二年级奥数第六讲定义新运算

合集下载

小学数学定义新运算

小学数学定义新运算

小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。

在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。

见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。

例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。

如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。

二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。

需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。

(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。

符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。

三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。

分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。

那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。

小学奥数-定义新运算

小学奥数-定义新运算

小学奥数-定义新运算小学奥数——定义新运算1.定义运算△为a△b=3×a-2×b。

求4△3,3△4,(17△6)△2,17△(6△2)和5△b=5时的b的值。

2.定义运算※为a※b=a×b-(a+b)。

求5※7,7※5,12※(3※4),(12※3)※4和3※(5※x)=3时的x的值。

3.暂无内容。

4.已知4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。

5.定义运算▽为a▽b=a×b+a-b,求5▽8.6.定义运算△为a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。

求1△100的值和5△b=5时的b的值。

7.定义运算为a b3a4b,求(87) 6.8.定义运算⊖为a⊖b=5×a×b-(a+b),求11⊖12.9.定义运算※为a※b=2×a×b-1/4×b,求8※(4※16)。

10.定义运算□为x□y=(x+y)/4,求a□16=10中a的值。

11.定义运算为a b=a×b/(a+b),求21010的值。

12.定义运算※为P※Q=(P+Q)/2,求4※(6※8)和x※(6※8)=6时的x的值。

13.定义运算⊕为x⊕y=(x+1)/y,求3⊕(2⊕4)的值。

14.已知4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50,求7⊗3的值。

15.定义运算为a b=(a+3)×(b-5),求5(67)的值。

16.定义运算为x y=6x+5y和△为x△y=3xy,求(23)△4的值。

读一读】狼&羊羊和狼在一起时,狼要吃掉羊,所以我们定义了两种运算,用符号△表示羊和狼的运算,用符号☆表示羊与羊战胜狼的运算。

具体规则见上文。

小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

(完整版)小学奥数定义新运算

(完整版)小学奥数定义新运算

六年级数学讲义定义新运算教学目标: 1、在理解定义新运算的基础上,会灵活按照所给的规律对所给数字进行灵活的运算,2、培养学生对知识的运算能力和灵活运用能力。

一、 教学衔接414212115865.78+-+ )17281(1719+- 36×10.9+12×42.3(0.25×4-0.25×3)×40 119891988198719891988-⨯⨯+二、 教学内容(一)知识要点:所谓“定义新运算”是以学生熟知的四则运算为基础,以一种特殊的符号来表示的特别定义(规定)的运算。

运算时要严格按照新运算的定义(规定)进行代换,再进新计算。

具体程序如下:1.代换.即按照定义符号的运算方法,进行代换,注意此过程不能轻易改变原有的运算顺序。

2.计算.把代换后的算式准确地计算出来。

(二)例题讲解:例1、 对于任意数a ,b ,定义运算“*”: a*b=a ×b-a-b 。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、设45e。

a b a b=⨯-⨯(1)求(64)2e e的值;(2)若(2)18e e,则x等于多少?x x=3,x>=2,求x的值。

分析与解:按照定义的运算,<1,2,3,x>=2,x=6。

分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。

四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。

按通常的规则从左至右进行运算。

分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。

例6有一个数学运算符号⊗,使下列算式成立:9=7⊗,25⊗,求?3⊗7=3=2=48⊗,133⊗,115=5三、教学练习1、若A*B 表示(A +3B )×(A +B ),求5*7的值。

奥数27--定义新运算

奥数27--定义新运算
(1)计算(4△3)+(8△5)的值;
(2)计算(2△3)△4;
(3)计算(2△5)△(3△4).
16.定义运算“⊙”如下:
对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.
比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.
(1)求12⊙21,5⊙15;
3:定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?
4:定义运算“”=(a+b)÷3,那么(36)12与3(612)哪一个大?大的比小的大多少?
5:a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?
6:如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?
一、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。
二、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。
三、规定ab,表示自然数a到b的各个数之和,例如:310=3+4+5+6+7+8+9+10=52,求1200的值。
四、定义新运算“”,ab=10a+20b,求(37)+(48)。
一十、你请自己规定一种新运算。
7:规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?
8:规定:a※b=(b+a)×b,那么(2※3)※5=.
9.已知a,b是任意有理数,我们规定:a⊕b=a+b-1, ,那么 .
11.如果a⊙b表示 ,例如4⊙5=3×4-2×5=2,那么,当x⊙5比5⊙x大5时,x=.

定义新运算题目及答案解析-小学奥数

定义新运算题目及答案解析-小学奥数

专题定义新运算知识点1 直接运算型【基础训练】1、【★】设a,b都表示两个不同的数,规定:a△b=2×a+3×b,表示a的2倍加上b的3倍的和.(1)求4△7的值.(2)求2△3的值.【答案】(1)29;(2)13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7,4△7=2×4+3×7=29;(2)方法同上,即a=2,b=3,2△3=2×2+3×3=13.2、【★★】设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b).(1)求5▽6▽7的值.(2)求7▽(5▽4)的值.【答案】107;59【解析】(1)按照从左往右的顺序计算,①先算5▽6=5×6-(5+6)=30-11=19,②再算19▽7=19×7-(19+7)=133-26=107,所以5▽6▽7=107.(2)有括号的要先算括号里面的,①先算5▽4=5×4-(5+4)=20-9=11,②再算7▽11=7×11-(7+11)=77-18=59,所以7▽(5▽4)=59.3、【★★】x,y表示两个数,规定新运算“☆”及“○”如下:x☆y=2×x+3×y,x○y=6×x×y.(1)求10☆2的值.(2)求4○25的值.【答案】26;600【解析】(1)原式=2×10+3×2=26;(2)原式=6×4×25=600【拓展提升】1、【★★★】规定:a□b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数.求1□100的值.【答案】5050【解析】1□100=1+2+3+…+100=(1+100)×100÷2=50502、【★★★】已知x、y是任意有理数.我们规定:x☆y=x+y-1,x○y=x×y-2.(1)求10☆9.(2)求7○8.(3)求4○[(6☆8)☆(3○5)]的值.【答案】18;54;98【解析】(1)10☆9=10+9-1=18;(2)7○8=7×8-2=54(3)先算小括号里面的6☆8和3○5,6☆8=6+8-1=13,3○5=3×5-2=13.再计算中括号里面的13☆13=13+13-1=25.最后计算4○25=4×25-2=98.知识点2 反解未知型【拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x×y+2A,已知3□4=16.(1)求常数A是多少?(2)求3□(4□5)【答案】2;76【解析】(1)建立方程,3×4+2A=16,解得A=2.(2)先算括号里面的,①4□5=4×5+2×2=20+4=24,②再算3□24=3×24+2×2=72+4=762、【★★★★】规定:()()()121a b a a a a b ∆=+++++++-,其中a 、b 表示自然数. 已知1465x ∆∆=(),求x .【答案】x=2【解析】先求1△4=1+2+3+4=10,再算x △10=65,那么x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,即10x+45=65,解得x=2知识点3 总结规律型【拓展提升】1、【★★★】已知:13123*=⨯⨯,242345*=⨯⨯⨯,4545678*=⨯⨯⨯⨯,…(1)求33*的值.(2)求25*的值.【答案】60;7202、【★★★】已知:12111∇=+,23222222∇=++,444444444444∇=+++,……(1)求73∇的值 。

小学思维数学:定义新运算-带答案解析

小学思维数学:定义新运算-带答案解析

定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

小学三年级奥数讲义定义新运算

小学三年级奥数讲义定义新运算

定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2.设a*b=a2+2b ,那么求10*6和5*(2*8)。

3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。

【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航】根据定义先算4△6。

在这里“△”是新的运算符号。

练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。

求30△(5△3)。

3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

奥数新定义运算

奥数新定义运算

奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四那么运算是数学中最根本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:〔1〕解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四那么运算,然后进展计算。

〔2〕我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。

〔3〕新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

二、初步例题诠释例1、对于任意数a,b,定义运算“*〞:a*b=a×b-a-b。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四那么运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ★b = ( a + b )÷b 。

求8 ★5 。

分析与解:该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a代表数字8,b代表数字5。

8 ★5 = 〔8 + 5〕÷5 = 2.6例3、如果a◎b=a×b-(a+b)。

求6◎〔9◎2〕。

分析与解:根据定义,要先算括号里面的。

这里的符号“◎〞就是一种新的运算符号。

6◎〔9◎2〕=6◎[9×2-〔9+2〕]=6◎7=6×7-〔6+7〕=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

奥数练习--定义新运算练习有答案

奥数练习--定义新运算练习有答案

三年级思维训练3--定义新运算一、已知当口大于或等于6时, 规定a△6=3×a+4×6; 当a小于b时, 规定a△6=4×a+3×b, 按此规定计算: (6△4)△35=二、定义新运算符号*为A* B=A×B-A-B, 已知X*5=11, 那么X=三、规定2⊕I= 2 , 2⊕2=2+22=24, 3⊕3=3+33+333=369 ,那么5⊕5=四、通过一种新的运算“△”计算,有以下结果:2△3=2×3×4=244△2=4×5=20那么6△3-7△2等于多少?五、定义f(1)=1, f(2)=1+2=3, f(3)=1+2+3=.6, …, 那么f(100)=六、若记号“贝.贝→京京”代表“贝贝比京京高”,依照下图的记号,最高的是七、如果P↑表示P+1, P↓表示P-1, 则(4↑) ×(3↓)等于1. A. 9↓ B. 1.0↓ C. 11↓ D.12↑ E.13↓八、规定一种运算符号“@”, M@N=(M+N)÷5, 那么X@5=10中X的值是九、在密码学中,直接可以看到的内容是明码,对明码进行某种处理后得到的内容为密码有一种密码, 将英文26个字母a、b、c…、z(不论大小写)依次对1、2、3…、26这26个自然数(见表格)。

当明码对应的序号x为奇数时,密码对应的序号y=(x+1)÷2;当明码对10应的序号 x为偶数时,密码对应的序号y=x÷2+13。

按上述规定,请你算出明码“ love”译成密码是什么?十、对于任意自然数, 定义n! =1×2×…×n, 如4!-1×2×3×4. 那么, 1! +2!+3 ! +4 ! +5 !=十一、规定3.☆2=3+33=36, 2☆3=2+22+222=246, 1☆4=1+11+111+1111=1234.如果一位数a、b满足a☆b=49380, 求a和b.十二、规定1※2=1+2=3,2※3=2+3+4=9,5※4=5+6+7+8=26. 如果a※15=165, 那么a=十三、如果A*B=2A+B,若A*2A*3A*4A*5A=570, 那么 A=十四、已知有一个数学符号△使下列等式成立: 2△4=8,5△3=13,3△5=11, 9△7=25, 那么7△3=十五、我们规定: AOB表示A、B中较大的数, A△B表示A、B中较小的数. 则(10△8-6○5)×(1 1013+15△20)=十六、已知“△”表示一种运算符号, 若a△b=(a-b) ÷2, 则3△(6△4)=十七、对于数x、y,定义两种运算“*”及“△”如下:x*y=6x+5y, x△y=3xy, 则(2*3)△4=十八、如果6*2=6+7。

(完整)小学六年级奥数——新定义运算

(完整)小学六年级奥数——新定义运算

第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。

【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。

二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、^、与四则运算中“ +、一、X、+ ”不同。

新定义运算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例1、假设a*b=(a + b) + (a-b),求13*5 和13* ( 5*4)。

【举一反三】1、设a*b=(a+b) x (a-b),求27*9华罗庚等,这是2、设a*b=a2+2b,求10*6 和5*(2*8)。

3、设a*b=3a —b x -,求(25*12 ) * (10*5 )。

2求3 △( 4 △ 6)例2、设p、q是两个数,规定:p△q=4 Xq—(p + q)【举一反三】求5 △( 6 △ 4 )。

1、设p、q是两个数,规定: p A q=4 Xq—(p +q)2、设p、q是两个数,规定: p A q=p2+ (p —q) X2求30 △( 5 △ 3 )。

3、设M、N是两个数,规定:M * N10 * 20--4例3、如果1 *3 * 3 13311 111 11114 * 2333,11111,2 * 4 2 22 222 2222,4 44,那么7 * 4 ______ ;210 * 2【举一反三】1、如果1 * 53 * 31133111333,1111…那么11111, 2 * 44 * 42、规定a * b aa aaa aa a,那么8 *(b-1 )个a3、如果2 * 113334L,那么(64442 22 222 2222,* 3) (2*6)例4、规定② 3 4,④ 3 4 5 ,⑤ 4 5 6,…如果那么,A是几?三】1、规定:②11 1⑧⑨2 3,③ 23 4,④ 34 5,⑤ 45 6,…如果】A,那么A=⑨2、规定:③21 1⑩石3 4,④ 34 5,⑤ 4 56,⑥1石W,那么口= ----------------5 6 7,…如果3、如果 1 2=1+2 ,2 3=2+3+4,…,5 6=5+6+7+8+9+10,那么,在X 3=54 中, X = ______ 例5、设a e b 2b 护,求X e(4 e 1)34中的未知数x三】1、设a e b 3a 2b,已知x e (4 e 1) 7,求x。

定义新运算题目及答案解析-小学奥数

定义新运算题目及答案解析-小学奥数

定义新运算题目及答案解析-小学奥数答案】A=5,x=2,y=7解析】将已知条件代入式子得:12+2A=16,解得A=2.再将A代入式子得:x×y+4=3×4+2A=14,解得x=2,y=7.知识点3多步运算型基础训练】1、【★★】设x、y都表示两个不同的数,规定:x△y=x+y,x○y=x×y.(1)求2△3○4的值.2)求5○3△8的值.答案】(1)14;(2)55解析】(1)先算3○4=12,再算2△12=14;(2)先算5○3=15,再算15△8=55.2、【★★★】设a、b都表示两个不同的数,规定:a△b=a+b+3,a○b=a×b+2.(1)求3△4○5的值.2)求2○5△7的值.答案】(1)29;(2)39解析】(1)先算4○5=20,再算3△20=29;(2)先算2○5=10,再算10△7=39.拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x+y,x◇y=x+y+2xy.已知3□a=10,a◇4=28,求a 的值.答案】a=2解析】将已知条件代入式子得:3+a=10,解得a=7.再将a 代入式子得:7◇4=7+4+2×7×4=56,解得7+2×a+8=28,解得a=2.1、求常数A的值和3□(4□5)的结果常数A的值可以通过建立方程解得,即3×4+2A=16,解得A=2.对于3□(4□5),需要先计算括号里面的值,即4□5=4×5+2×2=20+4=24.然后再计算3□24,即3×24+2×2=72+4=76.2、求x的值根据题目所给的规定,a b a a1a2…(a+b-1),其中a、b表示自然数。

已知x(14)65,需要先计算1△4=1+2+3+4=10,然后计算x△10=65.根据等式x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,可以得到10x+45=65,解得x=2.拓展提升:1、求33的值和25的值根据规定,a b a!(a+b-1),其中a、b表示自然数。

奥数专题_定义新运算(带答案完美排版)

奥数专题_定义新运算(带答案完美排版)

定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律:a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.m=1n =2 m=2 n =23(舍去)m=3 n =1课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?例5、x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a , ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b ÷a ba +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?。

小学六年级奥数 第六章 定义新运算

小学六年级奥数 第六章 定义新运算

第六章 定义新运算知识要点加、减、乘、除四则运算是数学中最基本的运算,它的意义、法则已被我们所熟知。

所谓“定义新运算”,是以四则运算为基础,以一种特殊的符号来表示的特别定义(规定)的运算。

运算时要严格按照新运算的定义进行代换,再进行计算。

具体程序如下:1.代换。

即按照定义符号的运算方法,进行代换。

注意此程序不能轻易改变原有的运算顺序。

2.计算。

准确地计算代换后的算式结果。

例1 (第五届“希望杯”邀请赛试题)对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b⨯+⨯⨯(m 是一个确定的整数)。

如果1⊗4=2⊗3,那么3⊗4= 。

点拨 首先,应确定所定义新运算中待定的常数m ,利用1⊗4=2⊗3,求出m 的值,再求3⊗4的值。

解 因为a ⊗b =2m a b a b⨯+⨯⨯ 所以1⊗4=14214m ⨯+⨯⨯=48m + 2⊗3=23223m ⨯+⨯⨯=2312m + 又已知 1⊗4=2⊗3所以48m +=2312m + 即 31224m +=4624m + 于是 3m +12=4m +6解得 m =6从而 3⊗4=634234⨯+⨯⨯=2224=1112说明 要准确理解新运算⊗的含义,将特定的⊗转化为普通的加、乘、除运算。

例2 定义运算“*”,对于任意数a 和b ,有a*b =a×b-(a +b)。

计算:(1)7*8;(2)12*4;(3)(3*5)*7;(4)4*(9*10).点拨 (1)、(2)根据题意可知“a*b =a×b-(a +b)”,两个数按定义的运算步骤是两个数的积减去这两个数的和。

(3)先计算出括号中3*5的值,得3*5=3×5-(3+5)=15-8=7。

求出括号内的值是7,原式(3*5)*7可化简为7*7,再计算出它的值即可。

(4)先计算9*10的值,9*10=9×10-(9+10)=90-19=71。

进而求4*(9*10),即4*71的值。

小学数学人教新版六年级的上册奥数系列讲座:定义新运算(含答案解析)

小学数学人教新版六年级的上册奥数系列讲座:定义新运算(含答案解析)

小学数学人教新版六年级上册适用资料定义新运算一、知识重点定义新运算是指运用某种特别符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,重点是要正确地理解新定义的算式含义,而后严格依据新定义的计算程序,将数值代入,转变成惯例的四则运算算式进行计算。

定义新运算是一种人为的、暂时性的运算形式,它使用的是一些特别的运算符号,如: *、△、⊙等,这是与四则运算中的“+、-、×、÷”不一样的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转变前,是不合适于各种运算定律的。

二、精讲精练【例题 1 】假设 a*b=(a+b)+(a-b) ,求 13*5 和 13* (5*4 )。

【思路导航】这题的新运算被定义为: a*b 等于 a 和 b 两数之和加上两数之差。

这里的“ * ”就代表一种新运算。

在定义新运算中相同规定了要先算小括号里的。

所以,在 13*( 5*4 )13*5= (13+5 ) + (13-5 )=18+8=26中,就要先算小括号里的5*4= (5+4 )+ (5-4 )=10( 5*4 )。

13* (5*4 ) =13*10= ( 13+10 )+ (13-10 )练习 1:=261.将新运算“ * ”定义为: a*b=(a+b)×(a-b).。

求27*9。

2.设 a*b=a2+2b,那么求10*6和5*(2*8)。

3.设 a*b=3a - b×1/2 ,求( 25*12 )* (10*5 )。

【例题 2 】设 p 、q 是两个数,规定: p △q=4 ×q-(p+q)÷2。

求3△(4△6)。

1【思路导航】依据定义先算 4△6 。

在这里“△”是新的运算符号。

3△(4 △6)=3 △【4×6 -( 4+6 )÷2】=3 △19=4 ×19 -( 3+19 )÷2=76-11=65练习 2:1.设 p、 q 是两个数,规定p △q =4×q -( p+q )÷2,求 5△(6 △4)。

最新二年级奥数第六讲定义新运算

最新二年级奥数第六讲定义新运算

二年级奥数第六讲定义新运算看了这个标题,小朋友们一定觉得很奇怪吧,这是什么意思啊?其实,这是一种临时规定的计算方法。

比如,这里重新设定一个符号“⊙”,并规定: 8⊙3=8-3=5 ,那么7⊙2等于多少呢?很明显,这里带有⊙的算式代表一个减法算式,所以,7⊙2=7-2=5 。

其实,说到底,就是根据已知的算式,找到带有这种符号的算式的计算方法,然后运用到类似的算式中。

例一:已知6⊙2=6+66 ,5⊙3=5+55+555 求:4⊙2 ,8⊙3 。

分析:从已知的两个算式中可知,带有“⊙”的算式表示连加计算。

“⊙”前面的数表示的是加数各数位上的数字,而“⊙”后面的数字表示加数的个数。

4⊙2=4+44=48 8⊙3=8+88+888=984 例二:如果3★2=3×2+2=8 ,4★5=4×5+5=25 ,那么6★5=?,4★3=?分析:从已知的算式中观察得知,“★”表示两个数的积再加上第二个数。

6★5=6×5+5=35 4★3=4×3+3=15技巧点拨:在做新定义运算时,关键是根据已知的算式,找到含有这种符号的规律,然后运用这个规律解答相应的算式。

练习1、已知:2★3=2×3-2-3 ,求:8★7=?2、已知:6★2=6×2+6÷2 ,求:8★4=?3、如果2★3=2+3+4 ,5★4=5+6+7+8 ,那么3★5=? 6★3=?4、5、如果5★3=(5+3)÷(5-3)=4?那么:⑴ 7★5= ⑵ 4★(6★2)=精品文档6、如果:1★ =12★=1+2=33★=1+2+3=64★=1+2+3+4 =10那么:① 8★= ?②□★=55 ,□= ?精品文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二年级奥数第六讲定义新运算
看了这个标题,小朋友们一定觉得很奇怪吧,这是什么意思啊?其实,这是一种临时规定的计算方法。

比如,这里重新设定一个符号“⊙”,并规定: 8⊙3=8-3=5 ,那么7⊙2等于多少呢?很明显,这里带有⊙的算式代表一个减法算式,所以,7⊙2=7-2=5 。

其实,说到底,就是根据已知的算式,找到带有这种符号的算式的计算方法,然后运用到类似的算式中。

例一:已知6⊙2=6+66 ,5⊙3=5+55+555 求:4⊙2 ,8⊙3 。

分析:从已知的两个算式中可知,带有“⊙”的算式表示连加计算。

“⊙”前面的数表示的是加数各数位上的数字,而“⊙”后面的数字表示加数的个数。

4⊙2=4+44=48 8⊙3=8+88+888=984 例二:如果3★2=3×2+2=8 ,4★5=4×5+5=25 ,那么6★5=?,4★3=?
分析:从已知的算式中观察得知,“★”表示两个数的积再加上第二个数。

6★5=6×5+5=35 4★3=4×3+3=15
技巧点拨:在做新定义运算时,关键是根据已知的算式,找到含有这种符号的规律,然后运用这个规律解答相应的算式。

练习
1、已知:2★3=2×3-2-3 ,求:8★7=?
2、已知:6★2=6×2+6÷2 ,求:8★4=?
3、如果2★3=2+3+4 ,5★4=5+6+7+8 ,那么3★5=? 6★3=?
4、如果5★3=(5+3)÷(5-3)=4?那么:
⑴ 7★5= ⑵ 4★(6★2)=
5、如果:1★ =1
2★=1+2=3
3★=1+2+3=6
4★=1+2+3+4 =10
那么:① 8★= ?②□★=55 ,□= ?。

相关文档
最新文档