间隙和转子圆周的轴向漏风间隙 变得比冷态时小,而转子上部的 漏风间隙变得比冷态时大。而且随着 锅炉负荷的升高,空预器转子换热量的增加,上述"蘑菇状"变形 就越 明显,各处漏风间隙的变化也就越大。
电机的功率还要考虑储备系数,一般取1.15 。
电机功率计算
P =√3*U*I*cosφ P电动机的消耗功率 kw U 线电压 kv I 线电流 A cosφ功率因素
质量工艺手册(空预器间隙调整)
转动转子,使每片密封片位于其余的每个扇形板的边缘,逐片复查扇形板内侧和外侧的间隙。如果间隙的变化不大于±0.5mm,不需要再重新调整该密封。如果间隙的变化大于±0.5mm,应重新调整间隙值。
2、轴向密封间隙设定
1
安装轴向密封校正标尺。用螺栓把它固定在支承槽钢上,槽钢已焊在靠近轴向密封板热端和冷端的转子外壳的内侧(注意:盘车时应按照运行旋向进行,标尺基础应有一定的刚度,建议选用#12-#14槽钢,标尺密封片应有一定的过度角,防止盘车卡涩影响精度)。
2
转动转子,用百分表确定转子圆跳动小于2mm(否则应车削转子),在最大点处安装标准密封片,采用调整轴向板调节螺栓或密封片高度的方法把热端和冷端的密封调整到规定的间隙,盘动转子将标准密封片置于校正标尺下方,调整各校正标尺片接触标准密封片,完成标尺设定(注意:标准密封片应在每块轴向板两侧均进行逐点的间隙矫正,矫正后各点偏差应不大于0.5mm,密封片及压板应安装在背风侧,有折边的密封片折边方向应与旋向相反)。
安全质量标准化
——空气预热器密封间隙调整
1、径向密封间隙设定
1
使一个径向隔板的冷热端径向密封片位于扇形板的边缘,用塞尺测量密封间隙,采用调整扇形板调节螺栓或密封片高度的方法把内侧和外侧的密封调整到规定的间隙,并拧紧螺母。将此仓隔板密封片作为标准密封片(注意:标准密封片应在每块扇形板两侧均进行逐点的间隙矫正,矫正后各点偏差应不大于0.5mm,密封片及压板应安装在背风侧,有折边的密封片折边方向应与旋向相反)。
4
转动转子,在其他轴向密封板下检测密封间隙。间隙的变化不大于±0.5mm,否则应重复调整。
3、环向密封间隙设定
1
安装密封片时确保密封片的宽度适当,热端旁路密封片比冷端宽。
空预器密封技术介绍
的情况 ➢ 当运行异常(如烟温异常)时,容易造成转子卡死的情况
精选ppt
9
固定式密封(VN密封)
Howden固定式密封的优点是: ➢ 密封片较薄,若煤质灰分高,运行几年就会因飞灰磨损和腐
蚀需要进行更换。 ➢ 按满负荷运行状态计算的间隙值,半负荷运行时仍漏风较大
隙,在安装时预留,热态运行达到最佳的密封状态。 ➢ 由于转子上的密封片跟扇形板、弧形板之间的冷态间隙是转
子与扇形板、空气预热器顶底结构之间的“热膨胀差”,计 算和调整方法复杂,施工要求严格。
Howden固定式密封的优点是:计算精确,密封效果好,维 护工作量小。
精选ppt
8
固定式密封(VN密封)
Howden固定式密封的优点是: ➢ 密封片较薄,若煤质灰分高,运行几年就会因飞灰磨损和腐
➢ 这种密封技术很少在改造上使用,主要应用于与锅炉配套的 新空预器上。
精选ppt
5
可调式密封
烟 道 双金属 管
主 机 扇形板调整 螺栓
膨胀 管
紧急提 升机
横梁
精选ppt
6
固定式密封(VN密封)
该技术有英国Howden公司拥有技术专利。其主要特点是: ➢ 双密封,即密封片在扇形板处形成2道密封; ➢ 精确设定冷态间隙。根据运行参数,预先计算出热态膨胀间
的情况 ➢ 当运行异常(如烟温异常)时,容易造成转子卡死的情况
精选ppt
10
接触式(柔性)密封
➢ 密封片用弹性材料制作,以保证间隙改变时仍能很好地贴合 静态密封面,保证密封。
➢ 将扇形板固定在某一合理位置,柔性接触式密封系统安装在 径向转子格仓板上,
➢ 未进入扇形板时,柔性接触式密封滑块高出扇形板5mm10mm 。
柔性密封
2) 机组年利用小时 :6000小时(250天)
► 3)
标准煤单价:600元/吨
► M=6000小时×1.5克/千瓦时×125×10³ 千瓦×600元/吨
=67.5万元
► 即:年节约费用约为
67.5万元
► 2、除节煤一项每年可节约约67.5万元外,由于引风机、
送风机、一次风机长时间运行而带来的电耗的上升也将 因为本次技术改造而大大降低,因此带来的经济效益同 样非常可观。
高效
协作 创新 务实
2、空气预热器柔性接触式密封技术
性能指标 工作原理 材质结构 安装调试 售后服务
技术指标
1年内漏 风率≤6
技术指标
5年内漏 风率≤7
5年内免 费售后 服务
工作原理
材质结构
柔性接触式密封随负荷变化情况
柔性接触式密封随年限变化情况
安装调试
安装范围:
空预器冷热端径向加装柔性接触式密封
改造后年节约费用分析
► 按漏风率10%计算,一般漏风率下降10%。可以提高锅
炉效率1%。
► 主要来自: ► ► 计算条件:
1) 锅炉排烟热损失的减少。
2) 引风机、送风机、一次风机电耗的下降。
1) 按改造后空预器的漏风率5%计算,则锅 炉效率提高0.5%. × 0.5%=1.5g/kwh
► 节约标准煤=300g/kwh ►
空气预热器 柔性接触式密封技术介绍
1、公司介绍
发展历程 公司实力 公司理念
发展历程
2011
1996 2005 2005
空预器双 密封技改 技术 空预器接 触式密封 技术得到 巨大发展
2003
空预器接 触式密封 技术趋于 成熟
空预器密封技术简介
空气预热器接触式密封技术改造技 术 简 介1.空气预热器情况和漏风原因分析1.1空预器设备漏风原因回转式空预器漏风产生的主要原因是由于转子热态的“蘑菇型”变形造成的转子表面和扇形板表面的泄漏面积加大引起漏风量增加,另外由于转子长期运行产生径向椭圆变形造成轴向漏风增加。
根据具体情况,保持原有分仓和原有普通密封片,在格仓板部位加装接触式密封组件(“U”型弹簧片与特种非金属材料制成)来解决现有空预器径向漏风严重及密封件易腐蚀变形的问题。
施工范围为热端径向密封和轴向密封。
1.2转子变形量及漏风量计算转子热变形量主要取决于转子的半径和高度以及空气和烟气的进出口温度。
下面图形示出转子热变形的各个几何形状和变形量。
图1转子的冷态和热态情况冷态热态冷空气热空气热烟气冷烟气δ上H xH0δ下D图2转子热变形1.2.2漏风量计算国际上习惯于用单位时间内泄漏的气体质量G来表示漏风量,则这就是空气预热器漏风量的基本计算公式,式中△P为空气侧与烟气侧的压力差,公式中气体密度ρ是基本不变的,因此,影响漏风的主要因素是:漏风系数K;间隙面积F;空气侧与烟气侧之间的压力差△P。
根据达拉特电厂空预器的实际情况主要影响漏风率的因素是转子热变形以后将加大与密封框架的泄漏面积,所以有效减小泄漏面积将极好的控制回转空预器的漏风率。
2.空预器密封改造技术方案2.1改造前的准备工作转子找正是调整密封间隙的前提,是降低漏风率的基本条件之一。
如果转子垂直度差,就不能保证扇形板、弧形板在同一密封面上,三向(径向、轴向、旁路)密封间隙的调整更无从谈起。
测量转子垂直度有两种方法,一是通过径向隔板测量,二是通过导向轴端测量。
如果转子垂直度达不到要求,通过调整导向轴承箱上部的四个调节螺栓,使转子垂直度≤0.4mm/m,调定后,固定导向轴承箱。
通过调整扇形板吊杆或加减垫片,使扇形板外侧水平度两侧偏差小于0.5mm。
2.2密封改造实施方法采用接触式密封技术:扇形板位置固定。
柔性接触密封技术在空气预热器密封改造中的应用
柔性接触密封技术在空气预热器密封改造中的应用发布时间:2022-02-28T06:04:22.658Z 来源:《福光技术》2022年1期作者:李明[导读] 空气预热器(以下简称空预器)是一种用于大型锅炉的热交换设备,它利用锅炉烟气的热量来加热燃烧所需的空气。
空预器运行时,烟气自上而下,温度逐渐降低,空气自下而上,温度逐渐升高,这样导致热端温度较高而冷端温度较低,使热端有较大的膨胀量。
国电电力大同发电有限责任公司山西省大同市 037000摘要:火电厂锅炉空气预热器运行过程中,热膨胀后径向、轴向密封间隙会增大,导致空气预热器漏风量增大,本文结合某电厂600MW机组空气预热器密封改造项目,针对漏风量大问题,设计了一种实用新型柔性接触密封,漏风率大大降低,取得了良好的节能效果。
关键词:空气预热器;漏风;密封;柔性1 设计背景空气预热器(以下简称空预器)是一种用于大型锅炉的热交换设备,它利用锅炉烟气的热量来加热燃烧所需的空气。
空预器运行时,烟气自上而下,温度逐渐降低,空气自下而上,温度逐渐升高,这样导致热端温度较高而冷端温度较低,使热端有较大的膨胀量。
受热后空预器转子和转子中心筒产生下沉的力,但由于中心筒下部安装有支撑轴承使得中心筒下沉膨胀受阻,最后导致转子中心筒向上膨胀,外缘向下膨胀形成了类似蘑菇状的变形。
转子发生蘑菇状变形后,转子和扇形板、圆弧板之间的间隙将会大大增加,在压差作用下,使空气漏入烟气侧,产生直接漏风,此原因造成的漏风量占空预器漏风量的一半甚至还多。
漏风后会给锅炉运行带来许多危害:会减少炉膛的助燃空气量使燃烧不稳定;空预器换热效果下降,排烟温度升高,降低锅炉效率;蓄热元件堵灰速度加快,造成风机电耗增加,厂用电率提高;空预器出口烟气流量加大,流速提高,增加了下游设备的磨损速度。
由于实际负荷的要求,空气侧和烟气侧的压差不能随意改变,故降低漏风的关键是要解决密封间隙因热变形增大的问题,所以必须设置良好的密封装置。
三分仓回转式空预器
三分仓回转式空预器回转式空预器是一种蓄热式空预器,转子旋转时,烟气和空气交替流过蓄热元件,烟气流过时,受热面吸热,转到空气侧受热面再放热,将空气加热。
三分仓回转式空预器分为三个通道,烟气通道一般占受热面的50%,空气通道占受热面的30%-40%,分为一次风道和二次风道,其余部分为密封区,用以防止漏风。
此种空预器的运行缺点是漏风量较大,所以对密封系统要求很高。
以下我们也着重介绍密封系统。
01空预器结构02空预器的密封空预器的漏风分为两部分:直接漏风和携带漏风。
空预器的漏风也是检验空预器质量的重要指标之一。
1、直接漏风是因为空预器是旋转机械,其动静之间总有一定的间隙,其次,空预器的空气侧和烟气侧总有一定的压差,因此必然一二次风通过动静部分的间隙漏到烟气侧,或一次风漏到二次风中,形成空预器的漏风。
2、携带漏风是指转子在旋转过程中,不可避免的携带部分空气到烟气仓中,增加了空预器的漏风,当时转子的转速很低,大概一转50多秒,此种漏风不会超过空预器漏风的10%。
漏风将直接影响锅炉的经济安全运行,不仅会使送引风机出力增加,严重时可使锅炉出力降低,并加剧空预器的低温腐蚀。
为了减少漏风量,空预器设计了可靠的密封系统。
分为:轴向密封,径向密封和环向密封。
径向密封系统是由热端扇形板、热端径向密封片和冷端扇形板及径向密封片组成,用于阻止热冷端面与扇形板之间因压差而存在的漏风。
轴向密封主要是防止空气从密封区转子外侧漏入到烟气侧。
环向密封指上图中黄色部分,是为阻止空气沿转子外表面和主壳体内表面之间动静部件间隙通过的密封装置。
空气预热器的密封装置和密封表面是这样布置的,在BMCR负荷下的设计温度能提供最佳的漏风控制。
当温度升高到设计温度以上时,当前的密封和密封表面之间的设计间隙不够弥补过量的热变形,从而导致密封和密封表面接触而磨损。
下面的运行情况将产生严重的密封磨损。
•空预器入口烟温过高•通过预热器的空气减少。
当空气量接近零时,密封磨损程度增加。
几种常见的空预器密封形式
几种常见的空预器密封形式目录导读 (1)1 .空气预热器的形式 (1)2 .预热器的漏风产生原因 (2)2. 1.直接漏风 (2)3. 2.携带漏风 (2)3.减小漏风的措施 (3)3. 1.多道密封 (3)3. 2.密封间隙跟踪装置 (4)4. 3.焊接静密封 (5)4.附文:空预器密封间隙自动控制系统在大型火电厂中的应用 (6)4. 1.前言 (6)4. 2.空预器间隙系统控制结构 (7)4. 3.空预器间隙控制系统主要功能 (7)4. 3.1.P1C实现的功能 (7)4. 3.2.上位机实现的功能 (8)4. 3.3.间隙信号检测及调节功能 (8)5. 3.4.转子过电流调节 (8)4. 3.5.异常保护 (8)4.4. 间隙探头安装时的注意事项 (9)5. 5.结论 (9)导读回转式空气预热器的漏风控制历来受到空气预热器的设计和运行人员的重视,近年来新的密封结构不断出现,为电厂的节能减排做出了一定的贡献。
空气预热器的漏风率指标不断刷新,目前国内新投运机组的预热器漏风率普遍降低到6%以下,一些机组甚至达到了4%以下的国际领先水平。
采用不同的漏风控制手段,虽然目标都是降低漏风率,但其在设备配置、运行、维护等方面的投入是不同的。
一些手段虽然能使漏风率明显下降,但所配套的设备又增加了新的能耗,其综合节能效果值得商榷。
1.空气预热器的形式锅炉目前采用的空预器有三种:1)大多数锅炉使用管式空预器,管式空预器又分为立管式和卧管式;2)少数锅炉采用热管空预器,它的优点是漏风系数较小;3)是采用回转式空预器,它的优点是相对体积较小,适合大容量锅炉。
由于锅炉一次风压较高,为避免漏风系数过大,回转空预器采用特殊分仓和密封方式。
锅炉中空气预热器的作用:1)强化燃烧。
由于提高了锅炉的助燃空气的温度,可以缩短燃料的干燥时间和促使挥发分析出,从而使燃料迅速着火,加快燃烧速度,增强燃烧的稳定性,提高燃烧的效率;2)强化传热口由于使用了热空气并增强了燃烧,可以提高燃烧室的烟气温度,加强炉内辐射换执.J、、、,3)提高锅炉运行的经济性,加装了空气预热器可以有效的进一步降低排烟温度,减少排烟损失,提高锅炉效率。
空预器密封技术介绍
接触式(柔性)密封
刷式密封
原理:减少密封间隙 结构:加软密封钢丝刷条 优点:初期投运漏风率 5% 一 下 不足: 寿命短,钢丝变形、失效快 损耗快
刷式密封
疏导式密封
机械密封封阻
疏导至送风机出口 (相当于暖风器) 疏导至热二次风道内
特点: 漏 风 率 控 制 在 0 . 5 3.5% 不随负荷变化而改变 漏风率能长期保持 负影响机械式密封
技术比较
发展历程 刚性密封 传统密封(含扇 双密封(含4、8 形板自动跟踪) 分仓) 漏风率10%以上, 初期6%-8%,随时 随时间增长 间增长 40-50天 一年 无 >一年 传热面积减少 柔性密封 柔性接触式密 封 改造后<6%,大 修期内<7% 15天以上 >一年 增加烟气阻力 容易积灰卡死
回转式空预器密封技术
可调式密封(东锅、哈锅、上锅、) 固定式密封又称VN密封(英国Howden公司) 接触式密封又称弹片式密封、柔性密封(北京华能 达、德国巴克杜尔公司) 刷式密封 疏导式密封(北京哈宜节能环保科技开发有限公司) 自或手动调整的,其中顶部扇 形板大多可以自动调整。 安装有扇形板调整执行机构, 扇形板附近装有间隙监测装置,当热态下间隙发生改变时, 将间隙变化信号反馈至执行机构,执行机构动作,根据反馈 信息调整扇形板,从而使间隙达到最佳状态。 优点:原理是不错的,且性能不错。 缺点:结构复杂,对运行要求高,可靠性不好,维护费费用 高。国内很多电厂对设备了解不透,运行经验不足,加上维 护不好,在运行一段时间后,漏风率普遍偏高,有些甚至在 运行初期即出现漏风偏高。 这种密封技术很少在改造上使用,主要应用于与锅炉配套的 新空预器上。
21
空预器柔性接触式密封浅析分解
3.空预器的漏风
3.1空预器热态运行时,由于转子内部存在着热交换,上部平均温度高,下部平均温度低,因此会产生“蘑菇状”变形。此外,转子还会产生轴向膨胀(见图2),以及下梁向下弯曲变形。如果冷态时密封间隙没有正确调整好,那么在热态情况下有的地方间隙就会增大(如热端外侧),有的地方间隙就会减小(如冷端外侧),不但会造成大量泄漏,而且会发生严重摩擦,甚至卡涩跳闸。
空预器密封的分类
以300MW机组为例;转子上部边沿的极限变形量为30mm转子半径5 米,按三角型面积公式计算一块扇型板就可以形成0.075 平方米的漏风面积,如果能测量空预器转子外沿的变形量,并根据测量的变形量控制机械升降机构提升扇型板上下动作来补偿变形间隙,这样就可以大幅度降低空预器的漏风率。
4. 空预器的漏风的影响
4.1按照一般推导公式,空预器漏风率增加1%,锅炉效率降低0.04%,同时风机电耗升高0.046%。一般情况下携带泄漏是是不可调的,所以人们把治理重点放在直接泄漏上,直接泄漏取决于密封间隙和空预器阻力,而提升机构的提升杆因密封填料处漏风产生腐蚀,而又不能及时更换填料以至发生提升杆卡涩,从而造成机械传动机构过载致使减速机损毁和联轴器损坏,有时探头脱落无法及时更换,缺少备品配件等,致使空预器密封间隙自动控制装置故障率较高,运行人员被迫将其改为手动调整或把间隙提升至最大运行,也就出现漏风率升高。往往空预器堵塞也会加剧空预器的漏风,而空预器堵塞则是出现低温腐蚀造成的积灰引起。因此一般锅炉的排烟温度控制比较严,尽量高于烟气露点(即从空预器进风温度和排烟温度求出的数学平均值),所以在空预器前设置暖凤器。由于近年来锅炉负荷率普遍偏低,当电负荷低于70%以下时,排烟温度一般经常低于设计温度,尤其是汽轮机通流部分
空预器的密封分为径向、环向、轴向密封三种: 径向密封主要用于防止空气从空气侧穿过转子与扇形板之间的密封区漏入烟气侧。径向密封由扇形板与径向密封片构成,对于热端径向密封,多设计采用能跟踪转子热变形的自动控制系统,使得密封间隙始终维持在很小的范围内。 在转子外圈上下两端还设有环向(亦称旁路、周向)密封装置,防止烟气或空气在转子与壳体之间“短路”,同时它作为轴向密封的第一道防线,也起到了一定的密封作用。 轴向密封是当环向密封不严时,防止空气沿转子外圆与外壳的间隙漏入烟气侧,一般用折角板密封,可以消除二次漏风。它作为轴向密封的第二道防线图
回转式空气预热器密封选型
回转式空气预热器密封选型摘要:本文分析回转式空预器的漏风原因及对机组经济性的影响,介绍空预器的密封措施,提出密封方式的推荐性意见。
关键词:回转式空气预热器;漏风;密封1.回转式空气预热器结构回转式空气预热器是一种以逆流方式运行的再生式热交换器。
加工成特殊波纹的金属蓄热元件被紧密地放置在转子扇形仓格内,转子以约1转/分钟的转速旋转,其左右两侧分别为烟气和空气通道;空气侧又分为一次风通道及二次风通道。
当烟气流经转子时,烟气将热量释放给蓄热元件,烟气温度降低;当蓄热元件旋转到空气侧时,又将热量释放给空气,空气温度升高。
如此周而复始地循环,实现烟气与空气的热交换。
2.回转式空预器漏风的原因及对经济性的影响2.1回转式空预器漏风的原因回转式空预器产生漏风的主要原因是由于转子热态的“蘑菇型”变形造成的转子表面和扇形板表面的泄漏面积加大引起漏风量增加,另外由于转子长期运行产生径向椭圆变形造成轴向漏风增加。
由于转子的不断转动,转子上表面持续受到热风侧的高温烟气的加热,温度较高;而转子的下表面也连续受到冷风侧一、二次冷风的冷却,温度较低。
使得转子的上部热膨胀大于下部;由于转子下端受到推力轴承、中心驱动装置、支撑横梁的支撑作用,使转子在受热后的热态变形为向下部膨胀。
这种膨胀结果使得转子中心的上表面较冷态时升高,并且由于转子上部的径向膨胀大于下部,使得转子的上部受到的热膨胀径向力矩大于转子下部。
致使转子以下部为原点发生向下、向外的翻转变形。
加之转子的自重力矩,更加速了转子的这种行似“蘑菇型”的热态变形。
“蘑菇型”的热态变形中,空预器转子的外周发生向下的沉降现象,而转子中心发生隆起。
故热态时转子下部的三角形漏风间隙和转子圆周的轴向漏风间隙变得比冷态时小,而转子上部的漏风间隙变得比冷态时大;而且随着锅炉负荷的升高,空预器转子换热量的增加,上述“蘑菇状”变形就越明显。
2.2漏风量计算及对机组运行经济性的影响影响漏风的主要因素是漏风系数、间隙面积、空气侧与烟气侧之间的压力差。
空预器密封技术介绍
接触式(柔性)密封
➢ 柔性密封发展三个阶段: ➢ 第一阶段:所有径向和轴向密封全部使用柔性密封 ➢ 缺点:弹簧失效或滑块损坏,漏风率急剧上升 ➢ 第二阶段:同时安装常规密封与柔性密封 ➢ 缺点:成本上升 ➢ 第三阶段:径向隔板全部安装常规密封,一半安装
柔性密封 ➢ 特点:成本降低,控制漏风主要是常规密封
的情况 ➢ 当运行异常(如烟温异常)时,容易造成转子卡死的情况
接触式(柔性)密封
➢ 密封片用弹性材料制作,以保证间隙改变时仍能很好地贴合 静态密封面,保证密封。
➢ 将扇形板固定在某一合理位置,柔性接触式密封系统安装在 径向转子格仓板上,
➢ 未进入扇形板时,柔性接触式密封滑块高出扇形板5mm10mm 。
改造后<6%,大 修期内<7%
刷式密封 初期<5%,大修期
内<6%
15天以上
12-15天
投资回收期
一年
>一年
>一年
6~8个月
改造后负面 影响 工程量 年维护量 抗磨抗腐
无
定期测量间隙并 调整
采用考登钢,抗 磨抗腐性一般
传热面积减少
增加烟气阻力 容易积灰卡死
积灰不明显, 无烟组增加现
象
需全部蓄热元件 组件化便,于 加工要求精确,
➢ 安装有扇形板调整执行机构, ➢ 扇形板附近装有间隙监测装置,当热态下间隙发生改变时,
将间隙变化信号反馈至执行机构,执行机构动作,根据反馈 信息调整扇形板,从而使间隙达到最佳状态。 ➢ 优点:原理是不错的,且性能不错。 ➢ 缺点:结构复杂,对运行要求高,可靠性不好,维护费费用 高。国内很多电厂对设备了解不透,运行经验不足,加上维 护不好,在运行一段时间后,漏风率普遍偏高,有些甚至在 运行初期即出现漏风偏高。 ➢ 这种密封技术很少在改造上使用,主要应用于与锅炉配套的 新空预器上。
科技成果——回转式空气预热器接触式密封技术
科技成果——回转式空气预热器接触式密封技术适用范围电力行业所有使用回转式空气预热器的发电机组行业现状在发电行业,传统空气预热器是采用刚性有间隙密封技术,在动静间保持一个最小间隙,达到漏风最小。
由于空气预热器存在蘑菇状变形问题,而且变形随负荷环境温度不断发生变化,很难达到最佳的动静之间的间隙值,漏风率一般在10%左右。
目前该技术可实现节能量36万tce/a,减排约95万tCO2/a。
成果简介1、技术原理回转式空气预热器是一种传动机构,泄漏无法避免。
但过大的泄漏首先会影响锅炉运行的经济性,增加了风机的功率消耗,降低机组出力;其次漏风过大加快了空气预热器冷端腐蚀。
统计表明,对于300MW的机组,空预器漏风率每增加1%,将使机组的综合煤耗增加0.2-0.6g/kWh。
改造后新型密封结构是对传统的非接触式密封的颠覆,它采用柔性金属密封簇直接与空预器的密封板进行接触,在各种运行工况下这种直接接触式的密封技术都可将密封间隙减小至零。
2、关键技术新型的空预器密封结构,称为接触式全向柔性密封技术,它利用的是迷宫密封的原理,将运动部件和静止部件之间的间隙完全覆盖。
新型的密封结构钢丝具有良好的弹性和柔性,可以根据不同负荷下密封间隙的变化改变变形量,并向四周散开,阻止空气向各个方向渗漏,实现了在轴向、径向和环向上的全方位密封,将空预器在各个方向的漏风降到最低。
3、工艺流程这种全新的密封结构具有极大的灵活性和可行性,可适用于不同大小、不同结构的回转式空预器。
可以根据现场的位置和漏风情况安装在空预器轴向、径向、环向任一方向,或者是在三个方向同时安装,安装后的空预器漏风率得到极大减小,且结构简单投资小。
新型密封结构的安装可根据现场实际情况采用焊接、紧固螺丝、或用三角板加固等方法安装在空预器的径向隔板、转子膜片或是环向密封面上。
主要技术指标以一台1000MW机组为例,并根据上文中对节能减排能力的计算结果,该技术相关行业特性指标包括:节煤量:7217.7t/a;降低厂用电耗量:2248.5万kWh/a;降低CO2排放量:19055t/a。
空预器密封技术介绍
主要原理:是通过减少漏风面积来达到降低漏风的目的。
具体做法:将扇形板固定在某一合理位置,柔性接触式密封系统安装在转子隔仓板上,在未进入扇形板时,接触式密封滑块高出扇形板5mm ‑10mm 。
当柔性接触式密封滑块运动到扇形板下面时,合页式弹簧发生形变。
密封滑块与扇形板接触,理论上会形成严密无间隙的密封系统。
当该密封滑块离开扇形板后,合页式弹簧将密封滑块自动弹起,以此循环进行。
特点:¾理论上不会形成密封间隙。
¾采用合页式弹簧,允许空预器转子在热态运行下有一定的圆端面变形及圆周方向的变形。
¾滑块上镶嵌有自润滑合金高温下干磨擦系数μ=0.1。
理论上对主轴电机驱动电流影响很小。
柔性接触式密封扇形板柔性接触式密封-改进的几个阶段第一个阶段:刚进入空预器改造市场所有的径向和轴向密封全部使用弹性接触式密封滑块,漏风率保证小于5%。
不良后果:1、当弹簧失效、密封滑块损坏,空预器漏风率急剧上升、漏风率无法控制2、轴向的接触式密封导致驱动装置电流上升,影响机组的安全运行第二阶段所有的径向隔板上同时安装有常规的密封片和弹性接触式密封滑块,确保当弹性接触式密封损坏,还有常规密封片作为保险,空预器的漏风率不致上升到无法控制的地步第三个阶段:目前所有的径向隔板上都安装有常规的密封片,而弹性接触式密封只安装在一半的径向隔板上。
目前漏风率保证:一年内≤6%;在一个大修期(5年)内漏风率≤7(8)%原因:1、降低成本2、对漏风率的降低起主要起作用的还是常规密封片3、弹性接触式密封对降低漏风不起关键性的作用仅仅只是买点严重磨损没有磨损5、滑块上的镶嵌体为约∮3mm的所谓高温条件下具有自润滑能力的合金,该合金局部磨损迅速通常不超过三个月,最终会磨损滑块基体,同时基体与扇形板的直接接触,不仅导致扇形板的局部严重磨损,而且这种摩擦会导致空预器在正常运转时出现电流不正常升高的现象,影响空预器的安全运行。
11、随着市场占有率的增长,华能达实施免费检修5年的承诺越来越困难,有时在现场遇到的华能达检修人员对空预器一无所知,服务质量无法保证;抽气密封技术(密封回收系统、疏导式密封):。
空气预热器密封装置
空气预热器密封装置
空气预热器密封装置是指用于保持空气预热器内部与外部的气体不互相混合的装置。
它的主要作用是防止热空气流失,从而提高空气预热器的热效率。
一般来说,空气预热器密封装置分为两种类型:机械密封和气体密封。
机械密封是指通过机械部件来实现密封的方式。
常见的机械密封有轴封、密封圈等。
轴封是指通过轴和轴套之间的密封装置来实现密封的方式,它的优点是密封性好,缺点是易磨损。
密封圈是指通过密封圈与轴之间的摩擦来实现密封的方式,它的优点是耐磨损,缺点是密封性稍差。
气体密封是指通过气体的压力差来实现密封的方式。
常见的气体密封有气体密封环、气体密封带等。
气体密封环是指通过将气体密封环放置在预热器的进出口处来实现密封的方式,它的优点是密封性好,缺点是需要消耗一定的能量。
气体密封带是指通过将气体密封带放置在预热器的进出口处来实现密封的方式,它的优点是能量消耗小,缺点是密封性稍差。
总的来说,空气预热器密封装置的选择需要根据具体的使用情况来决定。
在选择时,应该综合考虑密封性、耐磨损性、能耗等因素,以选择最合适的密封装置。
空预器弹性自补偿式柔性密封技术介绍ppt2014.7.6
上海尚甸电站设备有限公司中国力学学会波纹管及管道力学专业委员会上海市力学在能源工程中的应用重点实验室一.空预器工作原理及漏风分析二.现有密封技术及密封片种类三.弹性自补偿式密封片的技术特点四.弹性自补偿式密封片的查新与专利五.近三年合同业绩六.效益分析回转式空气预热器是利用锅炉燃烧后的排烟余热,将进入锅炉的冷空气加热到所需温度的热交换设备。
相邻仓的压差:烟气、一次风和二次风的压力不同,高压侧的一次风和二次风会向低压侧的烟气泄漏。
转子发生“蘑菇”状变形。
案例:1000MW发电机组设计中相邻仓最大压差16.6kPa热端最大漏风间隙约为50mm。
直接漏风✓径向漏风✓轴向漏风✓旁路漏风携带漏风 固有漏风直接漏风(70%)携带漏风固有漏风径向漏风轴向漏风80%-85%15%-20%20%10%直接漏风直接漏风是由于空气侧与烟气侧存在静压差引起的,约占总漏风的70%左右。
由于空气预热器本身是转动机械,动静部件留有间隙,当压差存在时就会造成漏风。
压力高的一次风会漏入烟气侧和二次风侧,压力较高的二次风也会漏烟气侧,其漏风量可以由公式估算出。
另外,空气预热器在热态运行时,会由于温度梯度产生蘑菇变形,密封间隙增大,漏风率提高。
携带漏风携带漏风是因为预热器转子转动引起的,由于转子要从空气侧转动到烟气侧,必定要把转子隔仓内的空气带到烟气侧,就形成了携带漏风,携带漏风是容克式预热器的基本特征,是不可改变的。
它与空气预热器转子的高度,直径等因素有关。
固有漏风也叫二次漏风,指的是除直接漏风和携带漏风之外的漏风,例如扇形板静密封板磨损出现孔洞形成的漏风,由于滑动静密封产生的漏风等。
径向密封径向密封片4+扇形密封板3轴向密封轴向密封片1+轴向密封板2旁路密封环向密封片5+转子T型钢传统密封手段中,三向密封系统密封片各不相同原理:热端采用的间隙自动跟踪系统。
密封措施:通过调整扇形密封板的高低位置,自动调节扇形板与径向密封片之间的间隙来降低漏风率。
空预器密封改造技术浅析
空预器密封改造技术浅析摘要:文章以福建省鸿山热电有限责任公司空预器密封改造为例,对容克式空预器密封方式的改造技术进行介绍,并结合该电厂空预器密封改造的方案进行分析,以供参考。
关键词:空气预热器;漏风率;密封形式;1引言漏风率是回转式空预器的关键指标,漏风率偏高将使风机电耗增加,降低一二次风温,使锅炉热效率降低。
所以,控制空预器漏风,对节能降耗、机组安全运行有着积极的意义。
随着容克式空预器在我国的大面积推广使用,国内各大空预器厂家对于空预器密封方式的研究探索已经非常深入。
国内目前已有多种具有自主知识产权的空气预热器漏风率控制技术,各有本身设计独到之处,且均在国内有一定的推广和使用。
但空气预热器密封改造是一个系统工程,不恰当的选型和改造方案将可能给锅炉运行带来巨大的隐患,因此空预器密封形式改造的方案选择就显得尤为重要。
2空预器密封改造技术目前国内主流的空预器密封形式改造主要有间隙自补偿漏风控制技术、柔性密封技术(包括弹片式密封技术、合页弹簧式密封技术、弹性自适应密封技术等)、VN密封技术、自动可调式密封技术、疏导式密封技术等,其主要技术特点如下:2.1 间隙自补偿漏风控制间隙自补偿漏风控制技术是将径向密封组件根部固定于转子内侧的中心组件上,同时,径向密封组件外侧搭接于转子径向隔板上,整个径向密封组件呈悬臂状态。
由于径向密封组件与转子径向隔板之间为搭接结构,两者滑动相互不受限制,所以,预热器热态运行时,径向密封组件连同径向密封片无向下热变形,径向密封片与扇形板之间在预热器冷态形成的良好配合不会随着转子“蘑菇状”热变形的产生而发生变化。
随着机组负荷的增加,热端径向密封片和热端扇形板之间也不会形成热端径向三角漏风区,进而有效地控制了预热器的热端径向漏风。
而在预热器冷端,在机组不同负荷下,冷端径向间隙均能控制在理想的状态,使预热器在不同负荷下均能获得理想的漏风率。
2.2 柔性密封柔性密封技术是指密封装置具有一定的变形能力,根据空预器的运行情况调节自身的密封间隙,柔性密封装置安装在径向或轴向的转子格仓板上,未进入扇形板时,带有弹簧的密封滑块高出扇形板5mm~10mm。
大唐空预器密封改造
中国大唐集团公司空气预热器固定式密封改造技术在张家口发电厂的应用摘要:张家口发电厂锅炉空气预热器,是东方锅炉厂生产的LAP10320/883和LAP10320/3883型回转式空气预热器。
预热器漏风率超标,一直是影响机组经济运行的重要原因。
张家口发电厂各级技术人员,在采用“VDF”密封改造技术的基础上,共同研究、制定了预热器改造方案,并经大唐公司批准实施。
在2005年4月2日,2号机组小修期间,进行了2号炉两台预热器密封改造,改造后,取得了较为满意的效果。
关键词:固定式密封;VDF技术;扇形板;执行机构;蓄热元件;密封片;漏风率图1 热端扇形板自动跟踪装置1 改造原因空气预热器在热态运行时,将会发生蘑菇状变形,从而导致原密封界面的改变。
原设计热端扇形板采用自动跟踪方式,扇形板自动跟踪系统可根据转子的热态变形情况,进行自动跟踪控制密封间隙,具体结构见图1。
空气预热器原设计漏风率为12%,但经过长期运行,原自动跟踪系统可靠性差、投入率偏低,部分预热器扇形板经常处于冷态“O”位,致使预热器漏风率增加且严重超标,漏风率经常维持在15%~20%之间。
由于机组投产初期,设备缺陷频发,机组安全性差,对空气预热器漏风率未引起足够的重视。
近年来,机组安全性明显提高,提高机组经济性运行成为我厂的重要工作,空气预热器漏风率是影响机组经济运行的重要指标,我厂在治理预热器漏风率方面做了大量的工作,起到一定效果,但未彻底解决预热器漏风率超标问题。
2 确定改造技术从我们目前掌握的情况,预热器改造技术总体可分为两种,一是间隙自动跟踪技术,二是固定式密封技术。
各改造公司,在这两种技术的基础上,根据国内预热器结构特点,不断完善、创新,形成了具有各自特点的预热器密封改造技术,我们对各改造技术进行综合了对比、分析,初步确定了“VDF”密封技术。
在初步确定“VDF”密封技术的基础上,我们进行了多方调查、分析,并对经过“VDF”密封技术改造后的电厂进行调研,最终确定了“VDF”密封改造技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回转式空预器密封技术
➢ 可调式密封(东锅、哈锅、上锅、) ➢ 固定式密封又称VN密封(英国Howden公司) ➢ 接触式密封又称弹片式密封、柔性密封(北京华能
达、德国巴克杜尔公司) ➢ 刷式密封 ➢ 疏导式密封(北京哈宜节能环保科技开发有限公司) ➢ 自适应式密封
可调式密封
➢ 扇形板和弧形板是可以通过自动或手动调整的,其中顶部扇 形板大多可以自动调整。
➢ 运动到扇形板下面时,合页式弹簧发生形变。密封滑块与扇 形板接触,形成严密无间隙的密封系统。
➢ 离开扇形板后,合页式弹簧将密封滑块自动弹起,以此循环 进行。
接触式(柔性)密封
特点:
➢ 论上不会形成密封间隙 ➢ 允许空预器转子在热态运
行下有一定圆端与圆周方 向变形 ➢ 自润滑合金在高温下干摩 擦系数μ=0.1,理论上对电 机电流影响小。
子与扇形板、空气预热器顶底结构之间的“热膨胀差”,计 算和调整方法复杂,施工要求严格。
Howden固定式密封的优点是:计算精确,密封效果好,维 护工作量小。
固定式密封(VN密封)
该技术有英国Howden公司拥有技术专利。其主要特点是: ➢ 双密封,即密封片在扇形板处形成2道密封; ➢ 精确设定冷态间隙。根据运行参数,预先计算出热态膨胀间
刷式密封
➢ 原理:减少密封间隙 ➢ 结构:加软密封钢丝刷条 ➢ 优点:初期投运漏风率5%一
下 ➢ 不足: ❖ 寿命短,钢丝变形、失效快 ❖ 损耗快
刷式密封
疏导式密封
机械密封封阻 疏导残余漏风 再次利用
➢疏导至送风机出口 (相当于暖风器)
➢ 疏导至热二次风道内
特点: ❖漏 风 率 控 制 在 0 . 5 -
2
回转式空预器漏风影响
➢ 较高的漏风量引起预热器入口风压降低、风机电流 升高,预热器后的过量空气系数升高、尾部排烟气温 降低、锅炉热效率降低、燃煤损耗增加,锅炉达不到 额定负荷。
➢ 漏风率是其重要的经济指标之一。 ➢ 有效控制空气预热器漏风率,可以从降低送、引风机
电耗和提高锅炉效率两个方面得到节能收益。 ➢ 中电投对标:1%漏风率影响煤耗0.21g/kWh ➢ 西安热工院:1%漏风率影响煤耗0.16g/kWh
蚀需要进行更换。 ➢ 按满负荷运行状态计算的间隙值,半负荷运行时仍漏风较大
的情况 ➢ 当运行异常(如烟温异常)时,容易造成转子卡死的情况
固定式密封(VN密封)
Howden固定式密封的优点是: ➢ 密封片较薄,若煤质灰分高,运行几年就会因飞灰磨损和腐
蚀需要进行更换。 ➢ 按满负荷运行状态计算的间隙值,半负荷运行时仍漏风较大
隙,在安装时预留,热态运行达到最佳的密封状态。 ➢ 由于转子上的密封片跟扇形板、弧形板之间的冷态间隙是转
子与扇形板、空气预热器顶底结构之间的“热膨胀差”,计 算和调整方法复杂,施工要求严格。
Howden固定式密封的优点是:计算精确,密封效果好,维 护工作量小。
固定式密封(VN密封)
Howden固定式密封的优点是: ➢ 密封片较薄,若煤质灰分高,运行几年就会因飞灰磨损和腐
➢ 安装有扇形板调整执行机构, ➢ 扇形板附近装有间隙监测装置,当热态下间隙发生改变时,
将间隙变化信号反馈至执行机构,执行机构动作,根据反馈 信息调整扇形板,从而使间隙达到最佳状态。 ➢ 优点:原理是不错的,且性能不错。 ➢ 缺点:结构复杂,对运行要求高,可靠性不好,维护费费用 高。国内很多电厂对设备了解不透,运行经验不足,加上维 护不好,在运行一段时间后,漏风率普遍偏高,有些甚至在 运行初期即出现漏风偏高。 ➢ 这种密封技术很少在改造上使用,主要应用于与锅炉配套的 新空预器上。
接触式(柔性)密封
柔性密封发展三个阶段: ➢ 第一阶段:所有径向和轴向密封全部使用柔性密封 缺点:弹簧失效或滑块损坏,漏风率急剧上升 ➢ 第二阶段:同时安装常规密封与柔性密封 缺点:成本上升 ➢ 第三阶段:径向隔板全部安装常规密封,一半安装
柔性密封 特点:成本降低,控制漏风主要是常规密封
接触式(柔性)密封
的情况 ➢ 当运行异常(如烟温异常)时,容易造成转子卡死的情况
接触式(柔性)密封
➢ 密封片用弹性材料制作,以保证间隙改变时仍能很好地贴合 静态密封面,保证密封。
➢ 将扇形板固定在某一合理位置,柔性接触式密封系统安装在 径向转子格仓板上,
➢ 未进入扇形板时,柔性接触式密封滑块高出扇形板5mm10mm 。
自适应密封(二)
技术特点: ➢ 更好的密封效果 ➢ 更长的使用寿命 ➢ 运行更加安全 ➢ 无需对热态间隙进
行计算
技术比较
21
谢谢观赏
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1320. 12.13Sunday, December 13, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。09:0 0:2809: 00:2809 :0012/ 13/2020 9:00:28 AM
3.5% ❖ 不随负荷变化而改变 ❖ 漏风率能长期保持 ❖ 负影响机械式密封
疏导式密封
自适应密封(一)
➢ 组成:密封滚轴、密封板、 弹性机构、卡环、滑块和 限位调整装置。
➢ 原理:利用可调滑道适当 调整密封组件与扇形板的 接触间隙(10-15mm)
➢ 技术特点:“零”间隙密 封、滑动+滚动(摩擦阻 力小)
回转式空预器密封技术介绍
空预器漏风原因
在热态运行状态下,空气预热器各部件均会 因受热而发生膨胀,转子会变成蘑菇状,转子和 扇形板、弧形板之间的间隙会变化,大部分间隙 都会变小。热态运行状态下,如果间隙过大,将 导致空气预热器漏风率很大,如果过小,将可能 导致空气预热器卡死。空气预热器的漏风率是影 响锅炉运行效率的重要因素,所以空气和烟气之 间的密封,显得尤为重要。
可调式密封
烟 道 双金属 管
主 机 扇形板调整 螺栓
膨胀 管
紧急提 升机
横梁
固定式密封(VN密封)
该技术有英国Howden公司拥有技术专利。其主要特点是: ➢ 双密封,即密封片在扇形板处形成2道密封; ➢ 精确设定冷态间隙。根据运行参数,预先计算出热态膨胀间
隙,在安装时预留,热态运行达到最佳的密封状态。 ➢ 由于转子上的密封片跟扇形板、弧形板之间的冷态间隙是转