变频器的工作原理及作用
变频器基本原理和作用
变频器基本原理和作用变频器(Inverter)是一种电力电子器件,其基本原理是将直流电能转换为可调频的交流电能。
它主要由直流输入电源、逆变桥、滤波电路、控制器和交流输出端组成。
变频器广泛应用于工业、航空、军事、交通等领域,并发挥了重要的作用。
下面将详细介绍变频器的基本原理和作用。
变频器的基本原理如下:1.直流输入电源:变频器的输入端接收来自交流电源的交流电压,并使用整流电路将其转换为直流电压。
通常使用整流电路+电容滤波器的方式进行直流电压平滑处理。
2.逆变桥:逆变桥是变频器的核心组件,它将平滑的直流电压转换为可调频的交流电压。
逆变桥由四个可控开关组成,通常是IGBT(绝缘栅双极型晶体管)或MOSFET(金属氧化物半导体场效应晶体管)。
3.滤波电路:逆变桥输出的交流电压含有较高频率的谐波成分,为了减小谐波影响,需要使用LC滤波器进行滤波。
LC滤波器通过选择合适的电感和电容来过滤谐波成分,使交流输出电压更接近正弦波。
4.控制器:变频器的控制器是变频器的大脑,它通过对逆变桥的开关控制来实现对输出电压频率和幅值的调整。
控制器通常由微处理器、运算放大器等芯片组成,利用脉宽调制(PWM)技术来控制逆变桥开关的导通和断开,从而控制输出电压的频率和幅值。
5.交流输出端:变频器的交流输出端将可调频的交流电能提供给负载。
根据应用需求,可以将交流输出端连接到电动机、电炉、照明设备等不同的负载上,实现对其速度、温度、亮度等参数的精确控制。
变频器主要有以下作用:1.节能降耗:传统的电动机驱动系统通常采用带有固定转速的交流电源,而变频器可以根据实际负载需求,调整电机的转速和输出功率,降低电机的无功损耗和机械能量的损耗,从而实现能量的经济利用。
2.频率调节:变频器可以调节电机的输出频率,从而实现对驱动设备的控制。
例如,变频器常用于电梯、空调、水泵等场合,可以根据需求调整其运行频率,提高设备的工作效率和使用寿命。
3.调速控制:传统的电动机驱动系统通常只能实现定速运行,而变频器可以通过调整输出频率,实现对电机的精确调速控制。
变频器基本原理
变频器基本原理变频器,也称为频率调节器,是一种能够调节电机转速和输出频率的电气设备。
它在工业生产中广泛应用,为电机提供了更加灵活和精确的控制方式。
本文将介绍变频器的基本原理及其工作原理。
一、变频器的定义和作用变频器是一种电子设备,它能够将固定频率的交流电源转换为可调节频率的交流电源,并通过控制输出频率来控制电机的转速。
它通过改变电源电压的频率和幅值,从而改变电机的运行状态,实现对电机的精确控制。
变频器在工业生产中起到了至关重要的作用。
它能够使电机在不同的工况下运行,适应不同的负载要求。
通过调节电源频率,可以实现电机的变速运行,并在启动过程中减小电机的启动电流。
同时,变频器还能够提高电机的工作效率,减少能源的消耗。
二、变频器的结构和工作原理1. 变频器的结构典型的变频器结构包括整流器、滤波器、逆变器和控制单元等组成。
整流器将输入的交流电源转换为直流电源,供给逆变器使用。
滤波器用于滤除直流电源中的杂散成分,保持逆变器输入的电压信号稳定。
逆变器则将直流电源转换为可调频率的交流电源,用于驱动电机。
控制单元是变频器的核心部分,通过接收命令信号和输入信号,对逆变器的输出频率进行调节,实现对电机的精确控制。
2. 变频器的工作原理变频器的工作原理基于电力电子技术和控制理论。
在启动过程中,控制单元给逆变器发送启动指令。
逆变器将直流电源转换为低频交流电源,通过变压器升压并输出给电机。
此时,电机根据输入的频率和电压信号运行。
通过控制单元的调节,可以改变输出频率和电压信号,从而实现对电机的精确控制。
三、变频器的优势和应用领域1. 变频器的优势变频器具有以下几个显著的优势:- 变速范围广:变频器可以实现电机的连续调速,速度范围广,适应不同的工况要求。
- 节能环保:变频器通过控制电机的转速和输出频率,实现了电机的高效运行,减少了能源的消耗,降低了环境污染。
- 提高生产效率:变频器能够精确控制电机的转速,提高生产效率,减少人工干预,提高产品质量。
变频电机工作原理
变频电机工作原理变频电机是一种通过变频器控制电机转速的电机,也被称为变频调速电机。
它利用变频器将恒定频率的电源交流电转换为可调频率的交流电,从而实现对电机转速的精确控制。
下面将详细介绍变频电机的工作原理。
1.变频器的作用:变频器是控制变频电机转速的核心设备。
它包含了整流器、滤波器、逆变器、控制电路等组成部分。
变频器的功能是将输入的交流电转变为可调频率和可调幅度的交流电输出给电机。
它通过调整输出电压的频率和幅度来改变电机的转速和输出功率。
2.变频器的工作原理:变频器的工作原理可以分为以下几个步骤:(1)整流:变频器将输入的交流电转换为直流电。
整流器通常采用整流桥电路,将交流电的正负半周分别整流为正流和负流,然后通过滤波电路将直流电压滤波平稳。
(2)逆变:通过逆变器将直流电转换为可调频率和可调幅度的交流电。
逆变器通过高频开关管按照特定的节奏将直流电转换为交流电,并通过调整开关管的开关时序和占空比来控制输出电压的频率和幅度。
(3)PWM控制:变频器通过脉宽调制(PWM)控制方式调整输出电压的幅度和频率。
PWM控制是通过不同占空比的高频脉冲信号来模拟出不同的电压和频率,控制电机的转速。
PWM控制可以实现电机的精准控制,提高工作效率。
(4)控制电路:变频器的控制电路负责接收来自外部的控制信号,通过处理和传递给逆变器,从而实现对电机转速的精确控制。
控制电路通常由微处理器、传感器和控制芯片等组成,能够通过编程和参数设定来满足不同的运行要求。
3.变频电机的工作原理:变频电机与普通电机的区别在于其供电方式。
变频电机的输入电源是通过变频器输出的可调频率交流电,而普通电机则是直接接入固定频率的交流电源。
变频电机的工作原理与普通电机基本相同,主要包括定子和转子两部分。
(1)定子部分:定子是电机的固定部分,通常由电机外壳和定子绕组组成。
定子绕组通过变频器提供的交流电产生旋转磁场,从而激励转子。
(2)转子部分:转子是电机的旋转部分,通常由转子芯和转子绕组组成。
变频器的原理和作用是什么
变频器的原理和作用是什么变频器又称为交流调速器,是一种用于控制交流电动机转速的设备。
它通过改变电动机的电压、频率和相数来实现对电机转速的精确控制,从而满足不同工况下对电机转速的需求。
变频器被广泛应用在工业生产领域,如机械制造、能源等领域,为生产过程提供了灵活而可靠的动力控制方案。
变频器的原理是基于电力电子器件,通过改变输入的电压和频率来控制电动机的转速。
一般来说,传统的交流电动机工作在额定的电压和频率下,其转速是由电源提供的电压和频率决定的。
而变频器则通过将输入的交流电转换为直流电,然后再通过逆变器将直流电转换为可调的交流电,从而实现对电机转速的调节。
变频器的作用主要有以下几点:1. 实现电机调速:变频器可以根据用户需求来改变电机的转速,使其可以在不同工况下实现精确的调速。
在工业生产中,不同的生产工艺和设备要求可能需要不同的转速,变频器可以满足这种需求,提高了生产线的灵活性和适应性。
2. 节能降耗:通过使用变频器来调节电机的转速,可以有效地降低电机运行时的能耗。
传统的恒速运行模式下,电机的能耗是固定的,而使用变频器可以根据实际工况来调节电机的转速,实现节能降耗的效果。
3. 减小启动冲击:传统的电机启动时会产生较大的启动冲击,对电网和设备都会造成一定的影响。
而使用变频器可以实现平稳启动,减小启动时的冲击,降低了设备的维护成本,延长了设备的使用寿命。
4. 提高设备精度:在一些需要精确控制的工艺中,如数控机床、风机、泵等设备,需要对电机的转速进行精确的控制。
变频器在这些设备中的应用可以提高设备的控制精度,确保生产过程的稳定性和可靠性。
5. 减少设备噪音:在一些对噪音要求较高的场合,使用变频器可以有效地减少设备运行时的噪音。
通过调节电机的转速和运行模式,可以降低电机和传动系统的工作噪音,提升工作环境的舒适度。
总的来说,变频器是一种能够实现对电机转速精确控制的设备,其原理是通过改变输入电压和频率来实现对电机转速的控制。
变频器作用及工作原理
变频器作用及工作原理变频器是一种电力设备,主要用于改变交流电频率,调整和控制电动机的速度。
它在工业、电力、交通、采矿等领域得到广泛应用,具有显著的节能效果和操作灵活性。
下面将详细介绍变频器的作用和工作原理。
1.变频器的作用:1.1节能降耗:变频器能够调整电动机的转速,根据实际负载要求精确控制转速,避免因为电机过大或转速固定而造成的能源浪费。
1.2转矩控制:变频器可以通过调整输出电压和电流的频率和大小,控制电动机的输出转矩,实现精确的转矩控制,满足不同负载要求。
1.3保护电机:变频器具有多种保护功能,例如过载保护、短路保护、过压保护等,可以有效保护电动机免受损害。
1.4减少机械冲击:通过变频器的平滑启动和停止功能,可减少电动机启动时的机械冲击,延长机械设备的使用寿命。
1.5提高系统的精度:变频器具有调速准确性高的特点,可以提高系统的定位精度和调整精度,适用于对运动控制要求较高的应用场合。
2.变频器的工作原理:2.1桥式整流器:变频器的输入端通常为交流电源,通过桥式整流电路将交流电转换为直流电。
桥式整流电路由四个可控的二极管组成,可以实现三相交流电的整流功能。
2.2电容滤波器:直流电经过桥式整流电路后,输出的电压波形并不是纯直流的,还会有一定的纹波。
为了平滑输出,需要通过电容滤波器将纹波进行滤波,使输出的电压趋于稳定。
2.3逆变器:逆变器是变频器的核心部件,将直流电转换为可调频率的交流电。
逆变器通常采用可控硅或晶闸管等器件,通过控制开关管的导通和断开,实现调整输出电压的频率和大小。
逆变器通过改变开关管的通断情况,可以实现不同频率的电能输出,从而控制电动机的转速。
2.4控制单元:变频器的控制单元是变频器的智能核心部分。
它通过搜集和分析输入输出信号,控制逆变器的工作状态,实现对电机的速度、转矩等参数的调节。
控制单元通常采用微处理器或数字信号处理器,具有较高的计算能力和运算速度。
2.5反馈回路:变频器通常配备有速度传感器、位置传感器等反馈装置,用于实时监测电动机的运行状态。
变频器工作原理及其在电机控制中的作用
变频器工作原理及其在电机控制中的作用随着科技的不断发展,电机在工业生产和生活中的应用越来越广泛。
而电机的控制和调节是保证其正常运行的关键。
在电机控制中,变频器起到了至关重要的作用。
本文将介绍变频器的工作原理以及其在电机控制中的作用。
一、变频器的工作原理变频器是一种能够改变电源频率的电子设备,通过改变电源频率来控制电机的转速和输出功率。
其工作原理主要分为三个部分:整流、滤波和逆变。
首先是整流部分,变频器将交流电源转换为直流电源,这是为了提供给后续的逆变部分使用。
整流部分通常采用整流桥电路,将交流电源的正负半周期分别整流为正向和负向的直流电压。
接下来是滤波部分,其作用是将整流后的直流电压进行滤波处理,以去除其中的脉动成分。
常见的滤波电路包括电容滤波和电感滤波。
电容滤波主要通过电容器对电压进行平滑处理,而电感滤波则利用电感元件对电流进行平滑处理。
最后是逆变部分,变频器将滤波后的直流电压通过逆变器转换为交流电压,并通过改变逆变器的输出频率来控制电机的转速。
逆变部分通常采用晶闸管或者功率场效应管等元件来实现,通过不同的开关方式来改变输出的电压和频率。
二、变频器在电机控制中的作用1. 调节电机转速变频器可以通过改变输出频率来调节电机的转速,从而实现对电机的精确控制。
通过调节变频器的参数,可以实现电机的平稳启停、快速启动、定速运行等功能。
这在一些需要频繁调整转速的场合非常重要,如风机、水泵等。
2. 节能降耗传统的电机控制方式通常采用调压降频的方式来实现转速调节,但这种方式会造成大量的能量浪费。
而变频器通过改变频率来控制电机转速,可以使电机在不同负载下工作在最佳效率点,从而实现节能降耗的目的。
据统计,使用变频器可以节约电能20%以上。
3. 提高电机的运行可靠性变频器具有过载保护、短路保护、过压保护等功能,可以有效保护电机的安全运行。
此外,变频器还可以通过软启动功能来减少电机的启动冲击,延长电机的使用寿命。
这对于一些对电机运行稳定性要求较高的场合非常重要。
变频器的原理及应用
变频器的原理及应用变频器是一种能够改变电源电压和频率的电子器件,它可以将固定频率的交流电进行调节,使其输出的电压和频率可以按照需求进行灵活调整。
变频器主要由整流器、滤波器、逆变器等部分组成,其作用主要是将固定频率的交流电转化为可调频率的交流电。
变频器的工作原理如下:1.变频器接收交流电源的输入,并通过整流器将交流电转化为直流电。
2.接着,滤波器对直流电进行滤波,使其脉动幅度降低,变得更加平滑。
3.逆变器将滤波后的直流电转化为可调频率的交流电。
逆变器通常采用全桥反向器电路,通过切换器将直流电转换为交流电,切换频率可以由控制电路来调节。
4.控制电路和驱动电路负责对逆变器进行控制,监测变频器的运行状态,并根据需要调节输出频率和电压。
变频器的应用十分广泛,以下是几个主要的应用领域:1.工业应用:变频器广泛应用于各种机械设备中,例如风机、水泵、压缩机等。
通过调整输出频率和电压,可以实现对设备的精准控制,提高能效和工作效率。
2.冷暖气设备:变频器可以控制空调、热泵和其他制冷设备的马达或压缩机的速度,达到节约能源、降低运行成本的目的。
3.电机驱动:在工业生产和工程建设中,各种电机驱动系统都能够通过变频器实现对电机输出频率和电压的控制,提高设备的运行效率。
4.高速列车:高速列车上的电动系统中也广泛使用变频器,通过调节电机的输出频率和电压,实现列车的平稳启动和调速控制。
5.新能源领域:变频器也被广泛应用于新能源领域,例如太阳能和风能发电系统中,通过控制变频器的输出频率和电压,实现对电力的有效调节和转换。
总结来说,变频器通过改变电源电压和频率,实现对交流电的调节和转换,具有广泛的应用领域。
它的工作原理是通过整流器、滤波器和逆变器等部分,将交流电转换为可调频率的交流电。
变频器的应用范围包括工业设备、冷暖气设备、电机驱动、高速列车和新能源等领域。
通过变频器的控制,可以实现设备的高效运行和能源的节约使用。
变频器的工作原理及作用
变频器的工作原理及作用变频器的工作原理1、基本概念1)VVVF改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。
2)CVCF恒电压、恒频率(XXX)的缩写。
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。
该设备首先要把三相或单相交流电变换为直流电(DC)。
然后再把直流电(DC)变换为三相或单相交流电(AC)。
变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。
因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。
变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。
随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。
各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。
为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。
然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。
变频器也可用于家电产品。
使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。
用于电机控制的变频器,既可以改变电压,又可以改变频率。
但用于荧光灯的变频器主要用于调节电源供电的频率。
汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。
变频器的工作原理被广泛应用于各个领域。
例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。
变频器的原理和作用
变频器的原理和作用变频器,又称为逆变器,是一种能够改变电源频率的电力变换设备。
它将直流电能转换成交流电能,并且能够通过控制输出频率来实现对电机的调速和控制。
变频器的原理和作用是其能够实现直流电能到交流电能的转换,并且通过控制输出频率来实现对电机的调速和控制。
下面将详细介绍变频器的工作原理和主要作用。
一、变频器的工作原理变频器的工作原理是基于电力电子技术和控制技术的应用实现的。
其基本原理是通过将输入的直流电能转换成高频电能,再将高频电能变换为所需的输出电能。
以下是变频器工作的基本原理:1.整流:变频器的输入端接受交流电源的输入,并利用整流电路将交流电转换为直流电,这一过程称为整流。
变频器通常采用三相全波整流电路,将交流电转换为直流电并提供给后续的部分。
2.滤波:在整流后,通过滤波电路将直流电中的脉动和噪声去除,得到平滑的直流电信号。
滤波电路通常采用电容器进行滤波,以确保输出的直流电信号稳定。
3.逆变:在滤波后的直流电通过逆变器进行逆变处理,将直流电转换为交流电。
逆变器是变频器的核心部分,其通过PWM技术(脉宽调制技术)将直流电转换为可以控制输出频率和电压的交流电。
4.滤波:逆变后的交流电通过滤波电路进行再次滤波,去除逆变过程中产生的高频成分,使得输出的交流电信号更加平稳。
通常,滤波电路采用电感和电容进行滤波。
5.输出控制:经过整流、滤波、逆变和滤波后,变频器的输出电能已经完成了频率和电压的转换,可以通过控制变频器的控制电路来实现对输出频率和电压的调整。
6.驱动负载:最后,变频器的输出电能驱动所需的负载,通常是电动机。
变频器通过输出交流电能来驱动电动机,实现对电动机的调速和控制。
以上是变频器的基本工作原理,通过将输入的直流电能转换为输出的交流电能,变频器能够实现对电机的调速和控制。
二、变频器的主要作用1.调速控制:变频器最主要的作用就是实现对电机的调速和控制。
通过控制变频器输出的频率,可以实现对电机的转速进行精准控制。
变频器的分类作用及工作原理
变频器的分类作用及工作原理变频器是一种能够改变电源输入频率的电力转换器。
它可以将固定频率的交流电转换为可调节频率的交流电,从而使电动机实现步骤或无极调速,大大提高了电动机的效率和控制性能。
下面将详细介绍变频器的分类、作用以及工作原理。
一、变频器的分类:1.按控制方式分类:开环变频器和闭环变频器。
开环变频器只能单向探测电机转速,无法进行反馈控制;闭环变频器能够通过反馈装置实时感知电机的转速并进行调整。
2.按输出电压分类:单相变频器和三相变频器。
单相变频器输出电压只有一个相位,适用于单相电动机的调速;三相变频器输出电压具备三相电流相位,适用于三相电动机的调速。
3.按拓扑结构分类:单级变频器和多级变频器。
单级变频器电路简单,适用于小功率电动机的调速;多级变频器能够提供更高的输出电压和电流,适用于大功率电动机的调速。
4.按调速性能分类:V/F控制变频器、矢量控制变频器和直接转矩控制变频器。
V/F控制变频器能够实现简单的速度调节;矢量控制变频器在速度和转矩控制上具备更高的精度;直接转矩控制变频器能够实现更精准的速度和转矩控制。
二、变频器的作用:1.电机调速:变频器能够调控电动机的转速,使其实现步骤或无级调速。
2.节能降耗:变频器通过实时调节电机的转速,避免了电机在运行过程中的过度能量消耗,降低了能耗。
3.保护电机:变频器能够监测电机的工作状态,及时发现异常情况并对电机进行保护,延长了电机的使用寿命。
4.改善运行平稳性:变频器通过控制电机的转速和起停过程中的电流变化,使电机运行更加平稳,减少机械部件的磨损。
5.提高生产效率:变频器具备快速启动和停止的功能,能够提高生产线的效率和灵活性。
三、变频器的工作原理:变频器通过将输入的固定频率交流电源转换为可调节频率的交流电源,从而实现电机的调速控制。
其工作原理主要包括整流、滤波、逆变和控制四个阶段:1.整流:变频器首先将输入的交流电源通过整流器转换为直流电压。
整流器通常使用整流桥等电路将交流电转换为直流电。
变频器作用及工作原理
变频器作用及工作原理变频器(Inverter)是一种电力电子设备,用于将直流电能转换为交流电能,并控制交流电能的频率和电压。
它广泛应用于电机控制、能源转换和电力供应等领域。
本文将详细介绍变频器的作用和工作原理。
一、变频器的作用变频器主要有以下几个作用:1.电机控制:变频器是电机的调速装置,通过调节变频器的输出频率,可以控制电机的转速。
这可以实现电机的软启动、减速、定速等功能,适应不同负载要求,并提高电机的效率。
2.节能降耗:电机在不同负载下运行,其效率往往不同。
变频器可以根据实际负载情况动态调整电机的转速,使其在高效区运行,提高电机的电能利用率,从而实现节能降耗的目的。
3.减少机械冲击:传统的启动方式,如星角启动、直接启动等,会对机械设备产生较大的起动冲击,影响设备的使用寿命。
而变频器可以实现电机的软启动,通过逐步增加电机的电压和频率,减少起动冲击,延长设备的使用寿命。
4.改善产品质量:通过调节电机的转速,可以改变产品的制造工艺和生产流程,提高产品的质量和稳定性。
特别是在一些对速度要求较高、精度要求较高的场合,变频器的精确调速功能显得尤为重要。
二、变频器的工作原理变频器的工作原理主要包括整流、滤波、逆变和控制等几个环节。
1.整流:变频器的输入端接收交流电源,通过整流单元将交流电源转换成直流电。
常见的整流电路有单相整流桥和三相整流桥,可以将交流电源直接整流为直流电源。
2.滤波:经过整流后的直流电存在较大的纹波成分,需要通过滤波电路进行处理,使直流电的纹波尽可能平滑。
滤波电路通常由电容和电感组成,能够对电压进行平滑滤波。
3.逆变:经过滤波的直流电经由逆变单元转换为交流电。
逆变单元通常由可控硅、晶闸管或MOS管等元件组成,通过控制这些元件的导通和截止,可以改变输出交流电的频率和电压。
4.控制:通过控制逆变单元的开关状态,实现对输出交流电的频率、电压和波形的精确控制。
控制方式有模拟控制和数字控制两种,常见的有脉宽调制(PWM)和向量控制等。
变频器的作用及原理结构
变频器的作用及原理结构
变频器,又称交流变频调速器,是一种用于控制电动机转速的装置。
它通过改变电动机工作的电压和频率,使电动机达到不同的转速,从而实现对电动机的调速控制。
变频器的作用主要包括:
1.调速控制:通过调节变频器的输出电压和频率,可以实现对电动机的精确控制,使其达到所需的转速。
2.能耗调节:变频器可以根据工作需求,调整电动机的负载和转速,使其在工作效率最优的工作点上运行,从而降低能耗。
3.保护功能:变频器具有多种保护功能,包括过载保护、短路保护、过电压保护等,可以有效保护电动机的安全运行。
变频器的基本原理结构包括:
1.整流器和滤波器:变频器首先将交流电转换为直流电,然后通过滤波器将直流电平滑化,去除电流中的纹波。
2.逆变器:逆变器是变频器的核心部件,它将直流电转换为可调的交流电,输出给电动机。
逆变器通常采用高频开关器件,如IGBT(绝缘栅双极型晶体管)作为开关元件,通过控制开关元件的通断和开启时间,实现对输出波形的调节。
3.控制模块:变频器中的控制模块负责接收用户的指令,通过对逆变器的控制,调节输出电压和频率,实现对电动机的调速控制。
控制模块还可以通过监测电动机的工作状态,实现对电动机的保护功能。
4.反馈装置:为了实现对电机转速的准确控制,变频器通常配备了转速传感器或编码器等反馈装置,用于感知电机的实际转速,并将转速信号反馈给控制模块进行调节。
总之,变频器通过改变电动机工作的电压和频率,实现对电动机的调速控制,具有节能、精确控制、保护功能等优点,在工业生产和领域中得到广泛应用。
变频器的工作原理及作用
变频器的工作原理及作用变频器是一种电子设备,用于调节和控制交流电机的转速和电压。
它的工作原理基于电力电子技术,能够通过改变电源直流电压的频率和幅值来实现电机的速度调节。
整流器通常由整流桥构成,用于将交流电源转换为直流电压。
所得到的直流电压被送到逆变器。
逆变器是变频器的核心部分,它将直流电压转换为交流电压。
逆变器是通过高速开关器件(比如晶体管、IGBT等)来实现的。
逆变器根据电机的工作需求,通过改变开关器件的开关频率和占空比来调节输出交流电压的频率和幅值。
控制器是变频器的智能核心,它通过对输入信号(比如转速、转矩、开关信号等)的处理和运算,来控制逆变器的驱动方式,从而实现对交流电机的控制。
变频器的作用主要包括以下几个方面:1.调速功能:变频器可以通过调节输出交流电压的频率,实现对电机转速的精确控制。
传统的恒速电机由于设备特性的限制,无法满足变速的需求,而变频器可以通过改变电压频率来实现对电机的调速,从而适应不同工况的需求。
2.节能降耗:传统的恒速电机在运行时,通常需要将电能通过机械传动装置(比如齿轮、皮带等)转换成机械能。
而变频器可以实现电机的变速运行,能够根据实际负载需求,精确地调节电机的转速,从而提高电机的工作效率,降低能耗。
3.起动控制:传统的恒速电机在起动时,可能需要消耗较大的电流,并且会对电网系统产生较大的冲击。
而通过变频器的软启动功能,可以实现对电机的平稳起动,减少对电网的冲击,提高设备的使用寿命。
4.增强控制精度:传统的恒速电机的控制精度有限,很难实现对电机的精确控制。
而变频器通过对输入信号的处理和运算,可以实现对电机转速、转矩等参数的精确控制,从而提高设备的控制精度。
5.保护功能:变频器在运行时,可以对电机进行监测和保护。
它能够实时检测电机的工作状态,并在发生故障或异常情况时,自动采取保护措施,防止设备的损坏。
总而言之,变频器通过调节和控制交流电机的转速和电压,实现了电机的精确控制,并提供了节能、起动控制和保护功能,从而适应了各种工况需求,提高了设备的使用效率和稳定性。
变频器作用及工作原理
变频器作用及工作原理
变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。
变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。
变频器作用变频器的直接作用:
1、通过改变电动机的电压和频率,使电机的速度可以无极调节。
2、软启动节能,功率因数补偿节能。
变频器的间接作用:
1、节能(节电)。
风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。
当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求,降低电耗。
2、提高生产设备自动化程度。
当前有很多品牌的变频器。
变频器接线图
变频器工作原理主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
它由三部分构成:将工频电源变换为直流功率的整流器、吸收在变流器和逆变器产生的电压脉动的平波回路、以及将直流功率变换为交流功率的逆变器。
变频器结构及工作流程图
1、整流器。
变频器的工作原理及作用
变频器的工作原理及作用
变频器是一种将电力频率进行调节的电子设备。
它的主要工作原理是通过对输入电源进行电子变换来达到改变电源输出频率的目的。
变频器主要由整流器、滤波器、逆变器和控制电路组成。
首先,整流器将输入的交流电源转换为直流电源,然后经过滤波器去除直流电源中的脉动,得到平稳的直流电压。
接下来,逆变器将直流电源转换为高频交流电源,并通过控制电路对输出电源的频率进行调节。
变频器的主要作用是将输入电源的频率变化为特定需要的输出频率。
它广泛应用于许多领域,如工业生产中的电机驱动、空调、电梯等设备的控制以及节能环保等方面。
变频器的作用具体体现在以下几个方面:
1. 节约能源:通过根据实际需要调节电机的转速,实现按需供电,减少能源浪费,提高能源利用率。
2. 控制精度高:变频器可以精确调节电机的转速和输出频率,实现对设备的精确控制,提高生产效率。
3. 对设备运行的稳定性有益:变频器可以避免电机在启动和停止时的冲击,延长设备的使用寿命,提高设备的稳定性和可靠性。
4. 降低电机的噪音和振动:通过调节电机的转速和输出频率,可以减少电机的噪音和振动,提供更加安静和舒适的工作环境。
总之,变频器的工作原理是通过对输入电源进行电子变换来调节输出电源的频率,其作用是实现节约能源、提高控制精度、增加设备稳定性和降低噪音振动。
变频器的工作原理及作用
变频器的工作原理及作用变频器是一种涉及电力传动的设备,主要用于调节电机的转速和输出功率,以满足不同工况和需求。
它在工业生产中扮演着重要的角色,具有广泛的应用。
本文将介绍变频器的工作原理以及其在工业领域中的作用。
一、工作原理变频器的工作原理基于电机的频率控制方式。
通常情况下,电源中提供的电能是固定频率的交流电。
而电机的转速是由电源提供的电压和频率共同决定的。
变频器通过改变电源输入电压的频率和幅值,从而实现对电机转速的控制。
变频器主要由整流部分、滤波部分、逆变部分和控制部分组成。
整流部分将交流电转换为直流电,而滤波部分则通过滤波电路将直流电转换为平滑的直流信号。
逆变部分将平滑的直流信号转换为可变频率的交流电,最后控制部分根据用户的设定,通过调节逆变部分的输出频率和幅值,来实现对电机转速和输出功率的控制。
二、作用1. 转速调节:变频器可以通过改变输出频率和幅值来调节电机的转速。
这对于一些需要精确控制和调节转速的场合非常重要,如风扇、泵、制冷设备等。
变频器可以根据实际需求进行灵活的调节,避免了传统方式中通过改变机械传动比来调整转速的复杂操作。
2. 节能降耗:传统的电机工作在额定转速下,效率相对较低,且在无负载或负载变化时能耗较高。
而变频器可以根据实际工作需求动态调节电机的转速和输出功率,使电机在高效工作区域运行,从而达到节能降耗的目的。
此外,变频器还可以通过调整电机的转速和输出功率来实现负载的匹配,提高系统的运行效率。
3. 保护电机和设备:变频器具有对电机和系统的保护功能。
通过实时监测电机的工作状态,变频器可以检测到电机的过电流、过载、过压、欠压等异常情况,并及时采取措施,如降低输出频率或停机等,以避免电机和设备的损坏。
4. 提高生产效率:变频器的使用可以提高生产线的生产效率和运行灵活性。
通过调节电机转速和输出功率,变频器可以实现生产线中各个设备的协调运行,提高生产效率和产品质量。
另外,变频器还可以实现对电机的软启动和定向控制,降低了启动时的冲击和噪声,延长了设备和电机的使用寿命。
变频器作用及工作原理
变频器作用及工作原理变频器是一种能够实现电机转速调节的装置,广泛应用于工业生产和家庭生活中。
它的主要作用是通过改变输入电源的频率和电压,控制电机的转速和功率输出。
变频器基本上由整流器、滤波器、逆变器和控制电路组成。
下面我将详细介绍变频器的工作原理及其作用。
首先,让我们从变频器的工作原理开始讲起。
变频器主要通过调整输入电源的频率和电压来控制电机的转速和功率输出。
变频器的工作原理是将输入电源的交流信号经过整流器和滤波器处理后,形成直流电压供给逆变器。
逆变器通过产生不同频率和电压的交流电信号,供给电机驱动。
变频器的控制电路根据实际需要,通过对逆变器的控制信号来调整其输出频率和功率。
具体来说,变频器的整流器和滤波器的作用主要是将输入电源的交流电信号转变为直流电压信号。
整流器将交流电信号通过整流桥变换为脉动的直流电压信号,然后经过滤波器对其进行平滑,消除脉动,得到稳定的直流电压。
逆变器是变频器的核心部件,主要是将直流电压信号转变为交流电信号,并根据控制信号调整输出的频率和电压。
逆变器利用高频开关器件(如IGBT)将直流电压信号转换为变频交流电信号。
通过改变开关器件的通断状态,控制输出电压和频率的大小,并实现对电机转速的精确调节。
最后是变频器的控制电路,它起着控制和调节变频器工作状态的重要作用。
控制电路接收用户输入的信号,根据设定的控制模式、频率和电压要求,生成逆变器的控制信号,进而调整输出信号的频率和电压。
另外,控制电路还能对电机的运行状态进行监测,并实现对电机的保护和故障诊断。
总结一下,变频器通过整流器和滤波器将交流电信号转变为直流电压信号,然后逆变器将直流电压信号转变为特定频率和电压的交流电信号供电机驱动。
变频器的控制电路根据实际需要产生逆变器的控制信号,通过调节输出频率和电压来控制电机的转速和功率输出。
变频器的工作原理如此,它不仅可以实现电机的精确调速,提高生产效率,还能节约能源,减少机械的磨损,延长设备的使用寿命。
变频器作用及工作原理
变频器作用及工作原理变频器又称为变频调速器,是一种用于控制交流电动机速度的电气设备。
随着现代工业技术的不断进步,变频器已经成为许多行业不可缺少的设备。
一、变频器的作用传统电机的运转速度受到电网频率的影响,而变频器可以改变电机的供电频率,从而实现电机速度的调节。
变频器的作用可概括为以下三点:1. 实现电机速度调节变频器通过改变电机的供电频率来调节电机的转速。
当电机运行在低速时,速度的减小会引起电机的转矩增加,这种转矩称之为“电磁转矩”。
变频器可通过控制电机的供电频率来调节电机的转矩,从而实现精确的调速。
2. 实现能量节约传统的启动方法往往会产生较高的起动电流,这会导致电网的电压降低,同时也会损耗电网的能量。
而变频器启动电机时,可通过逐步增加电机的供电频率,实现平稳启动,从而避免启动时的大电流。
此外,变频器还可以根据负载变化自动调整电机的转速,从而实现能量的有效利用。
3. 实现保护作用传统电机运行时,负载变化大会导致电机损坏的风险。
而变频器配备了多种保护功能,包括过载保护、欠载保护、过流保护等,能够有效避免电机损坏。
二、变频器的工作原理变频器主要由电源、整流器、逆变器、控制模块、滤波器、输出变压器以及供电电机等部分组成。
其工作原理可分为两个阶段:整流阶段和逆变阶段。
1. 整流阶段变频器的整流器将交流电源转换为直流电源,通常采用三相全控桥整流电路(或中点整流电路)。
在这个阶段,变频器将交流电源通过整流器转换为直流电源,并将直流电源存储在电容器中。
2. 逆变阶段逆变器将直流电源转换为可调的交流电源,通过控制输出频率和幅值来实现变频调速。
在逆变阶段,变频器主要由三部分组成:PWM 控制模块、输出过滤滤波器和逆变器输出变压器。
(1)PWM 控制模块PWM(Pulse Width Modulation)控制模块是变频器的核心部分,通过对控制信号的调节,来实现对输出电压频率和幅值的调节。
如果需要电机以特定的转速运行,变频器会根据转速设定值调节输出频率,从而实现电机的调速。
变频器用途及原理
变频器用途及原理变频器,也称为变频调速装置,是一种用于控制电动机转速的电子设备。
它通过改变电源电压的频率和幅度,从而实现对电动机转速的精确控制。
变频器的应用十分广泛,可以在工业、冶金、石化、建筑、电力、交通等各个领域中见到。
下面我将详细介绍变频器的用途和原理。
一、变频器的用途:1. 工业生产:变频器可以控制电动机的转速和输出功率,从而实现对工业生产过程的精确控制。
它可以调节送风系统、送水系统和输送带等一些需要调速设备的工业设备。
2. 节能降耗:变频器可以减少电动机的启动过程中的冲击电流,从而减少能源消耗。
此外,它还可以通过调整电动机的负载率,实现节能降耗的目的。
3. 提高效率:变频器可以根据工艺要求灵活调整电机转速,从而实现生产系统的全面优化,提高生产效率。
4. 减少机械故障:变频器可以通过控制电动机的启动、停止和运行过程中的各项参数,保护电动机免受过载和过热等不利因素的损害,延长电机的使用寿命。
5. 精确控制:变频器可以根据工艺要求精确地调节电动机的转速和输出功率,从而实现对生产过程的精确控制。
6. 调速驱动:变频器可以将电能转换为机械能,驱动各种需要调速控制的机械设备,如风机、水泵、液压机等。
二、变频器的工作原理:变频器实际上是一种由功率半导体器件、逻辑控制器和传感器组成的系统,它的工作原理主要包括三个方面:整流、逆变和控制。
1. 整流:变频器首先将交流电源转换为直流电源,这是通过整流桥电路来实现的。
整流桥电路是由一组二极管和功率晶体管或晶闸管构成的,它将交流电源的正、负半周转换为直流信号。
2. 逆变:变频器将直流电源转换为可调频率和幅值的交流电源,这是通过逆变器来实现的。
逆变器是由控制开关管和滤波电路组成的,它将直流电源的电压和频率转换为可调节的交流电压,用于供电电动机。
3. 控制:变频器通过控制逆变器的开关管,调整输出电压的频率和幅值,从而控制电动机的转速和输出功率。
控制器可以根据工艺要求,通过与传感器的反馈信号进行比较和分析,以达到精确控制电动机转速的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的工作原理1、基本概念(1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。
(2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。
该设备首先要把三相或单相交流电变换为直流电(DC)。
然后再把直流电(DC)变换为三相或单相交流电(AC)。
变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。
因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。
变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。
随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。
各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。
为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。
然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。
变频器也可用于家电产品。
使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。
用于电机控制的变频器,既可以改变电压,又可以改变频率。
但用于荧光灯的变频器主要用于调节电源供电的频率。
汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。
变频器的工作原理被广泛应用于各个领域。
例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。
2. 电机的旋转速度为什么能够自由地改变?(1) r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。
例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。
本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。
感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。
电机的极数是固定不变的。
由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。
另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。
如果仅改变频率,电机将被烧坏。
特别是当频率降低时,该问题就非常突出。
为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压,例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。
例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。
3、关于散热的问题如果要正确的使用变频器, 必须认真地考虑散热的问题。
变频器的故障率随温度升高而成指数的上升。
使用寿命随温度升高而成指数的下降。
环境温度升高10度,变频器使用寿命减半。
因此,我们要重视散热问题啊!在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响。
通常,变频器安装在控制柜中。
我们要了解一台变频器的发热量大概是多少,可以用以下公式估算:发热量的近似值=变频器容量(KW)×55 [W]在这里, 如果变频器容量是以恒转矩负载为准的(过流能力150% * 60s) 如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。
电抗器安装在变频器侧面或测上方比较好。
这时可以用估算: 变频器容量(KW)×60 [W]因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品. 注意:如果有制动电阻的话,因为制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。
那么, 怎样采能降低控制柜内的发热量呢? 当变频器安装在控制机柜中时,要考虑变频器发热值的问题。
根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。
因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。
如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。
由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。
还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。
这样效果也很好。
变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的! 关于冷却风扇一般功率稍微大一点的变频器,都带有冷却风扇。
同时,也建议在控制柜上出风口安装冷却风扇。
进风口要加滤网以防止灰尘进入控制柜。
注意控制柜和变频器上的风扇都是要的,不能谁替代谁。
另外,散热问题还要注意以下两个问题:(1)在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。
理论上变频器也应考虑降容,1000m每-5%。
但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大,所以也要看具体应用。
比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。
(2)开关频率:变频器的发热主要来自于IGBT,IGBT的发热有集中在开和关的瞬间。
因此开关频率高时自然变频器的发热量就变大了。
有的厂家宣称降低开关频率可以扩容,就是这个道理。
4、矢量控制是怎样使电机具有大的转矩的?(1)转矩提升:此功能增加变频器的输出电压,以使电机的输出转矩和电压的平方成正比的关系增加,从而改善电机的输出转矩。
改善电机低速输出转矩不足的技术,使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。
对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。
为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。
变频器的这个功能叫做"转矩提升"(*1)。
转矩提升功能是提高变频器的输出电压。
然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。
因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。
"矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。
"矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。
此功能对改善电机低速时温升也有效。
5、变频器制动的有关问题(1)制动的概念:指电能从电机侧流到变频器侧(或供电电源侧),这时电机的转速高于同步转速.负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积。
当动能减为零时,该事物就处在停止状态。
机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。
对于变频器,如果输出频率降低,电机转速将跟随频率同样降低。
这时会产生制动过程. 由制动产生的功率将返回到变频器侧。
这些功率可以用电阻发热消耗。
在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,进行制动.这种操作方法被称作"再生制动",而该方法可应用于变频器制动。
在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做"功率返回再生方法"。
在实际中,这种应用需要"能量回馈单元"选件。
(2)怎样提高制动能力?为了用散热来消耗再生功率,需要在变频器侧安装制动电阻。
为了改善制动能力,不能期望靠增加变频器的容量来解决问题。
请选用"制动电阻"、"制动单元"或"功率再生变换器"等选件来改善变频器的制动容量6、当电机的旋转速度改变时,其输出转矩会怎样?(1):工频电源由电网提供的动力电源(商用电源)(2):起动电流当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。
我们经常听到下面的说法:"电机在工频电源供电时(*1)时,电机的起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些"。
如果用大的电压和频率起动电机,例如使用工频电网直接供电,就会产生一个大的起动冲击(大的起动电流(*2) )。
而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机产生的转矩要小于工频电网供电的转矩值。
所以变频器驱动的电机起动电流要小些。
通常,电机产生的转矩要随频率的减小(速度降低)而减些减小的实际数据在有的变频器手册中会给出说明。
通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。
当变频器调速到大于60Hz频率时,电机的输出转矩将降低。
通常的电机是按50Hz(60Hz)电压设计制造的,其额定转矩也是在这个电压范围内给出的。
因此在额定频率之下的调速称为恒转矩调速. (T=Te,P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。
当电机以大于60Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。
举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。
因此在额定频率之上的调速称为恒功率调速(P=Ue*Ie)。
一、变频器的直接作用:通过改变电动机的电压和频率,使电机的速度可以无极调节。
软启动节能,功率因数补偿节能变频器的间接作用:1. 节能(节电)。
风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。