2020重庆中考复习数学第26题专题训练五(含答案解析)
2020年重庆中考几何第26题专题训练一(含答案解析)
2020年中考几何题专题训练一答案解析\1、已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为;(2)如图2,当∠ACB=120°时,求证:DE=3CE;(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG 关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.2、(2016春•重庆校级期中)在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠ADB=120°,AC=2,求DE的长;(2)如图2,若BE=2CD,连接CE并延长交AB于点F,求证:CF=3EF;(3)如图3,若BE⊥AD,垂足为点E,猜想AE,BE,BD之间的数量关系,直接写出关系式.3、(2019秋•江岸区校级月考)在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.4、(2016秋•南岗区校级月考)已知:如图,在等边△ABC中,点D是AC上任意一点,点E在BC延长线上,连接DB,使得BD=DE.(1)如图1,求证:AD=CE;(2)如图2,取BD的中点F,连接AE、AF.求证:∠CAE=∠BAF;(3)如图3,在(2)的条件下,过点F作AE的垂线,垂足为H,若AH=.求EH的长.5、已知,在Rt△ABC中,∠C=90°,AC=BC,点D在边BC上,连接AD,作DE⊥AD,且DE=AD,连接BE、AE,DE与AB交于点H,(1)如图1所示,求证:∠C=∠ABE;(2)如图2,把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.若∠AEB=75°,求证:HG=2DH;(3)在(2)的条件下,若BE=3,求DH的长?6、如图,在△ABC中,∠ABC=90°,AB=BC,点D是△ABC内部一点,连接AD,BD和CD.(1)如图1,若∠BDC=90°,BD=1,CD=2,求AC的长.(2)如图2,若CD平分∠ACB,∠BDC=90°,过点B作BE∥AC交AD的延长线于点E,求证:AD =DE.(3)如图3,若CD=CB,∠BCD=30°,取线段AC的中点F,连接DF,求证:∠AFD=45°7、(2013•洪山区模拟)如图1,直角梯形ABCD中,BC=CD,AB∥CD,∠ABC=90°,点P为边AD上一点,BC=PB.(1)求证:∠CBP=2∠DCP;(2)如图2,若∠ABP的平分线交CP的延长线于点E,连接DE,求证:BE+DE=CE;(3)在(2)的条件下,若AB=1,BC=2,请直接写出线段CE的长度.8、(2016秋•松北区期末)如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=,求△AED的面积.9、(2016•九龙坡区校级一模)已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE(1)如图1,连接BE、CD,若BC=2,求BE的长;(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.10、重庆八中初2020级九上期末11、重庆实验外国语学校初2020级九上期末12、重庆双福育才中学初2020级九上期末2020年中考几何题专题训练一答案解析\1、已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为DE=2CE;(2)如图2,当∠ACB=120°时,求证:DE=3CE;(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG 关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.(1)解:∵∠DBC=∠ACB=90°,∴∠DBC+∠ACB=180°,∴AC∥BD,∴∠DBE=∠CAE又∵∠DEB=∠AEC,∴△DBE∽△CAE,∴=,又∵BD=BC=2AC,∴DE=2CE;故答案为:DE=2CE.(2)证明:如图2,∵∠DBC=∠ACB=120°,BD=BC,∴∠D=∠BCD=30°,∴∠ACD=90°,过点B作BM⊥DC于M,则DM=MC,BM=BC,∵AC=BC,∴BM=AC,∵在△BME和△ACE中∴△BME≌△ACE(AAS),∴ME=CE=CM,∴DE=3EC;(3)解:如图,过点B作BM′⊥DC于点M′,过点F作FN⊥DB交DB的延长线于点N,设BF=a,∵∠DBF=120°,∴∠FBN=60°,∴FN=a,BN=a,∵DB=BC=2BF=2a,∴DN=DB+BN=a,∴DF===a,∵AC=BC,BF=BC,∴BF=AC,∴△BDF≌△BCA(SAS),∴∠BDF=∠CBA,又∵∠BFG=∠DFB,∴△FBG∽△FDB,∴==,∴BF2=FG×FD,∴a2=a×FG,∴FG=a,∴DG=DF﹣FG=a,BG==a,∵△DKG和△DBG关于直线DG对称,∴∠GDH=∠BDF,∴∠ABC=∠GDH,又∵∠BGF=∠DGH,∴△BGF∽△DGH,∴=,∴GH==a,∵BH=BG+GH=a=10,∴a=2;∴BC=2a=4,CM′=BC cos30°=2,∴DC=2CM′=4,∵DE=3EC,∴EC=DC=.2、(2016春•重庆校级期中)在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠ADB=120°,AC=2,求DE的长;(2)如图2,若BE=2CD,连接CE并延长交AB于点F,求证:CF=3EF;(3)如图3,若BE⊥AD,垂足为点E,猜想AE,BE,BD之间的数量关系,直接写出关系式.(1)解:∵DA=DB,∠ADB=120°,∴∠ABC=∠BAD=30°,∵AB=AC,∴∠ABC=∠C=30°,∴∠CAD=90°,在RtACD中,tan30°=,∴AD=2×=2,AE=CD=2AD=4 ∴DE=AE﹣AD=CD﹣AD=4﹣2=2;(2)证明:如图,过A作AG∥BC,∵DB=DA,AB=AC,∴∠BAD=∠ABC,∠ABC=∠ACB,∴∠BAD=∠ACB,∵AE=CD,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴BE=AD,∵BE=2CD,∴AD=2CD=2AE,∴AE=DE,∵AG∥BC,∴∠G=∠DCE,∠GAE=∠CDE,在△AGE和△DCE中∴△AGE≌△DCE(AAS),∴GE=CE,AG=CD=AE,∴△AGE为等腰三角形,∴∠GAF=∠ABC=∠BAD,∴F为GE的中点,∴CE=EG=2EF,∴CF=3EF;(3)如图3,取BE中点M,延长AM至N,使MN=AM,连接BN,EN,∴四边形ABNE是平行四边形,∴AE∥BN,∴∠NBC=∠D,BN=AE=CD,∵AB=AC,DB=DA,∴∠ABC=∠ACB=∠BAD,∴∠BAC=∠D=∠NBC,∵∠ABN=∠NBC+∠ABC,∠ACD=∠BAC+∠ABC,∴∠ABN=∠ACD,在△ABN和△ACD中∴△ABN≌△ACD(SAS),∴BD=AD=AN=2AM,∵BE⊥AD,∴AE2+ME2=AM2,∴AE2+(BE)2=(AN)2,∴AE2+BE2=BD2.3、(2019秋•江岸区校级月考)在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.(1)①证明:在菱形ABCD中,∠ABC=60°,∴∠ADC=60°,且AB=BC=DA=DC,∴△ADC和△ABC是等边三角形,∴AB=AC,∠BAC=∠CAD=60°,又∵△APE是等边三角形,∴AE=AP,∠EAP=60°,∴∠BAC+∠CAP=∠PAE+∠CAP,即∠BAP=∠CAE,∴△BAP≌△CAE(SAS),∴∠ACE=∠ABP=∠ABC=30°,∵∠CAD=60°,∴∠ACE+∠CAD=90°,∴CE⊥AD;②解:如图1,设AC与BD交于点O,由①知,∠ACE=30°,且∠ACB=60°,∴∠ACE+∠ACB=∠BCE=90°,∵在Rt△BCE中,BC=AB=,BE=,∴CE==4,由①知,△BAP≌△CAE,∴BP=CE=4,在Rt△BOC中,∠ACB=60°,∴BO=BC=,CO=AO=BC=,∴OP=BP﹣BO=,∴在Rt△AOP中,AP===,∴AE=AP=;(2)解:如图2,连接AE,过点A作AH⊥BF于点H,∵点D关于AP的对称点为E,∴AP垂直平分DE,∴AD=AE,FD=FE,∴∠EAF=∠DAF=∠EAD,∠DFA=∠EFA=∠DFE,又∵在菱形ABCD中,AB=AD,∴AB=AE,∴AH垂直平分BE,∴EH=BH=BE=,∠BAH=∠EAH=∠BAE,∴∠HAF=∠EAH+∠EAF=∠BAD,∵∠ABC=60°,∴∠BAD=180°﹣∠ABC=120°,∴∠HAF=60°,∴∠AFH=90°﹣∠HAF=30°,∴∠DFE=60°,∴△DEF为等边三角形,∴EF=DE=5,∴HF=HE+EF=+5=,在Rt△AHF中,∠AFH=30°,∴AH=HF=,∴S△AEF=EF•AH=×5×=,∵AD=AE,FD=FE,AF=AF,∴△ADF≌△AEF(SSS),∴△ADF的面积为.4、(2016秋•南岗区校级月考)已知:如图,在等边△ABC中,点D是AC上任意一点,点E在BC延长线上,连接DB,使得BD=DE.(1)如图1,求证:AD=CE;(2)如图2,取BD的中点F,连接AE、AF.求证:∠CAE=∠BAF;(3)如图3,在(2)的条件下,过点F作AE的垂线,垂足为H,若AH=.求EH的长.解:(1)如图1,作DF∥AB,∵DF∥AB,∴,∵AC=BC,∴CF=CD,∴BF=AD,∵DF∥AB,∴∠DFC=60°,∴∠BFD=120°,∵BD=DE,∴∠E=∠DBE,在△BDF和△EDC中,,∴△BDF≌△EDC,(AAS)∴BF=CE,∴AD=CE,(2)如图2,过点B作BG∥AC交AF的延长线于G,∴∠G=∠DAF,∠CBG=∠ACB=60°,∴∠ABG=∠ABC+∠CBG=120°=∠ACE,∵点F是BD中点,∴BF=DF,在△BFG和△DFA中,,∴△BFG≌△DFA,∴BG=AD,由(1)知,AD=CE,∴BG=CE,在△ABG和△ACE中,,∴△ABG≌△ACE,∴∠BAF=CAE;(3)由(2)知,∠BAF=∠CAE,∴∠FAE=∠FAC+∠CAE=∠FAC+∠BAF=∠BAC=60°,∵FH⊥AE,∴∠AHF=90°,∴∠AFH=90°﹣∠FAE=30°,在Rt△AFH中,AH=,∴AF=2,由(2)知,△BFG≌△DFA,∴GF=AF=2,由(2)知,△ABG≌△ACE,∴AE=AG=2AF=4,∴EH=AE﹣AH=4﹣=3.5、已知,在Rt△ABC中,∠C=90°,AC=BC,点D在边BC上,连接AD,作DE⊥AD,且DE=AD,连接BE、AE,DE与AB交于点H,(1)如图1所示,求证:∠C=∠ABE;(2)如图2,把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.若∠AEB=75°,求证:HG=2DH;(3)在(2)的条件下,若BE=3,求DH的长?证明:(1)如图1,过点E作EM⊥BC于M,∵∠ACB=90°,AD⊥DE∴∠ACB=∠ADE=90°∵∠ADB=∠ACB+∠DAC=∠ADE+∠EDB∴∠DAC=∠EDB,且∠ACD=∠EMD=90°,AD=DE ∴△ACD≌△DME(AAS)∴AC=DM,CD=EM∵AC=BC,∴BC=DM∴CD=BM∴BM=EM,且EM⊥BM∴∠EBM=45°∵∠C=90°,AC=BC∴∠ABC=∠BAC=45°∴∠ABE=180°﹣∠ABC﹣∠EBM=90°∴∠C=∠ABE(2)如图2,过点E作EM⊥BC于M,∵∠C=90°,AC=BC,∠ADE=90°,AD=DE∴∠CAB=∠DAE=∠AED=45°由(1)可知∠EBM=45°,∴∠CBE=135°,∵∠DAE+∠AEB+∠DBE+∠ADB=360°,且∠AEB=75°,∴∠ADB=105°∴∠ACD+∠CAD=∠ADB=105°∴∠CAD=15°∴∠DAB=30°∵把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.∴∠DAB=∠BAG=30°∴∠DAG=60°,且∠ADE=90°∴∠G=30°=∠BAG∴AH=HG∵∠ADE=90°,∠DAH=30°∴AH=2DH∴HG=2DH(3)作EN平分∠DEB交BC于点N,∵EM=BM,∠EMB=90°∴BE=EM,且BE=3,∴EM=∵∠AEB=75°,∠AED=45°∴∠DEN=30°∵EN平分∠DEB∴∠DEN=15°∵∠EDM=∠CAD=15°∴∠DEN=∠EDB=15°,∴DN=EN,∠ENM=30°,且EM⊥BM∴NE=2EM=3,NM=EM=在Rt△DEM中,DE==3+3=AD∵∠DAH=30°,∠ADH=90°∴AD=DH=3+3∴DH=3+6、如图,在△ABC中,∠ABC=90°,AB=BC,点D是△ABC内部一点,连接AD,BD和CD.(1)如图1,若∠BDC=90°,BD=1,CD=2,求AC的长.(2)如图2,若CD平分∠ACB,∠BDC=90°,过点B作BE∥AC交AD的延长线于点E,求证:AD =DE.(3)如图3,若CD=CB,∠BCD=30°,取线段AC的中点F,连接DF,求证:∠AFD=45°解:(1)如图1,∵∠BDC=90°,BD=1,CD=2,∴BC===,∵AB=BC=,由勾股定理得:AC===;(2)如图2,延长BD交AC于P,∵DC平分∠ACB,∴∠BCD=∠ACD,∵∠BDC=90°,∴∠BDC=∠PDC=90°,∵CD=CD,∴△BDC≌△PDC,∴BD=PD,∵BE∥AC,∴∠E=∠EAC,∠EBD=∠DPA,∴△BDE≌△PDA,∴AD=DE;(3)如图3,以BD为边作等边三角形BDE,连接BF、CE,∴BD=DE=BE,∵AB=BC,F是AC的中点,∴BF⊥AC,∴∠AFB=90°,∵∠ABC=90°,∴BF=AF,∵CD=BC,∠BCD=30°,∴∠CBD=∠CDB=75°,∵CE=CE,∴△CEB≌△CED,∴∠BCE=∠DCE=15°,∵∠CBD=75°,∠DBE=60°,∴∠CBE=75°﹣60°=15°,∵∠ABC=90°,∴∠ABD=90°﹣75°=15°,∴∠ABD=∠CBE,∴△ABD≌△CBE,∴∠BAD=∠BCE=15°,∴∠ABD=∠BAD=15°,∴AD=BD,∵DF=DF,∴△ADF≌△BDF,∴∠AFD=∠BFD=∠AFB=×90°=45°.7、(2013•洪山区模拟)如图1,直角梯形ABCD中,BC=CD,AB∥CD,∠ABC=90°,点P为边AD上一点,BC=PB.(1)求证:∠CBP=2∠DCP;(2)如图2,若∠ABP的平分线交CP的延长线于点E,连接DE,求证:BE+DE=CE;(3)在(2)的条件下,若AB=1,BC=2,请直接写出线段CE的长度.解:(1)取CP的中点F,连接BF,如图1,∵BC=BP,BF是底边上的中点,∴∠CBF=∠PBF=∠CBP,BF⊥PC,∴∠CBF+∠BCF=90°,∵∠BCF+∠DCP=90°,∴∠DCP=∠CBF,∴∠CBP=2∠DCP;(2)过得C作CG⊥CE交EB的延长线于点G,连接BD,如图2,∵BC=CD,∠BCD=90°,∴∠CBD=45°,∵∠EBF=∠EBP+∠PBF=∠ABP+∠CBP=45°,∴∠BEF=180°﹣∠EBF﹣∠BFE=45°,∴△CEG是等腰直角三角形,∴EG=CE,CG=CE,∵∠ECG=90°=∠BCD,∴∠BCG=∠DCE,在△CBD和△CDE中∴△CBD≌△CDE(SAS),∴BG=DE,∴DE+BE=BG+BE=EG=CE;(3)CE=,理由如下;取CD的中点M,连接MF,设MF的延长线交直线AB与B′,如图2,∵F是PC的中点,∴FM∥AD,∵AB∥CD,∴四边形AB′MD是平行四边形,∴AB′=DM=1=AB,∴B′与B重合,即B、F、M在一条直线上,∴BM⊥CE,∵∠CBF=∠MBC,∴△BFC∽△BCM,∴=,即=,∴BF=2CF,∵∠BEF=45°,∠BFE=90°,∴EF=BF=2CF,∵CF=PF,∴CF=PF=PE,CE=3CF,∵S△BCM=CF•BM=BC•CM,∴CF===,∴CE=3CF=.8、(2016秋•松北区期末)如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=,求△AED的面积.(1)证明:延长DB至E,使BE=CD,连接AE,∵AB=AD,∴∠ABD=∠ADB,∵∠ABE+∠ABD=180°,∠ADC+∠ADB=180°,∴∠ABE=∠ADC,在△ABE和△ADC中,,∴△ABE≌△ADC,∴∠C=∠E=60°,∴△AEC为等边三角形,∴AC=CE,∵BC+BE=CE,∴BC+CD=AC;(2)证明:∵AB=AD,∴∠ABD=∠ADB,∵∠CAD+∠ADB=∠ACB=60°,∠CAD=∠ABE,∴∠ABE+∠ABD=∠CAD+∠ADB=60°,∴△BEC为等边三角形,过点A作AN∥BC交EB于N,∴△ENA为等边三角形,∠NAB=∠ABD,∴AN=AE,∴BN=AC,∴∠NAB=∠ADC,在△BNA和△ACD中,,∴△BNA≌△ACD,∴AN=CD,∴CD=AE,延长EF至M使得EF=FM,连接BM,∴△AEF≌△BMF,∴AE=BM,AE∥BM,∴BM=CD,∠MBC=∠ECB=60°,∴∠EBM=∠EBC+∠MBC=120°,又∵∠ECD=∠EBM=120°,∴△BEM≌△CED,∴∠BEF=∠CED,∵EF=AE,∴∠EFA=∠EAF,∴∠BEF+∠EBF=∠ACB+∠ABD,∴∠BEF+60°﹣∠ABD=∠ABD+60°,∴∠BEF=2∠ABD∠CED=2∠ABD;(3)解:由(2)得,△EMD是等边三角形,∴,过点A作AP⊥DE于P,由(2)可证△EFG≌△EAP,∴AP=FG=4,∴S△AED=DE×AP=××4=37.9、(2016•九龙坡区校级一模)已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE(1)如图1,连接BE、CD,若BC=2,求BE的长;(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.解:(1)如图1,Rt△ABC中,∠CAB=30°,BC=2,∴AB=4,AC=2,∵△ACE是等边三角形,∴AE=AC=2,∠EAC=60°,∴∠EAB=60°+30°=90°,在Rt△EAB中,EB===2;(2)如图2,过E作EG∥BD,交BA的延长线于G,∴∠EGA=∠ABD,∵△ABD是等边三角形,∴∠ABD=60°,∴∠EGA=60°,Rt△AEG中,设AG=x,∴EG=2x,AE=x,∴AC=AE=BH=x,∵∠BDH=60°,∴BD=2x,∴EG=BD=2x,∵∠EFG=∠BFD,∴△EFG≌△DFB,∴EF=DF,等边△ABD中,∵BH⊥AD,∴AH=DH,∴FH是△AED的中位线,∴FH=AE=BH,∴BH=2FH;(3)如图3,连接BN,并延长交AD于H,∵∠CBA=60°=∠BAD,∴BC∥AD,∴∠BCN=∠NDH,∵CN=ND,∠CNB=∠DNH,∴△CNB≌△DNH,∴BN=NH,BC=DH,∵M是AB的中点,∴MN是△ABH的中位线,∴MN=AH,设BC=x,则DH=x,AB=AD=2x,∴AH=x,∴MN=x,Rt△ACB中,AC=2x,∴AE=2x,∴==,∴AE=4MN.10、重庆八中初2020级九上期末11、重庆实验外国语学校初2020级九上期末12、重庆双福育才中学初2020级九上期末。
2020重庆中考复习数学第26题专题训练六(含答案解析)
2020重庆中考复习数学第26题专题训练六1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.4、已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.5、已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.6、如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 ;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.7、如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.9、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.2020重庆中考复习数学第26题专题训练六参考答案1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.解:(1)∵△ABC中,∠BAC=90°,AC=2AB,BC=2,∴由勾股定理可得AB=2,AC=4,∵∠ABE=∠C,∠BAE=∠CAB=90°,∴△BAE∽△CAB,∴AB2=AE×AC,即22=AE×4,解得AE=1,(2)证明:如图1,过A作AH⊥BF于H,则∠AHE=90°,∵DF⊥BE,∠BAC=90°,∠AEB=∠FED,∴∠ABG=∠ADF,∵AG⊥AF,∠BAC=90°,∴∠BAG=∠DAF,∵AC=2AB,D是线段AC中点,∴AB=AD,在△ABG和△ADF中,,∴△ABG≌△ADF(ASA),∴AG=AF,∴△AGF是等腰直角三角形,∴AH=GF=GH,∵点E为AD中点,∴AE=DE,在△AEH和△DEF中,,∴△AEH≌△DEF(AAS),∴EH=EF,AH=DF=GH,∵GE﹣HE=GH,∴GE﹣FE=FD;(3)NG、GE、EA的数量关系为:NG+GE=2AE.理由:如图2,连接AN,NF,由(2)可得,△AGF是等腰直角三角形,∵AB=AD,∠BAD=90°,N是BD的中点,∴∠DAN=45°=∠ADN,∴△ADN是等腰直角三角形,∵AD=GF,∴等腰Rt△AGF与等腰Rt△ADN全等,∴AG=AF=AN=ND,∵Rt△BDF中,N是BD的中点,∴NF=ND=BN,∴AN=NF=AF,即△ANF是等边三角形,∴∠NAF=∠ANF=60°,∵∠DAN=45°,△ABG≌△ADF,∴∠DAF=15°=∠BAG,∵∠ABN=∠BAN=45°,∴∠GAN=30°,∵∠AGF=45°,∴∠ABE=30°,∴Rt△ABE中,BE=2AE,∵∠ABN=45°,∴∠GBN=15°,由NF=ND=NB,可得∠FND=2∠GBN=30°, 在△ANG和△NDF中,,∴△ANG≌△NDF(SAS),∴GN=FD=BG,∵BG+GE=BE=2AE,∴NG+GE=2AE.G解:(1)由E 为CR 中点可得AG平分BAC ∠,过G 作GH AB ⊥,则有GH=CG=1,故 (2)延长FD 交AG 于点M,易证:()BFD AMD AAS ∆≅∆,所以BF=AM 再证:()BFC CEA AAS∆≅∆,所以BF=CE=AM,CF=AE ∴CF-CE=AE-AM,即EM=EF ∴EFM ∆为等腰直角三角形∴2EF FM ==(3)结论为:2BD EF +=4、(2017秋•许昌月考)已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.解:(1)∵点D为BC的中点,AD⊥BC,∴AB=AC,BD=CD=BC,∵BD=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=∠BAC=30°;(2)由(1)知,△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠ABF+∠CBF=60°,∵∠AGF=60°,∴∠BAE+∠ABF=60°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,(3)如图,过F作FN⊥AE于N,过F作FD⊥BM,交BM的延长线于D,∵AM⊥BM,∴GM∥DF,∵BG=GF,∴BM=DM,∵∠AGF=60°,∴∠BGM=60°,∵BM⊥AE,∴∠BMG=90°,∴∠GBM=30°,在Rt△BMG中,MG=BG=,BM=DM=FN=,∵AK=HK,∴∠HAK=∠AHK=∠BHM,∵∠ANF=∠HMB=90°,∴△ANF≌△HMB,∴AN=HM=10,Rt△FGN中,∠NFG=∠GBM=30°,∴GN=GF=,∴AG=AN+NG=10+=14.5.5、(2019秋•中山市期末)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD, 由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.6、(2018•连山区一模)如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG. (1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 AB﹣EG=BE;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.解:(1)如图1中,结论:AB﹣EG=BE理由:∵AB=AC,∠BAC=90°,BD=DC,∴AD⊥BC,∠ABC=∠ACB=45°,AD=BD=DC,∴BD=AB,∵CF⊥AE,∴∠AFG=∠CDG=90°,∵∠AGF=∠CGD,∴∠F AG=∠GCD,∵∠ADE=∠CDG,∴△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE+ED=BD,∴BE+EG=AB,∴AB﹣EG=BE.(2)如图2中,结论:AB+EG=BE.理由:同法可证:△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE﹣ED=BD,∴BE+﹣EG=AB,∴AB+EG=BE.(3)①如图2中,当GA=GE时,DG=DE=2﹣2,EG=4﹣2,此时:==﹣1.②如图3中,当GA=GE时,设BD=AD=CD=a,则AB=AC=CE=a,DG=DE=a+a,EG=a+2a,∴==1+.③当点E与点C重合时,EG=AB,可得EG:AB=1,综上所述,的值为﹣1或1+或1.7、(2018•站前区校级一模)如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.解:(1)∵将△ABC沿AD翻折,点B恰好与点C重合,∴AB=AC,BD=CD,∠ADB=∠ADC=90°,且∠BAC=90°,∴△ABC是等腰直角三角形,∵点F是BE的中点,AF=5,∠BAC=90°,∴BE=10,∴AB===8,∴AC=8,∴EC=2,∵BD=CD,BF=EF,∴DF=EC=1,(2)如图②,过点C作CH⊥AC交AG的延长线于点H,∵AB=AC,∠BAC=90°,BD=CD,∴∠ABC=∠BAD=∠DAC=∠ACB=45°,∵∠BEA+∠CAH=90°,∠CAH+∠H=90°,∴∠H=∠BEA,且AB=AC,∠AFB=∠ACH=90°,∴△ABE≌△CAH(AAS)∴BE=AH,AE=CH,∠CAH=∠ABE,∵AE=CE,∴CE=CH,∵∠ACH=90°,∠ACB=45°,∴∠ACB=∠GCH,且CE=CH,CG=CG,∴△CEG≌△CHG(SAS)∴EG=GH,∵BE=AH=AG+GH,∴AG+EG=BE;(3)如图②,连接NG,∵∠ABC=∠BAD=∠DAC=∠ACB=45°,∴AD=BD=CD,∵∠BAN=∠ACG=45°,AB=AC,∠ABE=∠CAH,∴△ABN≌△CAG(ASA)∴AN=CG,∴AD﹣AN=CD﹣CG,∴DN=DG,∴∠DNG=45°∵∠NDG=∠NFG=90°,∴点N,点F,点G,点D四点共圆,∴∠DFG=∠DNG=45°.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.(1)证明:如图1中,∵AC=BC,∠ACE=∠BCD=90°,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵DF=FB,∴CF=FD=FB,∴∠FCB=∠FBC,∴∠FCB=∠CAE,∵∠CAB+∠AEC=90°,∴∠AEC+∠FCB=90°,∴∠CGE=90°,∴CF⊥AE.(2)①证明:如图2中,∵FM⊥BC,∴∠FHC=∠CGE=∠MGF=90°,∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°, ∴∠CEG=∠CFH,∵CG=GM,∴△CGE≌△MGF(AAS),∴CE=FM,EG=GF,∵CD=CE,∴CD=FM,∵∠FHB=∠ACB=90°,∴CD∥FM,∴四边形CDFM是平行四边形,∴CM=DF,∵CF=DF=FB,∴CM=CF.②连接EF,BM.设FG=EG=a,∵CM=BF,CM∥BF,∴FG∥BM,∴=,∵△CAE≌△CBD,∴∠CAE=∠CBD,∵∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB,∴=,易知OG=GF=EG=a,EF=EM=a,∴OM=2a+a,∴==.9、(2015•新乡二模)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.解:(1)如图1,过点C作AC的垂线,交AF的延长线于点G.∵∠BAC=90°,∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACG≌△BAD(ASA),∴CG=AD=AC=,∵BA∥CG,∴△CFG∽△BF A,∴==,即BF=BC,BF:CF=2,∴△ABF的面积=××4×4=;故答案为2,.(2)如图2,过点C作AC的垂线,交AF的延长线于点H.∵∠BAC=90°∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACH≌△BAD(ASA),∴CH=AD=AC=AB,∵BA∥CH,∴△CFH∽△BF A,∴==,即BF=BC,∴△ABF的面积=××4×4=6;(3)如图3中,作CH⊥BC交AF的延长线于H,AK⊥BC于K.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠BCH=90°,∴∠ACH=∠BAD=120°,∵∠ABD+∠ADB=180°﹣120°=60°,∠AEB=∠EAD+∠ADE=60°, ∴∠ABD=∠CAH,∴△BAD≌△ACH(ASA),∴CH=AD∵AK⊥BC,∴BK=CK,在Rt△ACK中,∵AC=4,∠ACK=30°,∴AK=AC=2,CK=BK=2,∵AK∥CH,AD=CH=,∴FK:FC=AK:CH=2:=3:2,∴BF:BC=4:5,∴S△ABF=•S△ABC=××4×2=.。
2020年重庆中考26题二次函数综合
二次函数二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。
) 已知、 y=322--x x (以下几种分类的函数解析式就是这个)1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。
2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ∆面积最大,求出P 坐标解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。
】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。
在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。
4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。
5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。
6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。
最新重庆中考数学第26题专题训练
N MPCBA 1.如图,抛物线y=﹣x 2﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.2.如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。
(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。
3.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0)。
(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点。
①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值。
4.如图,已知抛物线y=x 2+bx+c 的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.5.如图1,在平面直角坐标系中,抛物线233334y x x=-++交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D。
2020年重庆市中考数学试卷(B卷)(有详细解析)
2020年重庆市中考数学试卷(B卷)姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共48.0分)1.5的倒数是()A. 5B. −5C. 15D. −152.围成下列立体图形的各个面中,每个面都是平的是()A. 长方体B. 圆柱体C. 球体D. 圆锥体3.计算a⋅a2的结果是()A. aB. a2C. a3D. a44.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A. 65°B. 55°C. 45°D. 35°5.已知a+b=4,则代数式1+a2+b2的值为()A. 3B. 1C. 0D. −16.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A. 1:2B. 1:3C. 1:4D. 1:57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A. 5B. 4C. 3D. 28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A. 18B. 19C. 20D. 219.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A. 23米B. 24米C. 24.5米D. 25米10.若关于x的一元一次不等式组{2x−1≤3(x−2),x−a2>1的解集为x≥5,且关于y的分式方程yy−2+a2−y=−1有非负整数解,则符合条件的所有整数a的和为()A. −1B. −2C. −3D. 011.如图,在△ABC中,AC=2√2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A. √6B. 3C. 2√3D. 412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(−2,3),AD=5,若反比例函数y=kx(k>0,x>0)的图象经过点B,则k的值为()A. 163B. 8C. 10D. 323二、填空题(本大题共6小题,共24.0分)13.计算:(15)−1−√4=______.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为______.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是______.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2√3,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留π) 17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚______分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为______元.三、解答题(本大题共8小题,共78.0分)19.计算:(1)(x+y)2+y(3x−y);(2)(4−a2a−1+a)÷a2−16a−1.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=______,b=______,c=______;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数--“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=−12x2+2的图象并探究x…−4−3−2−101234…y…−23a−2−4b−4−2−1211−23…描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=−12x2+2的图象关于y轴对称;②当x=0时,函数y=−12x2+2有最小值,最小值为−6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=−23x−103的图象如图所示,结合你所画的函数图象,直接写出不等式−12x2+2<−23x−103的解集.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持a%.求a的值.不变,A、B两个品种全部售出后总收入将增加20925.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(−√2,0),直线BC的解析x+2.式为y=−√23(1)求抛物线的解析式;(2)过点A作AD//BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移√2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.26.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2√3.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.答案和解析1.【答案】C【解析】解:5得倒数是15,故选:C.根据倒数的定义,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】A【解析】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.根据平面与曲面的概念判断即可.本题考查的是立体图形的认识,掌握平面与曲面的概念是解题的关键.3.【答案】C【解析】解:a⋅a2=a1+2=a3.故选:C.根据同底数幂的乘法法则计算即可.本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.4.【答案】B【解析】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°−∠B=55°,故选:B.根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.本题考查的是切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.5.【答案】A【解析】解:当a+b=4时,原式=1+12(a+b)=1+12×4=1+2=3,故选:A.将a+b的值代入原式=1+12(a+b)计算可得.本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.6.【答案】C【解析】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.7.【答案】B【解析】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,.解得:x≤4110又∵x为正整数,∴x的最大值为4.故选:B.设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x 的一元一次不等式,解之取其中的最大整数值即可得出结论.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.8.【答案】C【解析】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中实心圆点的个数为2n+n+2的规律.9.【答案】D【解析】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF 2+DF 2=DE 2,即x 2+(2.4x)2=782, 解得x =30,∴EF =30米,DF =72米,∴CF =DF +DC =72+78=150米. ∵EM ⊥AC ,AC ⊥CD ,EF ⊥CD , ∴四边形EFCM 是矩形,∴EM =CF =150米,CM =EF =30米. 在Rt △AEM 中, ∵∠AEM =43°,∴AM =EM ⋅tan43°≈150×0.93=139.5米, ∴AC =AM +CM =139.5+30=169.5米. ∴AB =AC −BC =169.5−144.5=25米. 故选:D .过点E 作EF ⊥DC 交DC 的延长线于点F ,过点E 作EM ⊥AC 于点M ,根据斜坡DE 的坡度(或坡比)i =1:2.4可设EF =x ,则DF =2.4x ,利用勾股定理求出x 的值,进而可得出EF 与DF 的长,故可得出CF 的长.由矩形的判定定理得出四边形EFCM 是矩形,故可得出EM =FC ,CM =EF ,再由锐角三角函数的定义求出AM 的长,进而可得出答案.本题考查的是解直角三角形的应用−仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 10.【答案】D【解析】解:不等式组整理得:{x ≥5x >2+a ,由解集为x ≥5,得到2+a ≤5,即a ≤3,分式方程去分母得:y −a =−y +2,即2y −2=a , 解得:y =a2+1,由y 为非负整数,得到a =2,0,−2,之和为0, 故选:D .不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】C【解析】解:如图,延长BC 交AE 于H ,∵∠ABC =45°,∠BAC =15°, ∴∠ACB =120°,∵将△ACB 沿直线AC 翻折,∴∠DAC =∠BAC =15°,∠ADC =∠ABC =45°,∠ACB =∠ACD =120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°−15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°−∠ACB−∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,AC=√2,AH=√3CH=√6,∴CH=12∴AE=2√6,∵AB=BE,∠ABE=90°,∴BE==2√3,√2故选:C.延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.12.【答案】D【解析】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(−2,3),AD=5,∴DE=3,∴AE=√AD2−DE2=4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴OPAF =OABF,∴12×32=2BF,∴BF=83,∴B(4,83),∴k=323,故选:D.过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE=√AD2−DE2=4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.13.【答案】3【解析】解:原式=5−2=3,故答案为:3.先计算负整数指数幂和算术平方根,再计算加减可得.本题主要考查实数的运算,解题的关键是掌握负整数指数幂的规定和算术平方根的定义.14.【答案】9.4×107【解析】解:94000000=9.4×107,故答案为:9.4×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】23【解析】解:列表如下由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为46=23,故答案为:23.列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率mn.16.【答案】3√3−π【解析】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2√3,∠ABD=∠ADB=60°,∴BO=DO=√3,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD−S△DFO−S△BEO−S扇形OEF )=2×(√34×12−√34×3−√3 4×3−60°×π×3360∘)=3√3−π,故答案为:3√3−π.由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.本题考查的是扇形面积计算,菱形的性质,掌握扇形面积公式是解题的关键.17.【答案】12【解析】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500−20x=2500,解得x=250,25分钟后甲的速度为250×85=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴29400−25800300=12(分钟).故答案为12.首先确定甲乙两人的速度,求出总里程,再求出甲到达B地时,乙离B地的距离即可解决问题.本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.18.【答案】1230【解析】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+ 30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)−(50x+30y+10z)=420,∴z=42−9y①,∵z为非负整数,∴42−9y≥0,∴y≤429,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)= 2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y−43,∴x=42y−4325④,∵x为非负整数,∴42y−4325≥0,∴y≥4342,∴4342≤y≤429,∵y为非负整数,∴y=2,34,当y=2时,x=4125,不符合题意,当y=3时,x=8325,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)= 1230(元),故答案为:1230.设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42−9y,进而确定出y≤429,再根据“三个时段返现总金额为2510元”,得出25x=42y−43,进而得出4342≤y≤429,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.此题主要考查了三元一次不定方程,审清题意,找出相等关系,确定出y的范围是解本题的关键.19.【答案】解:(1)(x+y)2+y(3x−y),=x2+2xy+y2+3xy−y2,=x2+5xy;(2)(4−a2a−1+a)÷a2−16a−1,=(4−a2a−1+a2−aa−1)×a−1(a+4)(a−4),=4−aa−1×a−1(a+4)(a−4),=−1a+4.【解析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,本题考查整式、分式的四则运算,掌握计算法则是正确计算的前提.20.【答案】解:(1)∵四边形ABCD是平行四边形,∴AB//CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°−120°=60°;(2)∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=12∠BAD,∠DCF=12∠BCD,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.【解析】(1)根据平行四边形的性质得到AB//CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB//CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.【答案】7.58 8【解析】解:(1)由图表可得:a =7+82=7.5,b =8+82=8,c =8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×5+540=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人; (3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异. (1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.22.【答案】解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由: 设十位数数字为a ,则百位数字为a +5(0<a ≤4的整数), ∴a +a +5=2a +5, 当a =1时,2a +5=7, ∴7能被1,7整除,∴满足条件的三位数有611,617, 当a =2时,2a +5=9, ∴9能被1,3,9整除,∴满足条件的三位数有721,723,729, 当a =3时,2a +5=11, ∴11能被1整除,∴满足条件的三位数有831, 当a =4时,2a +5=13, ∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.【解析】(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a ,则百位数字为a +5(0<a ≤4的整数),得出百位数字和十位数字的和为2a +5,再分别取a =1,2,3,4,计算判断即可得出结论.此题主要考查了数的整除问题,新定义,理解并灵活运用新定义是解本题的关键.23.【答案】−1211 −6【解析】解:(1)x =−3、0分别代入y =−12x +2,得a =−129+2=−1211,b =−120+2=−6, 故答案为−1211,−6; 画出函数的图象如图:,故答案为−1211,−6; (2)根据函数图象:①函数y =−12x 2+2的图象关于y 轴对称,说法正确;②当x =0时,函数y =−12x 2+2有最小值,最小值为−6,说法正确; ③在自变量的取值范围内函数y 的值随自变量x 的增大而减小,说法错误. (3)由图象可知:不等式−12x 2+2<−23x −103的解集为x <−4或−2<1.(1)将x =−3,0分别代入解析式即可得y 的值,再画出函数的图象; (2)结合图象可从函数的增减性及对称性进行判断; (3)根据图象求得即可.本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.24.【答案】解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克; 根据题意得,{y −x =10010×2.4(x +y)=21600,解得:{x =400y =500,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%),解得:a =0.1,答:a 的值为0.1.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.25.【答案】解:(1)直线BC 的解析式为y =−√23x +2,令y =0,则x =3√2,令x =0,则y =2,故点B 、C 的坐标分别为(3√2,0)、(0,2);则y =ax 2+bx +2=a(x +√2)(x −3√2)=a(x 2−2√2x −6)=ax 2−2√2a −6a ,即−6a =2,解得:a =13, 故抛物线的表达式为:y =−13x 2+2√23x +2①;(2)如图,过点B 、E 分别作y 轴的平行线分别交CD 于点H ,交BC 于点F ,∵AD//BC ,则设直线AD 的表达式为:y =−√23(x +√2)②,联立①②并解得:x =4√2,故点D(4√2,−103), 由点C 、D 的坐标得,直线CD 的表达式为:y =−2√23x +2,当x =3√2时,y BC =−√23x +2=−2,即点H(3√2,−2),故BH =2,设点E(x,−13x 2+2√23x +2),则点F(x,−√23x +2),则四边形BECD 的面积S =S △BCE +S △BCD =12×EF ×OB +12×(x D −x C )×BH =12×(−13x 2+2√23x +2+√23x −2)×3√2+12×4√2×2=−√22x 2+3x +4√2,∵−√22<0,故S 有最大值,当x =3√22时,S 的最大值为25√24,此时点E(3√22,52);(3)存在,理由: y =−13x 2+2√23x +2=−13(x −√2)2+83,抛物线y =ax 2+bx +2(a ≠0)向左平移√2个单位,则新抛物线的表达式为:y =−13x 2+83, 点A 、E 的坐标分别为(−√2,0)、(3√22,52);设点M(√2,m),点N(n,s),s =−13n 2+83;①当AE 是平行四边形的边时, 点A 向右平移5√22个单位向上平移52个单位得到E ,同样点M(N)向右平移5√22个单位向上平移52个单位得到N(M), 即√2±5√22=n ,则s=−13n2+83=−112或56,故点N的坐标为(7√22,−112)或(−3√22,56);②当AE是平行四边形的对角线时,由中点公式得:−√2+3√22=n+√2,解得:n=−√22,s=−13n2+83=156,故点N的坐标(−√22,156);综上点N的坐标为:(7√22,−112)或(−3√22,56)或(−√22,156).【解析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+√2)(x−3√2)=ax2−2√2a−6a,即−6a=2,解得:a=13,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+12×(x D−x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.【答案】解:(1)如图1中,连接BE,CF.∵△ABC是等边三角形,AD⊥BC,∴AB=BC=AC=8,BD=CD=4,∴AD=√3BD=4√3,∵AE=2√3,∴DE=AE=2√3,∴BE=√BD2+DE2=√42+(2√3)2=2√7,∵△ABC,△AEF答等边三角形,∴AB=AC,AE=AF,∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2√7,∵EN=CN,EG=FG,∴GN=12CF=√7.(2)结论:∠DNM=120°是定值.理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC−∠ABE+∠ACB+∠ACF=120°,∵EN=NC,EM=MF,∴MN//CF,∴∠ENM=∠ECM,∵BD=DC,EN=NC,∴DN//BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠ACB,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACN+∠ECM=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.(3)如图3−1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,AE=√3,∴JN=12∵BJ=AD=4√3,∴BN≤BJ+JN,∴BN≤5√3,∴当点N在BJ的延长线上时,BN的值最大,如图3−2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.∵KJ=AJ⋅tan30°=4√33,JN=√3,∴KN=7√33,在Rt△HKN中,∵∠NHK=90°,∠NKH=60°,∴HN=NK⋅sin60°=7√33×√32=72,∴S△ADN=12⋅AD⋅NH=12×4√3×72=7√3.【解析】(1)如图1中,连接BE,CF.解直角三角形求出BE,再利用全等三角形的性质证明CF=BE,利用三角形的中位线定理即可解决问题.(2)结论:∠DNM=120°是定值.利用全等三角形的性质证明∠EBC+∠BCF=120°,再利用三角形的中位线定理,三角形的外角的性质证明∠DNM=∠EBC+∠BCF即可.(3)如图3−1中,取AC的中点,连接BJ,BN.首先证明当点N在BJ的延长线上时,BN 的值最大,如图3−2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.解直角三角形求出NH即可解决问题.本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.第21页,共21页。
重庆中考数学26题专项
223212++-=x x y 223212++-=x x y 中考26题第二小问专项讲解 第一大类:线段最大值一、基本题型:与x 轴交于A ,B 两点,与y 轴交于C点,例1:如图,抛物线P为抛物线上BC上方的一点。
1、过点P作y 轴的平行线交BC于M,求PM的最大值。
2、过点P作X 轴的平行线交BC于M,求PM的最大值。
二、变式题型1:过点P作y 轴的平行线交BC于M,作PN⊥BC于N。
3、求PN的最大值,PM+PN的最大值。
4、求∆PMN周长的最大值。
5、求∆PMN面积的最大值。
三、变式题型2:P为抛物线上BC上方的一点。
D为BC延长线上的一点且CD=BC6、求∆PBC面积的最大值。
7、求∆PDC面积的最大值。
第二大类:线段和的最小值x 轴交于A ,B 两点,与y 轴交于C点,P为抛物线的顶点。
例2:如图,抛物线与 1、M是BC上的一点,求PM+AM最小时M点的坐标。
2、D为点C关于x 轴的对称点,M是BC上的一点,求DM+PM最小时M点的坐标。
3、M是BC上的一点,N是AC上的一点,求∆OMN周长的最小值及M点的坐标。
4、M、N为直线BC上的动点,N在下方且MN=5,求PM+MN+AN的最小值。
5、M、N为直线BC上的动点,N在下方且MN=5,D在抛物线上且在D与C对称。
求四边形PMND周长的最小值。
6、M为对称轴上的一点,MN⊥y 轴于N,D在抛物线上且在D与C对称。
求DM+MN+NA的最小值。
7、M为对称轴上的一点,MN⊥y 轴于N,D在抛物线上且在D与C对称。
求DM+MN+NB的最小值。
8、M为对称轴上的一点,N 为y 轴上一点,D在抛物线上且在D与C对称。
求OM+MN+ND9、M为BC上的一点,求PM+55BM的最小值。
10、D在抛物线上且在D与C对称,在BC 上找一点N ,M 是x 轴上的一点。
求DM+MN的最小值。
26.如图,抛物线223y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点D ,C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E .(1)求直线AD 的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG AD ⊥于点G ,作FH 平行于x 轴交直线AD于点H ,求FGH ∆周长的最大值;(3)如图2,点M 是抛物线的顶点,点P 是y 轴上一动点,点Q 是坐标平面内一点,四边形APQM 是以PM为对角线的平行四边形,点'Q 与点Q 关于直线AM 对称,连接'MQ ,'PQ .当'PMQ ∆与□APQM 重合部分的面积是□APQM 面积的14时,求□APQM 面积. 图1 图2 备用图26.抛物线与直线相交于A 、B 两点,其中点A 的坐标为(-3,3),点B 的坐标为 (3,b )。
2020重庆中考复习数学第26题专题训练五(含答案解析)
2020重庆中考复习数学第26题专题训练五1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.2020重庆中考复习数学第26题专题训练五参考答案1、(2019秋•天桥区期末)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、(2019秋•淮安期末)[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、(2019春•碑林区校级月考)【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A 为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、(2018春•铁西区期中)(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、(2019秋•武冈市期中)【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、(2018秋•东海县期末)模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、(2019秋•松北区期末)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、(2017春•合肥期末)已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、(2017春•南岗区校级月考)如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.。
2020年重庆市中考数学试卷-(含答案)
2020年重庆市中考数学试卷一、选择题(共12个小题). 1.下列各数中,最小的数是( ) A .3-B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 为切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A .40︒B .50︒C .60︒D .70︒6.下列计算中,正确的是( ) A .235+=B .2222+=C .236⨯=D .2323-=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A .3(1)12x x +=- B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式组313,2x x x a-⎧+⎪⎨⎪⎩的解集为x a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7B .14-C .28D .56-11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A .55B .255C .455D .43312.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:0(1)|2|π-+-= .14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 .16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留)π17.A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 19.(10分)计算: (1)2()(2)x y x x y ++-;(2)229(1)369m m m m m --÷+++. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级 平均数 众数中位数 8分及以上人数所占百分比七年级 7.5 a745% 八年级7.58bc根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x⋯ 5- 4-3- 2- 1- 0 1 2 34 5 ⋯261x y x =+ ⋯ 1513- 2417-125- 3- 0 31252417 1513⋯ (2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”; ①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数-- “差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”; 19534÷=⋯,但19361÷=⋯,所以19不是“差一数”. (1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF . (1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.2020年重庆市中考数学试卷答案1.A . 2.A . 3.C . 4.B . 5.D . 6.C 7.D 8.D 9.B 10.A 11.B 12.B13.3. 14.6. 15.316. 16.4π-. 17.(4,160). 18.1:8.19.解:(1)2()(2)x y x x y ++-,22222x xy y x xy =+++-, 222x y =+;(2)229(1)369m m m m m --÷+++, 23(3)()33(3)(3)m m m m m m m ++=-⨯+++-, 3333m m m +=⨯+-, 33m =-. 20.解:(1)七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,7a ∴=,由条形统计图可得,(78)27.5b =+÷=,(523)20100%50%c =++÷⨯=,即7a =,7.5b =,50%c =;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有(202)(202)120010802020-+-⨯=+(人),即参加此次测试活动成绩合格的学生有1080人. 21.(1)解:AE BD ⊥,90AEO ∴∠=︒, 50AOE ∠=︒, 40EAO ∴∠=︒, CA 平分DAE ∠,40DAC EAO ∴∠=∠=︒,四边形ABCD 是平行四边形,//AD BC ∴, 40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥, 90AEO CFO ∴∠=∠=︒,AOE COF ∠=∠,()AEO CFO AAS ∴∆≅∆, AE CF ∴=.22.解:(1)补充完整下表为:x⋯5- 4- 3- 2- 1-0 1 2 3 4 5⋯261xy x =+ ⋯ 1513- 2417-95- 125-3-0 3 125 95 24171513⋯ 画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-,说法正确;③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式26211xx x >-+的解集为1x <-或0.3 1.8-<. 23.解:(1)49594÷=⋯,但493161÷=⋯,所以49不是“差一数”; 745144÷=⋯,743242÷=⋯,所以74是“差一数”. (2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389. 24.解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,10010 2.4()21600y x x y -=⎧⎨⨯+=⎩,解得:400500x y =⎧⎨=⎩,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克; (2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =, 答:a 的值为0.1.25.解:(1)将点A 、B 的坐标代入抛物线表达式得4931b c c -=-=⎧⎨=-⎩,解得41b c =⎧⎨=-⎩,故抛物线的表达式为:241y x x =+-;(2)设直线AB 的表达式为:y kx t =+,则431k t t -=-+⎧⎨=-⎩,解得11k t =⎧⎨=-⎩,故直线AB 的表达式为:1y x =-, 过点P 作y 轴的平行线交AB 于点H ,设点2(,41)P x x x +-,则(,1)H x x -,PAB ∆面积221139()(141)(03)2222B A S PH x x x x x x x =⨯⨯-=---+⨯+=--, 302-<,故S 有最大值,当32x =-时,S 的最大值为278; (3)抛物线的表达式为:2241(2)5y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-, 联立上述两式并解得:14x y =-⎧⎨=-⎩,故点(1,4)C --;设点(2,)D m -、点(,)E s t ,而点B 、C 的坐标分别为(0,1)-、(1,4)--; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即2222(1)13s t ++=+③, 当点D 在E 的上方时,则BD BC =,即22222(1)13m ++=+④, 联立①③并解得:1s =-,2t =或4-(舍去4)-,故点(1,3)E -;联立②④并解得:1s =,46t =-±,故点(1,46)E -+或(1,46)--; ②当BC 为菱形的的对角线时,则由中点公式得:12s -=-且41m t --=+⑤, 此时,BD BE =,即22222(1)(1)m s t ++=++⑥, 联立⑤⑥并解得:1s =,3t =-, 故点(1,3)E -,综上,点E 的坐标为:(1,2)-或(1,46)-+或(1,46)--或(1,3)-. 26.证明:(1)AB AC =,90BAC ∠=︒,45ABC ACB ∴∠=∠=︒,把AD 绕点A 逆时针旋转90︒,得到AE ,AD AE ∴=,90DAE BAC ∠=︒=∠, BAD CAE ∴∠=∠,2DE AD =,又AB AC =,()BAD CAE SAS ∴∆≅∆, 45ABD ACE ∴∠=∠=︒, 90BCE BCA ACE ∴∠=∠+∠=︒,点F 是DE 的中点,1222CF DE AD ∴==;(2)26AG BC =, 理由如下:如图2,过点G 作GH BC ⊥于H ,2BD CD =,∴设CD a =,则2BD a =,3BC a =,90BAC ∠=︒,AB AC =,3222BC AB AC a ∴===, 由(1)可知:BAD CAE ∆≅∆,2BD CE a ∴==, CF DF =, FDC FCD ∴∠=∠, tan tan FDC FCD ∴∠=∠, ∴2CE GHCD CH==, 2GH CH ∴=,GH BC ⊥,45ABC ∠=︒, 45ABC BGH ∴∠=∠=︒, BH GH ∴=,2BG BH ∴= 3BH CH BC a +==, CH a ∴=,2BH GH a ==,22BG a ∴=,222226AG BG AB a CD BC ∴=-===; (3)如图31-,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN ,BP BN ∴=,PC NM =,60PBN ∠=︒, BPN ∴∆是等边三角形, BP PN ∴=,PA PB PC AP PN MN ∴++=++,∴当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时,如图32-,连接MC ,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,BP BN ∴=,BC BM =,60PBN CBM ∠=︒=∠, BPN ∴∆是等边三角形,CBM ∆是等边三角形, 60BPN BNP ∴∠=∠=︒,BM CM =, BM CM =,AB AC =,AM ∴垂直平分BC , AD BC ⊥,60BPD ∠=︒,3BD ∴=,AB AC =,90BAC ∠=︒,AD BC ⊥,AD BD ∴=, ∴3PD PD AP =+,312PD +∴=, 3332BD PD +∴==, 由(1)可知:332CE BD +==.。
2020年重庆市中考数学试卷和答案解析(b卷)
2020年重庆市中考数学试卷和答案解析(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的倒数是()A.5B.C.﹣5D.﹣解析:根据倒数的定义,可得答案.参考答案:解:5得倒数是,故选:B.知识点:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(4分)围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体解析:根据平面与曲面的概念判断即可.参考答案:解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.知识点:本题考查的是立体图形的认识,掌握平面与曲面的概念是解题的关键.3.(4分)计算a•a2结果正确的是()A.a B.a2C.a3D.a4解析:根据同底数幂的乘法法则计算即可.参考答案:解:a•a2=a1+2=a3.故选:C.知识点:本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.4.(4分)如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°解析:根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.参考答案:解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.知识点:本题考查的是切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.5.(4分)已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1解析:将a+b的值代入原式=1+(a+b)计算可得.参考答案:解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.知识点:本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.6.(4分)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5解析:根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.参考答案:解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.知识点:本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.7.(4分)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2解析:设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.参考答案:解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.知识点:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.8.(4分)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21解析:根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.参考答案:解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.知识点:本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中实心圆点的个数为2n+n+2的规律.9.(4分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米解析:过点E作EF⊥DC交DC的延长线于点F,过点E作EM ⊥AC于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EF =x,则DF=2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长.由矩形的判定定理得出四边形EFCM 是矩形,故可得出EM=FC,CM=EF,再由锐角三角函数的定义求出AM的长,进而可得出答案.参考答案:解:过点E作EF⊥DC交DC的延长线于点F,过点E 作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.知识点:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4分)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0解析:不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.参考答案:解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.知识点:此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(4分)如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4解析:延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.参考答案:解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.知识点:本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.12.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,C 分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.解析:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.参考答案:解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y 轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.知识点:本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:()﹣1﹣=3.解析:先计算负整数指数幂和算术平方根,再计算加减可得.参考答案:解:原式=5﹣2=3,故答案为:3.知识点:本题主要考查实数的运算,解题的关键是掌握负整数指数幂的规定和算术平方根的定义.14.(4分)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:94000000=9.4×107,故答案为:9.4×107.知识点:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.解析:列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.参考答案:解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.知识点:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)解析:由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.参考答案:解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.知识点:本题考查的是扇形面积计算,菱形的性质,掌握扇形面积公式是解题的关键.17.(4分)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.解析:首先确定甲乙两人的速度,求出总里程,再求出甲到达B 地时,乙离B地的距离即可解决问题.参考答案:解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.知识点:本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.18.(4分)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.解析:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42﹣9y,进而确定出y≤,再根据“三个时段返现总金额为2510元”,得出25x=42y﹣43,进而得出≤y≤,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.参考答案:解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.知识点:此题主要考查了三元一次不定方程,审清题意,找出相等关系,确定出y的范围是解本题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.解析:(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,参考答案:解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.知识点:本题考查整式、分式的四则运算,掌握计算法则是正确计算的前提.20.(10分)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD 和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.解析:(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.参考答案:解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.知识点:本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.解析:(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.参考答案:解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.知识点:本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.解析:(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a,则百位数字为a+5(0<a≤4的整数),得出百位数字和十位数字的和为2a+5,再分别取a=1,2,3,4,计算判断即可得出结论.参考答案:解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.知识点:此题主要考查了数的整除问题,新定义,理解并灵活运用新定义是解本题的关键.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.解析:(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.参考答案:解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.知识点:本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.24.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B 两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.解析:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.参考答案:解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.知识点:本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M 为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.解析:(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D ﹣x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.参考答案:解:(1)直线BC的解析式为y=﹣x+2,令y=0,则x=3,令x=0,则y=2,故点B、C的坐标分别为(3,0)、(0,2);则y=ax2+bx+2=a(x+)(x﹣3)=a(x2﹣2x﹣6)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,∵AD∥BC,则设直线AD的表达式为:y=﹣(x+)②,联立①②并解得:x=4,故点D(4,﹣),由点C、D的坐标得,直线CD的表达式为:y=﹣x+2,当x=3时,y BC=﹣x+2=﹣2,即点H(3,﹣2),故BH =2,设点E(x,﹣x2+x+2),则点F(x,﹣x+2),则四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH=×(﹣x2+x+2+x﹣2)×3+×4×2=﹣x2+3x+4,∵<0,故S有最大值,当x=时,S的最大值为,此时点E(,);(3)存在,理由:y=﹣x2+x+2=﹣(x)2+,抛物线y=ax2+bx+2(a≠0)向左平移个单位,则新抛物线的表达式为:y=﹣x2+,点A、E的坐标分别为(﹣,0)、(,);设点M(,m),点N(n,s),s=﹣n2+;①当AE是平行四边形的边时,点A向右平移个单位向上平移个单位得到E,同样点M(N)向右平移个单位向上平移个单位得到N(M),即±=n,则s=﹣n2+=﹣或,故点N的坐标为(,﹣)或(﹣,);②当AE是平行四边形的对角线时,由中点公式得:﹣+=n+,解得:n=﹣,s=﹣n2+=,故点N的坐标(﹣,);综上点N的坐标为:(,﹣)或(﹣,)或(﹣,).知识点:本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.解析:(1)如图1中,连接BE,CF.解直角三角形求出BE,再利用全等三角形的性质证明CF=BE,利用三角形的中位线定理即可解决问题.(2)结论:∠DNM=120°是定值.利用全等三角形的性质证明∠EBC+∠BCF=120°,再利用三角形的中位线定理,三角形的外角的性质证明∠DNM=∠EBC+∠BCF即可.(3)如图3﹣1中,取AC的中点,连接BJ,BN.首先证明当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.解直角三角形求出NH即可解决问题.参考答案:解:(1)如图1中,连接BE,CF.∵△ABC是等边三角形,AD⊥BC,∴AB=BC=AC=8,BD=CD=4,∴AD=BD=4,∵AE=2,∴DE=AE=2,∴BE===2,∵△ABC,△AEF答等边三角形,∴AB=AC,AE=AF,∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2,∵EN=CN,EG=FG,∴GN=CF=.(2)结论:∠DNM=120°是定值.理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC﹣∠ABE+∠ACB+∠ACF=120°,∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECM,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠ACB,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACN+∠ECM=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.(3)如图3﹣1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=,∵BJ=AD=4,∴BN≤BJ+JN,∴BN≤5,∴当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.∵KJ=AJ•tan30°=,JN=,∴KN=,在Rt△HKN中,∵∠NHK=90°,∠NKH=60°,∴HN=NK•sin60°=×=,∴S△ADN=•AD•NH=×4×=7.知识点:本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2020年重庆市中考数学试题(word版)(含答案)
2020年重庆市中考数学试题(word 版)(含答案)〔全卷共五个大题,总分值150分,考试时刻120分钟〕题号 一 二 三 四 五 总分 总分人得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为〔—b 2a ,4ac —b 24a 〕,对称轴公式为x =—b2a. 一、选择题:〔本大题共10个小题,每题4分,共40分〕在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中. 1.3的倒数是〔〕A .13B .— 13 C .3 D .—32.运算2x 3·x 2的结果是〔〕A .2xB .2x 5C .2x 6D .x 5 3.不等式组⎩⎨⎧>≤-62,31x x 的解集为〔〕A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,假设∠C =50°,∠BDE =60°,那么∠CDB 的度数等于〔〕A .70°B .100°C .110°D .120° 5.以下调查中,适宜采纳全面调查〔普查〕方式的是〔〕A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情形的调查C .对我市市民实施低碳生活情形的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,假设∠ABC =70°,那么∠AOC 的度数等于〔〕 A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如下图,那么它的俯视图是〔〕8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,那么第10次旋转后得到的图形与图①~④中相同的是〔〕A .图①B .图②C .图③D .图④9.小华的爷爷每天坚持体育锤炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
5、2020年重庆中考数学三角形翻折变换专题五(含答案解析)
1、 如图,D 是等边△ABC 边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则= . 2、如图,点D 、E 是正△ABC 两边上的点,将△BDE 沿直线DE 翻折,点B 的对应点恰好落在边AC 上,当4AC AF =时,BD BE的值是( ) 2.3A 3.4B 3.5C 5.7D3、如图,在△ABC 中,∠B =90°,AB =BC =6,点D 在BC 上,且BD :DC =1:2,若把△ABC 进行折叠,使点A 与点D 重合,折痕为EF ,点E 在AB 上,点F 在AC 上,则EC 的长为 .4、(2019秋•九龙坡区校级月考)如图,在等边三角形ABC 中,点D 、E 分别是边AC 、BC 上两点.将三角形ABC 沿DE 翻折,点C 正好落在线段AB 上的点F 处,使得AF :BF =2:3.若BE =16,则CE 的长度为( )A .18B .19C .20D .215、(2019秋•南岸区期中)如图,在等边三角形ABC 中,点D 、E 分别是边AC 、BC 上两点.将△ABC 沿DE 翻折,点C 正好落在线段AB 上的点F 处,使得AF :BF =2:3.若BE =16,则点F 到BC 边的距离是( )A .8B .12C .D .6、如图,在ABC ∆中,012,90AB BC B ==∠=,以EF 为折痕使点A 与边BC上的点D 重合,若:2:1BD DC =,则EF 的长为( )2626.15A 2613.15B 1326.15C 1313.15DE F1、(2017•攀枝花)如图,D 是等边△ABC 边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则= .解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =AC =BC =6,由折叠的性质可知,∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF ,∴△AED ∽△BDF ,∴===,∴==,2、如图,点D 、E 是正△ABC 两边上的点,将△BDE 沿直线DE 翻折,点B 的对应点恰好落在边AC 上,当4AC AF =时,BDBE的值是( D ) 2.3A 3.4B 3.5C 5.7D解法1:易证ADF CFE ∆∆:∴ 57ADF CFE C BD DF AD DF AF AB AF BE EF C EF CE CF BC CF ∆∆+++=====+++ 解法1:令=1=3AF CF ,,ADF CFE ∆∆Q :, AF AD DF CE CF EF ∴== 143x x CE EF -∴==,3123,x CE EF x x-∴==, 4BE EC +=Q ,1233154,7x x x x -∴+=∴=,131357BE BD ∴==,,57BD BE ∴= 3、如图,在△ABC 中,∠B =90°,AB =BC =6,点D 在BC 上,且BD :DC =1:2,若把△ABC 进行折叠,使点A 与点D 重合,折痕为EF ,点E 在AB 上,点F 在AC 上,则EC 的长为 .解:连结DE ,CE .∵BC =6,BD :DC =1:2,∴BD =2,设BE =x ,则DE =AE =6﹣x .在Rt △DBE 中,(6﹣x )2=x 2+22,解得x =,即BE =,在Rt △CBE 中,EC ==.4、(2019秋•九龙坡区校级月考)如图,在等边三角形ABC 中,点D 、E 分别是边AC 、BC 上两点.将三角形ABC 沿DE 翻折,点C 正好落在线段AB 上的点F 处,使得AF :BF =2:3.若BE =16,则CE 的长度为( )A .18 B .19 C .20 D .21解法一:作EM ⊥AB 于M ,如图所示:∵△ABC 是等边三角形,∴BC =AB ,∠B =60°,∵EM ⊥AB , ∴∠BEM =30°,∴BM =BE =8,ME =BM =8,由折叠的性质得:FE =CE ,设FE =CE =x ,则AB =BC =16+x ,∵AF :BF =2:3,∴BF =(16+x ), ∴FM =BF ﹣BM =(16+x )﹣8=+x ,在Rt △EFM 中,由勾股定理得:(8)2+(+x )2=x 2,解得:x =19,或x =﹣16(舍去),∴CE =19;故选:B .解法二: 设2,3AF x BF x ==,由AFD BEF ∆∆:得:AF FD AD BE EF BF ==,∴2165163x FD AD x x==- ∴238x AD =,25168x x FD -=,∴24038x x DC -=,∵DC FD =,∴22403516=88x x x x --, ∴7x =,∴19CE =5、(2019秋•南岸区期中)如图,在等边三角形ABC 中,点D 、E 分别是边AC 、BC 上两点.将△ABC 沿DE 翻折,点C 正好落在线段AB 上的点F 处,使得AF :BF =2:3.若BE =16,则点F 到BC 边的距离是( )A .8 B .12 C . D .解法一:作EM ⊥AB 于M ,如图所示:∵△ABC 是等边三角形,∴BC =AB ,∠B =60°,∵EM ⊥AB ,∴∠BEM =30°,∴BM =BE =8,ME =BM =8,由折叠的性质得:FE =CE ,设FE =CE =x ,则AB =BC =16+x ,∵AF :BF =2:3,∴BF =(16+x ),∴FM =BF ﹣BM =(16+x )﹣8=+x ,在Rt △EFM 中,由勾股定理得:(8)2+(+x )2=x 2,解得:x =19,或x =﹣16(舍去),∴BF =(16+19)=21,作FN ⊥BC 于N ,则∠BFN =30°,∴BN =BF =, ∴FN =BN =,即点F 到BC 边的距离是,故选:D .解法二:设2,3AF x BF x ==,由AFD BEF ∆∆:得:AF FD AD BE EF BF ==,∴2165163x FD AD x x==- ∴238x AD =,25168x x FD -=,∴24038x x DC -=,∵DC FD =,∴22403516=88x x x x --, ∴7x =,∴19CE =,∴BF =21,作FN ⊥BC 于N ,则∠BFN =30°,∴BN =BF =, ∴FN =BN =,即点F 到BC 边的距离是,故选:D .6、如图,在ABC ∆中,012,90AB BC B ==∠=,以EF 为折痕使点A 与边BC 上的点D 重合,若:2:1BD DC =,则EF 的长为( A )2626.15A 2613.15B 1326.15C 1313.15D C E FO CE F G解:作FG AB ⊥于G ,连接AD. 设BE x =,12ED x =-,由222+BE BD ED =得:2228(12)x x +=- 103x ∴=,263AE ∴=.13AD =Q 213AO ∴=AOE ABD ∆∆Q :,EO AO BD AB∴=,413EO ∴=EFG OAE ∠=∠Q ,tan tan EFG OAE ∴∠=∠,2=3GE EO GF AO ∴=,设2,3GE y FG AG y === 162+3=3y y ∴,26=15y ∴,261313EF ∴=。
【真题】重庆市2020年中考数学试题(b卷)含答案解析(Word版)
2020年重庆市中考数学试卷(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.12.(4.00分)下列图形中,是轴对称图形的是()A.B.C.D.3.(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.174.(4.00分)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.(4.00分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元6.(4.00分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是07.(4.00分)估计5﹣的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.(4.00分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣79.(4.00分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米10.(4.00分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.11.(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.512.(4.00分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4.00分)计算:|﹣1|+20=.14.(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)15.(4.00分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是个.16.(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.17.(4.00分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.18.(4.00分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是(商品的销售利润率=×100%)三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(8.00分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是,并将条形统计图补充完整;(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上21.(10.00分)计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷22.(10.00分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y 轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.23.(10.00分)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2020年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2020年前5个月至少要修建多少个沼气池?(2)到2020年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2020年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2020年前5个月的基础上分别增加5a%,8a%,求a的值.24.(10.00分)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.25.(10.00分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤请将解答书写在答题卡中对应的位置上26.(12.00分)抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B 的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C 的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.2020年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A、﹣1是负整数,故选项错误;B、0是非正整数,故选项错误;C、是分数,不是整数,错误;D、1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.2.(4.00分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.4.(4.00分)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4.00分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.6.(4.00分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【解答】解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选:A.【点评】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.7.(4.00分)估计5﹣的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【分析】先合并后,再根据无理数的估计解答即可.【解答】解:,∵7<<8,∴5﹣的值应在7和8之间,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.(4.00分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.9.(4.00分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt △CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4.00分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.【解答】解:连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD∴∠ODB=∠CBD∴OD∥CB,∴即∴CD=.故选:B.【点评】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.11.(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=3,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.【点评】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.12.(4.00分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠﹣2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是﹣8﹣4=﹣12,故选:B.【点评】本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4.00分)计算:|﹣1|+20=2.【分析】本题涉及零指数幂、绝对值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|﹣1|+20=1+1=2.故答案为:2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值等考点的运算.14.(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是8﹣2π(结果保留π)【分析】根据S阴=S△ABD﹣S扇形BAE计算即可;【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.15.(4.00分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是34个.【分析】根据平均数的计算解答即可.【解答】解:,故答案为:34【点评】此题考查折线统计图,关键是根据平均数的计算解答.16.(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(4.00分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为200米.【分析】由图象可知:家到学校总路程为1200米,分别求小玲和妈妈的速度,妈妈返回时,根据“妈妈返回时骑车的速度只是原来速度的一半”,得速度为60米/分,可得返回时又用了10分钟,此时小玲已经走了25分,还剩5分钟的总程.【解答】解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.【点评】本题考查了一次函数的图象的性质的运用,路程=速度×时间之间的关系的运用,分别求小玲和妈妈的速度是关键,解答时熟悉并理解函数的图象.18.(4.00分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是(商品的销售利润率=×100%)【分析】根据每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.【解答】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得A一袋的成本是7.5x=3x+y+z,化简,得y+z=4.5x;乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x,乙一袋的售价为10x(1+20%)=12x,甲一袋的售价为10x.根据甲乙的利润,得(10x﹣7.5x)a+20%×10xb=(7.5xa+10xb)×24%化简,得2.5a+2b=1.8a+2.4b0.7a=0.4b=,故答案为:.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20.(8.00分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是40人,并将条形统计图补充完整;(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.【分析】(1)利用A项目的频数除以它所占的百分比得到调查的总人数,然后计算出C项目的人数后补全条形统计图;(2)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生担任活动记录员的结果数,然后利用概率公式求解.【解答】解:(1)调查的总人数为12÷30%=40(人),。
2020重庆中考数学复习----26题专题复习 (无答案)
2020二次函数中“将军饮马”类问题综合复习例1、如图1,已知抛物线213222y x x =--,与x 轴交于点A 、B ,与y 轴交于点C ,顶点为D ,点M (5,02)为x 轴上一点,点N 为抛物线上的点,且横坐标为3。
(1)求S △ABD 的面积;(2)点E 、F 是抛物线对称轴上的两个动点(点E 在点F 下方),且EF=1.当四边形EFMN 的周长最小时,过直线NF 下方抛物线上的一动点H 作y 轴的平行线交直线NE 于点G ,求当GH 的长度取得最大时H 点点坐标。
(3)如图2,将直线BC 绕点B 顺时针旋转90°后与对称轴交于点I ,点P 为抛物线一动点,点Q 为y 轴上一动点。
请问是否存在以点A 、I 、P 、Q 为顶点的平行四边形?若存在,求出所有满足条件的P 的坐标;若不存在,请说明理曲。
例2、如图,在平面直角坐标系中, 抛物线223y x x =--+与轴交于A 、B 两点,与y轴交于点C ,点D 为抛物线的顶点.(1)求直线AC 的解析式,并直接写出D 点的坐标.(2)如图1,在直线AC 的上方抛物线上有一动点P ,过P 点作PQ 垂直于x 轴交AC 于点Q ,PM ∥BD 交AC 于点M. ①求△PQM 周长最大值;②当△PQM 周长取得最大值时,PQ 与x 轴交点为H ,首位顺次连接P 、H 、O 、D 构成四边形,它的周长为L ,若线段OH 在x 轴上移动,求L 最小值时OH 移动的距离及L 的最小值. (3)如图2,连接BD 与y 轴于点F ,将△BOF 绕点O 逆时针旋转,记旋转后的三角形为△BOF ',B 'F '所在直线与直线AC 、直线OC 分别交于点G 、K ,当△CGK 为直角三角形时,直接写出线段BG的长.例3、已知如图1,抛物线343832+--=x x y 与x 轴交于A 和B 两点(点A 在点B 的左侧),与y 轴相交于点C ,点D 的坐标是(0,-1),连接BC 、AC .(1)求出直线AD 的解析式;(2)如图2,若在直线AC 上方的抛物线上有一点F ,当ADF ∆的面积最大时,有一线段5MN =(点M 在点N 的左侧)在直线BD 上移动,首尾顺次连接点A 、M 、N 、F 构成四边形AMNF ,请求出四边形AMNF 的周长最小时点N 的横坐标;(3)如图3,将DBC ∆绕点D 逆时针旋转 α( 1800<<α),记旋转中的DBC ∆为C B D ''∆,若直线C B ''与直线AC 交于点P ,直线C B ''与直线DC 交于点Q ,当CPQ ∆是等腰三角形时,求CP 的值.图2 图1 图3′′例4、如图1,抛物线24y ax bx =++交x 轴于A 、B 两点(点A 在点B 的左侧),交y 于点C ,连接AC 、BC ,其中2CO BO AO ==.(1)求抛物线的解析式;(2)点Q 为直线BC 上方的抛物线上一点,过点Q 作E AC 交BC 于E ,作QN x ⊥轴于N ,交BC 于M ,当EMQ ∆的周长L 最大时,求点Q 的坐标及L 的最大值;(3)如图2,在(2)的结论下,连接AQ 分别交BC 于F ,交OC 于G ,四边形BOGF 从F 开始沿射线FC 平移,同时点P 从C 开始沿折线CO OB -运动,且点P 的运动速度为四边形BOGF 平移速度的2倍,当点P 到达点B 时四边形BOGF 停止运动,设四边形BOGF 平移过程中对应的图形为1111B O G F ,当1PFF ∆为等腰三角形时,求1B F 长度.如图1 如图2 备用图例5、如图1,在平面直角坐标系中,抛物线3332312++-=x x y 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,抛物线的顶点为点E 。
重庆市2020年初中毕业生学业水平暨高中招生考试数学试卷(含答案)
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为 -⎛b4ac-b2⎫b,,对称轴公式为x=-2a4a2a 5.计算2⨯ -6⎪的值在(.重庆市2020年初中毕业生学业水平暨高中招生考试数学参考试卷(考试时间120分钟,满分150分)⎪⎝⎭.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内.1.已知实数a,b在数轴上的对应点的位置如图所示,则下列判断正确的是().A.a<1B.a<b C.b+1<0D.b>02.下列电视台的台标,是中心对称图形的是().A.B.C.D.3.下列式子计算正确的是().A.a2⋅a3=a6C.(a+b)2=a2+b24.下列命题中真命题是().A.两边和一角分别对应相等的两个三角形全等B.三角形的一个外角大于任何一个内角C.矩形的对角线平分每一组对角D.两组对角分别相等的四边形是平行四边形B.a2+a2=2a2D.(-a)-2=-1a2⎛2⎫⎝2⎭)A.0到-1之间C.-2到-3之间B.-1到-2之间D.-3到-4之间6.按如图的运算程序,能使输出k的值为1的是().10.如图,点A,B是双曲线y=18图象上的两点,连接AB,线段AB经过点O,点C为双曲线y=A.-254D.-25A.x=1,y=2B.x=2,y=1C.x=2,y=0D.x=1,y=37.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为小,则点E对应的E'的坐标是().A.(-2,1)B.(-8,4)D.(-2,1)或(2,-1)C.(-8,4)或(8,-4)12,把△EFO缩8.如图,AB是e O的直径,点C在e O上,过点C的切线与AB的延长线交于点P,连接AC,过点O 作OD⊥AC交e O于点D,连接CD,若∠P=30︒,AP=15,则CD的长为().A.33B.4C.53D.59.我校数学兴趣小组的同学要测量建筑物CD的高度,如图,建筑物CD前有一段坡度为i=1:2的斜坡BE,小明同学站在斜坡上的B点处,用测角仪测得建筑物屋顶C的仰角为37︒,接着小明又向下走了45米,刚好到达坡底E处,这时测到建筑物屋顶C的仰角为45︒,A、B、C、D、E、F在同一平面内.若测角仪的高度AB=EF=1.4米,则建筑物CD的高度约为().(精确到0.1米,参考数据:sin37︒≈0.60,cos37︒≈0.80,tan37︒≈0.75)A.38.6B.39.0C.40.0D.41.4kx x 在第二象限的分支上一点,当△ABC满足AC=BC且AC:AB=13:24时,k的值为().16B .-258C.-25211.若整数a使得关于x的方程23ax22x的解为非负数,且使得关于y的不等式组3y2y2122 y a3A.17至少有四个整数解,则所有符合条件的整数a的和为().B.18C.22D.2512.二次函数y ax2bx c(a,b,c是常数,a0)的自变量x与函数值y的部分对应值如下表:x…21012…y ax2bx c…t m22n…且当x 12时,与其对应的函数值y0,有下列结论:①abc0;②2和3是关于x的方程ax2bx c t的两个根;③0m n 203.其中,正确结论的个数是().A.0B.1C.2D.3二、填空题(本大题共6个小题,每小题4分,共24分)请将每小題的答案直接填在答题卡中对应的横线上.13.计算327121|13|.14.代数式x1有意义,则x的取值范围是x.15.如图,在矩形ABCD中,AB23,AD4,以点A为圆心,AD长为半径在矩形内画弧,交BC边于点E,连接BD交AE于点F,则图中阴影部分面积为.16.不透明的袋子里装有除标号外完全一样的三个小球,小球上分别标有1,2,3三个数,从袋子中随机抽取一个小球,记标号为k,放回后将袋子摇匀,再随机抽取一个小球,记标号为b.两次抽取完毕后,直3⎧+x+3⎪÷⎝x-3(2)计算: .线y=kx与反比例函数y=bx的图象经过的象限相同的概率为.17.如图,把三角形纸片ABC折叠,使C的对应点E在AB上,点B的对应点D在BC上,折痕分别为AD,FG,若∠CAB=30︒,∠C=135︒,DF=63,则BC的长为.18.问题背景:如图①所示,将△ABC绕点A逆时针旋转60︒得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图②,在△MNG中,MN=6,∠M=75︒,MG=42.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.三、解答题(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程组:⎨2x-3y=5⎩3x+2y=14;⎛5⎫x2-4x+4⎭2-x20.如图所示,在Y ABCD中,点E,F在对角线BD上,BE=DF.连接AE,AF,C E,C F.求证:(1)△ABE≌△C DF;(2)四边形AECF是平行四边形.21.《中国诗词大会》以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵,自开播以来深受广大师生的喜爱.某学校为了提高学生的诗词水平,倡导全校3000名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校:22.小明对函数 y = ⎨ 1 的图象和性质进行了探究.已知当自变量 x 的值为 1 时,函数值 ⎪| x - 1| ( x < 1)团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量” 根据调查结果绘制成的条形和扇形统计图如图所示.【整理、描述数据】:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”大赛结束后部分学生“一周诗词诵背数量”的统计表一周诗词背数量3 首4 首5 首6 首7 首8 首人数16243278a35【分析数据】:平均数中位数 众数大赛之前大赛之后56 b6c6请根据调查的信息分析:(1)补全条形统计图;(2)计算 a =首, b =首, c =首,并估计大赛后一个月该校学生一周诗词诵背 6 首(含 6 首)以上的人数;(3)根据调査的相关数据,选择适当的统计量评价该校经典诗词诵背系列活动的效果.⎧- x 2 + bx + c( x ≥ 1)⎪1 ⎩为 4;当自变量 x 的值为 2 时,函数值为 3;探究过程如下,请补充完整:(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:;(3)进一步探究函数图象并解决问题:已知函数y = 3x + 1 的图象如图所示,结合你所画的函数图象,写 2出不等式 y ≤ y 的解集:.1 223.某语文备课组为了增强学生写作兴趣创办刊物《辰》得到了全校师生的欢迎.他们将刊物以适当的价,格销售后所得利润资助贫困学生.已知印制100本《星辰》的成本比印制40本的2倍还多440元.(1)每本《星辰》的成本是多少元?(2)经销售调查发现:每本《星辰》售价定为33元,可售出120本,若每本降价1元,可多售出20本.为尽量增加销量让更多的人读到这本刊物,当每本降价多少元时,可获得1400元的利润资助贫困学生?24.阅读下列材料:材料一:一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数,否则称为合数.其中,1和0既不是质数也不是合数.材料二:一个较大自然数是质数还是合数通常用“N法”来判断,主要分为三个步骤:第一步,找出大于N且最接近N的平方数k2;第二步,用小于k的所有质数去除N;第三步,如果这些质数都不能整除N,那么N是质数;如果这些质数中至少有一个能整除N,那么N就是合数.如何判断239是质数还是合数?第一步,239<256=162;第二步,小于16的质数有:2、3、5、7、11、13,用2、3、5、7、11、13依次去除239;第三步,发现没有质数能整除239,所以239是质数.材料三:分解质因数就是把一个合数分解成若干个质数的乘积的形式,通过分解质因数可以确定该合数的约数的个数.若N=a m⨯b n⨯c p…(a,b,c…是不相等的质数,m,n,p…是正整数),则合数N共有(m+1)(n+1)(p+1)…个约数.如8=23,3+1=4,则8共有4个约数;又如12=22⨯31,(2+1)(1+1)=6,则12共有6个约数.请用以上方法解决下列问题:(1)请用“N法”判断163是质数还是合数;(2)求有12个约数的最小自然数.(2)如图①所示,抛物线C与x轴正半轴交于点A,直线y=-x+b经过点A,交抛物线C于另一点325.已知抛物线C:y=(x-1)2-4和C:y=x2.12(1)如何将抛物线C平移得到抛物线C?12411 B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C于点Q,连接AQ.1①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图②所示,△MNE的顶点M、N在抛物线C上,点M在点N右边,两条直线ME、NE与抛2物线C均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标2分别为m、n,求m与n的数量关系.四、解答题26.四边形ABCD为矩形,连接AC,AD=2CD,点E在AD边上.(1)如图①,若∠ECD=30︒,CE=4,求△AEC的面积;(2)如图②,延长BA至点F,使得AF=2CD,连接FE并延长交CD于点G,过点D作DH⊥EG于点H,连接AH,求证:FH=2AH+DH;(3)如图③,将线段AE绕点A旋转一定的角度α(0︒<α<360︒)得到线段AE',连接CE',点N始终为CE'的中点,连接DN.已知CD=AE=4,直接写出DN的取值范围.13. 314. x > 015. π - ⎩ y = 1⎨∠ABE = ∠CDF , ⎪BE = DF .重庆市 2020 年初中毕业生学业水平暨高中招生考试数学参考试卷答案一、选择题CABD CBDD DBCC二、填空题8 3 8 53 16.3 917. 9 2 + 6 618. 2 29三、解答题⎧ x = 4x + 2 19.(1) ⎨ (2) -x - 320.(1)∵四边形 ABCD 是平行四边形,∴ AB ∥CD , AB = CD .∴ ∠ABE = ∠CDF .在 △ABE 和 △CDF 中,⎧ A B = CD ⎪⎩∴ △ABE ≌△ CDF (SAS )(2)∵ △ABE ≌△ C DF ,∴ AE = CF , ∠AEB = ∠CFD .∴ ∠AEF = ∠CFE .∴ ∠AEF = ∠CFE .∴ AE ∥CF .∴四边形 AECF 是平行四边形.21.(1)如图.a = 55b = 4.5c = 4大赛后该校学生一周诗词诵背 6 首(含 6 首)以上的有:3000 ⨯ 78 + 55 + 35240= 2100 (人)(3)由比赛前后的平均数,中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果(1) y = ⎨ -1 . ( x < 1) ⎪ ⎧ 比较理想(用数据进行比较).22.图象⎧- x 2 + 2 x + 3(x ≥ 1) ⎪ 1 ⎩ x - 1(2)当 x < 1 时, y 随 x 的增大而增大;当 x ≥ 1 时, y 随 x 的增大而减小.(3) x ≥ 1 或 0 ≤ x ≤ 2 323.成本为 22 元(1)设每本降价 x 元,依题意得 (33 - x - 22)(120 + 20 x ) = 1400x 2 - 5x + 4 = 0 ,∴ x = 4 , x = 1 1 2∵要尽量的多,∴ x = 4答:每本降价 4 元.由条件.24.解:(1)∵163 < 169 = 132∴小于 13 的质数为 2,3,5,7,11 共 5 个显然,用 2,3,5,7,11 分别除 163,它们都不能整除 163∴163 是质数.(2)12 = 12 = 12 ⨯ 6 = 3 ⨯ 4 = 2 ⨯ 2 ⨯ 3另四种情形:①当 N = 2m , m + 1 = 12 , m = 11 ,∴ N = 211②当 N = 2m ⨯ 3n , ⎨m + 1 = 6 ⎩n + 1 = 2时, m = 5 , n = 1④当 N = 2m ⨯ 3n ⨯ 5 p , ⎨n + 1 = 2 时, m = 5 , n = 1 , p = 1 ⎪ p + 1 = 2 ( ) (2)①设 P m , - m + 4 ⎪ , Q m , m 2 - 2m - 3 , ∴ (3 - m ) + - + 4 ⎪ = (3 - m )2 + (m - 3)2 (m + 1) , (舍); m = , m = 3 (舍) 3 3 ⎛ 2 ② PQ = m - m - 7 ⎪ , ⎛ 2 (3 - m )2+ - m + 4 ⎪ = m - m - 7 ⎪ , (3 - m )2 = (m - 3)(m + 1)(m - 3) m + ⎪ , 3 3∴ N = 25 ⨯ 31 = 96⎧m + 1 = 4 ③当 N = 2m ⨯ 3n , ⎨ ⎩n + 1 = 2时, m = 3 , n = 2∴ N = 23 ⨯ 32 = 72⎧m + 1 = 6⎪ ⎩∴ N = 22 ⨯ 31 ⨯ 51 = 60显然, 60 < 72 < 96 < 211∴有 12 个约数的最小自然数为 60.25.解:(1)先向左平移 1 个单位,再向上平移 4 个单位长度⎛ 4 ⎫ ⎝ 3 ⎭又∵ AP = AQ ,∴ AP 2 = AQ 2⎛ 4 ⎫2 2 ⎝ 3 ⎭ ∴ - 4 3 4 m + 4 = (m - 3)(m + 1) 或 - m + 4 3= -(m - 3)(m + 1)∴ - 4 3 4 m + 4 = m 2 - 2m - 3 或 - m + 4 = -m 2 + 2m + 3 , 3 解得: m = 3 (舍), m = - 1 2 7 11 2 ∴ x = p 1 3. 2 ⎫2 2 ⎝ ⎭⎛ 4 ⎫2 2 ⎫2 ⎝ 3 ⎭ ⎝ ⎭ ⎛ 11 ⎫ ⎝3 ⎭又∵ m ≠ 3 ,∴ (m + 1) m + 3 ⎭ = 1 ,∴ m + ⎪ (m + 4) = 0 , , m = -4 (舍),∴ P 点的横坐标为 - , 3 3 △S MNE = ∵ m ≠ n ,∴ x = m + n ⎛ m + n ,又∵ E , mn ⎪ , ∴ y = (n + m )( x - m ) + m 2,∴ K ⎪ , 22 (m - n )3 = ⋅ (m - n ) = = 2 , ∴△ AEC 的面积为: ⨯ (4 3 - 2) ⨯ 2 3 = 12 - 2 3 .⎛ ⎝ 11 ⎫ ⎪ ⎛ 2 ⎫ ⎝ 3 ⎭∴ m = - 1 2 2 2(3)设 M (m , m 2 ), N (n, n 2 ), lME: y = y = k ( x - m ) + m 2 ,⎧ y = kx - km + m 2 联立 ⎨ ,∴ x 2 - kx + km - m 2 = 0 , ⎩ y = x 2∴ ∆ = k 2 - 4 (km- m 2 )= 0 ,∴ (k - 2m )2 = 0 ,∴ k = 2m ,∴ l ME: y = 2mx - m 2 , 同理:∴ lNE : y = 2nx - n 2 , 1 2⋅ EK ⋅ (m - n) , ⎧ y = 2mx - m 2 又∵ ⎨ , 2(m - n) x + (m + n)(n - m ) = 0 , ⎩ y = 2nx - n 2⎫ 2 ⎝ 2 ⎭∴ lMN n 2 - m 2 : y = ( x - m ) + m 2 , n - m⎛ m + n m 2 + n 2 ⎫ ⎝ ⎭△S MNE ∴m 2 + n 2 - mn 2 2 4 解得: m - n = 2 .四、解答题26.(1)∵四边形 ABCD 是矩形,∴ ∠D = 90︒ .∵ ∠ECD = 30︒ ,∴ CD = CE ⋅ cos30 ︒ = 4 ⨯ 3 = 2 3 , AD = 2CD = 4 3 , 2又∵ DE = CE ⋅ sin30 ︒ = 4 ⨯ 1 2= 2 ,∴ AE = AD - DE = 4 3 - 2 .1 2⎨∠F= ∠ADH , ⎪ AF = AD(2)证明:如图,在 HF 上取点 M ,使 MF = DH ,连接 AM .∵ AF ∥DC ,∴ ∠F = ∠DGH .∵ DH ⊥ FG ,∴ ∠DHG = ∠EDG = 90︒ ,∴ ∠ADH = ∠DGH = ∠F .∵ AF = 2CD , AD = 2CD ,∴ AF = AD .在 △AMF 和 △AHD 中,⎧MF = HD⎪⎩∴ △AMF ≌△ AHD (SAS ) ,∴ AM = AH , ∠F AM = ∠DAH .∵ ∠FAM + ∠MAE = 90︒ ,∴ ∠MAE + ∠DAH = 90︒ ,即 ∠MAH = 90︒ ,∴ MH 2 = 2 A H 2 ,∴ MH = 2 A H ,∴ FH = FM + MH = DH + 2 A H ,即 FH = 2 A H + DH .(3)解: 2 5 - 2 ≤ DN ≤ 2 5 + 2 .。
2020重庆市中考数学试题(word版含答案)共2套
重庆市中考数学试题(一)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D ) A.-4 B.4 C.41-D.41 2.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B ) A.0.1636×104 B.1.636×103 C.16.36×102 D.163.6×104.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y 36.下列调查中,最适合采用全面调查(普查)方式的是 ( D ) A.对重庆市居民日平均用水量的调查 B.对一批LED 节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2 a 有意义,则a 的取值范围是( A ) A.a ≥2 B.a ≤2 C.a>2 D.a ≠28.若m=-2,则代数式m 2-2m-1的值是( B ) A.9 B.7 C.-1 D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39πD.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D ) A.30.6米 B.32.1 米 C.37.9米 D.39.4米12.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是 ( D ) A.-3 B.0 C.3 D.9 二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫⎝⎛+π=____8______.15.如图,CD 是○O 的直径,若AB ⊥CD ,垂足为B ,∠OAB=40°,则∠C=__25__度.16.点P 的坐标是(a,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是_51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。
重庆市2020年初中毕业生学业水平暨高中招生考试数学试卷(含答案)
重庆市2020年初中毕业生学业水平暨高中招生考试数学参考试卷(考试时间120分钟,满分150分)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴公式为2b x a =-. 一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内.1.已知实数a ,b 在数轴上的对应点的位置如图所示,则下列判断正确的是( ).A .1a <B .a b <C .10b +<D .0b >2.下列电视台的台标,是中心对称图形的是( ).A .B .C .D .3.下列式子计算正确的是( ).A .236a a a ⋅=B .2222a a a +=C .222()a b a b +=+D .221()a a --=- 4.下列命题中真命题是( ).A .两边和一角分别对应相等的两个三角形全等B .三角形的一个外角大于任何一个内角C .矩形的对角线平分每一组对角D .两组对角分别相等的四边形是平行四边形5.计算2262⎛⎫⨯- ⎪ ⎪⎝⎭的值在( ). A .0到1-之间B .1-到2-之间C .2-到3-之间D .3-到4-之间 6.按如图的运算程序,能使输出k 的值为1的是( ).A .1x =,2y =B .2x =,1y =C .2x =,0y =D .1x =,3y =7.在平面直角坐标系中,已知点(4,2)E -,(2,2)F --,以原点O 为位似中心,相似比为12,把EFO △缩小,则点E 对应的E '的坐标是( ).A .(2,1)-B .(8,4)-C .(8,4)-或(8,4)-D .(2,1)-或(2,1)- 8.如图,AB 是O 的直径,点C 在O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,过点O 作OD AC ⊥交O 于点D ,连接CD ,若30P ∠=︒,15AP =,则CD 的长为( ).A .33B .4C .53D .59.我校数学兴趣小组的同学要测量建筑物CD 的高度,如图,建筑物CD 前有一段坡度为1:2i =的斜坡BE ,小明同学站在斜坡上的B 点处,用测角仪测得建筑物屋顶C 的仰角为37︒,接着小明又向下走了45米,刚好到达坡底E 处,这时测到建筑物屋顶C 的仰角为45︒,A 、B 、C 、D 、E 、F 在同一平面内.若测角仪的高度 1.4AB EF ==米,则建筑物CD 的高度约为( ).(精确到0.1米,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)A .38.6B .39.0C .40.0D .41.410.如图,点A ,B 是双曲线18y x =图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线y k x =在第二象限的分支上一点,当ABC △满足AC BC =且:13:24AC AB =时,k 的值为( ).A .2516-B .258-C .254-D .25-11.若整数a 使得关于x 的方程3222a x x -=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25 12.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:x… 2- 1- 0 1 2 … 2y ax bx c =++… t m 2- 2- n … 且当12x =-时,与其对应的函数值0y >,有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<.其中,正确结论的个数是( ). A .0B .1C .2D .3 二、填空题(本大题共6个小题,每小题4分,共24分)请将每小題的答案直接填在答题卡中对应的横线上.13.计算13127|13|2-⎛⎫-+-= ⎪⎝⎭ . 14.代数式1x x-有意义,则x 的取值范围是 . 15.如图,在矩形ABCD 中,23AB =,4AD =,以点A 为圆心,AD 长为半径在矩形内画弧,交BC 边于点E ,连接BD 交AE 于点F ,则图中阴影部分面积为 .16.不透明的袋子里装有除标号外完全一样的三个小球,小球上分别标有1-,2,3三个数,从袋子中随机抽取一个小球,记标号为k ,放回后将袋子摇匀,再随机抽取一个小球,记标号为b .两次抽取完毕后,直线y kx =与反比例函数b y x =的图象经过的象限相同的概率为 . 17.如图,把三角形纸片ABC 折叠,使C 的对应点E 在AB 上,点B 的对应点D 在BC 上,折痕分别为AD ,FG ,若30CAB ∠=︒,135C ∠=︒,63DF =,则BC 的长为 .18.问题背景:如图①所示,将ABC △绕点A 逆时针旋转60︒得到ADE △,DE 与BC 交于点P ,可推出结论:PA PC PE +=.问题解决:如图②,在MNG △中,6MN =,75M ∠=︒,42MG =.点O 是MNG △内一点,则点O 到MNG △三个顶点的距离和的最小值是 .三、解答题(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程组:2353214x y x y -=⎧⎨+=⎩;(2)计算:2544332x x x x x -+⎛⎫++÷ ⎪--⎝⎭. 20.如图所示,在ABCD 中,点E ,F 在对角线BD 上,BE DF =.连接AE ,AF ,CE ,CF .求证:(1)ABE CDF △≌△;(2)四边形AECF 是平行四边形.21.《中国诗词大会》以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵,自开播以来深受广大师生的喜爱.某学校为了提高学生的诗词水平,倡导全校3000名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的条形和扇形统计图如图所示.【整理、描述数据】:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”:大赛结束后部分学生“一周诗词诵背数量”的统计表 一周诗词背数量3首 4首 5首 6首 7首 8首 人数 16 24 32 78 a 35 【分析数据】:平均数 中位数 众数 大赛之前5 b c 大赛之后6 6 6请根据调查的信息分析:(1)补全条形统计图;(2)计算a = 首,b = 首,c = 首,并估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)根据调査的相关数据,选择适当的统计量评价该校经典诗词诵背系列活动的效果.22.小明对函数21(1)1(1)|1|x bx c x y x x ⎧-++≥⎪=⎨<⎪-⎩的图象和性质进行了探究.已知当自变量x 的值为1时,函数值为4;当自变量x 的值为2时,函数值为3;探究过程如下,请补充完整:(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: ;(3)进一步探究函数图象并解决问题:已知函数231y x =+的图象如图所示,结合你所画的函数图象,写出不等式21y y ≤的解集: .23.某语文备课组为了增强学生写作兴趣创办刊物《辰》,得到了全校师生的欢迎.他们将刊物以适当的价格销售后所得利润资助贫困学生.已知印制100本《星辰》的成本比印制40本的2倍还多440元.(1)每本《星辰》的成本是多少元?(2)经销售调查发现:每本《星辰》售价定为33元,可售出120本,若每本降价1元,可多售出20本.为尽量增加销量让更多的人读到这本刊物,当每本降价多少元时,可获得1400元的利润资助贫困学生?24.阅读下列材料:材料一:一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数,否则称为合数. 其中,1和0既不是质数也不是合数.材料二:一个较大自然数是质数还是合数通常用“N 法”来判断,主要分为三个步骤:第一步,找出大于N 且最接近N 的平方数2k ;第二步,用小于k 的所有质数去除N ;第三步,如果这些质数都不能整除N ,那么N 是质数;如果这些质数中至少有一个能整除N ,那么N 就是合数.如何判断239是质数还是合数?第一步,223925616<=;第二步,小于16的质数有:2、3、5、7、11、13,用2、3、5、7、11、13依次去除239;第三步,发现没有质数能整除239,所以239是质数.材料三:分解质因数就是把一个合数分解成若干个质数的乘积的形式,通过分解质因数可以确定该合数的约数的个数.若m n p N a b c =⨯⨯…(a ,b ,c …是不相等的质数,m ,n ,p …是正整数),则合数N 共有(1)(1)(1)m n p +++…个约数.如382=,314+=,则8共有4个约数;又如211223=⨯,(21)(11)6++=,则12共有6个约数.请用以上方法解决下列问题:(1)请用“N 法”判断163是质数还是合数;(2)求有12个约数的最小自然数.25.已知抛物线21:(1)4C y x =--和22:C y x =.(1)如何将抛物线1C 平移得到抛物线2C ?(2)如图①所示,抛物线1C 与x 轴正半轴交于点A ,直线43y x b =-+经过点A ,交抛物线1C 于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ y ∥轴交抛物线1C 于点Q ,连接AQ .①若AP AQ =,求点P 的横坐标;②若PA PQ =,直接写出点P 的横坐标.(3)如图②所示,MNE △的顶点M 、N 在抛物线2C 上,点M 在点N 右边,两条直线ME 、NE 与抛物线2C 均有唯一公共点,ME 、NE 均与y 轴不平行.若MNE △的面积为2,设M 、N 两点的横坐标分别为m 、n ,求m 与n 的数量关系.四、解答题 26.四边形ABCD 为矩形,连接AC ,2AD CD =,点E 在AD 边上.(1)如图①,若30ECD ∠=︒,4CE =,求AEC △的面积;(2)如图②,延长BA 至点F ,使得2AF CD =,连接FE 并延长交CD 于点G ,过点D 作DH EG ⊥于点H ,连接AH ,求证:2FH AH DH =+;(3)如图③,将线段AE 绕点A 旋转一定的角度α(0360α︒<<︒)得到线段AE ',连接CE ',点N 始终为CE '的中点,连接DN .已知4CD AE ==,直接写出DN 的取值范围.参考试卷答案一、选择题CABD CBDD DBCC二、填空题1314.0x > 15.83π-16.5917. 18.三、解答题 19.(1)41x y =⎧⎨=⎩(2)23x x +-- 20.(1)∵四边形ABCD 是平行四边形,∴AB CD ∥,AB CD =.∴ABE CDF ∠=∠.在ABE △和CDF △中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE CDF SAS △≌△(2)∵ABE CDF △≌△,∴AE CF =,AEB CFD ∠=∠.∴AEF CFE ∠=∠.∴AEF CFE ∠=∠.∴AE CF ∥.∴四边形AECF 是平行四边形.21.(1)如图.55a = 4.5b = 4c =大赛后该校学生一周诗词诵背6首(含6首)以上的有:78553530002100240++⨯=(人). (3)由比赛前后的平均数,中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想(用数据进行比较).22.图象(1)2123(1)1(1)1x x x y x x ⎧-++≥⎪=⎨-<⎪-⎩. (2)当1x <时,y 随x 的增大而增大;当1x ≥时,y 随x 的增大而减小.(3)1x ≥或203x ≤≤23.成本为22元(1)设每本降价x 元,依题意得(3322)(12020)1400x x --+= 2540x x -+=,∴14x =,21x =∵要尽量的多,∴4x =答:每本降价4元.由条件.24.解:(1)∵216316913<=∴小于13的质数为2,3,5,7,11共5个显然,用2,3,5,7,11分别除163,它们都不能整除163 ∴163是质数.(2)121212634223==⨯=⨯=⨯⨯另四种情形:①当2m N =,112m +=,11m =,∴112N =②当23m n N =⨯,1612m n +=⎧⎨+=⎩时,5m =,1n = ∴512396N =⨯=③当23m n N =⨯,1412m n +=⎧⎨+=⎩时,3m =,2n = ∴322372N =⨯= ④当235m n p N =⨯⨯,161212m n p +=⎧⎪+=⎨⎪+=⎩时,5m =,1n =,1p =∴21123560N =⨯⨯=显然,116072962<<<∴有12个约数的最小自然数为60.25.解:(1)先向左平移1个单位,再向上平移4个单位长度(2)①设4,43P m m ⎛⎫-+ ⎪⎝⎭,()2,23Q m m m --, 又∵AP AQ =,∴22AP AQ = ∴22224(3)4(3)(3)(1)3m m m m ⎛⎫-+-+=-+-+ ⎪⎝⎭, ∴44(3)(1)3m m m -+=-+或443m -+ (3)(1)m m =--+ ∴244233m m m -+=--或244233m m m -+=-++, 解得:13m =(舍),273m =-(舍);113m =,23m =(舍) ∴13p x =. ②222273PQ m m ⎛⎫=-- ⎪⎝⎭, 222242(3)4733m m m m ⎛⎫⎛⎫-+-+=-- ⎪ ⎪⎝⎭⎝⎭, 211(3)(3)(1)(3)3m m m m m ⎛⎫-=-+-+ ⎪⎝⎭, 又∵3m ≠,∴11(1)13m m ⎛⎫++= ⎪⎝⎭,∴2(4)03m m ⎛⎫++= ⎪⎝⎭,∴123m =-,24m =-(舍),∴P 点的横坐标为23-, (3)设()2,M m m ,()2,N n n ,2:()ME l y y k x m m ==-+, 联立22y kx km m y x⎧=-+⎨=⎩,∴220x kx km m -+-=, ∴()2240k km m ∆=--=,∴2(2)0k m -=,∴2k m =,∴2:2ME l y mx m =-,同理:∴2:2NE l y nx n =-,1()2MNE S EK m n =⋅⋅-△, 又∵2222y mx m y nx n ⎧=-⎨=-⎩,2()()()0m n x m n n m -++-=, ∵m n ≠,∴2m n x +=,又∵,2m n E mn +⎛⎫ ⎪⎝⎭, ∴222:()MN n m l y x m m n m-=-+-, ∴2()()y n m x m m =+-+,∴22,22m n m n K ⎛⎫++ ⎪⎝⎭, ∴223()2()224MNE m n mn m n S m n +--=⋅-==△, 解得:2m n -=.四、解答题26.(1)∵四边形ABCD 是矩形,∴90D ∠=︒.∵30ECD ∠=︒,∴cos304CD CE =⋅︒==,2AD CD ==, 又∵1sin30422DE CE =⋅︒=⨯=,∴2AE AD DE =-=-.∴AEC △的面积为:12)122⨯⨯=- (2)证明:如图,在HF 上取点M ,使MF DH =,连接AM .∵AF DC ∥,∴F DGH ∠=∠.∵DH FG ⊥,∴90DHG EDG ∠=∠=︒, ∴ADH DGH F ∠=∠=∠.∵2AF CD =,2AD CD =,∴AF AD =. 在AMF △和AHD △中,MF HDF ADH AF AD=⎧⎪∠=∠⎨⎪=⎩,∴()AMF AHD SAS △≌△,∴AM AH =,FAM DAH ∠=∠. ∵90FAM MAE ∠+∠=︒,∴90MAE DAH ∠+∠=︒,即90MAH ∠=︒, ∴222MH AH =,∴2MH AH =, ∴2FH FM MH DH AH =+=+, 即2FH DH =+.(3)解:252252DN -≤≤+.。
2020年重庆市中考数学试卷(附答案与解析)
绝密★启用前2020年重庆市初中学业水平考试数 学A 卷(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试题卷上直接作答;2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..2B ..铅笔完成; 4.考试结束,由监考人员将试题卷和答题卡...一并收回. 参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为2424b ac b a a ⎛⎫- ⎪⎝⎭,,对称轴为2b x a=-. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.下列各数中,最小的数是( )A .3-B .0C .1D .2 2.下列图形是轴对称图形的是( )ABCD3.在今年举行的第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 为切点,连接OA ,OB ,若°20B ∠=,则AOB ∠的度数为( )A .40°B .50°C .60°D .70° 6.下列计算中,正确的是( )A .235+=B .2222+=C .236⨯=D .2323-=7.解一元一次方程()111123x x +=-时,去分母正确的是( )A .()3112x x +=-B .()2113x x +=-C .()2163x x +=-D .()3162x x +=-8.如图,在平面直角坐标系中,ABC △的顶点坐标分别是()12A ,,()11B ,,()31C ,,以原点为位似中心,在原点的同侧画DEF △,使DEF △与ABC △成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:°sin 280.47≈,°cos280.88≈,°tan 280.53≈)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式组3132x x x a-⎧+⎪⎨⎪⎩≤,≤的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7B .14-C .28D .56-11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED △,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG △的面积为2,则点F 到BC 的距离为 ( )ABCD 12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数()00ky x x x=>,>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.计算:()012π-+-=________.14.一个多边形的内角和等于它的外角和的2倍,则这个多边形是的边数是________.15.现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为________.16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分面积为________.(结果保留π)17.A ,B 两地相距240km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()km y 与甲货车出发时间()h x 之间的函数关系如图中的折线CD DE EF ——所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是________.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.计算:(1)()()22x y x x y ++-;(2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百八年级20名学生的测试成绩条形统计图如图:八年级抽取的学生测试成绩条形统计图根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1 200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若°50AOE ∠=,求ACB ∠的度数; (2)求证:AE CF =.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡...上相应的括号内打“√”,错误的在答题卡...上相应的括号内打“×”; ①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x -<或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------(3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x -+>的解集(保留1位小数,误差不超过0.2). 23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数.现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”; 19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21 600元. (1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值.25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()34A --,,()01B -,. (1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.25题图25题备用图四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上.26.如图,在Rt ABC △中,°90BAC ∠=,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.图1图2 备用图2020年重庆市初中学业水平考试数学答案解析一、 1.【答案】A【解析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.3012-∵<<<,∴最小的数是3-,故选:A . 【考点】有理数的大小比较 2.【答案】A【解析】根据轴对称图形的概念对各选项分析判断即可得解. 解:A 、是轴对称图形,故本选项正确; B 、不是轴对称图形,故本选项错误; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误; 故选:A .【考点】轴对称图形的概念 3.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.426000 2.610=⨯,故选:C .【考点】科学记数法的表示方法 4.【答案】B【解析】根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1234n +++++,据此可得第⑤个图案中黑色三角形的个数.解:∵第①个图案中黑色三角形的个数为1, 第②个图案中黑色三角形的个数312=+,第③个图案中黑色三角形的个数6123=++, ……∴第⑤个图案中黑色三角形的个数为1234515++++=,故选:B .【考点】图形的变化规律 5.【答案】D【解析】根据切线的性质可得°90OAB ∠=,再根据三角形内角和求出AOB ∠.∵AB 是O 的切线 °90OAB ∠=∴ °20B ∠=∵°°18070AOB OAB B ∠=-∠-∠=∴故选D .【考点】切线的性质 6.【答案】C【解析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案. 解:A不是同类二次根式,不能合并,此选项计算错误; B .2不是同类二次根式,不能合并,此选项计算错误; C==,此选项计算正确;D.与2-不是同类二次根式,不能合并,此选项错误; 故选:C .【考点】二次根式的混合运算 7.【答案】D【解析】根据等式的基本性质将方程两边都乘以6可得答案.解:方程两边都乘以6,得:()3162x x +=-,故选:D .【考点】解一元一次方程 8.【答案】D【解析】把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.解:∵以原点为位似中心,在原点的同侧画DEF △,使DEF △与ABC △成位似图形,且相似比为2:1,而()12A ,,()31C ,, ()24D ∴,,()62F ,,DF =∴故选:D . 【考点】位似变换 9.【答案】B【解析】构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .解:如图,由题意得,°28ADF ∠=,45CD =,60BC =, 在Rt DEC △中,∵山坡CD 的坡度1:0.75i =,140.753DE EC ==∴, 设4DE x =,则3EC x =, 由勾股定理可得5CD x =, 又45CD =,即545x =,9x =∴,327EC x ==∴,436DE x FB ===, 602787BE BC EC DF =+=+==∴,在Rt ADF △中,°tan 280.538746.11AF DF =⨯≈⨯≈,46.113682.11AB AF FB =+=+≈∴,故选:B .【考点】直角三角形的边角关系 10.【答案】A【解析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.解:解不等式3132x x -+≤,解得7x ≤, ∴不等式组整理的7x x a ⎧⎨⎩≤≤, 由解集为x a ≤,得到7a ≤,分式方程去分母得:342y a y y -+-=-,即32y a -=, 解得:23a y +=, 由y 为正整数解且2y ≠,得到1a =,7,177⨯=,故选:A .【考点】分式方程的解 11.【答案】B【解析】首先求出ABD △的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据1122BD h BF DF =,求出BD 即可解决问题. 解:DG GE =∵,2ADG AEG S S ==△△∴, 4ADE S =△∴,由翻折可知,ADB ADE ≅△△,BE AD ⊥,4ABD ADE S S ==△△∴,°90BFD ∠=,()142AF DF BF +=∴, ()13242DF +=∴,1DF =∴,DB ===∴设点F 到BD 的距离为h ,则1122BD h BF DF=, h ∴, 故选:B .【考点】翻折变换,三角形的面积,勾股定理二次根式的运算 12.【答案】B 【解析】先证明OBAE ,得出18ABE OAE S S ==△△,设A 的坐标为k a a ⎛⎫⎪⎝⎭,,求出F 点的坐标和E 点的坐标,可得13182OAE kS a a=⨯⨯=△,求解即可.解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,AO OD =∴,ODA OAD ∠=∠∴,又AD ∵为DAE ∠的平分线,OAD EAD ∠=∠∴,EAD ODA ∠=∠∴,OB AE ∴,18ABE S =△∵, 18OAE S =△∴,设A 的坐标为k a a ⎛⎫⎪⎝⎭,,AF EF =∵, F ∴点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为22k a a ⎛⎫ ⎪⎝⎭,,E ∴点的坐标为()30a ,, 13182OAE kS a a=⨯⨯=△,解得12k =, 故选:B .【考点】反比例函数,几何综合,矩形的性质,平行线的判定 二、 13.【答案】3【解析】根据零指数幂及绝对值计算即可.()012123π-+-=+=;故答案为3. 【考点】含零指数幂的简单实数混合运算 14.【答案】6【解析】设这个多边形的边数为n ,根据内角和公式和外角和公式,列出等式求解即可.设这个多边形的边数为n ,()°°21802360n -=⨯∴,解得:6n =, 故答案为:6.【解析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点()P m n ,在第二象限的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中点()P m n ,在第二象限的结果数为3, 所以点()P m n ,在第二象限的概率316=. 故答案为:316. 【考点】列表法,树状图法,点的坐标 16.【答案】4π-【解析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积. 由图可知,2ABCD S S S =-阴影扇形, 224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2,AC =∴,∵点O 是AC 的中点,OA ∴2°°903602S ππ==扇形∴,24ABCD S S S π=-=-阴影扇形∴,故答案为:4π-.【考点】求阴影部分面积,扇形面积公式,正方形的性质17.【答案】()4160,【解析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案. 设乙货车的行驶速度为km/h a由题意可知,图中的点D 表示的是甲、乙货车相遇∵点C 的坐标是()0240,,点D 的坐标是()2.40, ∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为()40 2.4=96km ⨯,乙货车行驶的距离为()24096144km -=()144 2.460km/h a =÷=∴∴乙货车从B 地前往A 地所需时间为()240604h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地,则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯=.即点E 的坐标为()4160, 故答案为:()4160,.【解析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为2m 5,设7月份外卖还需增加的营业额为x .∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a ,由题意可知:3385552275k m x a k x a m k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,512857208ax a a a a ==++∴, 故答案为:18.()()()()()()2233333333m m mm m m m m m ++==+-++-【解析】(1)利用完全平方公式和整式乘法展开后合并同类型即可.具体解题过程参照答案.(2)先把分子分母因式分解,然后按顺序计算即可.具体解题过程参照答案. 【考点】整式的运算,分式的混合运算 20.【答案】(1)7a =,7.5b =,50%c =(2)根据以上数据,八年级的平均数、众数、中位数、8分及以上人数所占百分比比七年级的学生掌握垃圾分类知识较好. (3)七年级合格人数:18人 八年级合格人数:18人181********%108040+⨯⨯=人答:估计参加此次测试活动成绩合格的人数有1 080人.【解析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出的a 值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值. 七年级20名学生的测试成绩的众数是:7,7a =∴,由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, 7.5b =∴,八年级8分及以上人数有10人,所占百分比为:50%50%c =∴.(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论.具体解题过程参照答案.(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1 200即可得出答案.具体解题过程参照答案. 【考点】平均数,众数,中位数,条形统计图 21.【答案】(1)解:AE BD ⊥∵,CF BD ⊥AECF ∴DAC ACB ∠=∠∴ °50AOE ∵, °50AOECOF∴°40OCF ∠=∴,∵平行四边形ABCD ADDC ∴,DAC ACB ∠=∠∴ °40ACB ∠=∴(2)证明:∵AC 与BD 交于点O ,OA OC =∴,AE BD ⊥∵,CF BD ⊥, °90AEOCFO∴,AOE COF ∠=∠∵, AEO CFO ≌∴△△,AE CF ∴=.【解析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.具体解题过程参照答案. (2)证明()AEO CFO AAS △≌△可得结论.具体解题过程参照答案【解析】(1)代入3x =和3x =-即可求出对应的y 值,再补全函数图象即可.解:当3x =-时,261899151x y x -===-++, 当3x =时,261899151x y x ===++,函数图象如下:(2)结合函数图象可从增减性及对称性进行判断. ①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:×,②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-; 故答案为:√,③观察函数图象可得:当1x -<或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;故答案为:√.(3)根据图象求解即可.具体解题过程参照答案.【考点】一次函数的图象和性质,一次函数与一元一次不等式 23.【答案】(1)49不是“差一数”,74是“差一数”,49594÷=∵;493161÷=,∴49不是“差一数”,745144÷=∵;743242÷=,∴74是“差一数”(2)314、329、344、359、374、389【解析】(1)直接根据“差一数”的定义计算即可.具体解题过程参照答案.(2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”.∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【考点】带余数的除法运算24.【答案】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩.答:A ,B 两个品种去年平均亩产量分别是400、500千克.数学试卷 第21页(共26页) 数学试卷 第22页(共26页)(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令%a m =,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+⎪⎝⎭. 整理得2100m m -=,解得:10m =(不合题意,舍去),20.1m = 所以%0.1a =,所以10a =, 答:a 的值为10.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案.具体解题过程参照答案.(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.具体解题过程参照答案. 【考点】二元一次方程组的应用,一元二次方程的应用25.【答案】(1)∵抛物线过()34A --,,()01B -, 9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩∴241y x x =+-∴(2)设AB y kx b =+,将点()34A --,()01B -,代入AB y 1AB y x =-∴过点P 作x 轴得垂线与直线AB 交于点F设点()241P a a a +-,,则()1F a a -, 由铅垂定理可得()()22212314123323327228PAB B AS PF x x a a a a a a =-=---+=--⎛⎫=-++⎪⎝⎭△PAB ∴△面积最大值为278(3)抛物线的表达式为:()224125y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-,联立上述两式并解得:14x y =-⎧⎨=-⎩,故点()14C --,;设点()2D m -,、点()E s t ,,而点B 、C 的坐标分别为()01-,、()14--,; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样()D E 向右平移1个单位向上平移3个单位得到()E D ,即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即()2222113s t ++=+③, 当点D 在E 的上方时,则BD BC =,即()22222113m++=+④,联立①③并解得:1s =-,2t =或4-(舍去4-),故点()12E -,;数学试卷 第23页(共26页) 数学试卷 第24页(共26页)联立②④并解得:3s =-,4t =-(34E --+,或(34--,; ②当BC 为菱形的对角线时,则由中点公式得:12s -=-且41m t --=+⑤, 此时,BD BE =,即()()2222211m s t ++=++⑥,联立⑤⑥并解得:1s =,3t =-,故点()13E -,, 综上,点E 的坐标为:()12-,或(34--,或(34--,或()13-,.【解析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解.具体解题过程参照答案. (2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()241P a a a +-,,则()1F a a -,,2133272228PABB A S PF x x a ⎛⎫=-=-++ ⎪⎝⎭△,即可求解.具体解题过程参照答案.(3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.具体解题过程参照答案.90BAC DAE ︒∠=∠=∵,BAD CAE ∠=∠∴,AB AC =∵,AD AE =,∴在ABD △和ACE △中BAD CAE AB ACAD AE =∠⎧⎪=⎨⎪=⎩, ABD ACE ≅∴△△, 45ABD ACE ︒∠=∠=∴,90DCE ACB ACE ︒∠=∠+∠=∴,在Rt ADE △中,F 为DE 中点(同时AD AE =),45ADE AED ︒∠=∠=,AF DE ⊥∴,即Rt ADF △为等腰直角三角形,AF DF AD =∴,CF DF =∵,CF AD ∴; (2)由(1)得ABD ACE ≅△△,CE BD =,°45ACE ABD ∠=∠=,454590DCB BCA ACE ︒︒︒∠=∠+∠=+=∴,在Rt DCB △中,()2DE BD CE CD =====,F ∵为DE 中点,122DE EF DE ===∴,在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=,∴点A ,D ,C ,E 四点共圆, F ∵为DE 中点,F ∴为圆心,则CF AF =,在RtAGC △中,CF AF=∵,F ∴为CG中点,即2CG CF =,AG AC ⎛⎫== ⎪ ⎪⎝⎭∴, 即BC =;(3)设点P存在,由费马定理可得120APB BPC CPA ︒∠=∠=∠=,60BPD ︒∠=∴,设PD 为a ,BD =∴,数学试卷 第25页(共26页) 数学试卷 第26页(共26页)又AD BD =,a m +∴,1m a =a【解析】(1)先证BAD CAE ≅△△,可得°45ABD ACE ∠=∠=,可求°90BCE ∠=,由直角三角形的性质和等腰直角三角形的性质可得结论.具体解题过程参照答案. (2)由(1)得ABD ACE △≌△,CE BD =,°45ACE ABD ∠=∠=,推出°°°454590DCB BCA ACE ∠=∠+∠=+=,然后根据现有条件说明在Rt DCB△中,DE ==,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC △中,推出2AG =,即可得出答案.具体解题过程参照答案.(3)设点P 存在,由费马定理可得°120APB BPC CPA ∠=∠=∠=,设PD 为a,得出BD =,AD BD ==,得出a m +=,解出a ,根据BD CE =即可得出答案.具体解题过程参照答案.【考点】全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020重庆中考复习数学第26题专题训练五1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.2020重庆中考复习数学第26题专题训练五参考答案1、(2019秋•天桥区期末)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、(2019秋•淮安期末)[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、(2019春•碑林区校级月考)【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A 为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、(2018春•铁西区期中)(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、(2019秋•武冈市期中)【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、(2018秋•东海县期末)模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、(2019秋•松北区期末)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、(2017春•合肥期末)已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、(2017春•南岗区校级月考)如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、(2019秋•丹东期末)在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.证明:(1)∵∠DCB=∠FGB=∠FGC=90°,∴CD∥GF,∴∠EDP=∠GFP,且DP=PF,∠DPE=∠FPG,∴△DPE≌△FPG(ASA)∴PE=PG,DE=GF,∵BC=CD,∴EC=GC,且∠DCG=90°,PE=PG,∴CP=PG;(2)延长GP到E,使PE=PG,连接DE,CE,CG,∵DP=PF,∠DPE=∠FPG,PE=PG,∴△DPE≌△FPG(SAS)∴PE=PG,DE=GF,∠EDP=∠GFP,∵GF=GB,∴DE=BG,∵DC∥BF,。