三角函数与解三角形专题复习(新课标)

合集下载

《三角函数与解三角形》专题训练

《三角函数与解三角形》专题训练

一、单选题1.在△ABC中,B=π4,sin A=,AC=4,则BC=().A.5B.6C.7D.82.在△ABC中,角A,B,C的对边分别为a,b,c.若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A⋅cos C+cos A sin C,则下列等式成立的是().A.a=2bB.b=2aC.A=2BD.B=2A3.如果把锐三角形的三边都增加同样的长度,则得到的这个新三角形的形状为().A.钝角三角形B.直角三角形C.锐角三角形D.由增加的长度决定4.在ΔABC中,a2+b2+c2=23ab sin C,则ΔABC 的形状是().A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A处测得“泉标”顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在点B处测得“泉标”顶端的仰角为30°,则“泉标”的高度为().A.50mB.100mC.120mD.150m6.在ΔABC中,“z=12x-y”是“ΔABC为钝角三角形”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件7.已知锐角A是ΔABC的一个内角,a,b,c是三角形中各角的对应边,若sin2A-cos2A=12,则下列各式正确的是().A.b+c=2aB.b+c<2aC.b+c≤2aD.b+c≥2a8.1471年米勒向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆看上去最长(即可见角最大).后人将其称为“米勒问题”,是载入数学史上的第一个极值问题.我们把地球表面抽象为平面α,悬杆抽象为线段AB(或直线l上两点A,B),则上述问题可以转化为如下的数学模型:如图1,一条直线l垂直于一个平面α,直线l有两点A,B位于平面α的同侧,求平面上一点C,使得∠ACB最大.建立如图2所示的平面直角坐标系.设A,B两点的坐标分别为()0,a,()0,b()0<b<a.设点C的坐标为()c,0,当∠ACB最大时,c=().图1图2A.2abB.abC.2abD.ab二、多选题9.在△ABC中,根据下列条件解三角形,其中有两解的是().A.b=10,A=45°,C=70°B.b=45,c=48,B=60°C.a=14,b=16,A=45°D.a=7,b=5,A=80°10.在△ABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是().A.a2=b2+c2-2bc cos AB.a sin B=b sin AC.a=b cos C+c cos BD.a cos B+b cos A=sin C11.下列命题中,正确的是().A.在△ABC中,若A>B,则sin A>sin BB.在锐角△ABC中,不等式sin A>sin B恒成立C.在△ABC中,若a cos A=b cos B,则△ABC必是等腰直角三角形D.在△ABC中,若B=60°,b2=ac,则△ABC必是等边三角形12.在△ABC中,内角A,B,C所对的边分别为a,59b,c,若1tan A,1tan B,1tan C依次成等差数列,则下列结论中不一定成立的是().A.a,b,c依次成等差数列B.a,b,c依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列三、填空题13.如图3,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值.图314.在ΔABC中,若C=π4,且1sin2A=1+tan A tan B,则BCAC的值为______.15.如图4,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.图416.已知ΔABC满足A=π3,( AB+ AC)∙ BC=0,点M在ΔABC外,且|MB|=2|MC|=2,则MA的取值范围是________.四、解答题17.已知在ΔABC中,角A,B,C所对的边长分别为a,b,c且满足b=a cos C+c sin A.(1)求A的大小;(2)若cos B=25,BC=5, BD=17 BA,求CD的长.18.在①cos A=35,cos C=,②c sin C=sin A+b sin B,B=60°,③c=2,cos A=18三个条件中任选一个补充在下面问题中,并加以解答.已知△ABC的内角A,B,C的对边分别为a,b,c,若a=3,______,求△ABC的面积S.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A=a cosæèöøB-π6.(1)求角B的大小;(2)若a=2,c=3,求cos()A-B的值.20.在ΔABC中,若||||||AC→=23,且 AB∙cos C+ BC∙cos A= AC∙sin B.(1)求角B的大小;(2)求ΔABC的面积S.21.在ΔABC中,a,b,c分别是角A,B,C的对边,且满足2a-b c=cos B cos C.(1)求角C的大小;(2)设函数f(x)=2sin x cos x cos C+2sin2x sin C求函数f(x)在区间[0,π2]上的值域.22.如图5,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:tan A2=1-cos Asin A;(2)若A+C=180∘,AB=6,BC=3,CD=4,AD=5,求tan A2+tan B2+tan C2+tan D2的值.A B图560参考答案与解析一、单选题1-8AACDA DCD 二、多选题9.BC ;10.ABC ;11.ABD ;12.ABD.三、填空题13.;14.;15.1006;16.[1,3].四、解答题17.【解析】(1)在三角形ABC 中,由正弦定理得sin B =sin A cos C +sin C sin A ,因为sin B =sin []π-()A +C =sin ()A +C ,所以sin ()A +C =sin A cos C +sin C sin A ,即sin A cos C +sin C cos A =sin A cos C +sin C sin A ,整理得sin C cos A =sin C sin A ,由sin C ≠0,可得cos A =sinA ,所以A =π4.(2)在三角形ABC 中,sin B =1-cos 2B =45,(3)由AC sin B=BCsin A 可得AC 45=,解得AC =42,又因为cos C =-cos(A +B)=-cos A cos B +sin A sin B =,所以AB 2=AC 2+BC 2-2AC ∙BC ∙=32+25-2×42×5×=49,所以AB =7,由BD =17BA 可得BD =1,于是CD 2=BD 2+BC 2-2BD ∙cos B=1+25-2×1×520,所以CD =25.18.【解析】若选①.∵cos A =35,cos C,∴sin A=45,sin C,∴sin B =sin A +C =sin A cos C +cos A sin C ,=4535×,由正弦定理得b =a sinB sin A=3×2545=,∴S =12ab sin C =12×3×=9940.若选②.∵c sin C =sin A +b sin B ,∴由正弦定理得c 2=a +b 2.∵a =3,∴b 2=c 2-3.又∵B =60∘,∴b 2=c 2+9-2×3×c ×12=c 2-3,∴c =4,∴S =12ac sin B =33.若选③.∵c =2,cos A =18,由余弦定理得18=b 2+22-322b ×2,即b 2-b 2-5=0,解得b =52或b =-2(舍去).∴sin A =1-cos 2A =,∴△ABC 的面积S =12bc sin A =12×52×2×=.19.【解析】(1)因为b sin A =a cos æèöøB -π6,根据正弦定理a sin A =bsin B,得sin B sin A =sin A cos æèöøB -π6,因为A ∈()0,π,所以sin A >0,所以sin B =cos æèöøB -π6,即sin B =cos B cosπ6+sin B sin π6,整理得sin B =3cos B ,所以tan B =3,又B ∈()0,π,故B =π3.(2)在△ABC 中,a =2,c =3,B =π3,61由余弦定理得b2=a2+c2-2ac∙cos B,得b2=22+32-2×3×2×cosπ3,故b=7.由正弦定理asin A=b sin B得2sin A=sinπ3,解得sin A=.因为a<b,故A<B,A∈æèöø0,π3,所以cos A=1-sin2A=.所以()A-B B×cosπ3sinπ3.20.【解析】(1)由题意可知:在ΔABC中,|| AC=23,AB∙cos C+BC∙cos A=AC∙sin B,因为AC=AB+BC,所以AB∙cos C+BC∙cos A=( AB+ BC)∙sin B,即(cos C-sin B)AB+(cos A-sin B)BC=0 ,而向量AB,BC是两个不共线向量,所以{cos C=sin B,cos A=sin B,所以cos C=cos A,因为A,C∈(0,π),所以A=C,在等腰ΔABC中,A+B+C=π,所以2A+B=π,A=π2-B2;所以cos A=cos(π2-B2)=sin B2=sin B,所以sinB2=2sin B2cos B2,所以cos B2=12,结合0<B2<π2可得B2=π3,B=2π3.(2)由(1)知A=C=π6,由正弦定理得:|| ACsin2π3=|| BCsinπ6,所以|| BC=2,SΔABC=12|| AC| BC sinπ6=12×23×2×12=3.21.【解析】(1)在ΔABC中,∵2a-b c=cos B cos C,∴(2a-b)cos C=c cos B,∴2sin A cos C=sin B cos C+cos B sin C,∴2sin A cos C=sin(B+C)=sin A.∵∠A是ΔABC的内角,∴sin A≠0,∴2cos C=1,∴∠C=π3.(2)由(1)可知∠C=π3,∴f(x)=12sin2x-2sin2x)=12sin2x2x=sin(2x-π3).22.【解析】(1)tan A2=sin A2cos A2=2sin2A22sin A2cos A2=1-cos Asin A.(2)由A+C=180°,得C=180°-A,D=180°-B.由(1),有tanA2+tan B2+tan C2+tan D2=1-cos Asin A+1-cos Bsin B+1-cos(180°-A)sin(180°-A)+1-cos(180°-B)sin(180°-B)=2sin A+2sin B连接BD,在ΔABD中,有BD2=AB2+AD2-2AB∙AD cos A,在ΔBCD中,有BD2=BC2+CD2-2BC∙CD cos C,所以AB2+AD2-2AB∙AD cos A=BC2+CD2+2BC∙CD cos A,则cos A=AB2+AD2-BC2-CD22(AB∙AD+BC∙CD)=62+52-32-422(6×5+3×4)=37,于是sin A=1-cos2A=连接AC,同理可得cos B=AB2+BC2-AD2-CD22(AB∙BC+AD∙CD)=62+32-52-422(6×3+5×4)=119,于是sin B=1-cos2B==所以tanA2+tan B2+tan C2+tan D2=2sin A+2sin B=14210+2×19210=.62。

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。

高三专题三角函数与解三角形总结归纳

高三专题三角函数与解三角形总结归纳

三角函数一. 任意角的概念与弧度制 (一)角的概念的推广 1.角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角.按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角.习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边.射线旋转停止时对应的边叫角的终边. 2.特殊命名的角的定义:(1)正角,负角,零角 :见上文.(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角. (3)轴线角:角的终边落在坐标轴上的角.终边在x 轴上的角的集合: {}|180,k k Z ββ=⨯︒∈ 终边在y 轴上的角的集合: {}|18090,k k Z ββ=⨯︒+︒∈终边在坐标轴上的角的集合:{}|90,k k Z ββ=⨯︒∈ (4)终边相同的角:与α终边相同的角:2,x k k Z απ=+∈ (5)与α终边反向的角:()21,x k k Z απ=++∈终边在y x =轴上的角的集合:{}|18045,k k Z ββ=⨯︒+︒∈ 终边在y x =-轴上的角的集合:{}|18045,k k Z ββ=⨯︒-︒∈(6)若角α与角β的终边在一条直线上,则角α与角β的关系:180,k k Z αβ=⨯︒+∈ (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:360,k k Z αβ=⨯︒-∈ 若角α与角β的终边关于y 轴对称,则角α与角β的关系:360180,k k Z αβ=⨯︒+︒-∈ 若角α与角β的终边互相垂直,则角α与角β的关系:36090,k k Z αβ=⨯︒+±︒∈注意: (1)角的集合表示形式不唯一; (2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1.弧度制的定义:lRα=2.角度与弧度的换算公式:180π︒= 3602π︒= 10.01745︒= 157.305718'=︒=︒注意: (1)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;(2)一个式子中不能角度、弧度混用.二. 任意角三角函数 (一)三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy=αtan ,余切y x =αcot2.三角函数的定义域(二)单位圆与三角函数线 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线;OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.(三)同角三角函数的基本关系式(1)sin csc 1,cos sec 1,tan cot 1αααααα⋅=⋅=⋅= (2)商数关系:ααααααcot sin cos ,tan cos sin == (3)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=(四)诱导公式(奇变偶不变,符号看象限)()()()()sin sin cos cos tan tan cot cot πααπααπααπαα+=-+=-+=+= ()()()()s i n 2s i n c o s 2c o s t a n 2t a n c o t 2c o t πααπααπααπαα-=--=-=--=-()()()()s i n s i n c o s c o s t a n t a n c o t c o tπααπααπααπαα-=-=--=--=-sin cos 2cos sin 2tan cot 2πααπααπαα⎛⎫+= ⎪⎝⎭⎛⎫+=- ⎪⎝⎭⎛⎫+=- ⎪⎝⎭ s i n c o s 2c o s s i n 2t a n c o t 2πααπααπαα⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭三. 三角函数的图象与性质(一)基本图象1.正弦函数2.余弦函数3.正切函数(二)函数图象的性质正弦、余弦、正切、余切函数的图象的性质四. 和角公式 两角和与差的公式βαβαβαsin sin cos cos )cos(-=+βαβαβαsinsin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+()s i n s i n c o sc o s s i nαβαβαβ-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五. 倍角公式和半角公式 (一)倍角与半角公式αααcos sin 22sin =2cos 12sin αα-±=ααααα2222sin211cos 2sin cos 2cos -=-=-= 2cos 12cos αα+±= ααα2tan 1tan 22tan -=s i n 1c o s t a n 21c o s s i n αααααα-==+(二)万能公式2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=六. 三角函数的积化和差与和差化积公式()()1s i n c o s s i n s i n 2αβαβαβ=++-⎡⎤⎣⎦ ()()1c o ss i n s i n s i n 2αβαβαβ=+--⎡⎤⎣⎦ ()()1c o s c o s c o s c o s 2αβαβαβ=++-⎡⎤⎣⎦ ()()1s i n s i n c o s c o s 2αβαβαβ=-+--⎡⎤⎣⎦ s i n s i n 2s i n c o s 22αβαβαβ+-+= 2c o s 2c o s 2c o s c o s βαβαβα-+=+s i n s i n 2c o s s i n 22αβαβαβ+--= co s c o s 2s i n s i n 22αβαβαβ+--=-sin15cos 754︒=︒=sin 75cos154︒=︒=tan15cot 752︒=︒=tan 75cot152︒=︒=+七. 辅助角公式(合一变形)()sin cos ,tan ,,22b a x b x x a ππϕϕϕ⎛⎫+=+=∈- ⎪⎝⎭一. 恒等变换 (一)基础题型1.(2015·福建)若5sin 13α=-,且α为第四象限角,则tan α=( ) A.125B.125- C.512D.512-2.已知α是第二象限的角,()4tan 23πα+=-,则tan α=________3.=________4.已知0θπ<<,1tan 47πθ⎛⎫+= ⎪⎝⎭,则sin cos θθ+=________5.方程()233102x ax a a +++=>两根tan ,tan αβ,且,,22ππαβ⎛⎫∈- ⎪⎝⎭,则αβ+=________6.已知()tan 4cos 2,22ππθπθθ⎛⎫-=-< ⎪⎝⎭,则tan2θ=( )A.C.(二)诱导公式1.已知奇函数()f x 在[]1,0-上为单调减函数,若,αβ为锐角三角形内角,则( )A.()()cos cos f f αβ>B.()()sin sin f f αβ>C.()()sin cos f f αβ<D.()()sin cos f f αβ>2.已知,,2παβπ⎛⎫∈ ⎪⎝⎭且cos sin 0αβ+>,则下列各式中成立的是( )A.αβπ+<B.32παβ+>C.32παβ+=D.32παβ+<(三)互余互补sin cos 2πθθ⎛⎫-= ⎪⎝⎭ c o s s i n 2πθθ⎛⎫-= ⎪⎝⎭ sin()sin πθθ-= c o s ()c o sπθθ-=-1.已知4cos 35πθ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭________;2cos 3πθ⎛⎫+=⎪⎝⎭2.(2016·广州检测)已知1cos 123πθ⎛⎫-= ⎪⎝⎭, 则5sin 12πθ⎛⎫+=⎪⎝⎭( )A.13 B.3C.13-D.3-3.(2017·合肥模拟)已知1cos cos ,,63432ππππααα⎛⎫⎛⎫⎛⎫+⋅-=-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求sin 2α的值; (2)求1tan tan αα-的值.(四)配凑角(已知条件会给θ范围)1.已知0,2πα⎛⎫∈ ⎪⎝⎭,若3cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫-= ⎪⎝⎭2.设()21tan ,tan 544παββ⎛⎫+=-= ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( )A.138B.322C.1318D.13223.(2017·成都模拟)若()sin 2,sin 510αβα=-=且3,,,42ππαπβπ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦,则αβ+=( ) A.74πB.94πC.54π或74πD.54π或94π4.若()111cos ,cos ,0,,,71422ππααβααβπ⎛⎫⎛⎫=+=-∈+∈ ⎪ ⎪⎝⎭⎝⎭,则β=( )A.3π- B.6πC.3πD.6π-5.若3335,,0,,cos ,sin 44445413πππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫∈∈-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()sin αβ+=________6.已知sin sin 3παα⎛⎫++= ⎪⎝⎭cos 3πα⎛⎫-= ⎪⎝⎭( )A.45-B.35-C.45D.35(五)升角(一倍角、二倍角转换) 解题思路:2cos 212sin θθ=- 2c o s 22c o s 1θθ=-一) 升角+诱导公式1.(2016·宿州模拟)若1sin 43πα⎛⎫+= ⎪⎝⎭,则cos 22πα⎛⎫-= ⎪⎝⎭( )A.9B.9-C.79D.79-2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭=( )A.19-C. D.193.(2016·南昌三模)已知tan 24πα⎛⎫+= ⎪⎝⎭,则tan 2α=( )A.34B .35C.34-D.35-4.已知1sin 43x π⎛⎫+= ⎪⎝⎭,则sin 42cos3sin x x x -=( )A.79B.79-C.9D.9-二)升角+互余、互补1.已知1sin 33x π⎛⎫+= ⎪⎝⎭,则5sin cos 233x x ππ⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭________2.(2017·江西新余三校联考)已知7cos 238x π⎛⎫-=- ⎪⎝⎭,则sin 3x π⎛⎫+= ⎪⎝⎭( )A.14B.78C.14±D.78±三)升角+配凑1.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A.19-B.9C.9-D.192.已知33cos ,4522πππαα⎛⎫+=≤< ⎪⎝⎭,则cos 24πα⎛⎫+= ⎪⎝⎭________3.已知cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭________ (六)平方一)sin cos c θθ+=解题思路:2(sin cos )1sin 2θθθ±=± 1.已知4sin cos 3αα-=,则sin 2α=________2.已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα+=,则cos α=________3.已知1sin cos 3αα+=,则2sin 4πα⎛⎫-= ⎪⎝⎭( )A.118B.1718C.89D.94.已知()1sin cos ,,05x x x π+=∈-.(1)求sin cos x x -的值;(2)求2sin 22sin 1tan x xx+-的值.5.已知4sin cos 034πθθθ⎛⎫+=<< ⎪⎝⎭,则sin cos θθ-=________6.若,2παπ⎛⎫∈ ⎪⎝⎭,且3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α=( )A.118B.118-C.1718D.1718-7.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值为( )A.12-+B.12+ C.18.若,22sin sin =+βα则βαcos cos +的取值范围________二)sin cos a b c θθ+=1.已知2sin cos 2αα+=,则tan 2α=________2.(2016·厦门质检)若2sin 21cos2αα=-,则tan α=________3.(2016·开封模拟)已知12sin 5cos 13αα-=,则tan α=( )A.512- B.125-C.125±D.712±4.已知sin αα+=tan α=( )A.2C.2-D.(七)12tan tan sin 2θθθ+= (2016·青岛模拟)化简:211tan sin 22cos tan 2αααα⎛⎫+⋅-= ⎪⎝⎭________(八)齐次式 1.若tan 2α=,则2sin 3cos 4sin 9cos αααα-=-________;224sin 3sin cos 5cos αααα--=________2.(2015·广东)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.3.(2016·天一大联考)已知函数()()log 24a f x x =-+(0a >且1a ≠),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin 2cos sin cos αααα+=-________4.(广东省广州2017届高三下学期第一次模拟)已知tan 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭,则co s 2θ=( ) A.45B.35C.35-D.45-5.已知3tan 5α=-,则sin 2α=( )A.1517B.1517- C.817-D.8176.若sin 3sin 02παα⎛⎫++= ⎪⎝⎭,则cos2α=( )A.35-B.35C.45-D.45二. 三角函数图象的变换 (一)图象平移和伸缩1.将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是( )A.12x π= B.6x π=C.3x π=D.12x π=-2.已知函数()()()sin cos 0,2f x x x πωϕωϕωϕ⎛⎫=+++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( )A.()f x 在0,2π⎛⎫⎪⎝⎭上单调递减B.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递减C.()f x 在0,2π⎛⎫⎪⎝⎭上单调递增D.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递增3.将函数()()cos f x x x x R =∈的图象向左平移()0αα>个单位长度后,所得到的图象关于原点对称,则α的最小值为( )A.12πB.6πC.3πD.56π4.已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ=______5.(2014·辽宁卷)将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )A.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减B.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增C.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减D.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增6.(2017·渭南模拟)由()y f x =的图象向左平移3π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,得到2sin 36y x π⎛⎫=- ⎪⎝⎭的图象,则()f x 的解析式为( )A.()32sin 26f x x π⎛⎫=+ ⎪⎝⎭B.()2sin 66f x x π⎛⎫=- ⎪⎝⎭C.()32sin 23f x x π⎛⎫=+ ⎪⎝⎭D.()2sin 63f x x π⎛⎫=+ ⎪⎝⎭7.(2014·安徽)若将函数()sin 2cos2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值为( ) A.8πB.4πC.38πD.5π48.(2016·广东汕头模拟)将函数()sin 6y x x R π⎛⎫=+∈ ⎪⎝⎭的图象上所有点的纵坐标不变,横坐标缩小到原来的12倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A.5sin 26y x π⎛⎫=+⎪⎝⎭B.1sin 26y x π⎛⎫=+ ⎪⎝⎭C.2sin 23y x π⎛⎫=+ ⎪⎝⎭D.15sin 212y x π⎛⎫=+ ⎪⎝⎭9.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是( ) A.奇函数且图象关于点,02π⎛⎫⎪⎝⎭对称B.偶函数且图象关于点(),0π对称C.奇函数且图象关于直线2x π=对称D.偶函数且图象关于点,02π⎛⎫⎪⎝⎭对称10.(2016·长沙四校联考)将函数()()sin 0,22f x x ωϕωϕ⎛⎫=+>-≤< ⎪⎝⎭图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度得到sin y x =的图象,则函数()f x 的单调递增区间为( ) A.52,2,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B.52,2,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D.5,,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦11.为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin 2y x =的图象( )A.向左平移56π个单位长度 B.向右平移56π个单位长度 C.向左平移512π个单位长度D.向右平移512π个单位长度12.(2013·新课标全国卷Ⅱ)函数()()cos 2y x ϕπϕπ=+-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ=________二)图象求解析式1.若函数()f x 具有以下两个性质:①()f x 是偶函数;②对任意实数x ,都有44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()f x 的解析式可以是( ) A.()cos f x x =B.()cos 22f x x π⎛⎫=+ ⎪⎝⎭C.()sin 42f x x π⎛⎫=+ ⎪⎝⎭D.()cos6f x x =2.已知()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<在同一周期内当12x =时取最大值,当12x =时取最小值,与y 轴的交点为(,则()f x =____________3.已知函数)0,()sin()(πϕϕ<<∈+=R x x x f ,若点1,62π⎛⎫ ⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图象上,则ϕ=_________4.已知函数()()2sin f x x ωϕ=+,对于任意x 都有66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则6f π⎛⎫= ⎪⎝⎭________5.(2017·安徽江南十校联考)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为4π,且对任意x R ∈,都有()3f x f π⎛⎫≤ ⎪⎝⎭成立,则()f x 图象的一个对称中心的坐标是( )A.2,03π⎛⎫- ⎪⎝⎭ B.,03π⎛⎫- ⎪⎝⎭C.2,03π⎛⎫⎪⎝⎭D.5,03π⎛⎫⎪⎝⎭6.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()3cos 2g x x ϕ=+的图象的对称中心完全相同,若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围________7.(2015·湖南)将函数()sin 2f x x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的12,x x ,有12min 3x x π-=,则ϕ=( ) A.512πB.3πC.4πD.6π8.(2016·安徽芜湖一模)函数()()sin ,0,2f x x x R ωϕωϕ⎛⎫=+∈>< ⎪⎝⎭的部分图象如图所示,若122,,63x x ππ⎛⎫∈ ⎪⎝⎭,且()()12f x f x =,则()12f x x +=( )A.2-B.12-C.12D.29.(2017·石家庄模拟)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则1124f π⎛⎫= ⎪⎝⎭( )A.2- B.2-C.2-D.1-10.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则ϕ=( )A.6π- B .6πC.3π-D.3π11.已知函数()()sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则6y f x ⎛⎫=+ ⎪⎝⎭取得最小值时x 的集合为________12.已知函数()()cos f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则6f π⎛⎫-= ⎪⎝⎭( ) A.23-B.12-C.23D.1213.(2016·泉州质检)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若tan 3α=,则8f πα⎛⎫+= ⎪⎝⎭( )A.35-B.45-C. D.三.特殊三角函数最值1.当06x π<≤时,函数()22cos cos sin sin xf x x x x=-的最小值为________2.求函数()2cos ,0,sin xy x xπ-=∈的最小值.3.(2016·全国Ⅱ)函数()cos 26cos 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为( )A.4B.5C.6D.74.函数273sin 2cos ,,66y x x x ππ⎡⎤=--∈⎢⎥⎣⎦的值域为________5.求函数2sin 12sin 1x y x +=-的值域.6.求函数sin 2cos xy x=-的最小值.7.求函数2cos y x=+的值域.8.若0,2πα⎛⎫∈ ⎪⎝⎭,则2214s in c o s αα+的最小值为________9.求函数()()1sin 3sin 2sin x x y x++=+的最值及对应的x 的集合.四.参数相关1.已知0ω>,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上是减函数,则ω的取值范围________2.(2016·全国乙卷)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A.11B.9C.7D.53.已知函数()()2sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭在区间,126ππ⎛⎤- ⎥⎝⎦则ϕ的取值范围( )A.0,3π⎡⎤⎢⎥⎣⎦B.,36ππ⎡⎤-⎢⎥⎣⎦C.,04π⎡⎫-⎪⎢⎣⎭D.,03π⎡⎤-⎢⎥⎣⎦4.若函数()()s i n 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=________5.已知0ω>, ()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围( )A.15,24⎡⎤⎢⎥⎣⎦B.13,24⎡⎤⎢⎥⎣⎦C.10,2⎛⎫⎪⎝⎭D.(]0,26.若已知0ω>,函数()cos 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围________7.已知()()sin 0,363f x x f f πππωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()f x 在区间错误!未找到引用源。

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(新课标Ⅰ卷)(解析版)_最新修正版

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(新课标Ⅰ卷)(解析版)_最新修正版

专题05三角函数与解三角形历年考题细目表历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin c os 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2s i n ϕ∴=sin ϕ= 02πϕ<<3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<< 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+()1121x y x y ∴-++≥=-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥ ⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【解析】连接AC ,设ACB θ∠=,则120ACD θ∠=-,如图:故在Rt ABC ∆中,sin θθ==, ()11cos 120cos 2222θθθ-=-+=-=, 又在ACD ∆中由余弦定理有()2223cos 120AD θ+--==,解得265AD =-即AD =15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且c o s c o s A B a b+=b =.则ac +的取值范围为_____.【答案】(6,【解析】cos cos 3A B C a b a +=cos cos sin 3b A a BC ∴+= ∴由正弦定理可得: sin cos sin cos sin B A A B B C +=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =,因为()12CM CA CB =+, 所以22222422cos CMCA CB CA CB CA CB CA CB C =++⋅=++,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABCSab C ==⨯=18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)2⎛⎤-⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为,12⎛⎤- ⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABCSbc == 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 55AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )1021025B C B C ⎛⎫=--=--= ⎪ ⎪⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭24172425225250-⎛⎫=⨯+-⨯= ⎪⎝⎭.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知AD =BD =(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)4(Ⅱ)1BC = 【解析】(Ⅰ)在ABD 中,由正弦定理,得sin sin AD BD ABD A =∠∠.因为60,A AD BD ︒∠===所以sin sin sin 604AD ABD A BD ︒∠=⨯∠==(Ⅱ)由(Ⅰ)可知,sin ABD ∠=, 因为90ABC ︒∠=,所以()cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠.因为2,CD BD ==所以2462BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++=1sin cos 22C C ⋅+⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。

(完整版)高中数学三角函数复习专题

(完整版)高中数学三角函数复习专题

高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。

(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。

2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。

(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。

(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。

高考数学复习热点06 三角函数与解三角形(解析版)-2021年高考数学专练(新高考)

高考数学复习热点06  三角函数与解三角形(解析版)-2021年高考数学专练(新高考)

热点06 三角函数与解三角形【命题形式】新高考环境下,三角函数与解三角形依然会作为一个热点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考。

1、题目分布:"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题。

2、考察的知识内容:(1)三角函数的概念;(2)同角三角函数基本关系式与诱导公式及其综合应用;(3)三角函数的图像和性质及综合应用;(4)三角恒等变换及其综合应用;(5)利用正、余弦定理求解三角形;(6)与三角形面积有关的问题;(7)判断三角形的形状;(8)正余弦定理的应用。

3、新题型的考察:(1)以数学文化和实际为背景的题型;(2)多选题的题型;(3)多条件的解答题题型。

4、与其它知识交汇的考察:(1)与函数、导数的结合;(2)与平面向量的结合;(3)与不等式的结合;(4)与几何的结合。

【满分技巧】1、夯实基础,全面系统复习,深刻理解知识本质从三角函数的定义出发,利用同角三角函数关系式、诱导公式进行简单的三角函数化简、求值,结合三角函数的图像,准确掌握三角函数的单调性、奇偶性、周期性、最值、对称性等性质,并能正确地描述三角函数图像的变换规律。

要重视对三角函数图像和性质的深入研究,三角函数,是高考考查知识的重要载体,是三角函数的基础。

“五点法”画正弦函数图像是求解三角函数中的参数及正确理解图像变换的关键,因此复习时应精选典型例题(选择题、填空题、解答题)加以训练和巩固,把解决问题的方法技巧进行归纳、整理,达到举一反三、触类旁通。

2、切实掌握两角差的余弦公式的推导及其相应公式的变换规律以两角差的余弦公式为基础,掌握两角和与两角差的正余弦公式、正切公式、二倍角公式,特别是用一种三角函数表示二倍角的余弦,掌握公式的正用、逆用、变形应用,迅速正确应用这些公式进行化简、求值与证明,即以两角差的余弦公式为基础.推出三角恒等变换的相应公式,掌握公式的来龙去脉。

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》知识点总复习附答案

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》知识点总复习附答案

新数学《三角函数与解三角形》复习知识点(1)一、选择题1.已知函数()()sin 3cos 0x f x x ωωω=->,若集合()(){}0,1x f x π∈=-含有4个元素,则实数ω的取值范围是( ) A .35,22⎡⎫⎪⎢⎣⎭B .35,22⎛⎤⎥⎝⎦C .725,26⎡⎫⎪⎢⎣⎭D .725,26⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】化简f (x )的解析式,作出f (x )的函数图象,利用三角函数的性质求出直线y=﹣1与y=f (x )在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间. 【详解】 f (x )=2sin (ωx ﹣3π), 作出f (x )的函数图象如图所示:令2sin (ωx ﹣3π)=﹣1得ωx ﹣3π=﹣6π+2kπ,或ωx ﹣3π=76π+2kπ, ∴x=6πω+2k πω,或x=32πω+2k πω,k ∈Z , 设直线y=﹣1与y=f (x )在(0,+∞)上从左到右的第4个交点为A ,第5个交点为B , 则x A =322ππωω+,x B =46ππωω+, ∵方程f (x )=﹣1在(0,π)上有且只有四个实数根, ∴x A <π≤x B ,即322ππωω+<π≤46ππωω+,解得72526ω≤<. 故选B .【点睛】本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.2.能使sin(2))y x x θθ=+++为奇函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .5π3B .43π C .23π D .3π【答案】C 【解析】 【分析】首先利用辅助角公式化简函数,然后根据函数的奇偶性和单调性求得θ的值. 【详解】依题意π2sin 23y x θ⎛⎫=++⎪⎝⎭,由于函数为奇函数,故πππ,π33k k θθ+==-,当1,2k =时,2π3θ=或5π3θ=,由此排除B,D 两个选项.当2π3θ=时,()2sin 2π2sin 2y x x =+=-在0,4⎡⎤⎢⎥⎣⎦π上是减函数,符合题意.当5π3θ=时,()2sin 22π2sin 2y x x =+=,在0,4⎡⎤⎢⎥⎣⎦π上是增函数,不符合题意.故选C. 【点睛】本小题主要考查诱导公式的运用,考查三角函数的奇偶性和单调性,属于基础题.3.已知ABC V 的三条边的边长分别为2米、3米、4米,将三边都增加x 米后,仍组成一个钝角三角形,则x 的取值范围是( ) A .102x << B .112x << C .12x << D .01x <<【答案】D 【解析】 【分析】根据余弦定理和三角形三边关系可求得x 的取值范围. 【详解】将ABC V 的三条边的边长均增加x 米形成A B C '''V ,设A B C '''V 的最大角为A '∠,则A '∠所对的边的长为()4x +米,且A '∠为钝角,则cos 0A '∠<,所以()()()()()2222342340x x x x x x x ⎧+++<+⎪+++>+⎨⎪>⎩,解得01x <<.故选:D. 【点睛】本题考查利用余弦定理和三角形三边关系求参数的取值范围,灵活利用余弦定理是解本题的关键,考查计算能力,属于中等题.4.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab=( ) A.B .2CD .1【答案】B 【解析】 【分析】由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解【详解】由正弦定理:2sin sin b cR B C==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=在ABC ∆中,A B C π++=故sin()2sin A B π-=,即sin 2sin A B =故sin 2sin a A b B == 故选:B 【点睛】本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是()A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C 【解析】【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.7.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9π)的图象上所有点( ) A .向左平移518π个单位长度 B .向右平移518π个单位长度 C .向左平移536π个单位长度 D .向右平移536π个单位长度 【答案】D 【解析】 【分析】先将函数cos 29y x π⎛⎫=- ⎪⎝⎭转化为7sin 218y x π⎛⎫=+⎪⎝⎭,再结合两函数解析式进行对比,得出结论. 【详解】 函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ∴要得到函数sin 29y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数cos 29y x π⎛⎫=- ⎪⎝⎭的图象上所有点向右平移536π个单位长度,故选D . 【点睛】本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.8.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos cos 2cos a B b A C+=,1a =,b =c =( )A B .1CD 【答案】B 【解析】 【分析】先由正弦定理将cos cos 2cos a B b A C+=中的边转化为角,可得sin()A B +=可求出角6C π=,再利用余弦定理可求得结果.【详解】解:因为cos cos 2cos a B b A C+=,所以正弦定理得,sin cos sin cos A B B A +=所以sin()A B +=sin 2cos C C C=,因为sin 0C ≠,所以cos C =, 又因为(0,)C π∈,所以6C π=,因为1a =,b =所以由余弦定理得,2222cos 13211c a b ab C =+-=+-⨯=, 所以1c = 故选:B 【点睛】此题考查的是利用正、余弦定理解三角形,属于中档题.9.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C =A .π12B .π6C .π4D .π3【答案】B 【解析】 【分析】 【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可 详解:sinB=sin (A+C )=sinAcosC+cosAsinC , ∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0, ∴cosAsinC+sinAsinC=0, ∵sinC ≠0, ∴cosA=﹣sinA , ∴tanA=﹣1,∵π2<A <π, ∴A= 3π4,由正弦定理可得c sin sin aC A=, ∵a=2,,∴sinC=sin c A a=12=22, ∵a >c , ∴C=π6, 故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.10.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >.故()min 3f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.11.函数()2sin sin cos y x x x =+的最大值为( )A .1B 1CD .2【答案】A 【解析】由题意,得()22sin sin cos 2sin 2sin cos sin2cos21y x x x x x x x x =+=+=-+π2114x ⎛⎫=-+≤ ⎪⎝⎭;故选A.12.已知sin α,sin()10αβ-=-,,αβ均为锐角,则β=( ) A .512πB .3π C .4π D .6π 【答案】C 【解析】 【分析】 由题意,可得22ππαβ-<-<,利用三角函数的基本关系式,分别求得cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解.【详解】由题意,可得α,β均为锐角,∴-2π <α-β<2π.又sin(α-β)=-10,∴cos(α-β)=10.又sin αcos α ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=-×⎛ ⎝⎭.∴β=4π. 【点睛】本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题.13.已知π1cos 25α⎛⎫-= ⎪⎝⎭,则cos2α=( )A .725B .725-C .2325D .2325-【答案】C 【解析】 【分析】由已知根据三角函数的诱导公式,求得sin α,再由余弦二倍角,即可求解. 【详解】由π1cos α25⎛⎫-= ⎪⎝⎭,得1sin α5=,又由2123cos2α12sin α122525=-=-⨯=. 故选C . 【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案.【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.ABC V 中,角A 、B 、C 的对边分别为a ,b ,c ,且tanC cos cos c B A =,若c =4a =,则b 的值为( )A .6B .2C .5D【答案】A 【解析】 【分析】由正弦定理,两角和的正弦公式化简已知等式可得sin tan C C C =,结合sin 0C ≠,可求得tan C =()0,C π∈,可求C ,从而根据余弦定理24120b b --=,解方程可求b 的值. 【详解】解:∵tan cos cos c C B A =, ∴由正弦定理可得:)()sin tan sin cos sin cos C C A B B A A B C =+=+=,∵sin 0C ≠,∴可得tan C = ∵()0,C π∈, ∴3C π=,∵c =4a =,∴由余弦定理2222cos c a b ab C =+-,可得212816242b b =+-⨯⨯⨯,可得24120b b --=,∴解得6b =,(负值舍去).故选:A .【点睛】本题考查正弦定理、余弦定理的综合应用,其中着重考查了正弦定理的边角互化、余弦定理的解三角形,难度一般.利用边角互化求解角度值时,注意三角形内角对应的角度范围.16.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若1b =,c =,且2sin()cos 12cos sin B C C A C +=-,则ABC V 的面积是( )A B .12 C D .14或12【答案】C【解析】【分析】 根据已知关系求出1sin 2B =,根据余弦定理求出边a ,根据面积公式即可得解. 【详解】因为2sin()cos 12cos sin B C C A C +=-,所以2sin cos 12cos sin A C A C =-, 所以2sin cos 2cos sin 1A C A C +=,所以2sin()1A C +=,所以2sin 1B =,即1sin 2B =,因为b c <,所以B C <,所以角B 为锐角,所以cos 2B ==,由余弦定理2222cos b a c ac B =+-得2132a a =+-⨯, 整理可得2320a a -+=,解得1a =或2a =.当1a =时,ABC V 的面积是111sin 12224S ac B ==⨯=;当2a =时,ABC V 的面积是111sin 2222S ac B ==⨯=. 故选:C.【点睛】此题考查根据余弦定理解三角形,关键在于熟练掌握定理公式,结合边角关系解方程,根据面积公式求解.17.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( )A .()f x 在区间[]2ππ--,上是减函数B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B【解析】【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项.【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B.【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.18.函数()sin())f x x x ωϕωϕ=+++(ω>0)的图像过点(1,2),若f (x )相邻的两个零点x 1,x 2满足|x 1-x 2|=6,则f (x )的单调增区间为( )A .[-2+12k ,4+12k](k ∈Z )B .[-5+12k ,1+12k](k ∈Z )C .[1+12k ,7+12k](k ∈Z )D .[-2+6k ,1+6k](k ∈Z ) 【答案】B【解析】【分析】由题意得()23f x sin x πωϕ⎛⎫=++ ⎪⎝⎭,根据相邻两个零点满足126x x -=得到周期为12T =,于是可得6π=ω.再根据函数图象过点()1,2求出2()k k Z ϕπ=∈,于是可得函数的解析式,然后可求出单调增区间.【详解】由题意得()()()23f x sin x x sin x πωϕωϕωϕ⎛⎫=++=++⎪⎝⎭, ∵()f x 相邻的两个零点1x ,2x 满足126x x -=,∴函数()f x 的周期为12T =, ∴6π=ω, ∴()263f x sin x ππϕ⎛⎫=++ ⎪⎝⎭. 又函数图象过点()1,2, ∴2222632sin sin cos πππϕϕϕ⎛⎫⎛⎫++=+== ⎪ ⎪⎝⎭⎝⎭, ∴cos 1ϕ=,∴2()k k Z ϕπ=∈,∴()263f x sin x ππ⎛⎫=+⎪⎝⎭. 由22,2632k x k k Z ππππππ-+≤+≤+∈,得512112,k x k k Z -+≤≤+∈, ∴()f x 的单调增区间为[]()512,112k k k Z -++∈.故选B .【点睛】解答本题的关键是从题中所给的信息中得到相关数据,进而得到函数的解析式,然后再求出函数的单调递增区间,解体时注意整体代换思想的运用,考查三角函数的性质和应用,属于基础题.19.40cos2d cos sin x x x xπ=+⎰( ) A.1)B1 C1 D.2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.20.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+⎪⎝⎭;④tan 24y x π⎛⎫=-⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③B .①③④C .②④D .①③【答案】A【解析】逐一考查所给的函数: cos 2cos2y x x == ,该函数为偶函数,周期22T ππ== ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为122ππ⨯= ; 函数cos 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为22T ππ== ; 函数tan 24y x π⎛⎫=- ⎪⎝⎭的最小正周期为22T ππ== ; 综上可得最小正周期为π的所有函数为①②③.本题选择A 选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.。

高考数学一轮总复习第四章三角函数与解三角形 2同角三角函数的基本关系及诱导公式课件

高考数学一轮总复习第四章三角函数与解三角形 2同角三角函数的基本关系及诱导公式课件
3
A.
5
π
6
3
5
− = ,则sin −
故选C.
=(
)

4
B.
5
解:依题意,知sin −

3

3
= sin[
3
C.−
5
π
π
− − ]
6
2
4
D.−
5
= −cos(
π
− )
6
= −cos
π
6
− =
3
− .
5
【巩固强化】
1
3
1.已知cos = ,且 为第四象限角,则sin =(
4
5
cos 2 = .则sin 2 = 2sin cos = −4cos2 = − .故选A.
(2)已知sin + cos =
A.−
3 5
,则tan
5
+
1
tan
B.

2
5
5
2
=(
C.−
)
4
5
5
4
D.
9
5
解:原式两边平方,得sin 2 + 2sin cos + cos 2 = .
A.−

1
2
1
2
B.
解:因为tan = −3,所以cos ≠
1
3
cos +sin
0.所以
cos −sin
)
C.−
1
3
1+ −3
1− −3
D.
=
1+tan

新课标高考数学三角函数与解三角形提高专题讲义

新课标高考数学三角函数与解三角形提高专题讲义

类型一三角函数的概念、诱导公式1. 角a终边上任一点P(x, y),则P到原点0的距离为r = . X2+ y2,故sin a y, cos a=^,ytan a= x.2•诱导公式:奇变偶不变、符号看象限”... ., 2 2 sin a3•同角三角函数基本关系式:sin a+ cos a= 1, tan a= ------------------- -cos a[例1] 已知sin二一COS L- ,2,:…(0, n,则tan :•=( )(A) -1(B)吕(C)2(D) 1跟踪训练1. sin (—225°)=( )B.—-2C.1D•乎222答案:Atanx= 2,贝U sin x+ 1 =(2.已知)945A. 0B.9C5D・5答案:B类型二三角函数性质n1 .函数y= Asin (3汁©),当©= k n K€ Z)时为奇函数,当©= k n+ 2(k€ Z)时为偶函数.2. 函数y= As in (®x+Q,n令3汁片k n+ 2,可求得对称轴方程.令3汁©= k n K€ Z),可求得对称中心的横坐标.3. 将3汁©看作整体,可求得y=Asin(3汁⑥的单调区间,注意3的符号.n n[例2]已知3>0,函数f(x)= sin(3x+ 4)在(2,n上单调递减,则3的取值范围是()1 5 1 3 1A.【2, 4] B .【2,4] C . (0,2】 D . (0,2][答案]A跟踪训练1、若x= n是函数f(x)= , 3sin 3汁cos 3x图象的一条对称轴,当3取最小正数时()A . f(x)在(0, n上单调递增B . f(x)在G 3)上单调递增C. f(x)在(-n,0)上单调递减D . f(x)在(-n,n上单调递减答案:A3T2、设 f x =4cos( x )sin x-cos(2 x 二),其中-0.6(I )求函数y = f x 的值域跟踪训练1、 为了使得变换后的函数的图象关于点(一n 0)成中心对称,只需将原函数 护sin (2x +n 的 图象()A .向左平移:n 个单位长度B .向左平移n 个单位长度nnC .向右平移:个单位长度D .向右平移6个单位长度答案:C(n )若f x 在区间送,2上为增函数,求的最大值.类型三 函数y = As in (•曲)的图象及变换 函数y = Asin (3汁妨的图象 (1)五点法”作图:设z = 3汁令z = 0, n , n 辛,2n,求出x 的值与相应y 的值,描点、连线可得. (2)图象变换:向左()或向右(sin JC --------- zzy —:―匚CHZ ------ 平移T 个单位 横坐标变为原来的丄(肚>0)倍<0 .^y= sin ( tp)* y= sin ( JT - I c)j J 纵坐标不变纵坐标变为原来的A (A>0)倍A + z、、Asin (uxr+年).横坐标不变[例 3] 已知函数 f(x) = Asin (3x+ ©(x € R , 3>0, n0<庆2)的部分图象如图所(1) 求函数f(x )的解析式;n n(2) 求函数g(x) = f(x -12)— f(x +12)的单调递增区间.2、函数f (x) = 6cos23sin「x-3(「・0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且ABC为正三角形.(I)求• ■的值及函数f (x)的值域;卄8J3 10 2(n)若f(x o) ,且x o •( ,),求f(x o 1)的值.5 3 3类型四三角变换及求值1.常值代换:特别是“ 1的代换,1 = sin 20 + cos 2B= tan 45°等.2 2 2 2 2 a-P 2 .项的分拆与角的配凑:如sin a+ 2cos (sin a+ cos a + cos a a= ( a—®+ B, —2;a可视为2的倍角;4±a可视为(2±a的半角等.5.公式的变形应用:, 2 1 —cos 2a 2 1 + cos 2a如口sin a= cos atan a, sin a= ? , cos a= 2 , tan a+ tan B3. 降次与升次:正用二倍角公式升次,逆用二倍角公式降次.4. 弦、切互化:一般是切化弦.=tan(a+ B • —tan atan B, 1 ±sin a= (sin ^±cos 刁2等.6.角的合成及三角函数名的统一as in a+ bcos a= a2+ b2 sin (a+ 妨,(ta n(= £).n[例4]已知函数f(x) = 2cos(3x+ 6)(其中co>0, x€ R)的最小正周期为10 n.(1) 求3的值;5 n 56 5 16 亠(2) 设a,沃[0 ,勺,f(5 a+-u) = —;, f (5 B—;冗)=石,求cos ( a+ B)的值.2 3 5 617跟踪训练1、设a为锐角,若cos (a+ n = 4,则Sin (2 a+秒的值为___________ .答案:晋2、设函数V2 兀 2 f (x) cos(2x —) sin x(I)求函数f(x)的最小正周期;兀(II)设函数g(x)对任意X- R,有g仅• 一) p(x)兀,且当x [0,-]时,g(x) f(x),求函数g(x)在[-二,0]上的解析式.类型五正、余弦定理的应用1.正弦定理的变式(1)a= 2Rsin A, b = 2Rsin B, c= 2Rsin C;(2)a : b : c = sin A : sin B : sin C. 2. 余弦定理的变式a 2 + c 2 —b 2 = 2accos B (注意整体变形). 3. 面积公式1 abc 、r mi 、t t /rS A = qabsin C , S A = ^R (R 为外接圆半径); 1S A = 2「(a + b + c )(r 为内切圆半径).[例5] 在厶ABC 中,内角 A , B , C 的对边分别为a , b , c ,且bsin A = acos B. (1) 求角B 的大小;(2)若 b = 3, sin C = 2sin A ,求 a , c 的值.B = 3.a =*j 3, c = 2 ,3.跟踪训练答案:B3、已知a,b,c 分别为 ABC 三个内角 A, B,C 的对边,acosC 」、3asinC 「b 「c = 0(1 )求A(2)若a =2 , ABC 的面积为,3 ;求b,c 。

(新高考)高考二轮精品专题六 三角函数与解三角形 教师版

(新高考)高考二轮精品专题六 三角函数与解三角形 教师版

1.高考对三角函数的考查主要在于三角函数的定义、图象和性质、三角恒等变换,主要考查三角函数图象的变换、三角函数的性质(单调性、奇偶性、周期性、对称性及最值),三角恒等变换通常还与解三角交汇命题.2.解三角形的考查主要在具体面积、角的大小、面积与周长的最值或范围的考查,本部分要求对三角恒等变换公式熟悉.一、三角函数1.公式(1)扇形的弧长和面积公式如果半径为r 的圆的圆心角α所对的弧的长为l ,那么角α的弧度数的绝对值是l rα=.相关公式:①l =|α|r②21122S lr r α==(2)诱导公式:正弦余弦正切α+k ⋅2πsin αcos αtan αα+π―sin α―cos αtan α―α―sin αcos α―tan απ―αsin α―cos α―tan α2πα+cos α―sin α2πα-cos αsin α32πα+―cos αsin α32πα-―cos α―sin α(3)同角三角函数关系式:sin 2α+cos 2α=1,sin tan cos ααα=(4)两角和与差的三角函数:sin(α+β)=sin αcos β+cos αsin βsin(α―β)=sin αcos β―cos αsin βcos(α+β)=cos αcos β―sin αsin βcos(α―β)=cos αcos β+sin αsin βtan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(5)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-22tan tan 21tan ααα=-(6)降幂公式:21cos 2sin 2αα-=,21cos 2cos 2αα+=2.三角函数性质性质y =sin x ,x ∈Ry =cos x ,x ∈R奇偶性奇函数偶函数单调性在区间()2,222k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z 上是增函数,在区间()32,222k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 上是减函数在区间[―π+2kπ,2kπ](k ∈Z )上是增函数,在区间[2kπ,π+2kπ](k ∈Z )上是减函数最值在()22x k k ππ=+∈Z 时,y max ;在()22x k k ππ=-∈Z 时,y min在x =2kπ(k ∈Z )时,y max ;在x =2kπ+π(k ∈Z )时,y min对称中心(kπ,0)(k ∈Z )(),02k k ππ⎛⎫+∈⎪⎝⎭Z 对称轴()2x k k ππ=+∈Z x =kπ(k ∈Z )正切函数的性质图象特点定义域为{|,}2x x k k ππ≠+∈Z 图象与直线2x k k ππ=+∈Z ,没有交点最小正周期为π在区间,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,上图象完全一样在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是增函数图象在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是上升的对称中心为,02k k π⎛⎫∈⎪⎝⎭Z ,图象关于点,02k k π⎛⎫∈⎪⎝⎭Z ,成中心对称3.函数y =A sin(ωx +φ)的图象及变换(1)φ对函数y =sin(x +φ)的图象的影响(2)ω(ω>0)对y =sin(ωx +φ)的图象的影响(3)A(A >0)对y =A sin(ωx +φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形1.正余弦定理定理正弦定理余弦定理内容(为外接圆半径);;变形形式,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在中,已知,和角时,解得情况如下:为锐角为钝角或直角直角图形关系式解的个数一解两解一解一解上表中为锐角时,,无解.为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点P (x 0,y 0),若cos 356πα⎛⎫+= ⎪⎝⎭,则x 0=( )ABCD【答案】C【解析】∵,02πα⎛⎫∈-⎪⎝⎭,∴,636πππα⎛⎫+∈- ⎪⎝⎭,又3cos 65πα⎛⎫+=< ⎪⎝⎭,所以,063ππα⎛⎫+∈- ⎪⎝⎭,所以4sin 65πα⎛⎫+=- ⎪⎝⎭,∴0cos cos cos cos sin sin 666666x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=-⨯=,故选C .【点评】本题容易忽视6πα+的范围,而导致sin 6πα⎛⎫+⎪⎝⎭出错.2.已知 tan 2θ―4tan θ+1=0,则2cos 4πθ⎛⎫+= ⎪⎝⎭( )A .12B .13C .14D .15【答案】C(70分钟)经典训练题【解析】由 tan 2θ―4tan θ+1=0,可得1tan 4tan θθ+=,所以sin cos 4cos sin θθθθ+=,即22sin cos 4cos sin θθθθ+=⋅,即1cos sin 4θθ⋅=,211cos 2121sin 212sin cos 124cos 422224πθπθθθθ⎛⎫++-⨯⎪--⎛⎫⎝⎭+===== ⎪⎝⎭,故选C .【点评】本题考查同角三角函数的关系、降幂公式、二倍角公式,解答本题的关键是由条件有1tan 4tan θθ+=,从而可得1cos sin 4θθ⋅=,由21cos 21sin 22cos 422πθπθθ⎛⎫++ ⎪-⎛⎫⎝⎭+== ⎪⎝⎭12sin cos 2θθ-=可解,属于中档题.3.已知函数f (x )=2sin(ωx +φ),(0,2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .―2B .2C .―3D .―1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=,∴f (x )=2sin(x +φ),将点,14A π⎛⎫⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭,将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考了三角函数图象,以及三角函数的性质和三角函数图象的变换,属于中档题.4.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin C <sin B cos A ,由内角和定理可得sin(A +B)<cos A sin B ,化简可得:sin A cos B <0,∴cos B <0,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.5.(多选)已知函数f(x)=3sin x +sin 3x ,则( )A .f(x)是奇函数B .f(x)是周期函数且最小正周期为2πC .f(x)的值域是[―4,4]D .当x ∈(0,π)时,f(x)>0【答案】ABD【解析】A .f (―x )=3sin(―x )+sin(―3x )=―3sin x ―sin 3x =―f (x ),故f(x)是奇函数,故A 正确;B .因为y =sin x 的最小正周期是2π,y =sin 3x 的最小正周期为23π,二者的“最小公倍数”是2π,故2π是f(x)的最小正周期,故B 正确;C .分析f(x)的最大值,因为3sin x ≤3,sin 3x ≤1,所以f(x)≤4,等号成立的条件是sin x =1和sin 3x =1同时成立,而当sin x =1,即()22x k k ππ=+∈Z 时,()3362x k k ππ=+∈Z ,sin 3x =―1,故C 错误;D .展开整理可得()2()3sin sin cos 2cos sin 2sin 4cos 2f x x x x x x x x =++=+,易知当x ∈(0,π)时,f(x)>0,故D 正确,故选ABD .【点评】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数的必要非充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.二、解答题.6.已知m =(2sin x ,sin x ―cos x ),n =(3cos x ,sin x +cos x ),函数f(x)=m ⋅n .求函数f(x)的最大值以及取最大值时x 的取值集合.【答案】f(x)的最大值为2,,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【解析】()()()cos sin cos sin cos f x x x x x x x =⋅=+-+m n2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,所以函数f(x)的最大值为2,当2262x k πππ-=+,即,3x k k ππ=+∈Z 取得,即集合为,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【点评】本题与向量的坐标运算结合,考查三角函数的最值,属于基础题.7.已知函数2()cos 222x x x f x =+-.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围.【答案】(1)[―2,2];(2)5,12⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()2cos 2sin(2224x x x f x x x x π=+-==+,令4U x π=+,∵x ∈[0,π],5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 24x π⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为[―2,2].(2)()2sin()(0)4f x x πωωω=+>,∵f(ωx)=3,2sin(4x πω∴+=,即sin()4x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z ,由于方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭.【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin(ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.8.已知函数f(x)=3sin x cos x +cos 2x +1.(1)求f(x)的最小正周期和值域;(2)若对任意x ∈R ,2()()20f x k f x -⋅-≤的恒成立,求实数k 的取值范围.【答案】(1)最小正周期π,值域为15,22⎡⎤⎢⎥⎣⎦;(2)1710k ≥.【解析】(1)f(x)=3sin x cos x +cos 2x +1cos 21133212cos 2sin 222262x x x x x π+⎛⎫=++=++=++ ⎪⎝⎭,∴f(x)的为最小正周期22T ππ==,值域为()15,22f x ⎡⎤∈⎢⎥⎣⎦.(2)记f(x)=t ,则15,22t ⎡⎤∈⎢⎥⎣⎦,由f 2(x)―k ⋅f(x)―2≤0恒成立,知t 2―kt ―2≤0恒成立,即kt ≥t 2―2恒成立,∵t >0,∴222t k t t t-≥=-.∵()2g t t t =-在15,22t ⎡⎤∈⎢⎥⎣⎦时单调递增,max 5541722510g g ⎛⎫==-= ⎪⎝⎭,∴k 的取值范围是1710k ≥.【点评】本题主要考查了三角函数的恒等变换的应用,正弦函数的性质,考查了函数思想,属于中档题.9.△ABC 的内角A ,B ,C 的对边为a ,b ,c ,且3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C .(1)求cos A 的值;(2)若△ABC 的面积为,求a +b +c 的最小值.【答案】(1)13;(2)4+.【解析】(1)由3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C ,∵A +B +C =π,所以228(sin sin )sin sin sin 3B C A B C +=+,由正弦定理可得228()3b c a bc +=+,则22223b c a bc +-=,由余弦定理可得2221cos 23b c a A bc +-==.(2)由1cos 3A =,得sin A =,∵1sin 2ABC S bc A ==△,∴bc =12,由22223b c a bc +-=,得222224216333a b c bc bc bc bc =+-≥-==,∴a ≥4,当且仅当b =c =23时,等号成立.又b +c ≥2bc =43,当且仅当b =c =23时,等号成立.∴a +b +c ≥4+43,当且仅当b =c =23时,等号成立.即a +b +c 的最小值为4+.【点评】求解三角形中有关边长、角、面积的最值(范围)问题时,常利用正弦定理、余弦定理与三角形面积公式,建立a +b ,ab ,a 2+b 2之间的等量关系与不等关系,然后利用函数或基本不等式求解.10.设函数f(x)=12cos 2x ―43sin x cos x ―5.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=―5,a =3,求△ABC 周长的取值范围.【答案】(1)π,[―43+1,43+1](2)(3+3,33].【解析】(1)f (x )=12cos 2x ―43sin x cos x ―5=12cos 2x ―23sin 2x ―56cos 221216x x x π⎛⎫=-+=++ ⎪⎝⎭,T π∴=,值域为[―43+1,43+1].(2)由f(A)=―5,可得212cos cos A A A =,因为三角形为锐角△ABCsin A A =,即tan A =,3A π=,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,22sin 2sin()3c C B π==-,所以212sin sin()2(sin sin )32a b c B B B B B π⎡⎤++=++-=++⎢⎥⎣⎦32(sin ))26B B B π==++,因为△ABC 为锐角三角形,所以02B π<<,02C π<<,即022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,所以2363B πππ<+<sin(16B π<+≤,即36B π+<+≤,所以周长的取值范围为区间(3+3,33].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域,求周长的取值范围,是常用解法.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a +b )(sin A ―sin B )=(b +c )sin C .(1)求角A 的大小;(2)若点D 是BC 的中点,且AD =2,求△ABC 的面积的最大值.【答案】(1)23π;(2)23.【解析】(1)由题意得(a +b)(a ―b)=(b +c)c ,∴b 2+c 2―a 2=―bc ,1cos 2A ∴=-,()0,A π∈,23A π∴=.(2)1()2AD AB AC =+u u u r u u u r u u u r ,()()2222211244AD AB AC AB AC AB AC AB AC =++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r ,()1224AB AC AB AC ∴≥⋅-⋅,当且仅当AB =AC 时,等号成立,∴AB ⋅AC ≤8,11sin120822S AB AC =⋅︒≤⨯=故△ABC 的面积的最大值是23.【点评】用三角形中线向量进行转化是解题关键.12.如图,在△ABC 中,AB =2AC ,∠BAC 的角平分线交BC 于点D .(1)求ABD ADCS S △△的值;(2)若AC =1,BD =2,求AD 的长.【答案】(1)2;(2)1.【解析】(1)∵AD 为∠BAC 的角平分线,∴∠BAD =∠CAD ,即sin ∠BAD =sin ∠CAD,∴1sin 21sin 2ABDADC AB AD B AB AD S S AC AD A ACC D ⋅∠∠==⋅V V ,又∵AB =2AC ,∴2ABD ADC S S =△△.(2)由(1)知2ABD ADC S AB S AC ==△△,而1212ABDADC BC h S BC S CDCD h ⋅==⋅△△,2AB BD AC CD ∴==且AC =1,BD =2,∴2AB =,CD =∵∠BAD =∠CAD ,∴cos ∠BAD =cos ∠CAD ,在△ABD 中,22222422cos 2224AB AD BD AD AD BAD AB AD AD AD+-+-+∠===⋅⨯⨯,在△ACD 中,2222211122cos 2212AD AD AC AD CD CAD AC AD AD AD +-++-∠===⋅⨯⨯,∴2212242AD AD AD AD ++=,∴AD =1.【点评】本题考查三角形面积公式和余弦定理的应用,解题的关键在于对角平分线的性质的理解和运用,考查解题和运用能力.13.在ΔABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(a +b +c)(a +b ―c)=3ab .(1)求角C 的值;(2)若c =2,且ΔABC 为锐角三角形,求a +b 的取值范围.【答案】(1)3C π=;(2)(23,4].【解析】(1)由题意知(a +b +c)(a +b ―c)=3ab ,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵C ∈(0,π),∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A B π===a A =,b B =,∴)2sin sin sin sin 3a b A B A A π⎡⎤⎛⎫+=+=+- ⎪⎢⎥⎝⎭⎣⎦2cos 4sin 6A A A π⎛⎫=+=+ ⎪⎝⎭,又∵ΔABC 为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上a +b 的取值范围为(23,4].【点评】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.一、选择题.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“b cos A ―c <0”,是“△ABC 为锐角三角形”的( )条件.A .充分必要B .充分不必要C .必要不充分D .既不充分也不必要【答案】C高频易错题即sin(A +B)=sin A cos B +sin B cos A >sin B cos A ,∴sin A cos B >0,因为sin A >0,∴cos B >0,所以B 为锐角.当B 为锐角时,△ABC 不一定为锐角三角形;当△ABC 为锐角三角形时,B 一定为锐角,所以“b cos A ―c <0”是“△ABC 为锐角三角形”的必要非充分条件,故选C .【点评】判断充分必要条件,一般有三种方法:(1)定义法;(2)集合法;(3)转化法.我们要根据实际情况灵活选择方法,本题选择的是定义法判断充分必要条件.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________.【答案】(22,23)【解析】由sin2sin b a A A=,得4cos b A =,由0290045A A ︒<<︒⇒︒<<︒,01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos A A ︒<<︒⇒<<cos A <<b =4cos A ∈(22,23).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.三、解答题.3.已知a >0,函数()2sin(2)26f x a x a b π=-+++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,―5≤f (x )≤1.(1)求常数a ,b 的值;(2)设()2g x f x π⎛⎫=+ ⎪⎝⎭且lg g (x )>0,求g (x )的单调区间.【答案】(1)2a =,5b =-;(2)递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【解析】(1)由0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦,所以[]2sin(2)2,6a x a a π-+∈-,所以f (x )∈[b ,3a +b],又因为―5≤f (x )≤1,可得531b a b =-⎧⎨+=⎩,解得2a =,5b =-.(2)由(1)得()4sin(2)16f x x π=-+-,则()74sin(214sin(21266g x f x x x πππ⎛⎫=+=-+-=+- ⎪⎝⎭,又由lg g (x )>0,可得g (x )>1,所以4sin(2116x π+->,即1sin(2)62x π+>,所以5222666k x k k πππππ+<+<+∈Z ,,当222662k x k k πππππ+<+≤+∈Z ,时,解得6k x k k πππ<≤+∈Z ,,此时函数g (x )单调递增,即g (x )的递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;当5222266k x k k πππππ+<+<+∈Z 时,解得63k x k k ππππ+<<+∈Z ,,此时函数g (x )单调递减,即g (x )的递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【点评】本题主要考查了三角函数的图象与性质的综合应用,其中解答中根据三角函数的性质,求得函数的解析式,熟练应用三角函数的性质是解答的关键,着重考查推理与运算能力.一、选择题.1.如图所示,扇形OQP 的半径为2,圆心角为3π,C 是扇形弧上的动点,四边形ABCD 是扇形的内接矩形,则S ABCD 的最大值是()AB.CD .23【答案】A【解析】如图,记∠COP =α,在Rt △OPC 中,2cos OB α=,2sin BC α=,在Rt △OAD中,OA DA BC α===,所以2cos AB OB OA αα=-=,设矩形ABCD 的面积为S,(2cos )2sin S AB BC ααα=⋅=⋅精准预测题24sin cos 2sin 22ααααα==+-)6πα=+,由03πα<<,所以当262ππα+=,即6πα=时,S =,故选A .【点评】本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行求解.2.已知函数()2sin 26f x x π⎛⎫=+⎪⎝⎭,现将()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为( )A .221124x y +=B .sin 3y x π⎛⎫=+⎪⎝⎭C .2sin 43y x π⎛⎫=+⎪⎝⎭D .2sin 3y x π⎛⎫=+⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移12π个单位得2sin 22sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2sin 43y g x x π⎛⎫==+⎪⎝⎭,故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin[ω(x +φ)]=sin(ωx +ωφ),而不是y =sin(ωx +),考查运算求解能力,是基础题.3.(多选)如图是函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象,则下列说法正确的是( )A .ω=2B .,06π⎛⎫-⎪⎝⎭是函数,f (x )的一个对称中心C .23πϕ=D .函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【解析】由题知,A =2,函数f (x )的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,所以22T πω==,故A 正确;因为1111112sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11262k ππϕπ+=+,k ∈Z ,解得423k πϕπ=-,k ∈Z ,又|φ|<π,所以23πϕ=,故C 正确;函数()22sin 23f x x π⎛⎫=+⎪⎝⎭,因为22sin 22sin 06633f ππππ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以,06π⎛⎫-⎪⎝⎭不是函数f (x )的一个对称中心,故B 错误;令23222232m x m πππππ+≤+≤+,m ∈Z ,得51212m x mx πππ-≤≤+,m ∈Z ,当m =―1时,1371212x ππ-≤≤-,因为4137,,51212ππππ⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确,故选ACD .【点评】已知()(sin 0,0)()f x A x A ωϕω+>>=的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由2Tπω=,即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=(或0x ωϕπ+=),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.二、解答题.4.已知函数f(x)=cos(ωx)(ω>0)的最小正周期为π.(1)求ω的值及函数()()0,42g x x f x x ππ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎝⎭⎣⎦,的值域;(2)在△ABC 中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,若0,2A π⎛⎫∈ ⎪⎝⎭,()12f A =-,△ABC 的面积为33,b ―c =2,求a 的值.【答案】(1)ω=2,值域为[―1,2];(2)4.【解析】(1)因为函数f(x)=cos(ωx)的最小正周期为π,由2T ππω==,2ω=,又因为ω>0,所以ω=2.此时f(x)=cos 2x ,则得()2cos 24g x x x π⎛⎫=-- ⎪⎝⎭,即g(x)=3sin 2x ―cos 2x ,即()2sin 26g x x π⎛⎫=-⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,[]2sin 21,26x π⎛⎫-∈- ⎪⎝⎭,所以所求函数的值域为[―1,2].(2)由题意得1cos 22A =-,因为0,2A π⎛⎫∈ ⎪⎝⎭,则得2A ∈(0,π),所以223A π=,解得3A π=,因为△ABC 的面积为33,则得1sin 2bc A =,即1sin 23bc π=,即bc =12.又因为b ―c =2,由余弦定理,得a =b 2+c 2―2bc cos A =b 2+c 2―bc =(b ―c )2+bc =22+12=4,所以a =4.【点评】本题考查求三角函数的值域,考查余弦定理解三角形,以及三角形面积公式.三角函数问题中,首先需利用诱导公式、二倍角公式、两角和与差的正弦(余弦)公式化函数为一个角的一个三角函数形式(主要是f(x)=A sin(ωx +ϕ)+k 形式),然后利用正弦函数性质确定求解.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B ―C )=c sin(B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为23,求△ABC 的周长.【答案】(1)3C π=;(2)6+23.【解析】(1)∵a sin(A +B ―C)=c sin(B +C),∴sin A sin(π―2C)=sin C sin A ,∴2sin A sin C cos C =sin C sin A ,∵sin A sin C ≠0,1cos 2C ∴=,0C π<<,3C π∴=.(2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得,c 2=12,c =23,此时周长为6+23.【点评】本题主要考查了三角形的内角和诱导公式在三角化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.6.如图,矩形ABCD 是某个历史文物展览厅的俯视图,点E 在AB 上,在梯形DEBC 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M 、N 在线段DE (含端点)上,且点M 在点N 的右下方.经测量得知:AD =6米,AE =6米,AP =2米,4MPN π∠=.记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米.(1)分别求线段PM 、PN 关于θ的函数关系式,并写出θ的取值范围;(2)求S 的最小值.【答案】(1)4sin cos PM θθ=+,PN =,30arctan 34πθ≤≤-;(2)8(2―1)平方米.【解析】(1)在△PME 中,∠EPM =θ,4PE AE AP =-=米,4PEM π∠=,34PME πθ∠=-,由正弦定理得sin sin PM PEPEM PME=∠∠,所以sin 4sin sin cos PE PEM PM PME θθ⨯∠===∠+;同理在PNE △中,由正弦定理得sin sin PN PEPEN PNE=∠∠,所以sin sin PE PEN PN PNE ⨯∠===∠当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =arctan 3,3πarctan 3arctan 344πθπ=--=-,所以30arctan 34πθ≤≤-.(2)△PMN 的面积214sin 2cos sin cos S PM PN MPN θθθ=⨯⨯∠=+481cos 21sin 2cos 21sin 222θθθθ===++++,因为30arctan 34πθ≤≤-,所以当242ππθ+=,即30,arctan 384ππθ⎡⎤=∈-⎢⎥⎣⎦时,S)81=-,所以可视区域△PMN 面积的最小值为8(2―1)平方米.【点评】本题考查解三角形的应用.掌握三角函数的性质是解题关键.解题方法是利用正弦定理或余弦定理求出三角形的边长,面积,利用三角函数的恒等变换化函数为基本三角函数形式,然后由正弦函数性质求最值.7.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若23cos 2A +cos 2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值;(2)若a =3,3A π=,求b +c 的取值范围.【答案】(1)5b =;(2)b +c ∈(3,23].【解析】(1)22223cos cos 223cos 2cos 10A A A A +=+-=Q ,∴21cos 25A =,又∵A 为锐角,1cos 5A =,而a 2=b 2+c 2―2bc cos A ,即2121305b b --=,解得b =5或135b =-(舍去),∴b =5.(2)由正弦定理可得()22sin sin 2sin sin 36b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,203B π<<Q ,∴5666B πππ<+<,∴1sin 126B π⎛⎫<+≤ ⎪⎝⎭,∴b +c ∈(3,23].【点评】本题考查三角函数的恒等变换,三角形的正弦定理和余弦定理的运用,以及运算能力,属于中档题.。

第三章 三角函数、解三角形 复习讲义

第三章 三角函数、解三角形 复习讲义

第1节 任意角和弧度制及任意角的三角函数◆考纲·了然于胸◆ 1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.[要点梳理]1.角的概念(1)角的分类(按旋转的方向):角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角。

负角:按照顺时针方向旋转而成的角。

零角:射线没有旋转.(2)象限角与轴线角:(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k·360°,k ∈Z }. 质疑探究1:(1)第二象限角一定是钝角吗?(2)终边相同的角一定相等吗?提示:(1)钝角是第二象限角,但第二象限角不一定是钝角;(2)终边相同的角不一定相等. 2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式(3)规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .质疑探究[小题查验]1.-870°角的终边在第几象限( )A .一B .二C .三D .四2.(2016·龙岩质检)已知α为第二象限角,sin α=45,则tan α的值为( )A.34 B .-34 C.43 D .-433.(2016·洛阳一模)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B,3cos A -1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________. 5.给出下列命题:①三角形的内角必是第一、二象限角.②第一象限角必是锐角.③不相等的角终边一定不相同.④若β=α+k ·720°(k ∈Z ),则α和β终边相同.⑤点P (tan α,cos α)在第三象限,则角α的终边在第二象限. 其中正确的是________.(写出所有正确命题的序号)考点一 象限角及终边相同的角(基础型考点——自主练透)[方法链接]1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 2.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.3.已知角α终边所在的象限,求2α、α2、π-α等角的终边所在象限问题,可由条件先写出α的范围,解不等式得出角2α、α2、π-α等的范围,再根据范围确定象限.[题组集训]1.若角θ的终边与6π7角的终边相同,则在[0,2π)内终边与θ3角的终边相同的角为________.2.终边在直线y =3x 上的角的集合为________. 3.已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为______________________.4.如果α是第三象限的角,则角-α的终边所在位置是____________,角2α的终边所在位置是________,角α3终边所在的位置是________.考点二 三角函数的定义(深化型考点——引申发散)[一题多变]【例1】 设角α终边上一点P (-4a,3a )(a <0),求sin α的值. [发散1] 若本例中“a <0”,改为“a ≠0”,求sin α的值.[发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 活学活用 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值. [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 三角函数线、三角函数值的符号(重点型考点——师生共研) 【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)已知cos α≤-12,则角α的集合为________.【名师说“法”】(1)熟练掌握三角函数在各象限的符号.(2)利用单位圆解三角不等式(组)的一般步骤:①用边界值定出角的终边位置;②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分;④写出角的表达式.跟踪训练(1)y=sin x-32的定义域为____________.(2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P(tan θ,cos θ)在第________象限.考点四扇形的弧长、面积公式的应用(深化型考点——引申发散)【例3】已知扇形周长为10,面积是4,求扇形的圆心角.[发散1]去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?[发散2]若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[发散3]若本例条件变为:扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.易错警示3错用三角函数的定义(2016·天津模拟)已知角θ的终边上一点P(3a,4a)(a≠0),则sin θ=________.成功破障已知角α的终边经过点P(-3,m),且sin α=34m(m≠0),则tan α的值为________.[课堂小结]【方法与技巧】1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.【失误与防范】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时活页作业(十七)[基础训练组]1.(2016·南平质检)喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是() A.30°B.-30°C.60°D-60°2.(2014·新课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>03.(2016·乌鲁木齐模拟)设函数f (x )满足f (sin α+cos α)=sin α cos α,则f (0)=( )A .-12B .0 C.12 D .14.(2016·潍坊模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,126.在与2010°终边相同的角中,绝对值最小的角的弧度数为________. 7.已知角β的终边在直线y =3x 上,则sin β=________.8.(2016·玉溪模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.9.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .[能力提升组]11.(2016·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称12.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-313.(2016·太原模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 14.(2016·合肥调研)函数y =lg(3-4sin 2x )的定义域为________. 15.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断tan α2 sin α2 cos α2的符号.第2节 同角三角函数基本关系及诱导公式◆考纲·了然于胸◆1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[要点梳理]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系31.给出下列命题:①sin 2θ+cos 2φ=1.②同角三角函数的基本关系式中角α可以是任意角.③六组诱导公式中的角α可以是任意角. ④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关. ⑤若sin(k π-α)=13(k ∈Z ),则sin α=13.其中正确的是( )A .①③B .④C .②⑤D .④⑤2.(2015·高考福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 3.sin 585°的值为( )A .-22 B.22 C .-32 D.324.若cos α=-35,且α∈(π,3π2),则tan α=________.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2 α的值是________.考点一 同角三角函数关系式的应用(深化型考点——引申发散)[一题多变]【例1】 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求sin α+cos α的值.[发散2] 保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.[发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5,求tan α的值.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 考点二 三角函数的诱导公式的应用(基础型考点——自主练透)[方法链接](1)给角求值的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π4之间角的三角函数,然后求值,其步骤为:(2)给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现π2的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系①常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.[题组集训]1.sin(-1 200°)·cos 1 290°+cos (-1 020°)·sin(-1 050°)+tan 945°=________. 2.已知cos(π6-α)=23,则sin(α-2π3)=________.3.设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=________.4.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.考点三 同角关系式、诱导公式在三角形中的应用(重点型考点——师生共研)【例2】 在△ABC 中,若sin(3π-A )=2sin(π-B ),cos(3π2-A )=2cos(π-B ).试判断三角形的形状.【名师说“法”】(1)在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin(A 2+B 2)=sin(π2-C 2)=cos C 2,cos(A 2+B 2)=cos(π2-C 2)=sin C 2.(2)求角时,一般先求出该角的某一个三角函数值,如正弦值,余弦值或正切值,再确定该角的范围,最后求角. 跟踪训练在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.思想方法11 分类讨论思想在三角函数化简中的应用 典例 化简:sin(4n -14π-α)+cos(4n +14π-α)(n ∈Z ).即时突破 已知A =sin (kπ+α)sin α+cos (kπ+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[课堂小结]【方法与技巧】同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ(1+1tan 2θ)=tan π4=….【失误与防范】利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.课时活页作业(十八)[基础训练组]1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.122.(2016·济南质检)α∈(-π2,π2),sin α=-35,则cos(-α)的值为( )A .-45 B.45 C.35 D .-353.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f (-25π3)的值为( )A.12 B .-12 C.32 D .-324.(2016·皖北模拟)若sin(π6+α)=35,则cos(π3-α)=( )A .-35 B.35 C.45 D .-455.(2016·石家庄模拟)已知α为锐角,且2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377 C.31010 D.136.(2016·成都一模)已知sin(π-α)=log 814 ,且α∈(-π2,0),则tan(2π-α)的值为________.7.(2015·辽宁五校第二次联考)已知sin x =m -3m +5,cos x =4-2m m +5,且x ∈(3π2,2π),则tan x =________.8.已知cos(π6-θ)=a (|a |≤1),则cos(5π6+θ)+sin(2π3-θ)的值是________.9.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.10.设0≤θ≤π,P =sin 2θ+sin θ-cos θ.(1)若t =sin θ-cos θ,用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.[能力提升组]11.(2016·厦门模拟)已知cos 31°=a ,则sin 239°·tan 149°的值是( )A.1-a 2aB.1-a 2C.a 2-1aD .-1-a 212.(2016·太原二模)已知sin α+cos α=2,α∈(-π2,π2),则tan α=( )A .-1B .-22 C.22D .1 13.(2016·海淀模拟)已知sin 2θ+4cos θ+1=2,那么(cos θ+3)(sin θ+1)的值为( )A .6B .4C .2D .014.(2016·新疆阿勒泰二模)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 15.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A ;(2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tanB.第3节 三角函数的图象与性质◆考纲·了然于胸◆1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.[要点梳理]1.用五点法作正弦函数和余弦函数的简图:正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象和性质1.下列说法正确的是( )A .函数y =cos x 在第一象限内是减函数B .函数y =tan x 在定义域内是增函数C .函数y =sin x cos x 是R 上的奇函数D .所有周期函数都有最小正周期2.(2015·新课标卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(k -14,k +34),k ∈ZC .(2k π-14,2k π+34),k ∈ZD .(2k -14,2k +34),k ∈Z3.(2016·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0 4.函数y =tan (2x +π4)的图象与x 轴交点的坐标是________.5.(2015·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是__.考点一 三角函数的定义域、值域问题(基础型考点——自主练透)[方法链接](1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[题组集训]1.函数y =sin x -cos x 的定义域为________.2.函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为________.3.当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性(重点型考点——师生共研) 【例】 (1) y =sin(π3-2x )的单调递减区间为________.(2)(2016·洛阳模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3] 上是增函数,则ω的取值范围是________.互动探究 在本例(1)中函数不变,求函数在[-π,0]上的单调递减区间. 【名师说“法”】求三角函数单调区间的两种方法](1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.提醒:]求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 跟踪训练(1)y =tan(2x -π3)的单调递增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 考点三 三角函数的奇偶性、周期性和对称性(高频型考点——全面发掘)[考情聚焦]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用. 角度一 三角函数的周期1.函数y =-2cos 2(π4+x )+1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数2.(2016·长沙一模)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.角度二 求三角函数的对称轴或对称中心3.(2016·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称 B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称角度三 三角函数对称性的应用 4.(2016·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为( )A .-34 B .-14 C .-12 D.345.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[通关锦囊](1)求三角函数周期的方法: ①利用周期函数的定义;②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;③利用图象:对含绝对值的三角函数的周期问题,通常要画出图象,结合图象进行判断. (2)三角函数的对称性、奇偶性①正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数图象只是中心对称图形,应熟记它们的对称轴和对称中心.②若f (x )=A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z );若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ).③若求f (x )=A sin(ωx +φ)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.[题组集训]1.(2016·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π32.(2016·湖南六校联考)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是(π8,0),则f (x )的最小正周期是________.易错警示4 三角函数单调性忽视x 的系数致错 典例 求函数y =12sin(π4-2x3)的单调区间为________.提醒:](1)对于其它形式的三角函数,首先要变换到y =A sin(ωx +φ)或y =A cos(ωx +φ),y =A tan(ωx +φ)(ω>0)才可.(2)求单调区间要注意定义域.即时突破 函数y =cos(2x +π6)的单调递增区间为________.[课堂小结]【方法与技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 【失误与防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.课时活页作业(十九)[基础训练组]1.函数y =cos x -32的定义域为( ) A .[-π6,π6] B .[k π-π6,k π+π6],k ∈Z C .[2k π-π6,2k π+π6],k ∈Z D .R2.(2016·南昌联考)已知函数f (x )=sin (ωx +π6)-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π23.(2016·广州测试)若函数y =cos(ωx +π6)(ω∈N *)的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 4.(2016·九江模拟)下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5.将函数f (x )=3sin 2x -cos 2x 的图象向左平移|m |个单位,若所得的图象关于直线x =π6对称,则|m |的最小值为( )A.π3 B.π6 C .0 D.π126.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.7.(2016·大庆模拟)若f (x )=2sin ωx (0<ω<1)在区间[0,π3]上的最大值是2,则ω=________.8.(2016·荆州质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-3π8,0)对称,则函数的解析式为________.9.设函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin 2⎝⎛⎭⎫x +π2.(1)求f (x )的最小正周期和对称轴方程;(2)当x ∈⎣⎡⎦⎤-π3,π4时,求f (x )的值域. 10.设函数f (x )=sin(πx 3-π6)-2cos 2πx6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.[能力提升组]11.(2014·课标全国Ⅰ)在函数①y =cos |2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A .②④ B .①③④ C .①②③ D .①③12.(2016·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]13.(2016·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点(4π3,0)成中心对称,且-π2<φ<π2,则函数y =f (x +π3)为( )A .奇函数且在(0,π4)上单调递增B .偶函数且在(0,π2)上单调递增C .偶函数且在(0,π2)上单调递减D .奇函数且在(0,π4)上单调递减14.(2015·安阳模拟)已知函数y =A cos(π2x +φ)(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为________. 15.(2016·荆门调研)已知函数f (x )=a (2cos 2x 2+sin x )+b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.第4节 函数y =A sin(ωx +φ)的图象及应用◆考纲·了然于胸◆1.了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.[要点梳理]1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y3.图象的对称性:函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形.[小题查验]1.函数y =sin(2x -π3)在区间[-π2,π]上的简图是( )2.(2015·高考山东卷)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.函数y =tan(π4x -π2)的部分图象如图所示,则(OB →-OA →)·OB →=( )A .-4B .2C .-2D .44.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.5.把函数y =sin(5x -π2)的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.考点一 求函数y =A sin(ωx +φ)的解析式(基础型考点——自主练透)确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[题组集训]1.(2016·山西四校联考)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }2.(2016·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y =4sin(4x +π6) B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2 D .y =2sin(4x +π6)+23.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .2+3 B.3 C.33D .2- 3 考点二 函数y =A sin(ωx +φ)的图象(题点多变型考点——全面发掘)【例1】 (2014·重庆高考)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.[发散1] 将本例变为:由函数y =sin x 的图象作怎样的变换可得到y =2sin(2x -π3)的图象?[发散2] 将本例中函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为. [发散3] 将本例变为:若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.[提醒] ]平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点三 三角函数模型的应用(重点型考点——师生共研)【例2】 (2014·湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 【名师说“法”】本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质. 跟踪训练如图所示,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin(ωx +φ)+b ,φ∈(0,π).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.规范答题3 三角函数图象与性质的综合问题典例 (本小题满分12分)已知函数f (x )=23sin(x 2+π4)·cos (x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.即时突破 (2016·湖北八校联考)已知函数f (x )=2cos 2x +23sin x cos x ,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π6,π4]上的值域.[课堂小结]【方法与技巧】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点(-φω,0)作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离) 【失误与防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x 前面的系数提出来. 2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.课时活页作业(二十)[基础训练组]1.(2016·深圳二模)如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,f (x )取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]3.(2016·长沙一模)定义⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,若函数f (x )=⎪⎪⎪⎪⎪⎪sin2x cos 2x 1 3,则将f (x )的图象向右平移π3个单位所得曲线的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π2D .x =π4.(2016·长春模拟)函数f (x )=sin(2x +φ)(|φ|<π2)向左平移π6个单位后是奇函数,则函数f (x )在[0,π2]上的最小值为( )A .-32 B .-12 C.12 D.32。

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)三角函数与平面向量04 三角恒等变换一、具本目标:1.两角和与差的三角函数公式 (1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)3.(1) 已知两角的正余弦,会求和差角的正弦、余弦、正切值. (2) 会求类似于15°,75°,105°等特殊角的正、余弦、正切值. (3) 用和差角的正弦、余弦、正切公式化简求值. (4)逆用和差角的正弦、余弦、正切公式化简求值. (5) 会配凑、变形、拆角等方法进行化简与求值. 二、知识概述:知识点一 两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ()sin sin cos cos sin α+β=αβ+αβ,()sin sin cos cos sin α-β=αβ-αβ.两角和与差的余弦公式:()cos cos cos sin sin α+β=αβ-αβ, ()cos cos cos sin sin α-β=αβ+αβ. 两角和与差的正切公式:()tan tan tan 1tan tan α+βα+β=-αβ,【考点讲解】()tan tan tan 1tan tan α-βα-β=+αβ.【特别提醒】公式的条件:1. 两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈知识点二 公式的变用1. 两角和与差的正弦公式的逆用与辅助角公式:()22sin cos sin a x b x a b x +=++ϕ(其中φ角所在的象限由a,b 的符号确定,φ的值由tan baϕ=确定),在求最值、化简时起着重要的作用. 2. ()tan tan tan 1tan tan α+βα+β=-αβ变形为()()tan tan tan 1tan tan α+β=α+β-αβ,()tan tan tan 1tan tan α+βα+β=-αβ变形为()tan tan tan tan 1tan α+βαβ=-α+β.()tan tan tan 1tan tan α-βα-β=+αβ变形为()()tan tan tan 1tan tan α-β=α-β+αβ,()tan tan tan 1tan tan α-βα-β=+αβ变形为()tan tan tan tan 1tan α-βαβ=-α-β来使用. 条件为:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈ 知识点三 二倍角公式: 1.22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 22tan tan 21tan ααα=-2. 常见变形:(1)22cos 1sin 2αα-=,22cos 1cos 2αα+=(2)()2cos sin 2sin 1ααα+=+,()2cos sin 2sin 1ααα-=-;(3)αα2cos 22cos 1=+,αα2sin 22cos 1=-.3.半角公式:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan+-±=,αααααsin cos 1cos 1sin 2tan-=+=.1.【2019年高考全国Ⅱ卷文理】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=( ) A .15B .55 C .33D .255【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B2.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2B .3C .4D .5【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【答案】B3.【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为 4【真题分析】【解析】本题考查的是二倍角公式及余弦型函数的周期及最值问题.根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+,所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=,故选B. 【答案】B4.【2018年高考全国Ⅰ卷】若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-【解析】本题主要考查二倍角公式及求三角函数的值.2217cos 212sin 12()39αα=-=-⨯=.故选B. 【答案】B5.【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15 B .55 C .255D .1 【解析】本题主要考查任意角的三角函数和三角恒等变換根据条件,可知,,O A B 三点共线,从而得到2b a =,因为22212cos22cos 12131a ⎛⎫=-=⋅-= ⎪+⎝⎭αα,解得215a =,即55a =,所以525a b a a -=-=. 【答案】B6.【2017年高考全国Ⅰ卷文数】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A. 【答案】A7.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤Q ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【答案】4-8.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【解析】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,函数()2sin 2f x x ==1cos 42x -,周期为π2. 【答案】π29.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+. 综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21010.【2018年高考全国Ⅰ卷文数】已知5π1tan()45-=α,则tan =α__________. 【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 【答案】3211.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】本题主要考查三角恒等变换.因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-12.【2017年高考江苏卷】若π1tan(),46-=α则tan =α .【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【答案】7513.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin ,sin222x x =-=-, 所以()min 33332222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是332-.【答案】332-14.【2017年高考全国Ⅱ理数】函数()23sin 3cos 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【解析】本题主要考查的是三角函数式的化简及三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”化简三角函数的解析式的综合考查.()2223131cos 3cos cos 3cos cos 1442f x x x x x x ⎛⎫=-+-=-++=--+ ⎪ ⎪⎝⎭,由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当3cos 2x =时,函数()f x 取得最大值1.【答案】115.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【解析】本题主要考查三角函数及其恒等变换等基础知识.(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 16.【2018年高考北京卷文数】已知函数2()sin 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 【解析】本题主要考查二倍角公式、辅助角公式、正弦函数的性质. (1)1cos 23311π1()sin 2sin 2cos 2sin(2)2222262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.【答案】(1)π;(2)π3.1. sin15°sin105°的值是( ) A .14 B .14-C .34D .34-【解析】本题的考点二倍角的正弦和诱导公式:sin15°sin105°=sin15°cos15°=12sin30°=14,故选A . 【答案】A2.已知sin2α=13,则cos 2(π4α-)=( ) A .34 B .23 C .45 D .56【解析】本题考点二倍角的余弦,三角函数的化简求值.∵sin2α=13,∴cos 2(π4α-)=π11cos 211sin 22232223αα⎛⎫+-+⎪+⎝⎭===.故选B . 【答案】B3.已知sin α=45-,α∈(π,3π2),则tan 2α等于( ) A .-2 B .12 C .12-或2 D .-2或12【解析】∵sin α=45-,α∈(π,3π2),∴cos α=35-,∴tan α=43.∵α∈(π,3π2),∴2α∈(π2,3π4),∴tan 2α<0. tan α=22tan21tan 2αα- =43,即2tan 22α+ 3tan2α-2=0,解得tan2α=-2,或tan2α=12(舍去),故选A .【答案】A【模拟考场】4.设π0,2α⎛⎫∈ ⎪⎝⎭,π0,4β⎛⎫∈ ⎪⎝⎭,且tan α=1sin 2cos 2ββ+,则下列结论中正确的是( ) A .2π4αβ-=B .π24αβ+=C .π4αβ-=D .π4αβ+= 【解析】本题的考点二倍角的余弦,二倍角的正弦..tan α=()222sin cos 1sin 2sin cos 1tan cos 2cos sin cos sin 1tan ββββββββββββ++++===---πtan 4β⎛⎫=+ ⎪⎝⎭ 因为π0,2α⎛⎫∈ ⎪⎝⎭,πππ,442β⎛⎫+∈ ⎪⎝⎭,所以π4αβ-=.故选C . 【答案】C5.已知角αβ,均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A .13 B .913 C .139D .3【解析】∵角α,β均为锐角,且cos α=35,∴sin α=21cos α- =45,tan α=43,又tan (α−β)=tan tan 1+tan tan αβαβ-=4tan 341+tan 3ββ-=−13, ∴tan β=3,故选D .【答案】D6.设α为锐角,若π3cos()65α+=,则πsin()12α-=( ) A .210 B .210- C .45 D .45- 【解析】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为π3cos()65α+=,所以π4sin()65α+=,故πππππsin()sin sin cos 126464ααα⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππ2432cos sin 6425510α⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭.故选A.【答案】A7.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【解析】本题考查的是二倍角的降幂公式与三角函数的最小正周期,先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 【答案】B8.已知34cos sin =-αα,则=α2sin ( ) A .97- B .92- C .92 D .97【解析】本题的考点是二倍角的正弦正逆用,将34cos sin =-αα两边平方()2234cos sin ⎪⎭⎫ ⎝⎛=-αα, 化简后可得916cos sin 2cos sin 22=-+αααα即=α2sin 97-.【答案】A 9.函数()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 的最大值为( ) A .56B .1C .53D .51【解析】将()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 化简,利用两角和、差的正余弦公式及辅助角公式,三角函数 最值的性质可以求得函数最大值.由()6sin sin 6cos cos 3sin cos 3cos sin 51ππππx x x x x f ++⎪⎭⎫ ⎝⎛+= x x x x sin 21cos 23cos 103sin 101+++=⎪⎪⎭⎫ ⎝⎛+=+=x x x x cos 23sin 2156cos 533sin 53⎪⎭⎫ ⎝⎛+=3sin 56πx , 因为13sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以函数的最大值为56.【答案】A10.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A.1 B.2 C.3 D.4【解析】本题考点是两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换. 三角恒等变换的主要是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算.本例应用两角和与差的正弦(余弦)公式化简所求式子,利用同角关系式求出使已知条件可代入的值,然后再化简,求解过程中注意公式的顺用和逆用.3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==333cos cos sin sin sin sin 510510510sin cos 55ππππππππ++ =333cos cos sin 5101010sin cos 55ππππππ⎛⎫-+ ⎪⎝⎭=13cos sin 1025sin cos 55ππππ+1cos cos 10210sin cos 55ππππ+=1cos cos 1021014sin 210πππ+= 3cos103cos 10ππ==.【答案】C11.已知向量a r =(sin θ,2-),b r =(1,cos θ),且a r ⊥b r ,则sin 2θ+cos 2θ的值为( )A .1B .2C .12D .3 【解析】本题考点是三角函数的恒等变换及化简求值,数量积判断两个平面向量的垂直关系.由题意可得a r ·b r =sin θ-2cos θ=0,即tan θ=2.∴sin 2θ+cos 2θ=2222sin cos +cos cos +sin θθθθθ=22tan +11+tan θθ=1,故选A . 【答案】A12.已知cos θ=-725,θ∈(-π,0),则sin 2θ+cos 2θ=( )A .125B .15±C .15D .15- 【解析】∵cos θ=-725,θ∈(-π,0), ∴cos 22θ-sin 22θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)<0,2θ∈(π2-,0), ∴sin 2θ+cos 2θ<0,cos 2θ-sin 2θ>0,∵(sin 2θ+cos 2θ)2=1+sin θ=1-491625-=125,∴sin 2θ+cos 2θ=15-.故选D .【答案】D13. =+οο75sin 15sin .【解析】本题考查的是三角恒等变换及特殊角的三角函数值的求解. 法一、6sin15sin 75sin15cos152sin(1545)2+=+=+=o o o o o o . 法二、6sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==o o o o o o o o . 法三、62626sin15sin 75442-++=+=o o . 【答案】62. 14.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【解析】本题考查的是三角恒等变换及正切的性质,本题要求会利用三角形中隐含的边角关系作为消元依据,同时要记住斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8A B C A B C A B C A B C A B C =++=+≥⇒≥,即最小值为8.【答案】8.15.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-. (1)求cos2α的值;(2)求tan()αβ-的值.【解析】(1)因为,,所以. 4tan 3α=sin tan cos ααα=4sin cos 3αα=因为,所以, 因此,. (2)因为为锐角,所以.又因为,所以, 因此.因为,所以, 因此,. 16.【2016高考山东理数】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;(Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值.试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 17.已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ 22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+(I)求()f x 最小正周期;(II)求()f x 在区间[,]34p p -上的最大值和最小值. 【解析】本题考点两角和与差的正余弦公式、二倍角的正余弦公式、三角函数的图象与性质.综合运用三角 知识,从正确求函数解析式出发,考查最小正周期的求法与函数单调性的应用,从而求出函数的最大值与最小值,体现数学思想与方法的应用.(I) 由已知,有1cos 21cos211313()cos2sin 2cos2222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭ 311sin 2cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p -上是增函数, 113(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p -上的最大值为34,最小值为12-. 【答案】(I)π; (II) max 3()4f x =,min 1()2f x =-.。

2024年高考数学总复习第四章《三角函数解三角形》解三角形的实际应用

2024年高考数学总复习第四章《三角函数解三角形》解三角形的实际应用

2024年高考数学总复习第四章《三角函数、解三角形》§4.7解三角形的实际应用最新考纲能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成二面角的度数叫坡度,θ为坡角;坡面的垂直高度与水平长度之比叫坡比,即i =hl=tan θ概念方法微思考在实际测量问题中有哪几种常见类型,解决这些问题的基本思想是什么?提示实际测量中有高度、距离、角度等问题,基本思想是根据已知条件,构造三角形(建模),利用正弦定理、余弦定理解决问题.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.(×)(2)俯角是铅垂线与视线所成的角,其范围为0,π2.(×)(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(√)(4)方位角大小的范围是[0,2π),方向角大小的范围一般是0,π2√)题组二教材改编2.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出A ,C 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为________m.答案502解析由正弦定理得AB sin ∠ACB=ACsin B ,又B =30°,∴AB =AC sin ∠ACBsin B=50×2212=502(m).3.如图,在山脚A 测得山顶P 的仰角为30°,沿倾斜角为15°的斜坡向上走a 米到B ,在B处测得山顶P 的仰角为60°,则山高h =______米.答案22a 解析由题图可得∠PAQ =α=30°,∠BAQ =β=15°,在△PAB 中,∠PAB =α-β=15°,又∠PBC =γ=60°,∴∠BPA =(90°-α)-(90°-γ)=γ-α=30°,∴在△PAB 中,a sin 30°=PBsin 15°,∴PB =6-22a ,∴PQ =PC +CQ =PB ·sin γ+a sin β=6-22a ×sin 60°+a sin 15°=22.题组三易错自纠4.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角30°,并测得水平面上的∠BCD =120°,CD =40m ,则电视塔的高度为()A .102mB .20mC .203mD .40m答案D解析设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,由余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =-20(舍去)或x =40.故电视塔的高度为40m.5.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角是70°,则∠BAC =________.答案130°解析60°+70°=130°.6.海上有A ,B ,C 三个小岛,A ,B 相距53海里,从A 岛望C 和B 成45°视角,从B 岛望C 和A 成75°视角,则B ,C 两岛间的距离是________海里.答案52解析由题意可知∠ACB =60°,由正弦定理得AB sin ∠ACB =BC sin ∠BAC ,即53sin 60°=BCsin 45°,得BC =52.题型一测量距离问题1.(2018·长春检测)江岸边有一炮台高30m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m.答案103解析如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m),在△MON 中,由余弦定理得MN =900+300-2×30×103×32=300=103(m).2.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离为________km.答案64解析∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°,∴∠DAC =60°,∴AC =DC =32km.在△BCD 中,∠DBC =45°,由正弦定理,得BC =DC sin ∠DBC ·sin ∠BDC =32sin 45°·sin 30°=64(km).在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38.∴AB =64km.∴A ,B 两点间的距离为64km.3.如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为3003m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠PAB =90°,∠PAQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________m.答案900解析由已知,得∠QAB =∠PAB -∠PAQ =30°.又∠PBA =∠PBQ =60°,∴∠AQB =30°,∴AB =BQ .又PB 为公共边,∴△PAB ≌△PQB ,∴PQ =PA .在Rt △PAB 中,AP =AB ·tan 60°=900,故PQ =900,∴P ,Q 两点间的距离为900m.思维升华求距离问题的两个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.题型二测量高度问题例1(2018·福州测试)如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°,若山高AD =100m ,汽车从B 点到C 点历时14s ,则这辆汽车的速度约为________m/s.(精确到0.1,参考数据:2≈1.414,5≈2.236)答案22.6解析因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,所以∠BAD =60°,∠CAD =45°,设这辆汽车的速度为v m/s ,则BC =14v ,在Rt △ADB 中,AB =ADcos ∠BAD =AD cos 60°=200.在Rt △ADC 中,AC =AD cos ∠CAD =100cos 45°=100 2.在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC ,所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6m/s.思维升华(1)高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求的高度(某线段的长度)纳入到一个可解的三角形中.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.跟踪训练1如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,则山高CD =____________.答案h cos αsin βsin (α-β)解析由已知得∠BCA =90°+β,∠ABC =90°-α,∠BAC =α-β,∠CAD =β.在△ABC 中,由正弦定理得AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β).在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β=h cos αsin βsin (α-β).故山高CD 为h cos αsin βsin (α-β).题型三角度问题例2如图所示,一艘巡逻船由南向北行驶,在A 处测得山顶P 在北偏东15°(∠BAC =15°)的方向,匀速向北航行20分钟后到达B 处,测得山顶P 位于北偏东60°的方向,此时测得山顶P 的仰角为60°,已知山高为23千米.(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处南偏东多少度的方向?解(1)在△BCP 中,由tan ∠PBC =PCBC,得BC =PCtan ∠PBC =2,在△ABC 中,由正弦定理得BC sin ∠BAC =AB sin ∠BCA,即2sin 15°=ABsin 45°,所以AB =2(3+1),故船的航行速度是每小时6(3+1)千米.(2)在△BCD 中,BD =3+1,BC =2,∠CBD =60°,则由余弦定理得CD =6,在△BCD 中,由正弦定理得CD sin ∠DBC =BCsin ∠CDB,即6sin 60°=2sin ∠CDB ,所以sin ∠CDB =22,所以,山顶位于D 处南偏东45°的方向.思维升华解决测量角度问题的注意事项(1)首先应明确方位角和方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.跟踪训练2如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°的方向上,灯塔B 在观察站C 的南偏东60°的方向上,则灯塔A 在灯塔B 的______的方向上.答案北偏西10°解析由已知得∠ACB =180°-40°-60°=80°,又AC =BC ,∴∠A =∠ABC =50°,60°-50°=10°,∴灯塔A 位于灯塔B 的北偏西10°的方向上.1.(2018·武汉调研)已知A ,B 两地间的距离为10km ,B ,C 两地间的距离为20km ,现测得∠ABC =120°,则A ,C 两地间的距离为()A .10kmB .103kmC .105kmD .107km答案D解析如图所示,由余弦定理可得AC 2=100+400-2×10×20×cos 120°=700,∴AC =107.2.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50m ,山坡对于地平面的坡度为θ,则cos θ等于()A.32B.22C.3-1D.2-1答案C解析在△ABC 中,由正弦定理得AB sin 30°=ACsin 135°,∴AC =100 2.在△ADC 中,AC sin (θ+90°)=CDsin 15°,∴cos θ=sin(θ+90°)=AC ·sin 15°CD=3-1.3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是()A .102海里B .103海里C .203海里D .202海里答案A解析如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.4.如图,两座相距60m 的建筑物AB ,CD 的高度分别为20m ,50m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为()A .30°B .45°C .60°D .75°答案B解析依题意可得AD =2010,AC =305,又CD =50,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=600060002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.5.(2018·郑州质检)如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于()A .56B .153C .52D .156答案D解析在△BCD 中,∠CBD =180°-15°-30°=135°.由正弦定理得BC sin 30°=CDsin 135°,所以BC =15 2.在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6.故选D.6.(2018·广州模拟)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60m ,则河流的宽度BC 等于()A .240(3+1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m答案C解析如图,∠ACD =30°,∠ABD =75°,AD =60m ,在Rt △ACD 中,CD =AD tan ∠ACD =60tan 30°=603(m),在Rt △ABD 中,BD =AD tan ∠ABD =60tan 75°=602+3=60(2-3)m ,∴BC =CD -BD =603-60(2-3)=120(3-1)m.7.(2018·哈尔滨模拟)如图,某工程中要将一长为100m ,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长________m.答案1002解析设坡底需加长x m ,由正弦定理得100sin 30°=xsin 45°,解得x =100 2.8.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.答案2114解析在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2800,得BC =207.由正弦定理,得AB sin ∠ACB =BC sin ∠BAC,即sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.9.(2018·青岛模拟)一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时________海里.答案10解析如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10,在Rt △ABC 中,得AB =5,于是这艘船的速度是50.5=10(海里/时).10.(2018·泉州质检)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为______米.答案507解析如图,连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17500,解得OC =507.11.如图,在山底A 点处测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1000米至S 点,又测得山顶仰角∠DSB =75°,则山高BC 为______米.答案1000解析由题图知∠BAS =45°-30°=15°,∠ABS =45°-(90°-∠DSB )=30°,∴∠ASB =135°,在△ABS 中,由正弦定理可得1000sin 30°=AB sin 135°,∴AB =10002,∴BC =AB 2=1000.12.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC=122+202-2×12×20×cos 120°=784,解得BC =28.所以渔船甲的速度为BC 2=14(海里/时).(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°,即sin α=AB sin 120°BC =12×3228=3314.13.如图,在水平地面上有两座直立的相距60m 的铁塔AA 1和BB 1.已知从塔AA 1的底部看塔BB 1顶部的仰角是从塔BB 1的底部看塔AA 1顶部的仰角的2倍,从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,则从塔BB 1的底部看塔AA 1顶部的仰角的正切值为________;塔BB 1的高为________m.答案1345解析设从塔BB 1的底部看塔AA 1顶部的仰角为α,则AA 1=60tan α,BB 1=60tan 2α.∵从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,∴△A 1AC ∽△CBB 1,∴AA 130=30BB 1,∴AA 1·BB 1=900,∴3600tan αtan 2α=900,∴tan α=13,tan 2α=34,则BB 1=60tan 2α=45.14.如图,据气象部门预报,在距离某码头南偏东45°方向600km 处的热带风暴中心正以20km/h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,求该码头将受到热带风暴影响的时间.解记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA =600,AB =20t ,∠OAB =45°,根据余弦定理得OB 2=6002+400t 2-2×600×20t ×22,令OB 2≤4502,即4t 2-1202t +1575≤0,解得302-152≤t ≤302+152,所以该码头将受到热带风暴影响的时间为302+152-302-152=15(h).15.某舰艇在A 处测得一艘遇险渔船在其北偏东40°的方向距离A 处10海里的C 处,此时得知,该渔船正沿南偏东80°的方向以每小时9海里的速度向一小岛靠近,若舰艇的时速为21海里,求舰艇追上渔船的最短时间.解如图所示,设舰艇追上渔船的最短时间是t 小时,经过t 小时渔船到达B 处,则舰艇也在此时到达B 处.在△ABC 中,∠ACB =40°+80°=120°,CA =10,CB =9t ,AB =21t ,由余弦定理得(21t )2=102+(9t )2-2×10×9t ×cos 120°,即36t 2-9t -10=0,解得t =23或t =-512(舍).所以=23.16.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min.在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得cos A =1213,sin B =6365.(1)问乙出发多少min 后,乙在缆车上与甲的距离最短?(2)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?解(1)∵cos A =1213,sin B =6365,∴sin A =513,cos B =-1665,∴sin C =sin(A +B )=45,在△ABC 中,由正弦定理AC sin B =AB sin C,得AB =1040m ,设乙出发t min 后,甲、乙距离为d ,由余弦定理得d 2=(130t )2+(100+50t )2-2×130t ×(100+50t )×1213,即d 2=200(37t 2-70t +50)=20037+62537.∵0≤t ≤1040130,即0≤t ≤8,∴当t =3537时,即乙出发3537min 后,乙在缆车上与甲的距离最短.(2)∵sin A =513,∴由正弦定理,得BC sin A =AC sin B ,即BC 513=12606365,∴BC =500m.乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710m 才能到达C .设乙的步行速度为v m/min ,则|500v-71050|≤3,故-3≤500v -71050≤3,解得125043≤v ≤62514.故为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在125043,62514范围内.。

2022年高考数学二轮复习专题二三角函数、解三角形 第1讲三角函数的图象与性质

2022年高考数学二轮复习专题二三角函数、解三角形 第1讲三角函数的图象与性质

4
π
+
4
π
x的图象向左平移 个单位,得到的图象的函数解析
4
π
B.y=sin x-
4
π
D.y=sin x+
4
答案:C
π
π
解析:函数y=sin x的图象向左平移 个单位,得到y=sin (x+ )的图象.
4
4
故选C.
2.要得到函数y=cos
(
)
π
A.向右平移
6
π
C.向右平移
18
3x −
π
6
的图象,只需将y=cos 3x的图象
4
答案:A
解析:f x =sin
故选A.
1
1
x+cos x=
3
3
2cos
1
x
3
π

4
= 2cos
1
3
x


4
.
2.[2021·山东潍坊学情调研]将函数f(x)=sin 2x +
移a(a>0)个单位得到函数g(x)=cos
(
)

A.
12

B.
12
2x
π
+
4
41π
D.
24
答案:C
解析:由题意知,g(x)=cos 2x
4
π
D.向右平移 个单位长度
12
3.设函数f x =sin ωx −
π
4
f 2 =0.则f x 的最小正周期为(
16
A.
9
1
C.
8
答案:A
B.16
9

2023新教材高考数学二轮专题复习:三角函数与解三角形课件

2023新教材高考数学二轮专题复习:三角函数与解三角形课件

技法领悟
1.若涉及已知条件中含边长之间的关系,且与面积有关的最值问题, 一般利用S=12ab sinC型面积公式及基本不等式求解.
2.若求与三角形边长有关的表达式的最值或取值范围时,一般把边
用三角形的一个角表示,利用角的范围求解.
巩固训练1 1.[2022·河北沧州二模]在△ABC中;内角A,B,C的对边分别为a, b,c,已知b(2sin A- 3cos A)=a sin B. (1)求A;
2,则sin B= 22且π>B>0,可得B=π4或B=34π,
(2)若a=2,求△ABC的面积.
解析:由题设,a=2,则b= 3,又B=π4,
所以cos B=a2+c2−b2=1+c2= 2,整理得c2-2 2c+1=0,解得c= 2±1,满足
2ac
4c 2
题设.
由S△ABC=12ac sin B= 22c, 所以,当c= 2+1时S△ABC=1+ 22;当c= 2-1时S△ABC=1- 22.
(2)将函数f(x)的图象向右平移π6个单位长度,再把各点的横坐标缩小 为原来的12(纵坐标不变),得到函数y=g(x)的图象,当x∈[-1π2,π6]时, 求函数g(x)的值域.
解析:将函数f(x)的图象向右平移π6个单位长度,可得y=2sin (2x-π3)的图象. 再把横坐标缩小为原来的12,得到函数y=g(x)=2sin (4x-π3)的图象. 当当当x44∈xx--[-ππ33==1π2-π3,时π2时,π6]时,函,函数4数gx(-xg)(取π3x∈)取得[-得最2最大3π 小值,值,π3],最,最 大小值值为为3-,2, 故函数g(x)的值域为[-2, 3].
1.已知函数f(x)= 称轴间的距离为π2.

新高考新教材适用2025版高考数学二轮复习专题一三角函数与解三角形考点突破练2三角恒等变换与解三角形

新高考新教材适用2025版高考数学二轮复习专题一三角函数与解三角形考点突破练2三角恒等变换与解三角形

考点突破练2 三角恒等变换与解三角形一、单项选择题1.(2024·全国乙·文6)cos2-cos2=()A. B. C. D.2.(2024·山东济南一模)已知sin=-,则sin 2α的值为()A. B.-C. D.-3.(2024·福建四市第一次质检)某学生在“捡起树叶树枝,净化校内环境”的志愿活动中拾到了三支小树枝(视为三条线段),想要用它们作为三角形的三条高线制作一个三角形.经测量,其长度分别为3 cm,4 cm,6 cm,则()A.能作出两个锐角三角形B.能作出一个直角三角形C.能作出一个钝角三角形D.不能作出这样的三角形4.(2024·湖南长郡中学高三检测)设sin 20°=m,cos 20°=n,化简=()A. B.-C. D.-5.(2024·湖北襄阳高三期末)在△ABC中,AC=2,BC=4,则角B的最大值为()A. B.C. D.6.(2024·江苏海安高级中学二模)设M,N为某海边相邻的两座山峰,到海平面的距离分别为100米,50米.现欲在M,N之间架设高压电网,须计算M,N之间的距离.勘测人员在海平面上选取一点P,利用测角仪从P点测得的M,N点的仰角分别为30°,45°,并从P点观测到M,N点的视角为45°,则M,N之间的距离为()A.50米B.50米C.50米D.50米7.(2024·福建晋江模拟)若sin 2α=,sin(β-α)=,且α∈,β∈,则α+β的值是()A. B.C. D.8.(2024·陕西教学质量检测二)圭表(如图甲)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午太阳照耀在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图乙是一个依据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角大约(即∠ABC)为30°,夏至正午太阳高度角(即∠ADC)大约为75°,圭面上冬至线与夏至线之间的距离(即DB的长)为a,则表高(即AC的长)为()甲乙A.aB.aC.aD.a二、多项选择题9.(2024·广东深圳高三检测)在△ABC中,下列命题正确的是()A.若A>B,则sin A>sin BB.若sin 2A=sin 2B,则△ABC肯定为等腰三角形C.若a2+b2=c2,则△ABC肯定为直角三角形D.若三角形的三边满意a2+b2>c2,则此三角形的最大角为钝角10.(2024·湖北八市高三联考)将函数f(x)=2cos2x sin φ+sin 2x cos φ-sin φ的图象向左平移个单位长度后,与函数g(x)=cosωx-的图象重合,则φ的值可能为 ()A.-B.-C.-D.11.(2024·广东茂名模拟)我国古代闻名的数学家赵爽在《周髀算经》中利用一副“弦图”,依据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形A'B'C'拼成的一个大等边三角形ABC.对于图2,下列结论正确的是()图1图2A.这三个全等的钝角三角形不行能是等腰三角形B.若BB'=3,sin∠ABB'=,则A'B'=2C.若AB=2A'B',则AB'=BB'D.若A'是AB'的中点,则三角形ABC的面积是三角形A'B'C'面积的7倍三、填空题12.(2024·广东湛江二模)若tan(α-β)=,tan β=2,则tan α= .13.若函数f(x)=sin(x+φ)+cos x的最大值为2,则常数φ的一个取值为.14.设锐角△ABC的内角A,B,C的对边分别为a,b,c,若B=2A,则的取值范围是.15.(2024·河北保定一模)已知定义在x∈上的函数f(x)=sin+sin 2x在x=θ处取得最小值,则最小值为,此时cos θ= .考点突破练2三角恒等变换与解三角形1.D解析原式=cos2-cos2=cos2-sin2=cos.2.A解析因为sin=-,所以sin 2α=-cos2α+=-cos 2=2sin2-1=2-1=.3.C解析因为三条高线的长度为3 cm,4 cm,6 cm,故三边之比为4∶3∶2,设最大边所对的角为α,则cos α==-<0,而α为三角形内角,故α为钝角,故三角形为钝角三角形.4.C解析.5.A解析设AB=x,则x>0,由余弦定理可得cos B=≥2, 当且仅当x=2时,等号成立,因为0<B<π,则0<B≤,故角B的最大值为.6.A解析如图,由题可知∠MPM1=30°,∠NPN1=45°,∴PM=200,PN=50,又∠MPN=45°,∴MN2=40 000+5 000-2×200×50=25 000,∴MN=50(米).7.A解析因为α∈,β∈,所以2α∈,β-α∈,α+β∈,又因为sin 2α=,sin(β-α)=,所以2α为其次象限角,β-α为其次象限角,所以cos(β-α)=-=-,cos 2α=-=-,又因为α+β=(β-α)+2α,所以cos(α+β)=cos(β-α)cos 2α-sin(β-α)sin 2α=,所以α+β∈,所以α+β=.8.C解析依题意∠BAD=∠ADC-∠ABC=75°-30°=45°,在△BAD中由正弦定理得,即,所以AD=,又因为在Rt△ACD 中,=sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin30°=,所以AC= a.9.AC解析对于选项A,在△ABC中,若A>B,则a>b,因此sin A>sin B,A正确;对于选项B,若sin 2A=sin 2B,则2A=2B或2A+2B=π,即A=B或A+B=,所以△ABC为等腰三角形或直角三角形,B错误;对于选项C,若a2+b2=c2,由勾股定理的逆定理可知△ABC肯定为直角三角形,C正确;对于选项D,若三角形的三边满意a2+b2>c2,由余弦定理可知cos C>0,仅可得C为锐角,最大角是否为钝角不确定,D 错误.10.AC解析f(x)=(1+cos 2x)sin φ+sin 2x cos φ-sin φ=cos 2x sin φ+sin 2x cosφ=sin(2x+φ),将f(x)的图象向左平移个单位长度得y=sin2x++φ=sin2x++φ的图象,与函数g(x)=cosωx-的图象重合,故ω=±2,①若g(x)=cos=sin=sin+φ=+2kπ,φ=2kπ-(k∈Z),结合选项,φ=-符合.②若g(x)=cos=cos=sin2x+=sin2x+,+φ=+2kπ,φ=2kπ+(k ∈Z),结合选项,φ=-符合.11.ABD解析对于A选项,依据题意,图2是由三个全等的钝角三角形与一个小等边三角形A'B'C'拼成的一个大等边三角形ABC,故AA'=BB',AB'>BB',所以这三个全等的钝角三角形不行能是等腰三角形,故A选项正确;对于B选项,由题知,在△ABB'中,BB'=3,sin∠ABB'=,∠AB'B=120°,所以sin∠BAB'=sin(60°-∠ABB')=,所以由正弦定理得,解得AB'=5,因为BB'=AA'=3,所以A'B'=2,故B 选项正确;对于C选项,不妨设AB=2A'B'=2,AA'=x,所以在△AB'B中,由余弦定理得|AB|2=|AB'|2+|BB'|2-2|AB'||BB'|cos∠AB'B,代入数据得AA'=x=,所以AB'=AA'+A'B'=1+,BB'=AA'=,所以,故C选项错误;对于D选项,若A'是AB'的中点,则S△ABB'=BB'·AB'sin 120°=B'C'·A'B'sin 60°=2S△A'B'C',所以S△ABC=3S△ABB'+S△A'B'C'=7S△A'B'C',故D选项正确.12.-解析因为tan(α-β)=,tan β=2,所以tan α=tan[(α-β)+β]==-.13.答案不唯一,φ=2kπ+,k∈Z均可解析因为f(x)=cos φsin x+(sin φ+1)cosx=sin(x+θ),所以=2,解得sin φ=1,故可取φ=.14.(+1,+2)解析因为B=2A,则sin B=sin 2A=2sin A cos A,cos B=cos 2A=2cos2A-1,又sin C=sin(A+B)=sin A cos B+cos A sin B,故由正弦定理可得=2cos A+cos B+=2cos A+cos B+2cos2A=2cosA+2cos2A+2cos2A-1=4cos2A+2cos A-1.又△ABC为锐角三角形,故可得A∈,B=2A∈,C=π-3A∈,解得A∈,则cos A ∈,故4cos2A+2cos A-1∈(+1,+2),即∈(+1,+2).15.-解析因为x∈,则x+,令t=sin∈[-1,1],则t=(sin x+cos x),t2=(1+2sin x cos x)=(1+sin 2x),则sin 2x=2t2-1,所以f(x)=t+2t2-1=2t2+t-1,所以当t=-时,函数y=2t2+t-1取得最小值,即y min=-1=-,此时sin=-, 由已知θ+,所以cos,cosθ=cos=cos cos+sinθ+sin.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.为了得到函数的图象,可以将函数的图象
( )
A .向右平移
个单位长度 B .向右平移
个单位长度 C .向左平移个单位长度
D .向左平移个单位长度
2.若,则( ) A .
B
C .
D
3.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,后,就可以计算出A 、B 两点的距离为( )
A .
B .
C .
D .
4.函数cos 2y x =在下列哪个区间上是减函数 ( ) A .[,]44ππ
-
B .3[,]44ππ
C .[0,]2π
D .[,]2
π
π 5.已知函数和的图象的对称中心完全相
同,若,则的最小值是 ( ) A . B .C . D .1
6.在中,角的对边分别为,若则的面积为___________________________.
7.在中,角所对边长分别为,,.则的面积为____________________________
8.已知A ,B ,C 为三内角,其对边分别为a 、b 、c
,若. (Ⅰ)求A ; (Ⅱ)若,求的面积.
)6
2sin(π
-
=x y x y 2cos =6π

6
π
3
π
3sin ,,052a πα⎛⎫=-
∈- ⎪⎝⎭5cos 4απ⎛
⎫+= ⎪⎝

105,45=∠=∠CAB ACB m 250m 350m 225m 2
2
25()sin()(0)3
f x x π
ωω=-
>()cos(2)g x x ϕ=+0,2x π⎡⎤
∈⎢
⎥⎣⎦
()f x 12-
-1-ABC ∆,,A B C ,,a b c ,2,cos cos 4
A a b C c
B π
=
=-=ABC ∆ABC ∆,,A B C ,,a b c sin 2A C +=
6BA BC ⋅= ABC ∆ABC ∆1
cos cos sin sin 2
B C B C -=4a b c =+=ABC

9.△ABC 中,角A,B,C 的对边分别是a,b,c,点(a,b)在直线4cos cos cos x B y C c B -=上.
(1)的值;
(2)若,求a 和c.
10.在ABC ∆中,设内角,,A B C 的对边分别为,,a b c ,向量(cos ,si n )m A A =
,向

sin ,cos )n A A =
,若||2m n +=
(1)求角A 的大小 ; (2)
若b =
且c =,求ABC ∆的面积.
11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知
cos A-2cos C 2c-a
=cos B b
.
(1)求sin sin C
A
的值; (2)若cosB=1
4
,2b =,求ABC ∆的面积.
12.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(2sin ,2cos2)m B B =-

2B
(2sin (), 1)42
n π=+- , m ⊥n .
(I )求角B 的大小;
(Ⅱ)若a =1b =,求c 的值.
B cos 求23,3==⋅b B
C BA
1. 【答案】B
2.【答案】C
3.【答案】A
4. 【答案】A
5. 【答案】B
6. 【答案】1
7.
【答案】8.【答案】(Ⅰ), 又,. ,.
(Ⅱ)由余弦定理,
得 ,
即:, .
.
9.解:(1)由题意得4cos cos cos a B b C c B -= 由正弦定理得2sin ,2sin ,2sin a R A b R B c R C ===
所以4sin cos sin cos sin cos A B B C C B -=,即4sin cos sin cos sin cos A B B C C B =+ 所以4sin cos sin()sin A B B C A =+=,sin 0A ≠ ,1cos 4
B ∴=
(2)由得,又,所以.
由,可得,
所以,即, 所以
10.解析:(1) (cos sin ,sin cos )m n A A A A +=+
222||(cos sin )(sin cos )4sin )4m n A A A A A A +=++=+-=
cos sin ,A A ∴=tan 1A ∴=,(0,)A π∈ ,4
A π
∴=
(2)由余弦定理知:
222222cos )2cos
324
a b c bc A π
∴=+-=+-⨯=
解得8a c =∴=,18162ABC S ∆∴=
⨯= 11.解: (Ⅰ)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C = ……2分
1cos cos sin sin 2B C B C -=
1cos()2
B C ∴+=0B C π<+< 3B C π∴+=A B C π++= 23
A π
∴=222
2cos a b c bc A =+-⋅222()22cos 3
b c bc bc π
=+--⋅1
121622()bc bc =--⋅-4bc ∴=11sin 422ABC S bc A ∆∴=⋅=⋅=3BA BC ⋅= cos 3ac B =1
cos 4
B =12ac =222
2cos b a c ac B =+-b =2224a c +=()2
0a c -=a c =a c ==
所以
cos -2cos 2-cos A C c a B b ==2sin sin sin C A
B
-,即
sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,
即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin C
A
=2. …………6分 (Ⅱ)由(Ⅰ)知:
sin sin c C a A ==2,即c=2a ,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即2221
24224
a a a a =+-⨯⨯,解得1a =,所以c=2,
又因为cosB=
14,所以
, 故ABC ∆的面积为
11sin 1222ac B =⨯⨯

. …12分 12.解(I )2
0,4sin sin (
)cos 2204
2
B
m n m n B B π
⊥∴⋅=∴⋅+
+-=
222sin [1cos()]cos 220,
2
2sin 2sin 12sin 20,15
sin , 0, .
266
B B B B B B B B B π
πππ∴-++-=∴++--=∴=<<∴= 或
(II )6
,3π
=
∴>=B b a 此时 ,
2
2
2
2:::2cos ,
320,2 1.
,sin sin 12sin 0,,1332
,,,2;
36222,,, 1.
3366
b a
c ac B c c c c b a
B A
A A A A
B
C c A C c b c ππππ
π
π
ππ
πππ=+-∴-+=∴===∴
=∴=<<∴==
=
=
∴===--=∴=∴= 方法一由余弦定理得或方法二由正弦定理得
或若因为所以角边若则角边 综上2 1.c c ==或。

相关文档
最新文档