复变函数课后习题答案全

合集下载

复变函数习题答案习题详解

复变函数习题答案习题详解

第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+ 实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131ii i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i i i Im 共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。

复变函数 第四版 课后习题答案

复变函数 第四版 课后习题答案

习题一解答1.求下列复数的实部与虚部、共轭复数、模与辐角。

(1)i 231+; (2)i13i i 1−−; (3)()()2i 5i 24i 3−+; (4)i 4i i 218+−解 (1)()()()2i 31312i 32i 32i 32i 31−=−+−=+ 所以133=⎭⎬⎫⎩⎨⎧+i 231Re ,1322i 31Im −=⎭⎬⎫⎩⎨⎧+,()2i 31312i 31+=+,131********i 3122=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛=+, k π2i 231arg i 231Arg +⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+",2,1,0,232arctan ±±=+−=k k π(2)()()()()i,25233i 321i i)(1i 1i 13i i i i i 13i i 1−=+−−−=+−+−−−=−− 所以,23i 13i i 1Re =⎭⎬⎫⎩⎨⎧−− 25i 13i i 1Im −=⎭⎬⎫⎩⎨⎧−−25i 23i 13i i 1+=⎟⎠⎞⎜⎝⎛−−,2342523i 13i i 122=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛=−−, k π2i 1i 3i 1arg i 1i 3i 1Arg +⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−− ",±,±,=,+−=210235arctan k k π.(3)()()()()()()()()()42i 7i 262i 2i 2i 5i 24i 32i 5i 24i 3−−=−−−+=−+ 13i 27226i 7−−=−−=所以()()272i 5i 24i 3Re −=⎭⎬⎫⎩⎨⎧−+,()()132i 5i 24i 3Im −=⎭⎫⎩⎨⎧−+,()()l3i 272i 5i 24i 3+−=⎥⎦⎤⎢⎣⎡−+()()22952i5i 24i 3=−+, ()()()()k ππk π2726arctan 22i 2i 52i 43arg i 2i 52i 43Arg +−=+⎥⎦⎤⎢⎣⎡−+=⎥⎦⎤⎢⎣⎡−+ ()",2,1,0,12726arctan±±=−+=k k π.(4)()()()()i i 141i i i 4i i 4i i 10410242218+−−−=+−=+−3i 1i 4i 1−=+−=所以{}{}3i 4i i Im 1,i 4i i Re 218218−=+−=+−3i 1i 4i i 218+=⎟⎠⎞⎜⎝⎛+−,10|i 4i i |218=+−()()()2k π3i 1arg 2k πi 4i i arg i 4i i Arg 218218+−=++−=+−=.2,1,0,k 2k πarctan3"±±=+−2.如果等式()i 13i53y i 1x +=+−++成立,试求实数x , y 为何值。

复变函数 高等教育出版社 课后习题详解 第三章

复变函数 高等教育出版社 课后习题详解 第三章

G
0
’ ( ## #C A ( ) -"
& $ ,
$ 1
& $ ,
& $ ,
&
& $ ,
& $ ,
$ 1
0
& $ ,
& $ ,
&
小结 ! 找出实部虚部分别计算 % 8.%利用在单位圆周上#C ! 的性质 ! 及柯西积分公式说明 # A #C # 0
G
其中 0 为正向单位圆周 F ! $ #FC !% & $ 解 ! 注意到复积分 -" 在 ## # 中积分变量# 始终限制在; 上变化 ! A
.
5 6 ! C4 1 " , 7 8 1 " C6
$ 1 $ )A 1 5 6 ?4 " # 1 1B$ 1 6 6 7 8 2 1 4 5 6 C$ 4 ?5 1 A 1D 4 1 1 A 1C $ $" , 6 6 6 7 8 C$ 4 ?5 ?5 ( $ * +’ ## #C 6 8 1 $ )A 1 A -" G ?7 8 4 5 6 81 1 1 A 1D 6 A 1 CD$ $" , C$ 6 ?7 ?7
复变函数 西安交通大学 第四版 高等教育出版社 课后答案
-$ 7 & 沿下列路线计算积分? #% 8!% , #A # 自原点至 -$ $ 的直线段 & !
课后习题全解 !!!
& # 自原点沿实轴至 -! 再由 - 沿直向上至 -$ $ & 自原点沿虚轴至$ 再由$ 沿水平方向向右至 -$ # ! $ % 解 !! 所给路线的参数方程为 % 起点参数1 # # ! -$ ## " $ 1 1 # ,( (!! 由复积分计算公式 % 终点参数1 #!% ,!

复变函数课后习题答案(全)

复变函数课后习题答案(全)

精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+精心整理页脚内容3. 求下列各式的值: (1)5(3)i -(2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5)3i 3cossin22i ππ=+(6)1i +2(cossin )44i ππ=+ 4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)51,z i +=由此2551k i z i ei π=-=-,(0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:精心整理页脚内容(1), (1), (1), (1)2222a a a a i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。

复变函数课后部分答案

复变函数课后部分答案
34 z , 2
3 5 z i, 2 2
.
5 Argz arctan 2k , k 0, 1, 3
2.当x, y等于什么实数时,等式 x 1 i( y 3) 1 i 5 3i 成立。
解: 原式等价于x 1 i( y 3) 2 8i,
由这四个偏导数连续,可知u,v在整个复平面可微;
柯西 黎曼方程在x 0, y 1时成立,
所以f ( z)只在z i点可导,在整个复平面上处处不解析。
知识点7.
课堂练习:
5.若e2z-1 = 1,求z的值。
解:
2 z 1 Ln1 ln1 2k i 2k i,
5.指出下列各题中点z的轨迹,并作图: 1 ) z 2 3i 5;
解: 1 )设z = x+iy,
x iy 2 3) 5,
( x 2) 2 ( y 3) 2 5,
为一圆周: ( x 2)2 ( y 3)2 25;
知识点3.
课堂练习:
2.若(1 i)n (1 i)n , 试求n的值。
解:由已知可得,
n n n n n 2 2 (cos i sin ) 2 (cos i sin ), 4 4 4 4 即 n n n n sin sin 2 k . 4 4 4 4 n 2
解: 1 )函数的奇点是 z 0, z i.
2)函数的奇点是z 1, z i.
exp[exp( i)] exp[cos 1 i sin 1]
ecos1[cos(sin1) i sin(sin1)]
Im{exp[exp(i)]} ecos1 sin(sin1);

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。

复变函数课后部分答案

复变函数课后部分答案

1 u v . 4
2 2
7.已知映射 z , 求:
3
2)区域0 arg z
解: 2)设z = re ,
3

3
在平面上的像。
i 3 3 3i
i
w (re ) r e ,

3 映成0 arg z .
映射 z 将区域0 arg z
8.下列函数何处可导?何处解析? 1 )f ( z) x2 yi; 3) f ( z) xy 2 ix 2 y;
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

复变函数课后习题答案

复变函数课后习题答案

习题一 P311题 (2)i ii i -+-11 = 1)1(2)1(--++i i i i =223i --)R e (z 23-= ; 21)(-=z I m ; z = 23-2i + ; z =210;arg(z) = arctan-31π (4) 8i i i +-214 i i +-=41 i 31-= ;;1)Re(=z ;3)Im(-=z ;31i z += ;10=z 3a r c t a na r g -=z ; 5题(2) πππi e i 2)sin (cos 22=+=-;(4)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+=-)43sin(arctan )43cos(arctan 5)43sin(arctan )43cos(arctan 91634i i i;5θi e = );43arctan(-=θ (6) θθθθθθθθϑθθ7sin 7cos )()()2sin 2(cos )sin (cos )7(4322323i e e e e e i i i i i i i -====+---- ; 8题(2) 16)2()1(848==+πie i (4));3432sin 3432(cos2163ππππ-+-=--k i k i ;431arctan ππθ-=-= ;2,1,0=K);1(24)2222(2360i i K -=-= );125sin 125(cos261ππi K += );1213sin 1213(cos 262ππi K +=12题(2) ;3)2(=-z R e 即 ;3])2[(e =+-iy x R ;32=-x 5=x 直线(6) ;4)arg(π=-i z ;4))1(arg(π=-+y i x arctan;41π=-x y ;11=-xy 1+=x y 以i 为起点的射线(x>0). 13题(1) 0)(<z I m ; 即y<0, 不含实轴的下半平面,开区域,无界,单连通。

最新复变函数课后习题答案(全)

最新复变函数课后习题答案(全)

习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cos sin22ii i eπππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

复变函数—课后答案习题五解答

复变函数—课后答案习题五解答

1 z ( z − 1) 1
2 2
在 z = 1 处有一个二级极点,这个函数又有下列洛朗展开式
z ( z − 1)
="+
1
( z − 1)
5

1
( z − 1)
4
+
1
( z − 1)
3
,| z − 1|> 1. , | z − 2 |> 1
−1 所以“ z = 1 又是 f (z ) 的本性奇点” ,又其中不含 (z − 2) 幂项,因此 Res ⎡ ⎣ f ( z ) ,1⎤ ⎦ = 0 ,这些说法对
m −1
ϕ (z ) + (z − z 0 )m ϕ ' (z ) = (z − z0 )m−1 [mϕ (z ) + (z − z0 )ϕ ' (z )]
故 z0 是 f ' (z ) 的 m-1 级零点。 3.验证: z = 解 由 ch
πi
2
是 ch z 的一级零点。
πi
2
= cos
π
2
= 0 , (ch z ) ' z = π i = sh
z → z0
lim
f ( z) f '( z ) = lim z → z 0 g '( z ) g ( z)
(或两端均为∞) 。

因 f ( z ) 和 g ( z ) 是 以 z0 为 零 点 的 两 个 不 恒 等 于 零 的 解 析 函 数 , 可 设 f ( z ) = ( z − z0 )ϕ ( z ) ,
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。 (1)
z ( z + 1)

复变函数课后部分习题解答

复变函数课后部分习题解答

复变函数课后部分习题解答(1)(3-i)5解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°](3-i)5=25[cos(30°⨯5)-isin(30°⨯5)]=25(-3/2-i/2) =-163-16i(2)(1+i )6解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2tan θ=x y =1x>0,y>0∴θ属于第一象限角∴θ=4π ∴1+i=2(cos4π+isin 4π) ∴(1+i )6=(2)6(cos 46π+isin 46π) =8(0-i )=-8i1.2求下式的值 (3)61-因为-1=(cos π+sin π)所以61-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6).习题一1.2(4)求(1-i)31的值。

解:(1-i)31 =[2(cos-4∏+isin-4∏)]31=62[cos(12)18(-k ∏)+isin(12)18(-k∏)](k=0,1,2)1.3求方程3z +8=0的所有根。

解:所求方程的根就是w=38-因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2其中ρ=3r=38=2即w=2[cosπ/3+isinπ/3]=1—3i1w=2[cos(π+2π)/3+isin(π+2π)/3]=-22w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i3习题二1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。

(1) Im(z)>0解:设z=x+iy因为Im(z)>0,即,y>0而)∈x-∞(∞,所以,不等式所确定的区域D为:不包括实轴的上半平面。

复变函数论第三版课后习题答案解析

复变函数论第三版课后习题答案解析

第一章习题解答(一)1.设z ,求z 及Arcz 。

解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

:解:12444(),0,1,2,3k ii za e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=]21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数(第四版)课后习题答案

复变函数(第四版)课后习题答案

3i 1−
i
⎫ ⎬ ⎭
=

5 2
⎜⎛ 1 − 3i ⎟⎞ = 3 + i 5 , 1 − 3i = ⎜⎛ 3 ⎟⎞2 + ⎜⎛ − 5 ⎟⎞2 = 34 , ⎝ i 1−i⎠ 2 2 i 1−i ⎝ 2⎠ ⎝ 2⎠ 2
Arg⎜⎛ ⎝
1 i

3i 1−i
⎟⎞ ⎠
=
arg⎜⎛ ⎝
1 i

3i 1−
i
⎟⎞ ⎠
2.如果等式 x + 1 + i(y − 3) = 1 + i 成立,试求实数 x, y 为何值。
5 + 3i
解:由于
x
+
1+ i(y
5 + 3i

3)
=
[x
+1 + i(y − 3)](5 − (5 + 3i)(5 − 3i)
3i)
= 5(x +1)+ 3(y − 3)+ i[− 3(x +1)+ 5(y − 3)]
= 2 i sin nt
14.求下列各式的值
( ) (1) 3 − i 5 ; (2) (1 + i)6 ; (3) 6 −1 ;
1
(4) (1 − i)3
( ) ( ) 解
(1)
3 − i 5 = ⎢⎢⎣⎡2⎜⎜⎝⎛
3 2

i 2
⎟⎟⎠⎞⎥⎥⎦⎤5
=
2e−iπ / 6 5 = 32e−i5π / 6
=
32
⎡ ⎢⎣cos
⎛ ⎜⎝

5π 6
⎞ ⎟⎠
+

复变函数_华侨大学中国大学mooc课后章节答案期末考试题库2023年

复变函数_华侨大学中国大学mooc课后章节答案期末考试题库2023年

复变函数_华侨大学中国大学mooc课后章节答案期末考试题库2023年1.零的辐角是零参考答案:错误2.复数【图片】的模为()参考答案:e3.在复平面内,【图片】仍成立.参考答案:错误4.函数【图片】是z平面上的共形映射.参考答案:错误5.实数域内的公式【图片】在复数域内仍成立。

参考答案:正确6.若【图片】在区域D内内闭一致收敛,则【图片】在区域D内一致收敛。

参考答案:错误7.若【图片】是【图片】的可去奇点,则【图片】参考答案:正确8.若f(z)在区域D内解析,则对D内任一闭曲线C,有【图片】.参考答案:正确9.函数【图片】在区域D内共形,但在D内不单叶解析.参考答案:错误10.如果函数f(z)在区域D内单叶解析,则f(z)在D内任一点的导数不为零参考答案:正确11.【图片】在区域D内解析,但【图片】在D内可能不解析参考答案:错误12.如果【图片】是【图片】的极点,则【图片】不存在参考答案:错误13.若f(z)和g(z)在z点连续,则其和也在z点连续参考答案:正确14.【图片】是整函数参考答案:正确15.将上半z平面共形映成上半W平面的分式线性变换【图片】的系数所满足的条件为()参考答案:是实数,且16.在区域D内有界的整函数为常数参考答案:错误17.积分中值定理在复数域里成立参考答案:错误18.【图片】的收敛半径为()参考答案:219.若【图片】在【图片】点解析,则函数【图片】在【图片】点可微.参考答案:正确20.若函数f(z)在区域D内解析且导数不为零,则f(z)在D内单叶.参考答案:错误21.【图片】是函数【图片】的()阶零点参考答案:522.若函数【图片】在【图片】处解析,则它在该点的某个邻域内可以展开成幂级数参考答案:正确23.设【图片】是区域D内不恒为零的解析函数,则【图片】在区域D内不可能有无穷多个零点。

参考答案:错误24.【图片】是【图片】的()参考答案:二阶极点25.若a是f(z)的m阶零点,则a是1/f(z)的m阶极点.参考答案:正确26.【图片】是亚纯函数。

复变函数课后习题答案(全)之欧阳法创编

复变函数课后习题答案(全)之欧阳法创编

习题一答案2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5(6)解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5= (6=5.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4个根分别为:),1),1),)i i i i+-+---7.证明下列各题:(1)设,z x iy=+则z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cossin22ii i e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+ (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iike kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z2[cos()sin()]2(cos sin)46461212i iππππππ=-+-=+,12zz1155[cos()sin()](cos sin)2464621212i iππππππ=+++=+5.解下列方程:(1)5()1z i+=(2)440 (0)z a a+=>解:(1)z i+=由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

(2)对任意复数12,,z z有2221212122Re()z z z z z z+=++证明:验证即可,首先左端221212()()x x y y=+++,而右端2222112211222Re[()()]x y x y x iy x iy=+++++-2222112212122()x y x y x x y y=+++++221212()()x x y y=+++,由此,左端=右端,即原式成立。

(3)若a bi+是实系数代数方程10110n nna z a z a z a--++++=的一个根,那么a bi-也是它的一个根。

证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,()n nz z=,由此得到:10110()()0n nna z a z a z a--++++=由此说明:若z为实系数代数方程的一个根,则z也是。

结论得证。

(4)若1,a =则,b a ∀≠皆有1a ba ab-=-证明:根据已知条件,有1aa =,因此:11()a b a b a b a ab aa ab a a b a---====---,证毕。

(5)若1, 1a b <<,则有11a bab-<-证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<,所以,2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-,即11a bab-<-,结论得证。

7.设1,z ≤试写出使n z a +达到最大的z 的表达式,其中n 为正整数,a 为复数。

解:首先,由复数的三角不等式有1n n z a z a a +≤+≤+,在上面两个不等式都取等号时n z a +达到最大,为此,需要取nz与a 同向且1n z =,即n z 应为a 的单位化向量,由此,n az a=,z =8.试用123,,z z z 来表述使这三个点共线的条件。

解:要使三点共线,那么用向量表示时,21z z -与31z z -应平行,因而二者应同向或反向,即幅角应相差0或π的整数倍,再由复数的除法运算规则知2131z z Argz z --应为0或π的整数倍,至此得到:123,,z z z 三个点共线的条件是2131z z z z --为实数。

9.写出过1212, ()z z z z ≠两点的直线的复参数方程。

解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩,因而,复参数方程为:112121121()()z x iy x iy t x x iy iy z t z z =+=++-+-=+-其中t 为实参数。

10.下列参数方程表示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)iz t t=+解:只需化为实参数方程即可。

(1),x t yt ==,因而表示直线y x =(2)cos ,sin x a t y b t ==,因而表示椭圆22221x y a b+=(3)1,x t yt==,因而表示双曲线1xy = 11.证明复平面上的圆周方程可表示为 0zz az az c +++=, 其中a 为复常数,c 为实常数 证明:圆周的实方程可表示为:220xy Ax By c ++++=,代入, 22z z z z x y i +-==,并注意到222x y z zz +==,由此 022z z z zzz A B c i+-+++=,整理,得 022A Bi A Bizz z z c -++++= 记2A Bi a +=,则2A Bia -=,由此得到0zz az az c +++=,结论得证。

12.证明:幅角主值函数arg z 在原点及负实轴上不连续。

证明:首先,arg z 在原点无定义,因而不连续。

对于00x <,由arg z 的定义不难看出,当z 由实轴上方趋于0x 时,arg zπ→,而当z 由实轴下方趋于0x 时,arg z π→-,由此说明0lim arg z x z →不存在,因而arg z 在0x 点不连续,即在负实轴上不连续,结论得证。

13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对于1x =,其方程可表示为1zyi =+,代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11yu v y y-==++,消去参数y ,得2221,1u v u y +==+即22211()(),22u v -+=表示一个圆周。

对于224x y +=,其方程可表示为2cos 2sin z x iy i θθ=+=+代入映射函数中,得11cos sin 2cos 2sin 2i w u iv z i θθθθ-=+===+因而映成的像曲线的方程为 11cos , sin 22u v θθ==-,消去参数θ,得2214u v +=,表示一半径为12的圆周。

14.指出下列各题中点z 的轨迹或所表示的点集,并做图:解:(1)0 (0)z z r r -=>,说明动点到0z 的距离为一常数,因而表示圆心为0z ,半径为r 的圆周。

(2)0,z z r -≥是由到0z 的距离大于或等于r 的点构成的集合,即圆心为0z 半径为r 的圆周及圆周外部的点集。

(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数,因而表示一个椭圆。

代入,zx iy ==化为实方程得22(2)11615x y -+=(4),z i z i +=-说明动点到i 和i -的距离相等,因而是i 和i -连线的垂直平分线,即x 轴。

(5)arg()4z i π-=,幅角为一常数,因而表示以i 为顶点的与x 轴正向夹角为4π的射线。

15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通。

(1)23z <<,以原点为心,、外圆半径分别为2、3的圆环区域,有界,多连通 (2)arg (02)z αβαβπ<<<<<,顶点在原点,两条边的倾角分别为,αβ的角形区域,无界,单连通(3)312z z ->-,显然2z ≠,并且原不等式等价于32z z ->-,说明z 到3的距离比到2的距离大,因此原不等式表示2与3 连线的垂直平分线即x =2.5左边部分除掉x =2后的点构成的集合,是一无界,多连通区域。

相关文档
最新文档