中性点直接接地系统和有效接地系统的区别比较

合集下载

低压配电网有三种中性点运行方式IT系统、TT系统和TN系统

低压配电网有三种中性点运行方式IT系统、TT系统和TN系统

低压配电网有三种中性点运行方式IT系统、TT系统和TN系统低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。

其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。

中性点接地系统有三种:IT系统,TT系统和TN系统。

这三种接地分别为:TT系统:电源中性点直接接地IT系统:电源中性点不直接接地TN系统:电源中性点直接接地(与TT系统的区别是该接地线与电气设备的金属外壳相连接)国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系:T--一点直接接地;I--所有带电部分与地绝缘,或一点经阻抗接地。

第二个字母表示装置的外露可导电部分的对地关系:T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关;N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。

后面还有字母时,这些字母表示中性线与保护线的组合:S--中性线和保护线是分开的;O--中性线和保护线是合一的。

(1)IT系统:IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。

即:过去称三相三线制供电系统的保护接地。

其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。

而设备的金属外壳有了保护接地后,由于人体电阻远比接地装置的接地电阻大,在发生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。

IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。

(2)TT系统:TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。

中性点直接接地和不直接接地系统中发生单相接地故障时各有什么特点

中性点直接接地和不直接接地系统中发生单相接地故障时各有什么特点

地 。直 接 接地 系统 供 电可 靠 性 相对
(贵 州 省 独 山 县 欧 阳 丹 )
遇 有 下 列 情 况 ,现 场 运 行 人 员 较 低 。 这 种 系 统 中 发 生 单 相 接 地 故 欧 阳 丹 同 志 :
必 须 请 示 值 班 调 度 员 并 得 到 许 可 后 t ̄ n,-J,出 现 了 除 中 性 点 外 的 另 一 个
电 力 系 统 中 性 点 运 行 方 式 主 要 有 几 种 ? 什 么 叫 大 电 流 、小 电 流 接
送 电 ? (辽 宁 省 铁 岭 市 肖 会 云 ) 分 两 类 ,即 直 接 接 地 和 不 直 接 接 地 系 统 ? 其 划 分 标 准 如 何 ?
肖 会 云 同 志 :
闸 ,没 有 查 出 明 显 故 障 点 时 ;
中 性 点 不 直 接 接 地 方 式 (包 括 中 性 速 切 除接 地相 甚 至 三 相 。 不直 接接
(2)环 网线 路 故 障 跳 闸 ;
地 系 统 供 电 可 靠 性 相 对 较 高 ,但 对 点 经 消 弧 线 圈 接 地 方 式 )。
(6)拉 合 励 磁 电 流 不 超 过 2 A的 机 等 ),引 发 系 统 事 故 ,威 胁 电 力 系
并 列 有 关 的 二 次 回 路 检 修 时 改 动 空 载 变 压 器 、电 抗 器 和 电 容 电 流 不 统 的 安 全 运 行 。
过 ,也 须 核 对 相 位 、相 序 。 若 相 位 或 超 过 5 A的 空 载 线 路 (但 20 kV及 以
接 地 故 障 时 ,接 地 短 路 电 流 很 大 ,这
E重蛋盈 墼堑
主●…持 :-晓。… 敏
N O NG C U N DIA N G O N G

10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较摘要:本文简要研究比较了10kV系统不同接地方式之间的优缺点,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。

关键词:10kV系统;接地方式;优缺点一、前言本文针对工作中遇到的多个变电站10kV系统由中性点不接地系统或经消弧线圈接地系统改造为中性点经小电阻接地系统。

简要研究了10kV系统的不同接地方式的优缺点比较,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。

中性点接地的方式对电力系统稳定运行会产生影响,考虑供电的可靠性和连续性、设备安全和人身安全、过电压和设备绝缘水平、继电保护和是否准确跳闸等因素。

近年来,10kV配电网中的接地故障或者线路断线造成的社会人员伤亡等事故时有发生。

10kV配电网中,中性点接地方式不同,有的线路接地故障发生时,该线路未能及时切除,故障点未能及时与电源断开。

二、10kV系统的不同接地方式的优缺点比较1、中性点不接地方式主要优点:(1)在单相接地故障发生时,故障点流过的电流只是系统等值的电容电流。

在接地故障电流小于10A的情况下,一般息弧能自动发生。

(2)故障发生时,该相电压将降低至零,非故障相线电压将保持不变,相电压升为原来的倍,故障线路可保持1~2小时运行状态,供电的可靠性相对地提高了。

主要缺点:(1)在单相接地故障发生时,非故障相的电压会上升到线电压,且因为过电压会保持较长的一段时间,在选择设备的耐压水平时需要按线电压的电压水平考虑,提高了设备绝缘水平要求。

(2)因为线路对地的电容中积蓄的能量得不到释放,电容电压伴随每个循环会升高,因而在弧光接地过程中,中性点不接地系统的电压能达到比较高的倍数,极大地危害了系统设备的绝缘。

(3)在一定条件下,由于故障或者倒闸操作,线性谐振或铁磁谐振可能引起谐振过电压,电压互感器的绝缘容易被击穿。

中性点直接接地的系统

中性点直接接地的系统

中性点直接接地的系统,发生单相接地故障时,接地短路电流很大,这种系统称为大电流接地系统。

一般110kv及以上的系统采用大电流接地系统。

中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。

一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护电力电网小接地系统大部分为中性点不接地系统,而单相接地保护的变化已从传统接地保护发展到无人值守变电所配合综合自动化装置的接地保护、接地选线装置等,其保护目前主要有以下几种:(1) 系统接地绝缘监视装置:绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。

将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。

当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。

该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。

要想判断故障线路,必须经拉线路试验,必将增加了对用户的停电次数。

且若发生两条线路以上接地故障时,将更难判别。

装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。

(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。

该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。

但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。

(3) 零序功率保护:零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。

中性点接地方式

中性点接地方式

中性点接地方式电力系统中性点是指发电机或星形连接的变压器的中性点,其接地方式分为有效接地和非有效接地。

中性点非有效接地系统包括中性点不接地系统、中性点经消弧线圈接地系统和中性点经高阻抗接地系统等;中性点有效接地系统包括中性点直接接地系统和经小电阻接地系统。

下面对这些接地方式进行简单介绍一下。

中性点非有效接地系统1、中性点不接地系统:指与该系统直接连接的全部发电机和变压器中性点对大地绝缘的系统,也称为中性点绝缘系统。

中性点不接地系统结合目前我国的技术经济政策,采用中性点不接地方式运行的系统有:额定电压为3-10KV,接地电流不大于30A的电力网;额定电压为35-60KV,接地电流不大于10A的电力网。

2、中性点经消弧线圈接地系统:为了限制接地点电流,使电弧能自行熄灭,在电源中性点与大地之间接入消弧线圈的系统。

中性点经消弧线圈接地系统我国采用中性点经消弧线圈接地方式运行的系统有:额定电压为3-10KV,接地电流大于30A的系统;额定电压为35-60KV,接地电流大于10A的系统;额定电压为110KV的系统若处于雷电活动比较频繁的地区,若采用中性点直接接地方式不能满足安全供电要求,为减少因雷击等单相接地事故造成频繁跳闸的系统也可采用中性点经消弧线圈接地方式运行。

中性点有效接地系统1、中性点直接接地系统:为了防止发生单相接地故障时,电源中性点电位变化和相对地电压升高而将中性点直接和大地连接起来的系统。

中性点直接接地系统主要用于额定电压为110KV以上的电力系统中。

2、中性点经小电阻接地系统:随着用电负荷的不断增长,城市用电网和工业用电网中电缆线路占比较高,电网接地电容电流也较高(可达100A以上),若采用中性点经消弧线圈接地,则需要消弧线圈的容量很大,过电压倍数较高,需要提高电网绝缘水平,因此当接地电容电流较大时,建议采用中性点经小电阻接地方式。

中性点经小电阻接地系统其主要用于额定电压为6-10KV的配电网中电缆线路占比高的电网中。

中性点运行方式

中性点运行方式

电力系统中性点运行方式我国电力系统中常见的中性点运行方式有中性点非有效接地和中性点有效接地两大类。

中性点非有效接地包括:不接地、经消弧线圈接地和经高阻接地,又称为小接地电流系统。

而中性点有效接地包括直接接地和经低阻抗接地,又称为大接地电流系统。

一、中性点不接地的三相系统1、中性点不接地系统的正常运行正常运行时,电力系统三相导线之间和各相导线对地之间,沿导线的全长存在着分布电容,这些分布电容在工作电压的作用下,会产生附加的容性电流。

各相导线间的电容及其所引起的电容电流较小,并且对所分析问题的结论没有影响,故可以不予考虑。

2、单相接地故障当中性点不接地的三相系统中,由于绝缘损坏等原因发生单相接地故障时,情况将会发生显著变化。

假设W相在k点发生完全接地的情况,W相对地电压为零,中性点对地电压上升为相电压,而且与接地相的电源电压反相。

(完全接地,又称为金属性接地,即认为接地处的电阻近似等于零)三相系统的三个线电压仍保持对称而且大小不变。

非故障相电压升高为线电压,非故障相的对地电容电流也就相应的增大到√3倍。

W相对地电容被短接,于是对地电容电流为零。

此时三相对地电容电流的向量和不再为零,大地中有容性电流流过,并通过接地点形成回路。

可见,单相接地故障时流过大地的电容电流,等于正常运行时每相对地电容电流的三倍。

接地电流Ic的大小与系统的电压、频率和对地电容的大小有关,而对地电容又与线路的结构(电缆或架空线)、布置方式和长度有关。

实用计算中可按计算为:对架空线路:I c=UL/350对电缆线路:I c=UL/10式中I c——接地电流,A;U——系统的线电压,Kv;L——与电压同为U,并具有电联系的所有线路的总长度,km。

当系统发生不完全接地,即通过一定的过渡电阻接地时,接地相的对地电压大于零而小于相电压,中性点的对地电压大于零而小于相电压,非接地相对地电压大于相电压而小于线电压,线电压仍保持不变,此时的接地电流要比金属性接地时小一些。

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注册安全工程师考点)根据现行的国家相关标准,低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。

(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。

I-电源变压器中性点不接地,或通过高阻抗接地。

(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。

N-电气装置的外露可导电部分与电源端接地点有直接电气连接。

分别对IT系统、TT系统、TN系统进行全面剖析。

一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统接线图如图1所示。

图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V 负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。

在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。

只有在供电距离不太长时才比较安全。

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式有效接地系统(又称大电流接地系统)小电流接地系统(包含不接地和经消弧线圈接地)经电阻接地系统(含小电阻、中电阻和高电阻)大电流接地系统用于110kV及以上系统及。

该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。

大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。

这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。

主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。

作为220kV枢纽变电站的主变必须并列运行。

其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。

好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。

主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。

作为220kV负荷变电站的主变必须分列运行。

此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。

所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。

虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。

110kV侧中性点必须全部直接接地。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。

高压配电系统有几种接地方式

高压配电系统有几种接地方式

高压配电系统有几种接地方式
电网中性点接地方式与电网的电压等级、单相接地故障电流、过电压水平以及保护配置等有密切的关系。

电网中性点接地方式直接影响电网的绝缘水平、电网供电的可靠性、连续性和供电的安全性,以及电网对通讯线路以及无线电的干扰。

我国常用的接地方式有中心点有效接地系统、中性点非有效接地系统两大类。

接地种类有中性点直接接地、中性点经消弧线圈(消弧电抗器)接地、中性点经电阻器接地、中性点不接地四种。

其中中性点经电阻器接地,按接地电流大小又分为高阻接地和低阻接地。

(1)中性点直接接地
中性点直接接地或经—低值电阻接地的系统,称为有效接地系统。

也称为大电流接地系统。

中性点经接地电阻接地
1)中性点经高电阻接地。

高电阻接地方式以限制单相接地电流为目的,电阻阻值一般在数百到数干欧姆。

优点:采取高电阻接地的系统可以消除大部分谐振过电压,对单相间歇弧光接地过电压具有一定的限制作用。

单相接地故障电流小于10A,系统可以在接地故障条件下持续运行不中断供电。

缺点系统设备绝缘要求较高,投资大。

2)中性点经低电阻接地
6-35KV主要由电缆构成的送配电网络,单相接地故障电容电流较大时,可以可以用低电阻接地方式,电阻值一般在10-20Q,单相接地故障电流为100-lOOO A。

优点:可以快速切除故障线路,过电压水平低。

该接地方式主要用于电缆线路为主,不容易发生瞬时性单相接地故障且系统电容电流比较大的
城市配电网、发电厂厂用电系统及工矿企业配电系统。

工厂供电4版课后答案

工厂供电4版课后答案

工厂供电4版课后答案第一章1-4 电力系统中性点运行方式有哪几种?各自的特点是什么?答:电力系统中性点运行方式有中性点有效接地系统(包括中性点直接接地系统)和中性点非有效接地系统(包括中性点不接地和中性点经消弧线圈或电阻接地)。

1)中性点不接地系统特点:发生单相接地故障时,线电压不变,非故障相对地电压升高到原来相电压的√3倍,故障相电容电流增大到原来的3倍。

2)中性点经消弧线圈接地系统特点:发生单相接地故障时,与中性点不接地系统一样,非故障相电压升高√3倍,三相导线之间的线电压仍然平衡。

3)中性点直接接地系统特点:当发生一相对地绝缘破坏时,即构成单相接地故障,供电中断,可靠性降低。

但由于中性点接地的钳位作用,非故障相对地电压不变。

电气设备绝缘水平可按相电压考虑。

在380/220V低压供电系统中,采用中性点直接接地可以减少中性点的电压偏差,同时防止一相接地时出现超过250V的危险电压。

1-5简述用户供电系统供电质量的主要指标及其对用户的影响答:决定用户供电质量的主要指标为电压、频率和可靠性。

影响:①当电压出现偏差时会对用电设备的良好运行产生影响;电压波动和闪变会使电动机转速脉动、电子仪器工作失常;出现高次谐波会干扰自动化装置和通信设备的正常工作;产生三相不对称电压会影响人身和设备安全。

②频率偏差不仅影响用电设备的工作状态、产品的产量和质量,而且影响电力系统的稳定运行。

③根据负荷等级来保证供电系统的可靠性。

1-6试分析中性点不接地系统发生单相接地后,系统的电压会发生什么变化?此时流经故障点的电流如何确定?答:中性点不接地系统发生单相接地故障时,线间电压不变,而非故障相对地电压升高到原来相电压的√3倍,故障相电容电流增大到原来的3倍。

1-7中性点经消弧线圈接地系统中,消弧线圈对容性电流的补偿方式有哪几种?一般采用哪一种?为什么?答:全补偿方式、欠补偿方式、过补偿方式一般采用过补偿方式,在过补偿方式下,即使系统运行方式改变而切除部分线路时,也不会发展成为全补偿方式,至使系统发生谐振。

中性点经消弧线圈接地系统原理浅析

中性点经消弧线圈接地系统原理浅析

中性点经消弧线圈接地系统原理浅析摘要:中性点接地方式的选择,不仅影响电网的可靠性、经济性,同时对系统设备绝缘水平的选择、过电压水平及继电保护方式等都有影响。

因此,对于不同电压等级的变压器,按其运行方式,采用的中性点接地方式就会有所不同。

当各级电压电网单相接地故障时,如果接地电容电流超过一定数值,在中性点装设消弧线圈,利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障电流减少,以致自动熄弧,保证继续供电。

关键词:中性点、单相接地、消弧线圈1、中性点有效接地系统中性点有效接地(大电流接地):包括中性点直接接地和中性点经低阻接地。

中性点直接接地以后,中性点电位固定为零电位,发生单相接地故障时,非故障短路电流为零,非故障相对地电压不会升高;故障相电流的正、负、零序分量大小相等方向相同,故障相电压为零。

故障电流很大,继电保护一般能快速准确切除故障,系统设备承受过电压的时间较短。

因此,大电流接地系统可使整个系统设备绝缘水平降低,造价上相对比较经济。

主要适用于我国110kV及以上电网。

1.1中性点直接接地系统中性点直接接地是指将中性点直接接入大地。

这种系统中,当发生一相接地时,就会有除中性点以外的另一个接地点构成短路回路,接地故障相电流很大。

由于接地短路电流大,所以接地保护的选择易于实现,发生单相接地故障时,保护快速动作将故障线路切除,而系统的非故障部分仍可正常运行。

此种接地方式,一方面,单相接地时中性点电压为零,非故障相电压不升高,所以可按照相电压标准设计设备和线路对地电压,绝缘方面要求相对较低,属于经济型。

另一方面,由于接地故障时就需断开故障电路造成供电中断,须装设了自动重合闸装置,但对供电可靠性而言还是有一定影响。

2、中性点非有效接地系统中性点非有效接地(小电流接地):包括中性点不接地、高阻接地、经消弧线圈接地方式等。

中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。

电力系统中心点接地方式

电力系统中心点接地方式

中性点经消弧线圈接地系统往往采用过补偿运行方式,消弧线圈的感抗
小于电网对地的容抗,XL<Xc,可调节消弧线圈分接头实现,由于补偿了一个 比电容电流大的电感电流,且相差 180°,则流过故障点的故障电流只剩过 补偿后的较小的电感电流。该电流具备如下特点:压仍对称,可维持电网继续供电,且单相接地故障电流很小,不会危及
保证用电设备的安全运行。
中性点经消弧线圈接地系统适用于单相接地电容电流比较大的电网,即
可抑制异常过电压,又可在电网单相接地时保持连续供电,保证了大型电网
供电可靠性,同时降低了单相接地故障电流对电气设备引起的热效应。
5
2.1.3 中性点经高阻抗接地 电力系统中性点经过电阻器接地,其电阻阻值为数百至数千欧姆,高阻
接地可限制系统单相接地时的故障电流,当采用高阻接地时高阻接地系统可 消除大部分谐振过电压,对单相间歇弧光接地过电压具有一定的限制作用, 当单相接地故障电流小于 10A 时,系统可在接地故障条件下持续运行。
该接地型式主要用于发电机回路,发电机中性点经高阻接地后,可以达 到:发电机单相接地故障时,限制非故障相过电压不超过 2.6 倍额定电压, 限制接地故障电流不超过 10-15A,且为定子接地保护提供电源。
电力系统中性点接地方式是保证系统运行、系统安全、经济有效运行的 基础。 2 电力系统中性点接地方式分类
电力系统中性点接地方式分为:中性点不接地、中性点经电阻接地、中 性点经消弧线圈接地(谐振接地),以及中性点直接接地等。
根据电力系统主要运行特征,将电力系统按中性点接地方式特征分为两 大类,即非有效接地系统或小电流接地系统,以及有效接地系统或大电流接 地系统。 2.1 非有效接地系统或小电流接地系统
路跳闸,因而供电可靠性较差。单相接地电流有时会超过三相短路电流,影 响断路器分断能力的选择,并对通信线路产生干扰及危险影响。 2.2.2 中性点经低电阻接地

船舶电力系统中性点接地方式的探讨

船舶电力系统中性点接地方式的探讨

船舶电力系统中性点接地方式的探讨摘要:船舶电力系统中性点接地方式的选择是一个综合性的课题,正确的接地方式选择具有非常重要的意义,因为它直接关系到船舶供电系统的线路与设备之间的绝缘水平,供电系统的可靠性、连续性和运行的安全性,船舶通信信号的电磁干扰等问题。

关键词:船舶电力系统、中性点接地方式一、引言由于船舶自动化、智能化和大型化不断提升,特别是一些超大型集装箱船、石油平台、海洋工程船、FPSO等船舶,船舶用电量的猛增,使得原来的低压交流电力系统不能适应船舶的发展,必须要使用电压等级更高的中压电力系统,甚至高压电力系统,才能够满足电力系统猛增容量的需求。

采用中高压电力系统可以大幅度降低短路电流的水平,在降低配电板成本的同时,也节约了大量电缆,提高系统的经济性和安全性。

某些船舶大功率电力系统船舶电站容量和短路电流如表1.表1.由于中高压电力系统对设备绝缘等级的要求非常高,但又考虑到绝缘成本、人身安全和设备安全等方面,所以船舶电力系统中性点接地方式必须要合理的选择。

二、船舶电力系统的中性点运行方式三相交流电交流的中性点是指星形连接的变压器或发电机的中性点。

中性点的运行方式主要分两类:小接地电流系统和大接地电流系统,亦称中性点非有效接地和中性点有效接地系统。

前者亦分为中性点不接地系统、中性点经消弧线圈接地系统和中性点经高电阻接地系统,后者亦分为中性点直接接地系统、中性点经低电阻接地系统。

(一)中性点不接地系统中性点不接地的系统亦称为三相绝缘系统,通常采用三相三线制,电网中性点与船体之间无任何连接。

优点是:当系统发生单相接地时,不会因单相短路而产生短路电流使系统保护跳闸,系统即使发生单相接地故障仍然能继续工作,可最大限度地保持供电的连续性。

也不会影响三相线电压之间的对称关系,只是使接地相相电压变为零,而非接地相的电压升高为线电压,这时系统仍可供电。

但必须在短时间(一般为两小时)内找出接地点并排除,以免长时间使非接地相工作在线电压下,造成绝缘损坏。

中性点运行方式

中性点运行方式

TN系统、IT系统和TT系统。
第1个字母反映电源中性点接地状态; T——表示电源中性点工作接地; I——表示电源中性点没有工作接地(或采用 阻抗接地);
第2个字母反映负载侧的接地状态; T——表示负载保护接地,但与系统接地相互独立; N——表示负载保护接零,与系统工作接地相连。
5. 在中性点不接地系统中,应装设交流绝缘监察装置,当发生 单相接地故障时,立即发出信号。规程规定:系统发生单相 接地时,继续运行的时间不得超过2h,并要加强监视。
适用范围
单相接地电流与电网电压和电网对地电容有关。 对于短距离、电压较低的输电线路,因对地电容小,接地电
流小,瞬时性故障往往能自动消除,故对电网的危害小,对 通讯线路的干扰小。对于高压、长距离输电线路,单相接地 电流一般较大,在接地处容易发生电弧周期性的熄灭与重燃, 出现间歇电弧,引起电网产生高频振荡,形成过电压,可能 击穿设备绝缘,造成短路故障。为了避免发生间歇电弧,要 求6-10kV电网单相接地电流小于30A,35kV及以上电网小 于10A。 因此,中性点不接地方式对高电压、长距离输电线路不适宜。
2. 发生单相接地,就变成单相短路。继电保护装置应 立即动作,使断路器断开,迅速切除故障部分,从 而造成停电。
3. 单相短路时,故障相对地电压为零,非故障相对地 电压基本不变,仍接近于相电压。
中性点直接接地系统的优缺点
1. 设备和线路对地绝缘可以按相电压设计,从而降低 了造价。电压等级愈高,因绝缘降低的造价愈显著。
不接地
经消弧线
经电阻接
圈接地 直接接地

正常运行 时
发生单相 接地时
特点 范围
接地电流 小
6-35kV
接地电流 被减小
6-35kV

电力系统中性点接地方式简述

电力系统中性点接地方式简述

电力系统中性点接地方式简述(图)2009-03-27 04:22一、电力系统中性点接地方式电力系统中性点的接地方式基本上可以划分为两大类:凡是需要断路器遮断单相接地故障者,属于大电流接地方式;凡是单相接地电弧能够瞬间自行熄灭者,属于小电流接地方式。

大电流接地方式主要有:中性点有效接地方式;中性点全接地方式,即非常有效接地方式。

此外,还有中性点经低电抗、中电阻和低电阻接地方式等。

小电流接地方式主要有:中性点谐振(经消弧线圈)接地方式;中性点不接地方式;中性点经高电阻接地方式等。

◆中性点不接地系统:中性点对地绝缘的系统优点:这种系统发生单相接地时,三相用电设备能正常工作,允许暂时继续运行两小时之内,因此可靠性高,缺点:这种系统发生单相接地时,其它两条完好相对地电压升到线电压,是正常时的倍,因此绝缘要求高,增加绝缘费用。

存在保护选择性问题。

适用范围:中压系统且接地电流小于规定值。

◆中性点直接接地系统:中性点金属性接地的系统优点:发生单相接地时,其它两完好相对地电压不升高,因此可降低绝缘费用;不存在保护选择性的问题。

缺点:发生单相接地短路时,短路电流大,要迅速切除故障部分,从而使供电可靠性差。

应用范围:高压系统和低压系统。

◆中性点经电阻接地系统:优点:可限制过电压的幅值;不存在保护选择性的问题。

缺点:口头解释。

应用范围:中压系统。

中性点经消弧线圈接地系统优点:除有中性点不接地系统的优点外,还可以减少接地电流;缺点:类同中性点不接地系统。

二、中性点经消弧线圈接地系统1、基本原理如图所示为一中性点经消弧线圈接地系统,在N回路C相发生单相接地故障。

对称分量法认为:当回路N发生单相接地故障时,在故障点处出现了参数不对称。

如果对故障点处的电压量(电流量)进行对称分量分解,则故障点处的电压量(电流量)可以表示为三个对称分量的叠加。

这样,在系统非故障点的参数完全对称的情况下,系统可以解耦为三个对称系统的综合。

既:正序系统、负序系统和零序系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中性点直接接地系统和有效接地系统的区
别比较
从经济观点来看,中性点直接接地是一种投资较少的接地方式,其主要原因如下:
(1)可以采用保护特性较好的阀型避雷器,因而设备的绝缘水平可取得低一些;
(2)不需要任何附加的接地设备(例如电阻器、电抗器、消弧线圏等);
(3)在电压为110千伏以上的系统中,这种接地方式容许采用分级绝缘的电力变压器。

在这种系统中,一切故障(包括单相接地)都将引起断路器的跳闸,而且单相接地电流很大,有时会超过三相短路电流,因而要影响到断路器判断能力的选择。

此外,接地短路电流过大有时还会严重地烧坏导体和妨碍通讯系统的工作。

采用现代化的继电保护装置和快速动作的断路器,能够使上述大接地电流所产生的某些不利于影响受到一定的限制,但仍应保证使断路器的判断能力取决于三项短路时的要求,如单相接地电流过大,可以在中性点接入一只电流不大的电抗器来加以限制。

只要单相接地电流还没有被限制到显著小于三项短路电流的数值,这个系统仍然可以和“直接接地系统”属于同一范畴。

应该指出,目前相当流行的“直接接地系统”一词的定义,是不大明确的。

如所周知,较彻底的接地方式,应该是系统中全部变压器(包括升压的和降压的)的中性点都直接接地,但实实际的情况往往是只有一部分变压器的中性点是直接接地的,其余的中性点则不接地;此外,像前面提到的经小电阻或小电抗接地的系统显然和直接接地系统属于同一类型,但如统称为“中性点直接接地系统”未免有些含糊,而采用“有效接地系统”的名称就比较合适。

可以认为,直接接地系统是有效接地系统中的一种,而且是较常见的一种。

相关文档
最新文档