南京市九年级(上)期末数学试卷(含答案)

合集下载

南京市第一学期九年级数学期末试卷(含解析)

南京市第一学期九年级数学期末试卷(含解析)

南京市第一学期九年级数学期末试卷(含解析)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°3.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .704.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A .9︰16B .3︰4C .9︰4D .3︰166.在△ABC 中,若|sinA ﹣12|+2cosB )2=0,则∠C 的度数是( ) A .45° B .75° C .105°D .120°7.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =- 8.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm πB .290cm πC .2130cm πD .2155cm π9.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=10.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 11.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1 B .0 C .1 D .2 12.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-113.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm15.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.17.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.20.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______. 21.方程22x x =的根是________.22.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.23.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.24.如图,已知△ABC 3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).26.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.27.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM =_____.28.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .29.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.⊙O 中,直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,且60DEB ∠=︒,求CD 的长.32.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。

南京市九年级(上)期末数学试卷解析版

南京市九年级(上)期末数学试卷解析版

南京市九年级(上)期末数学试卷解析版一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A.13B.512C.12D.12.如图,OA、OB是⊙O的半径,C是⊙O上一点.若∠OAC=16°,∠OBC=54°,则∠AOB的大小是()A.70°B.72°C.74°D.76°3.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.45B.34C.43D.354.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A.B.C.D.5.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°6.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.433B.23C.334D.3227.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D 是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为()A.23B.25C.4 D.68.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断9.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.10.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3 11.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=12.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.386cm D.7.64cm13.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变14.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°15.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题16.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____.17.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.18.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.21.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.22.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.23.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;24.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.25.一组数据:2,5,3,1,6,则这组数据的中位数是________.26.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.27.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.28.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.29.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.30.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .三、解答题31.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠.(1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.32.将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG .(1)如图,当点E 在BD 上时.求证:FD =CD ;(2)当α为何值时,GC =GB ?画出图形,并说明理由.33.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.34.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.35.在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)四、压轴题36.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ;②如图3,弦AB 与弦CD 不相交:③如图4,点B 与点C 重合.37.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上;①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.38.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)39.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.40.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.2.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.3.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3,∴2222AB AC BC 345=+=+=,∵CD ⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.4.C解析:C【解析】【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.5.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可.【详解】∵BC 是⊙O 的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D .【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.C解析:C【解析】【分析】 根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO , ∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3=∴13333224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.7.B解析:B【解析】【分析】点E 在以F 为圆心的圆上运到,要使AE 最大,则AE 过F ,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425+=+=BC CD故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.8.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.9.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.11.D解析:D【解析】【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.12.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.13.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 14.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.15.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .二、填空题16.20°【解析】【分析】先根据三角形内角和计算出∠B 的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B 的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A =50°,∠C =110°,∴∠B =180°﹣50°﹣110°=20°,∵△ABC ∽△A′B′C′,∴∠B′=∠B =20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.17.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随 解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 19.1, ,【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图解析:1,83 ,32【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图,当DP ∥AB 时,△PDC ∽△ABC ,∴PD CD AB BC =,∴236DP =,∴DP=1; ②如图,当DP ∥AC 时,△PBD ∽△ABC .∴PD BD AC BC =,∴446DP =,∴DP=83; ③如图,当∠CDP=∠A 时,∠DPC ∽△ABC ,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

南京市九年级上学期期末数学试卷 (解析版)

南京市九年级上学期期末数学试卷 (解析版)

南京市九年级上学期期末数学试卷 (解析版)一、选择题1.一元二次方程x 2=-3x 的解是( ) A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-32.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .193.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45° B .75° C .105° D .120°4.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .355.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .6.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位7.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A .2B .3C .4D .58.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位9.如图,BC是O的直径,A,D是O上的两点,连接AB,AD,BD,若70ADB︒∠=,则ABC∠的度数是()A.20︒B.70︒C.30︒D.90︒10.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3 11.二次函数y=3(x+4)2﹣5的图象的顶点坐标为()A.(4,5)B.(﹣4,5)C.(4,﹣5)D.(﹣4,﹣5)12.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.386cm D.7.64cm13.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y314.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变15.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°二、填空题16.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.17.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________.18.若关于x的一元二次方程12x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.19.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.20.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.21.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.22.抛物线()2322y x =+-的顶点坐标是______.23.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.24.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.25.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.26.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.27.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.28.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM =_____.29.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.30.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.三、解答题31.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.32.(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)33.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.34.(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)35.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.四、压轴题36.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.37.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.38.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y关于x的函数关系式.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.2.D解析:D 【解析】 【分析】由DE ∥BC 知△ADE ∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D. 【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.3.C解析:C 【解析】 【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可. 【详解】由题意得,sinA-12=0,2-cosB=0,即sinA=12,2=cosB , 解得,∠A=30°,∠B=45°, ∴∠C=180°-∠A-∠B=105°, 故选C . 【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.4.A解析:A 【解析】 【分析】根据勾股定理求出AB 的长,在求出∠ACD 的等角∠B ,即可得到答案. 【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3,∴AB 5==,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.5.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.6.D解析:D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.7.B解析:B【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.8.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.10.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2,再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2.故选:A .【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.11.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 12.A解析:A【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.13.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.14.D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O 的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n °,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 18.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k 224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.19.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°20..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.21.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 22.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .23.25%【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案. 【详解】设每次降价的百分比为x , ,解得:x1=0.25=25%,x2=1.75(不合解析:25% 【解析】 【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案. 【详解】设每次降价的百分比为x ,280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去) 故答案为:25%. 【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1 x )2=后量,即可解答此类问题.24.【解析】 【分析】根据重心的性质可得AG :DG =2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE ,即可求出结论. 【详解】∵点G 为△ABC 的重心, ∴AG :DG =2:1, ∵GE解析:【解析】 【分析】根据重心的性质可得AG :DG =2:1,然后根据平行线分线段成比例定理可得CE DE =AGDG=2,从而求出CE ,即可求出结论. 【详解】∵点G 为△ABC 的重心, ∴AG :DG =2:1,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.25.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.26.【解析】【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,【解析】 【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答. 【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF , ∵∠DCE=90°,DE=4,DP=PE , ∴PC=12DE=2, ∵14CF CP =,14CP CB = ∴CF CPCP CB= 又∵∠PCF=∠BCP , ∴△PCF ∽△BCP , ∴14PF CF PB CP == ∴PA+14PB=PA+PF ,∵PA+PF≥AF ,==∴PA+14∴PA+14PB故答案为2.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.27.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.28.【解析】【分析】根据题目中的函数解析式可得到点P的坐标,然后设出点M、点N的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2, ∴点P 的坐标为(1解析:【解析】 【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MNPM即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2, ∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4),∴2MNPM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2. 【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MNPM . 29.【解析】 【分析】作OH⊥AB,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB∥CD,所以四边形ABCD 是平行解析:【解析】 【分析】作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解. 【详解】如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)4;(2)y=2x+83π-43 (0<x≤23+4)【解析】【分析】(1)根据圆周角定理得到△AOB是等边三角形,求出⊙O的半径;(2)过点O作OH⊥AB,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB,∴△AOB是等边三角形,∴⊙O的半径是4;(2)解:过点O作OH⊥AB,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=12AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH22AO AH3∴y=16×16 π-123+12×4×x=2x+83π-3<34).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.32.(1)2mn;(2)见解析.【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则AB ACAC AP=,即m nn AP=,∴AP=2mn.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.33.(1)49;(2)13【解析】【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可.【详解】解:列表得:左直右左左左左直左右直左直直直直右右左右直右右右相同有3种情况(1)P(两辆车中恰有一辆车向左转)=49;(2)P(两辆车行驶方向相同)=31 93 =.【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.34.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=12AB,CN12CD,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.35.(1)①y=-10x+700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2. 【解析】 【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解; ②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可. 【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0) 根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元 设当该商品的售价是x 元/件时,月销售利润为w 元 根据题意得:w =y (x -30)=(x -30)(-10x +700) =-10x 2+1000 x -21000=-10(x -50)2+4000 ∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得: w=[x-(m+30)](-10x+700) =-10x 2+(1000+10m )x-21000-700m 对称轴为x=50+2m ∵m >0 ∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元 ∴-10×402+(1000+10m )×40-21000-700m=2400 解得:m=2 ∴m 的值为2. 【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.四、压轴题36.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4 【解析】。

2023-2024学年江苏省南京市鼓楼区九年级(上)期末数学试卷+答案解析

2023-2024学年江苏省南京市鼓楼区九年级(上)期末数学试卷+答案解析

一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.平面内,的半径为3,若点P 在外,则OP 的长可能为( )A. 4B. 3C. 2D. 12.一元二次方程的根的情况是2023-2024学年江苏省南京市鼓楼区九年级(上)期末数学试卷( )A. 没有实数根B. 有一个实数根C. 有两个不相等的实数根D. 有两个相等的实数根3.下列实际问题中的y 与x 之间的函数表达式是二次函数的是( )A. 正方体集装箱的体积,棱长xmB. 高为14m 的圆柱形储油罐的体积,底面圆半径xmC. 妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D. 小莉驾车以的速度从南京出发到上海,行驶xh ,距上海ykm 4.如图,D ,E 分别是的边AB ,AC 上的点,,,若的周长为6,则的周长等于( )A. 24B. 18C. 12D. 95.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离与下落时间之间的函数表达式为其中g 取值为小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s 后落地,则该建筑物的高度约为( )A. 98mB.C. 49mD. 6.平面直角坐标系内,已知点,,当时,若最大,则t 的值为( )A.B.C.D.二、填空题:本题共10小题,每小题3分,共30分。

7.若,则为__________.8.点C是线段AB的黄金分割点,若,则__________9.某汽车厂商经过两次增产,将汽车年产量由万辆提升至6万辆,设平均每次增产的百分率是x,可列方程为__________.10.一个圆锥的底面圆半径是1,母线长是3,沿着一条母线将圆锥侧面剪开并展平,得到一个扇形,则这个扇形的圆心角度数为__________11.将二次函数的图象向左平移1个单位,再向上平移一个单位,得到的新图象函数的表达式为__________.12.有3个样本如图所示,关于它们的离散程度有下列几种说法:①样本1与样本3的离散程度相同;②样本2的离散程度最小;③三组数据的离散程度从小到大依次为:样本2、样本3、样本正确的序号为__________.13.如图,AB是的直径,弦于点E,若,,则OA长为__________.14.分别以等边的三个顶点为圆心,边长为半径画弧得到的曲边三角形叫莱洛三角形.如图,等边的边长为2cm,则图中阴影部分的面积为__________15.如图,夜晚路灯下,小莉在点D处测得自己影长,在点G处测得自己影长,E、D、G、B在同一条直线上.已知小莉身高为,则灯杆AB的高度为__________16.中,,,点I是的内心,点O是的外心,则__________.三、计算题:本大题共1小题,共6分。

江苏省南京市联合体2023-2024学年九年级上学期期末数学试卷

江苏省南京市联合体2023-2024学年九年级上学期期末数学试卷

2023-2024学年江苏省南京市联合体九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合1.(2分)一元二次方程x2=3x的解是()A.x1=x2=0B.x1=x2=3C.x1=0,x2=3D.x1=0,x2=﹣32.(2分)如图,转盘中各个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向白色区域的概率为()A.B.C.D.3.(2分)若一组数据1、3、5、7、x的方差比另一组数据11、13、15、17、19的方差小,则x不可以是()A.10B.8C.6D.44.(2分)如图,△ABC内接于⊙O,若,∠C=45°,则⊙O的半径为()A.1B.2C.D.5.(2分)如图,在△ABC中,点D,E,F分别在AB,AC,BC上.若DE∥BC,DF∥AC,则下列式子正确的是()A.B.C.D.6.(2分)二次函数y=ax2+bx+c的图象如图所示.下列结论:①2a+b=0;②a+b+c>0;③方程ax2+bx+c=a有两个不相等的实数根;④不等式a(x+1)2+b(x+1)+c<0的解集是﹣2<x<2.其中所有正确结论的序号是()A.①③B.②④C.①③④D.①②③④二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写答题卡相应位置上)7.(2分)若=,则=.8.(2分)二次函数y=﹣(x+1)2+2的图象的顶点坐标是.9.(2分)已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.10.(2分)设x1,x2是方程x2﹣4x+m=0的两个根,且x1=x2,则m的值为.11.(2分)一个扇形的圆心角为120°,半径为4,则该扇形的弧长为.12.(2分)已知△ABC∽△DEF,△ABC与△DEF面积的比为1:4.若AB=2,则DE的长为.13.(2分)如图,AB∥CD,AD与BC相交于点E.若AB=2,CD=3,AD=4,则AE的长为.14.(2分)已知二次函数y=(x﹣1)2﹣3,当0<x<3时,y的取值范围是.15.(2分)如图,过四边形ABCD的顶点A,C,D的圆,分别交AB,BC于点E,F.若∠B=50°,的度数为56°,则∠D=°.16.(2分)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥AB,交∠ACB的平分线于点D,AB与CD相交于点E.若BE=3,BD=6,则AC的长为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明17.(8分)解方程:(1)x2﹣4x+3=0;(2)x﹣2﹣x(x﹣2)=0.18.(8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如下:甲:5,6,7,6,6;乙:3,6,6,7,8;(1)根据所给数据填写下表:平均数中位数众数甲66乙6(2)利用方差判断这5次射靶是甲的成绩波动大还是乙的成绩波动大.19.(8分)某校开设了插花、烹饪、种植3个劳动课程,每位同学可以随机选择其中一个课程参加学习.(1)甲同学选择插花课程的概率是;(2)求甲、乙两名同学选择同一个课程的概率.20.(7分)如图,在菱形ABCD中,过D作DE⊥BC交BC的延长线于点E,过E作EF⊥AB交AB于点F.(1)求证△DEC∽△EFB;(2)若BC=6,CE=2,求AF的长.21.(7分)已知y是x的二次函数,y与x的部分对应值如下表:x…﹣2﹣10123…y…941014…(1)求该二次函数的表达式;(2)将该函数图象沿直线x=﹣1翻折,所得图象的函数表达式为.22.(8分)如图,AB是⊙O的弦,C是的中点.(1)连接OC,求证:OC垂直平分AB;(2)若AB=8,,求⊙O的半径.23.(8分)如图,AD,BC相交于点E,AB∥CD∥EF,B,F,D在一条直线上.AB=10,CD=15.(1)求的值;(2)求EF的长.24.(8分)某游乐城销售一种玩具,当售价为50元/件时,每天可以销售40件.现游乐城对该玩具开展酬谢促销活动,通过市场调研发现,该玩具单价每降1元,销量增加4件.若该玩具进价为30元/件.(1)售价为多少元时,每天的利润为864元?(2)售价为多少元时,每天的利润最大,最大利润为多少元?25.(8分)已知二次函数y=ax2﹣4ax(a为常数).(1)求证:该函数的图象与x轴总有两个公共点;(2)该函数图象必过两个定点,它们的坐标分别为、;(3)当0<x<4时,y<4,直接写出a的取值范围.26.(9分)如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,点D在AB上,AC=AD,连接CD并延长交⊙O于点E,点F在AB的延长线上,且∠AFE=∠ABC.(1)连接BE,求证BE=DE;(2)求证:EF是⊙O的切线;(3)若AC=8,BC=6,则DE的长为.27.(9分)【经验积累】如图①,在正方形ABCD中,E是AB上任意一点,连接DE,CE,过点A作AF⊥DE,垂足为F.(1)求证AD2=DF•DE.(2)(Ⅰ)求证△CDF∽△EDC;(Ⅱ)若,则的值为.【方法迁移】(3)如图②,C是∠AOB平分线上的一点,过点C作CP⊥OA,垂足为P,Q是直线OB上的一个动点.若∠AOB=60°,CP=2,则的最大值为.2023-2024学年江苏省南京市联合体九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合1.(2分)一元二次方程x2=3x的解是()A.x1=x2=0B.x1=x2=3C.x1=0,x2=3D.x1=0,x2=﹣3【解答】解:x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:C.2.(2分)如图,转盘中各个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向白色区域的概率为()A.B.C.D.【解答】解:∵圆被等分成4份,其中白色区域占3份,∴指针落在白色区域的概率为.故选:D.3.(2分)若一组数据1、3、5、7、x的方差比另一组数据11、13、15、17、19的方差小,则x不可以是()A.10B.8C.6D.4【解答】解:数据11、13、15、17、19中,相邻两个数相差为2,一组数据1,3,5,7,x前4个数据也是相差2,若x=9或x=﹣1时,两组数据方差相等,数据1、3、5、7、x的方差比另一组数据11、13、15、17、19的方差小,则x的值不可能是10.故选:A.4.(2分)如图,△ABC内接于⊙O,若,∠C=45°,则⊙O的半径为()A.1B.2C.D.【解答】解:连接AO,并延长交⊙O于点D,连接BD,∵∠C=45°,∴∠D=45°,∵AD为⊙O的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴AD===2,∴⊙O的半径AO==.故选:C.5.(2分)如图,在△ABC中,点D,E,F分别在AB,AC,BC上.若DE∥BC,DF∥AC,则下列式子正确的是()A.B.C.D.【解答】解:∵DE∥BC,DF∥AC,∴△ADE∽△ABC,△BDF∽△BAC,∴,=,==,=,故A,B,C错误,D正确,故选:D.6.(2分)二次函数y=ax2+bx+c的图象如图所示.下列结论:①2a+b=0;②a+b+c>0;③方程ax2+bx+c=a有两个不相等的实数根;④不等式a(x+1)2+b(x+1)+c<0的解集是﹣2<x<2.其中所有正确结论的序号是()A.①③B.②④C.①③④D.①②③④【解答】解:由图象得:a>0,与x轴相交于点(﹣1,0)和(3,0),∴抛物线的对称轴为x==1,即﹣=1,∴b+2a=0,故①是正确的;由图象得:当x=1,y<0,即a+b+c<0,故②是错误的;∵a>0,∴y=a在x轴的上方,∴y=ax2+bx+c的图象与y=a有两个交点,故③是正确的;根据平移得:y=ax2+bx+c的图象向左平移1个单位得y=a(x+1)2+b(x+1)+c的图象,∴y=a(x+1)2+b(x+1)+c的图象与x轴的交点为(﹣2,0)(2,0),∴不等式a(x+1)2+b(x+1)+c<0的解集是﹣2<x<2.故④是正确的;故选:C.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写答题卡相应位置上)7.(2分)若=,则=﹣.【解答】解:∵=,∴设x=2k,y=3k(k≠0),则==﹣.故答案为:﹣.8.(2分)二次函数y=﹣(x+1)2+2的图象的顶点坐标是(﹣1,2).【解答】解:∵抛物线解析式为y=﹣(x+1)2+2,∴二次函数图象的顶点坐标是(﹣1,2).故答案为:(﹣1,2).9.(2分)已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=2﹣2.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=AB=×4=2﹣2.故答案为2﹣2.10.(2分)设x1,x2是方程x2﹣4x+m=0的两个根,且x1=x2,则m的值为4.【解答】解:根据题意得x1+x2=4,x1x2=m,∵x1=x2,∴x1=x2=2,∴m=2×2=4.故答案为:4.11.(2分)一个扇形的圆心角为120°,半径为4,则该扇形的弧长为π.【解答】解:根据弧长的公式l=,得到:l==π,故答案为:π.12.(2分)已知△ABC∽△DEF,△ABC与△DEF面积的比为1:4.若AB=2,则DE的长为4.【解答】解:∵△ABC∽△DEF,△ABC与△DEF面积之比为1:4,∴△ABC与△DEF相似比为1:2,即=,∵AB=2,∴DE=4.故答案为:4.13.(2分)如图,AB∥CD,AD与BC相交于点E.若AB=2,CD=3,AD=4,则AE的长为.【解答】解:∵AB∥CD,∴△ABE∽△DCE,∵AB=2,CD=3,AD=4,∴==,∴AE=AD=AD=×4=,故答案为:.14.(2分)已知二次函数y=(x﹣1)2﹣3,当0<x<3时,y的取值范围是﹣3<y<1.【解答】解:∵二次函数y=(x﹣1)2﹣3中a=1>0,∴有最小值﹣3,当x=3时y有最大值=(3﹣1)2﹣3=1,∴当0<x<3时,y的取值范围﹣3≤y<1,故答案为:﹣3≤y<1.15.(2分)如图,过四边形ABCD的顶点A,C,D的圆,分别交AB,BC于点E,F.若∠B=50°,的度数为56°,则∠D=102°.【解答】解:如图,连接AF,∵的度数为56°,∴∠F AE=×56°=28°,∴∠AFC=∠F AE+∠B=28°+50°=78°,∵四边形AFCD为圆内接四边形,∴∠D+∠AFC=180°,∴∠D=180°﹣78°=102°,故答案为:102.16.(2分)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥AB,交∠ACB的平分线于点D,AB与CD相交于点E.若BE=3,BD=6,则AC的长为4.【解答】解:作EF⊥CB于点F,DH⊥CB交CB的延长线于点H,则∠H=∠BFE=∠CFE=90°,∵BD⊥AB,BE=3,BD=6,∴∠EBD=90°,∴∠BDH=∠EBF=90°﹣∠DBH,∴△BDH∽△EBF,∴====2,∴BH=2EF,DH=2BF,∵∠ACB=90°,CD平分∠ACB,∴∠FCE=∠ACE=∠ACB=45°,∴∠FEC=∠HDC=∠FCE=45°,∴CF=EF,CH=DH=2BF,∴BH=2CF,∴CF+BF+2CF=2BF,∴BF=3CF=3EF,∴BE===EF=3,∴CF=EF=3,BF=3EF=3×3=9,∴BC=BF+CF=9+3=12,∵∠ACB=∠EFB=90°,∠ABC=∠EBF,∴△ABC∽△EBF,∴===,∴AC=EF=×3=4,故答案为:4.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明17.(8分)解方程:(1)x2﹣4x+3=0;(2)x﹣2﹣x(x﹣2)=0.【解答】解:(1)x2﹣4x+3=0,(x ﹣3)(x ﹣1)=0,x ﹣3=0或x ﹣1=0,解得:x 1=3,x 2=1;(2)x ﹣2﹣x (x ﹣2)=0,(x ﹣2)(1﹣x )=0,x ﹣2=0或1﹣x =0,解得:x 1=2,x 2=1.18.(8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如下:甲:5,6,7,6,6;乙:3,6,6,7,8;(1)根据所给数据填写下表:平均数 中位数 众数 甲 6 66乙 6 6 6(2)利用方差判断这5次射靶是甲的成绩波动大还是乙的成绩波动大.【解答】解:(1)甲射靶的成绩为:5,6,6,6,7,乙射靶的成绩为:3,6,6,7,8,∴甲的中位数为:6,乙的平均数为:=6,众数为:6, 故答案为:6,6,6;(2)S 甲2=×[(6﹣5)2+(6﹣6)2+(6﹣6)2+(6﹣6)2+(7﹣6)2]=0.4,S 乙2=×[(3﹣6)2+(6﹣6)2+(6﹣6)2+(7﹣6)2+(8﹣6)2]=2.8,因为S 甲2<S 乙2,所以乙的成绩波动大.19.(8分)某校开设了插花、烹饪、种植3个劳动课程,每位同学可以随机选择其中一个课程参加学习.(1)甲同学选择插花课程的概率是 ;(2)求甲、乙两名同学选择同一个课程的概率.【解答】解:(1)∵某校开设了插花、烹饪、种植3个劳动课程,∴甲同学选择插花课程的概率是,故答案为:;(2)把插花、烹饪、种植3个劳动课程分别记为A,B,C,画树状图如下:共有9种等可能的结果,其中甲、乙两名同学选择同一个课程的结果有3种,∴甲、乙两名同学选择同一个课程的概率为=.20.(7分)如图,在菱形ABCD中,过D作DE⊥BC交BC的延长线于点E,过E作EF⊥AB交AB于点F.(1)求证△DEC∽△EFB;(2)若BC=6,CE=2,求AF的长.【解答】(1)证明:∵四边形ABCD是菱形,∴CD∥AB,∴∠DCE=∠EBF,∵DE⊥BC交BC的延长线于点E,EF⊥AB于点F,∴∠DEC=∠EFB=90°,∴△DEC∽△EFB.(2)解:∵BC=6,CE=2,∴AB=CD=BC=6,BE=BC+CE=6+2=8,∵△DEC∽△EFB,∴=,∴BF===,∴AF=AB﹣BF=6﹣=,∴AF的长是.21.(7分)已知y是x的二次函数,y与x的部分对应值如下表:x…﹣2﹣10123…y…941014…(1)求该二次函数的表达式;(2)将该函数图象沿直线x=﹣1翻折,所得图象的函数表达式为y=x2+6x+9.【解答】解:(1)由表格得:抛物线的顶点为(1,0),设函数关系式为y=a(x﹣1)2,则1=a(0﹣1)2,解得:a=1,∴y=(x﹣1)2=x2﹣2x+1,∴该二次函数的表达式为y=x2﹣2x+1;(2)由(1)得抛物线的顶点为(1,0),点(1,0)关于直线x=﹣1的对称点为(﹣3,0),∴该函数图象沿直线x=﹣1翻折,所得图象的函数表达式为y=(x+3)2=x2+6x+9.故答案为:y=x2+6x+9.22.(8分)如图,AB是⊙O的弦,C是的中点.(1)连接OC,求证:OC垂直平分AB;(2)若AB=8,,求⊙O的半径.【解答】(1)证明:连接OA,OB,OC,∵由C是的中点,∴=,∴∠AOC=∠BOC,∵OA=OB,∴OC垂直平分AB;(2)解:由(1)知,OC垂直平分AB,∵AB=8,,∴AD=AB=4,∴CD===2,设⊙O的半径为r,则OD=r﹣2,OA=r,在Rt△AOD中,AD2+OD2=OA2,即42+(r﹣2)2=r2,解得r=5.23.(8分)如图,AD,BC相交于点E,AB∥CD∥EF,B,F,D在一条直线上.AB=10,CD=15.(1)求的值;(2)求EF的长.【解答】解:(1)∵AB∥CD,∴===,又∵AB∥EF,∴==;(2)∵CD∥EF,∴=,又∵CD=15,=,∴EF=CD•=15×=6.24.(8分)某游乐城销售一种玩具,当售价为50元/件时,每天可以销售40件.现游乐城对该玩具开展酬谢促销活动,通过市场调研发现,该玩具单价每降1元,销量增加4件.若该玩具进价为30元/件.(1)售价为多少元时,每天的利润为864元?(2)售价为多少元时,每天的利润最大,最大利润为多少元?【解答】解:(1)设售价为x元时,每天的利润为864元,由题意得:(x﹣30)[4+4×(50﹣x)]=864,解得:x1=46,x2=44,答:售价为46或44元时,每天的利润为864元,(2)设售价为x元时,每天的利润为w元,由题意得:w=(x﹣30)[4+4×(50﹣x)],=﹣4x2+280x﹣6000,当x=﹣=35时,w有最大值,最大值为900元,答:售价为35元时,每天的利润最大,最大利润为900元.25.(8分)已知二次函数y=ax2﹣4ax(a为常数).(1)求证:该函数的图象与x轴总有两个公共点;(2)该函数图象必过两个定点,它们的坐标分别为(0,0)、(4,0);(3)当0<x<4时,y<4,直接写出a的取值范围.【解答】(1)证明:由题知,(﹣4a)2﹣4a×0=16a2,因为a≠0,所以16a2>0,故该函数的图象与x轴总有两个公共点.(2)解:因为y=ax2﹣4ax=(x2﹣4x)a,又因为函数图象必过两个定点,即与a的取值无关,所以x2﹣4x=0,解得x=0或4,所以定点的坐标为(0,0)和(4,0).故答案为:(0,0),(4,0).(3)解:因为抛物线过定点(0,0)和(4,0),若a>0,0<x<4时,此时抛物线都在x轴下方,满足y<4.若a<0,0<x<4时,当x=2时的函数值小于4,即4a﹣8a<4,解得a>﹣1,所以﹣1<a<0.综上所述,﹣1<a<0或a>0.26.(9分)如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,点D在AB上,AC=AD,连接CD并延长交⊙O于点E,点F在AB的延长线上,且∠AFE=∠ABC.(1)连接BE,求证BE=DE(2)求证:EF是⊙O的切线;(3)若AC=8,BC=6,则DE的长为.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,∵,∴∠ACD=∠EBD,∵∠EDB=∠ADC,∴∠EDB=∠EBD,∴BE=DE;(2)证明:如图1,连接OE,∵OB=OE,∴∠DBE=∠OEB,∵∠DBE=∠ACD=∠ADC,∴∠OEB=∠ADC,∴∠EOB=∠CAD,∵AB是⊙O的直径,∴∠CAD+∠ABC=90°,∵∠ABC=∠AFE,∴∠OEB+∠AFE=90°,∴∠OEF=90°,∴OE⊥EF,∴EF是⊙O的切线;(3)解:如图2,作CG⊥AB于G,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∴BD=AB﹣AD=AB﹣AC=2,∵sin A=,cos A=,∴,,∴CG=,AG=,∴DG=AD﹣AG=AC﹣AG=8﹣,∴CD==,∵∠ACD=∠ADC=∠EDB=∠EBD,∴△EDB∽△ADC,∴,∴,∴DE=,故答案为:.27.(9分)【经验积累】如图①,在正方形ABCD中,是AB上任意一点,连接DE,CE,过点A作AF⊥DE,垂足为F.(1)求证AD2=DF•DE.(2)(Ⅰ)求证△CDF∽△EDC;(Ⅱ)若,则的值为.【方法迁移】(3)如图②,C是∠AOB平分线上的一点,过点C作CP⊥OA,垂足为P,Q是直线OB上的一个动点.若∠AOB=60°,CP=2,则的最大值为.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵AF⊥DE,∴∠DAF+∠ADE=90°,∴∠ADF=∠AED,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴,∴AD2=DF•DE.(2)①∵四边形ABCD是正方形,∴AD=DC,由(1)知,∴,∵∠CDF=∠EDC,∴△CDF∽△EDC,②∵,∴,∵=,∴=,∴=,故答案为:;(3)过点P作PM⊥OB于点M,过点Q作QN⊥OB,如图:∵OC平分∠AOB,∠AOB=60°,CP=2,∴∠POC=∠CON=30°,OC=4,OP=2,∴CN=2,PM=3,OM=,ON=2,MN=,∴PQ≤3,CQ≤2,当PQ最小时,即Q在M处,∴CM=,当CQ最小时,即点Q在点N处,∴PN=2,∴≤≤,∴,∴,即,∴的最大值为:,故答案为:.。

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。

江苏省南京市九年级上学期期末数学试卷 (解析版)

江苏省南京市九年级上学期期末数学试卷 (解析版)

江苏省南京市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=03.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变4.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A .9︰16 B .3︰4 C .9︰4 D .3︰16 6.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2 B .m>-2 C .m≥-2 D .m≤-2 7.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=08.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A.70°B.65°C.55°D.45°9.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定10.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断11.一元二次方程x2﹣3x=0的两个根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣3 12.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣213.如图所示的网格是正方形网格,则sin A的值为()A.12B.22C.35D.4514.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC 的度数等于()A.50°B.49°C.48°D.47°15.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-二、填空题16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.已知∠A=60°,则tan A=_____.18.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.19.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________.20.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.21.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.22.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.23.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号) 24.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.25.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.26.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.27.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.28.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.29.已知234x y z x z y+===,则_______ 30.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m三、解答题31.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP 绕着端点O 旋转1周,端点P 运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;(2)已知OB =2 cm ,SB =3 cm , ①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是 . A .6 cm×4 cm B .6 cm×4.5 cm C .7 cm×4 cm D .7 cm×4.5 cm32.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =﹣x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.33.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.34.如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .(1)求A ,D 两点的坐标;(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接PA 、PD . ①当点P 的横坐标为2时,求△PAD 的面积; ②当∠PDA =∠CAD 时,直接写出点P 的坐标.35.如图,AB 是⊙O 的弦,OP OA ⊥交AB 于点P ,过点B 的直线交OP 的延长线于点C ,且BC 是⊙O 的切线.(1)判断CBP ∆的形状,并说明理由; (2)若6,2OA OP ==,求CB 的长;(3)设AOP∆的面积是1,S BCP∆的面积是2S,且1225SS=.若⊙O的半径为6,45BP=,求tan APO∠.四、压轴题36.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD CD2⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.37.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.38.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽; (2)若23AC =,求AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离? 39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用圆内接四边形的对角互补计算∠C 的度数. 【详解】∵四边形ABCD 内接于⊙O ,∠A =400, ∴∠C =1800-400=1400, 故选D. 【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.D解析:D 【解析】 【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程. 【详解】A 、△=0-4×1×1=-4<0,没有实数根;B 、△=22-4×1×1=0,有两个相等的实数根;C 、△=22-4×1×3=-8<0,没有实数根;D 、△=22-4×1×(-3)=16>0,有两个不相等的实数根, 故选D . 【点睛】本题考查了根的判别式,注意掌握一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003;调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003;故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键. 4.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.5.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方6.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.7.C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.8.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.9.B解析:B【解析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.10.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.11.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.13.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.14.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.15.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.19.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn=所以22360S==16360360扇形π4πrπ=n20.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.21.【解析】【分析】根据点A的坐标及抛物线的对称轴可得抛物线与x轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.22.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.()【解析】设它的宽为xcm .由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm .由题意得1:202x =. ∴10x =.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之,近似值约为0.618. 24.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.25.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 26.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=10,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.27.1,,【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DC解析:1,83,32 【解析】【分析】 根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.28.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF 254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值. 29.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z. 30.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.三、解答题31.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n度,则2π×2=3180nπ⨯解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.32.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣515或(﹣155)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,。

【5套打包】南京市初三九年级数学上期末考试测试题(含答案)

【5套打包】南京市初三九年级数学上期末考试测试题(含答案)

人教版九年级第一学期期末模拟数学试卷(含答案)一、选择题(每小题3分,共24分)1.(3分)﹣的相反数是()A.3B.﹣3C.D.﹣2.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105B.4.4×106C.0.44×107D.4.4×1053.(3分)不等式组的解集为()A.x<﹣2B.x≤﹣1C.x≤1D.x<34.(3分)如图中几何体的主视图是()A.B.C.D.5.(3分)方程x2﹣3x﹣2=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根6.(3分)如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<07.(3分)下列命题中,正确的是()A.所有的等腰三角形都相似B.所有的直角三角形都相似C.所有的等边三角形都相似D.所有的矩形都相似8.(3分)如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()A.1B.C.2D.3二、填空题(每小题3分,共18分)9.(3分)分解因式:2m2﹣8=.10.(3分)一次函数y=3x+2的图象与x轴交点的坐标是.11.(3分)在比例尺为1:2500000的地图上,一条路长度约为8cm,那么这条路它的实际长度约为km.12.(3分)顺次连接矩形各边中点所得四边形为形.13.(3分)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.14.(3分)如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C 在x轴正半轴上,抛物线y=a(x﹣1)2+c(a<0)的顶点为D,且经过点A、B.若△ABD为等腰直角三角形,则a的值为.三、解答题(本大题共10小题,共78分)15.(10分)解方程:(1)2x﹣5=3(x﹣2)(2)x2﹣3x+2=0.16.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.17.(6分)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.(6分)如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】19.(7分)某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:(A)对各班班长进行调查;(B)对某班的全体学生进行调查;(C)从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案(填A、B或C);(2)被调查的学生每天做作业所用时间的众数为小时;(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.20.(7分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.21.(8分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y (千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.(9分)问题情境:小明和小丽共同探究一道数学题:如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,求AC的长为多少.探索发现;小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.选择小明、小丽其中一人的方法解决问题情境中的问题.类比应用:如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为.23.(9分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长.(用含t的代数式表示).(2)当PQ与△ABC的一边平行时,求t的值.(3)如图②,过点P作PE⊥AC于点E,以PE、QE为邻边作矩形PEQF,点D为AC 的中点,连接DF.直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.24.(10分)对于给定的两个函数y=k1x+b1(k1≠0)和y=k2x+b2(k2≠0),在这里我们把y=(k1x+b1)(k2x+b2)叫做这两个函数的积函数,把直线y=k1x+b1和y=k2x+b2叫做抛物线y=(k1x+b1)(k2x+b2)的母线.(1)直接写出函数y=x﹣3和y=﹣x﹣1的积函数,然后写出这个积函数的图象与x轴交点的坐标.(2)点P在(1)中的抛物线上,过点P垂直于x轴的直线分别交此抛物线的母线于M、N两点,设点P的横坐标为m,求PM=PN时m的值.(3)已知函数y=x﹣2n和y=﹣x.当它们的积函数自变量的取值范围是﹣1≤x≤2,且当n≥2时,这个积函数的最大值是8,求n的值以及这个积函数的最小值.2018-2019学年吉林省长春外国语学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【解答】解:﹣的相反数是,故选:C.2.【解答】解:4 400 000=4.4×106.故选:B.3.【解答】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.4.【解答】解:从正面看易得左排3层,中间排是2九年级上册数学期末考试题及答案一、选择题(每小题2分,共20分)1.下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0C .k ≥﹣D .k >﹣ 且k ≠04.下列命题正确的是( ) A .一组对边相等,另一组对边平行的四边形是平行四边形B .对角线相互垂直的四边形是菱形C .对角线相等的四边形是矩形D .对角线相互垂直平分且相等的四边形是正方形5.如图所示,在正方形ABCD 中,E 是AC 上的一点,且AB =AE ,则∠EBC 的度数是( )A .45度B .30度C .22.5度D .20度6.在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是( )A .①②③④B .②③④①C .③④①②D .④③①② 7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .C .D .8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )A.2:3B.2:5C.3:5D.3:29.如图,四边形ABCD是轴对称图形,且直线AC是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④10.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4C.2D.2二、填空题(每小题2分,共16分)11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是.12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为m.15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于厘米.16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是.17.分解因式:xy2﹣4x=.18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)三、解答题(每小题5分,共10分)19.(5分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.20.(5分)解方程:(2x﹣1)2=x(3x+2)﹣7.四、解答题(共8分)21.(8分)贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?五、解答题(共12分)22.(5分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.23.(7分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)六、(共10分)24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.25.(12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.26.(12分)如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.参考答案一、选择题1.下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸【分析】左视图是从物体左面看,所得到的图形.解:A、球的左视图是圆形,故此选项符合题意;B、水杯的左视图是等腰梯形,故此选项不合题意;C、圆锥的左视图是等腰三角形,故此选项不合题意;D、长方体的左视图是矩形,故此选项不合题意;故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0C.k≥﹣D.k>﹣且k≠0【分析】由二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴,解得:k≥﹣且k≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.4.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;D、对角线相互垂直平分且相等的四边形是正方形,此选项正确;故选:D.【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.5.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()A.45度B.30度C.22.5度D.20度【分析】由AB=AE,在正方形中可知∠BAC=45°,进而求出∠ABE,又知∠ABE+∠ECB =90°,故能求出∠EBC.解:∵正方形ABCD中,∴∠BAC=45°,∵AB=AE,∴∠ABE=∠AEB=67.5°,∵∠ABE+∠ECB=90°,∴∠EBC=22.5°,故选:C.【点评】本题主要考查正方形的性质,等腰三角形的性质等知识点.6.(2分)在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是()A.①②③④B.②③④①C.③④①②D.④③①②【分析】根据从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.解:西为②,西北为③,东北为④,东为①,∴将它们按时间先后顺序排列为②③④①.故选:B.【点评】此题考查了平行投影的特点和规律.在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .C .D .【分析】由于a ≠0,那么a >0或a <0.当a >0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a <0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.解:∵a ≠0,∴a >0或a <0.当a >0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a <0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A 、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A 选项错误;B 、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B 选项正确;C 、图中直线经过第二、三、四象限,故C 选项错误;D 、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D 选项错误. 故选:B .【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y =kx +b 、双曲线y =,当k >0时经过第一、三象限,当k <0时经过第二、四象限.8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )A .2:3B .2:5C .3:5D .3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF ∽△BAF ,再根据S △DEF :S △ABF =4:10:25即可得出其相似比,由相似三角形的性质即可求出的值,由AB =CD 即可得出结论.解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EAB =∠DEF ,∠AFB =∠DFE ,∴△DEF ∽△BAF ,∵S △DEF :S △ABF =4:25,∴=,∵AB =CD ,∴DE :EC =2:3.故选:A .【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.9.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )A .①②③B .①②③④C .②③④D .①③④【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.解:因为l 是四边形ABCD 的对称轴,AB ∥CD ,则AD =AB ,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD =DC ,同理可得:AB =AD =BC =DC ,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选:B.【点评】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.10.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4C.2D.2【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.解:作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故选:A.【点评】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.二、填空题(每小题2分,共16分)11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是1.【分析】直接根据根与系数的关系求解即可.解:∵一元二次方程x2﹣4x+1=0的两根是x1,x2,∴x1•x2=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=14.【分析】根据题意列出三元一次方程组,求得a,b,c的值后,代入代数式求值.解:由于==,3a﹣2b+c=9,∴,解得:b=7,a=5,c=8,把a,b,c代入代数式得:2a+4b﹣3c=2×5+4×7﹣3×8=14,故本题答案为:14,另解:设:===x,则:a=5x,b=7x,c=8x3a﹣2b+c=9可以转化为:15x﹣14x+8x=9,解得x=1那么2a+4b﹣3c=10x+28x﹣24x=14x=14.故答案为:14.【点评】本题利用了三元一次方程组的解法求解.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为1:4.【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC与△DEF 的面积之比.解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.【点评】此题考查了位似图形的性质.注意相似三角形的面积比等于相似比的平方.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为12m.【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.解:因为BE∥CD,所以△AEB∽△ADC,于是=,即=,解得:CD=12m.旗杆的高为12m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出旗杆的高度.15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于(10﹣10)厘米.【分析】由黄金矩形的定义,可知黄金矩形的宽与长之比为,设所求边长为x,代入已知数据即可得出答案.解:设所求边长为x,由题意,得=,解得x=(10﹣10)cm.故答案为(10﹣10).【点评】本题主要考查了黄金分割点的概念,需要熟记黄金比的值,难度适中.16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是4.【分析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=1,再根据线段垂直平分线的性质可知AM=OM,由此推出△AMC的周长=OC+AC.解:∵点A(3,n)在双曲线y=上,∴n==1,∴A(3,1),∴OC=3,AC=1.∵OA的垂直平分线交OC于M,∴AM=OM,∴△AMC的周长=AM+MC+AC=OM+MC+AC=OC+AC=3+1=4.故答案为:4.【点评】本题主要考查了反比例函数的图象性质和线段中垂线的性质,将求△AMC的周长转换成求OC+AC是解题的关键.17.分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)【分析】利用相似三角形的性质求出B n∁n,再利用三角形的面积公式计算即可;解:∵B n∁n∥B1C1,∴△M n B n∁n∽△M m B1C1,∴=,∴=,∴B n∁n=,∴S n=××=,故答案为.【点评】本题考查相似三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(每小题5分,共10分)19.(5分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.20.(5分)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.四、解答题(共8分)21.(8分)贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)设求平均每次下调的百分率为x,由降低率问题的数量关系建立方程求出其解即可;(2)分别求出两种优惠方法的费用,比较大小就可以得出结论.(1)解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去)答:平均每次下调的百分率为10%;(2)由题意,得方案①优惠:4860×100×(1﹣0.98)=9720元,方案②优惠:80×100=8000元.∵9720>8000∴方案①更优惠.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,降低率问题的数量关系的运用,解答时列一元二次方程解实际问题是难点.五、解答题(共12分)22.(5分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.【分析】(1)从箱子中任意摸出一个球是白球的概率即是白球所占的比值;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验,此题要求画树状图,要按要求解答.解:(1)从箱子中任意摸出一个球是白球的概率是;(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率.【点评】本题考查了列表法与树状图法,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(7分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65≈11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.六、(共10分)24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:∵点O为AB的中点,∴OA=OB∵OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,矩形AEBD是正方形.理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴∠ABD=∠BAD=45°,∴AD=BD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.25.(12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;。

江苏省南京市玄武区2023-2024学年九年级上学期期末数学试题

江苏省南京市玄武区2023-2024学年九年级上学期期末数学试题

江苏省南京市玄武区2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一元二次方程230x x -=的解是( ) A .3x = B .0x =C .13x =,20x =D .13x =-,20x =2.已知二次函数268y x x =-+,则下列说法错误的是( ) A .图象与y 轴的交点坐标是(0,8) B .图象的顶点坐标是(3,1)C .图象与x 轴的交点坐标是(2,0),(4,0)D .当3x <时,y 随x 增大而减小3.已知一组数据26,36,36,3■,41,42,其中一个两位数的个位数字被墨水涂污,则关于这组数据下列统计量的计算结果与被涂污数字无关的是( ) A .平均数B .方差C .中位数D .众数4.如图,在ABC ∆中,AD DE EB ==,EF DG AC ∥∥,AF 与DG 相交于点H .若12AC =,则DH =( )A .1B .1.5C .2D .35.如图,在矩形ABCD 中,6AB =,4BC =,P ,Q 分别是边AB ,CD 上的动点,2CQ AP =,设AP x =,2PQ y =,则y 关于x 的函数图象大致是( )A.B.C.D.二、填空题三、解答题(3)如图②,由于发射台可以上下升降,保证其他起飞条件不变的前提下,抛物线随着起飞点A 的上下平移而上下平移.在水平线x 轴上设置回收区域PQ ,21m OP =,1m PQ =,要使飞机恰好降落到PQ 内(包括端点P ,Q ),则发射台的高度OA 的取值范围是. 27.【概念认识】在ABC V 中,AB AC =,直线l 分别交边AB AC ,于点D ,E . 若AD CE =,则称直线l 为等腰ABC V 的“和谐分割线”. 【探索发现】(1)在ABC V 中,AB AC =,直线l 为等腰ABC V 的“和谐分割线”. 小美,小丽探索发现了下列结论.(i )如图①,小美过点D 作DH AC P ,交FG 于点H . 证明途径可以用下面的框图表示,请填写其中的空格.(ii )请证明小丽所发现的结论. 【解决问题】(2)如图③,在ABC V 中,AB AC =,点P 为ABC V 外一点,P 过点P 作一条直线l ,使直线l 是等腰ABC V 的“和谐分割线”.(要求:①尺规作图;②保留作图痕迹,写出必要的文字说明)【拓展延申】(3)在ABC V 中,13AB AC ==,10BC =,点O 为ABC V 的外心,P 为平面内一点,过点P 可作出等腰ABC V 的“和谐分割线”,则OP 的最小值为.。

南京市南京市第九中学数学九年级上册期末试题和答案

南京市南京市第九中学数学九年级上册期末试题和答案

南京市南京市第九中学数学九年级上册期末试题和答案一、选择题1.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或4 2.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-33.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°4.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°5.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .236.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+8.二次函数2(1)3y x =-+图象的顶点坐标是( )A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)-- 9.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π10.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19B .13C .12D .2311.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1 B .2 C .3 D .4 12.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:413.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm14.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(16345) C .(20345) D .(163,3 15.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm . 18.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.19.若a b b -=23,则ab的值为________. 20.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.21.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.22.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 23.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.24.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.25.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .26.方程22x x =的根是________.27.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.28.如图,O 半径为2,正方形ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.29.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

南京市数学九年级上册期末试题和答案

南京市数学九年级上册期末试题和答案

南京市数学九年级上册期末试题和答案一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3B .6C .5D .72.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定3.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20204.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .35.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2426.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10B .10,9C .8,9D .9,107.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断8.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°9.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .210.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°11.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 12.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 2>y 1>y 313.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323 D .314.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2B .a >2C .a <﹣2D .a >﹣215.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.17.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .18.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)19.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;20.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.21.抛物线21(5)33y x =--+的顶点坐标是_______.22.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.23.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.24.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.25.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.26.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____. 27.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.28.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.30.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题31.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长. 32.解方程(1)x 2-6x -7=0; (2) (2x -1)2=9.33.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.34.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对应点),且位似比为2:1; (2)△A ′B ′C ′的面积为 个平方单位;(3)若网格中有一格点D ′(异于点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有符合条件的点D ′.(如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)35.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.四、压轴题36.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.37.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.38.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在....).时,求t的取值范围.(直接写出答案即可)............(.包括边界....x.轴上方的部分围成的图形中【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.4.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A5.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.6.D解析:D试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D .考点:众数;中位数.7.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦ ∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】 此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C .本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.B 解析:B【解析】 【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.10.B解析:B【解析】【分析】连接OA ,由圆周角定理得,∠AOP =2∠B =50°,根据切线定理可得∠OAP =90°,继而推出∠P =90°﹣50°=40°.【详解】连接OA ,由圆周角定理得,∠AOP =2∠B =50°,∵PA 是⊙O 的切线,∴∠OAP =90°,∴∠P =90°﹣50°=40°,故选:B .【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP 的度数.11.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A 、方程2x ﹣3=x 为一元一次方程,不符合题意;B 、方程2x +3y =5是二元一次方程,不符合题意;C 、方程2x ﹣x 2=1是一元二次方程,符合题意;D 、方程x +1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.12.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.13.D解析:D【解析】【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ),∴AP=12AB=3, ∴tan ∠OAP=tan30°=OP AP =3, ∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P 是AB 中点,难度不大.14.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD 的长,再利用ABD BED ,得出DE DB DB AD =,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB 为O 的直径90ADB ∴∠=︒22226511BD AB AD ∴=-=-∵弦AD 平分BAC ∠11CD BD ∴==CBD DAB ∴∠=∠ADB BDE ∠=∠ABD BED ∴DE DB DB AD∴= 1111= 解得115DE =115 2.85AE AD DE ∴=-=-= 故选:B .【点睛】 本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y =2(x -2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.17.2-2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=AB ,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×=cm,故答案为解析:2【解析】根据黄金分割点的定义,知AP 是较长线段;则AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×12=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般. 18.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 19.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin ∠C解析:3或9 或23或343【解析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8, ∴22221086AC AB BC =-=-=,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23.故答案为:3或9 或23或343. 【点睛】 此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.20.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得: 解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.21.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 22.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 23.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n 行n 个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=4, ∴2020在第64行左起第4个数,故答案为:64,4.本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.24.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 25.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.26.y =x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y =(x +2)2−5向右平移2个单位, 得:y =(x +2−2)2−5,即y =x2−5解析:y =x 2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y =(x +2)2−5向右平移2个单位,得:y =(x +2−2)2−5,即y =x 2−5.故答案是:y =x 2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.27.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m ﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.28.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量30.或【解析】【分析】如图1,当⊙F 与Rt△ABC 的边AC 相切时,切点为H ,连接FH ,则HF⊥AC,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB =5 解析:209或145【解析】【分析】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,根据相似三角形的性质得到DF =209;如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,推出点H 为切点,DH 为⊙F 的直径,根据相似三角形的性质即可得到结论.【详解】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,∴DF =HF ,∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH,∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键. 三、解答题31.(1)22,30;(2)2322CE =-;(3)CC '的长223π=【解析】【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则DE=2x -,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC +=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒(2)由已知条件得出,A 2B '=,D 2B '=,D 62C '= 易证AB D DC E ''∆∆∽∴C E DC B D AB ''=''∴6222CE -= ∴2322CE =- (3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长60221803π⋅== 【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.32.(1)x 1=7,x 2=-1;(2)x 1=2,x 2=-1【解析】【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x 2-6x +9-9-7=0(x -3) 2=16x -3=±4x 1=7,x 2=-1(2)2x -1=±32x =1±3x 1=2,x 2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.33.(1)ME =MD =MB =MC ;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=12BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心。

江苏省南京市苏科版九年级数学上 期末测试题(Word版 含答案)

江苏省南京市苏科版九年级数学上 期末测试题(Word版 含答案)

江苏省南京市苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( ) A .1a = B .1a =- C .1a ≠- D .1a ≠ 3.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5B .4C .3D .24.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( )A .30πcm 2B .15πc m 2C .152πcm 2 D .10πcm 2 5.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π6.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定7.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④8.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 9.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心10.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°11.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°12.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-13.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7214.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 15.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .1010D 310二、填空题16.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.17.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.18.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.19.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.20.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.21.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).22.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表, x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.23.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .24.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 25.关于x 的方程220kx x --=的一个根为2,则k =______. 26.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.27.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______. 28.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.29.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .30.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题31.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.32.如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.33.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长. 34.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?35.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次 第二次 第三次 第四次 甲 9 8 8 7 乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.四、压轴题36.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.38.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.39.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).40.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E (3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据面积比为相似比的平方即可求得结果. 【详解】解:∵两个相似多边形的面积比为4:9, ∴它们的周长比为4923. 故选B. 【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.D解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.3.D解析:D 【解析】 【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解. 【详解】 解:根据题意得, a-1=1,2+m=2, 解得,a=2,m=0, ∴a-m=2. 故选:D. 【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.4.B解析:B 【解析】试题解析:∵底面半径为3cm , ∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B .5.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.解析:B【解析】【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12,前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12,故选:B.【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键.7.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 9.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大10.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC ,如图,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A .考点:圆周角定理.11.C解析:C【解析】【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.12.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.13.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k ≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k ≥0且k ≠0,解得:116k且k ≠0. 故选:C .【点睛】 本题考查一元二次方程根的判别式与实数根的情况,注意k ≠0.15.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.二、填空题16.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B2、B4…每偶数之间的B 相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B 2020在第一象限,∵OA =53,OB =4,∠AOB =90°,∴AB 133===, ∴OA+AB 1+B 1C 2=53+133+4=10, ∴B 2的横坐标为:10, 同理:B 4的横坐标为:2×10=20,B 6的横坐标为:3×10=30,∴点B 2020横坐标为:2020102⨯=10100. 故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B 点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力. 17.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.18.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出D E=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.19.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,22-=4.OB BD故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.20.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 21.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.22.18<x <6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y =0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x =6.18时,y =﹣0.01,当x =6.19解析:18<x <6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y =0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x =6.18时,y =﹣0.01,当x =6.19时,y =0.02,∴当y =0时,相应的自变量x 的取值范围为6.18<x <6.19,故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.23.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 24.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x =10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.25.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.26.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.27.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m 2-2m-3=0,变形得m 2-2m=3,再将要求的代数式提取公因式-2,然后将m 2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x 2-2x-3=0的解,∴m 2-2m-3=0,∴m 2-2m=3,∴4m-2m 2+2= -2(m 2-2m )+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.28.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、 解析:14【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8, 所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数. 三、解答题31.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m =﹣1,故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan ∠OCB =OB CO =13,设HM =BM =x ,则CM =3x , BC =BM+CM =4x 10x =104, CH 10x =52,则点H(0,12), 同直线AC 的表达式的求法可得直线BH (Q )的表达式为:y =﹣12x+12…②, 联立①②并解得:﹣x 2﹣2x+3=﹣12x+12, 解得 x =1(舍去)或﹣52, 故点Q(﹣52,74). 【点睛】 本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.32.(1)证明见解析;(2)2933()22cm . 【解析】【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°, ∴由圆周角定理得:∠AOD=2∠ACD=120°. ∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD ⊥DP .∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm ,由勾股定理得:3cm .∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm 扇形。

2023-2024学年江苏省南京市建邺区九年级(上)期末数学试卷及答案解析

2023-2024学年江苏省南京市建邺区九年级(上)期末数学试卷及答案解析

2023-2024学年江苏省南京市建邺区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)一元二次方程x2=9的根是()A.x1=x2=3B.x1=x2=﹣3C.x1=3,x2=﹣3D.x1=x2=2.(2分)一组数据:7,5,9,3,9,15,关于这组数据说法错误的是()A.极差是12B.众数是9C.中位数是7D.平均数是8 3.(2分)如图,⊙O是△ABC的外接圆,若∠OCA=50°,则∠ABC的度数等于()A.30°B.40°C.50°D.60°4.(2分)对于二次函数y=(x﹣2)2+2的图象,下列说法正确的是()A.对称轴为直线x=﹣2B.最低点的坐标为(2,2)C.与x轴有两个公共点D.与y轴交点坐标为(0,2)5.(2分)如图,直线l1∥l2∥l3,直线a、b与l1、l2、l3分别交于点A、B、C和点D、E、F,若AB:BC=1:2,DF=6,则EF的长为()A.2B.3C.4D.56.(2分)下列四个命题中,正确的是()(1)各角相等的圆内接五边形是正五边形;(2)各边相等的圆内接五边形是正五边形;(3)各角相等的圆内接六边形是正六边形;(4)各边相等的圆内接六边形是正六边形.A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(2)(3)(4)二、填空题(本大题共10个小题,每小题2分,共20分.不需写出解答过程,请把正确答三、案直接填写在答题卡相应位置上)7.(2分)若关于x的方程x2﹣2x+m=0有两个相等的实数根,则m=.8.(2分)设x1,x2是一元二次方程x2+x﹣4=0的两个根,则x1+x2的值是.9.(2分)已知点P是线段AB的黄金分割点,AP>PB.若AB=10.则AP=(结果保留根号).10.(2分)某农场的粮食产量在两年内从3000吨增加到3630吨,若设平均每年增产的百分率为x,则所列方程为.11.(2分)把二次函数y=2x2的图象先向右平移3个单位长度,再下平移1个单位长度,所得图象对应的函数表达式是.12.(2分)如图,一块飞镖游戏板由除颜色外都相同的9个小正方形构成.假设飞镖击中每1块小正方形是等可能的(击中小正方形的边界或没有击中游戏板,则重投一次).任意投掷飞镖一次,击中黑色区域的概率是.13.(2分)如图,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,以边AC所在的直线为轴旋转一周得到一个圆锥,则这个圆锥的面积是cm2.14.(2分)已知二次函数y=ax2+bx+c(a、b、c是常数,且a≠0),函数值y与自变量x的部分对应值如下表:x…﹣101234…y…10y12125…当y<y1时,自变量x的取值范围是.15.(2分)如图,在四边形ABCD中,BC、CD、DA分别与⊙O相切于B、E、A三点,AB 为⊙O的直径.若BC=4cm,AD=3cm,则⊙O的半径为cm.16.(2分)如图,在正方形ABCD中,AB=3cm,点P为AB上动点,点Q在AB的延长线上,且BP=2BQ,CP、DQ相交于点E.当点P从点A运动到点B时,点E运动的路线长度为cm.三、解答题(本人题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x2﹣4x﹣2=0;(2)3x(x﹣2)﹣2x=4.18.(8分)某校从甲、乙两名同学中选拔一名代表学校参加《喜迎二十大奋进新征程》演讲比赛,如图是甲、乙两名学生在五次选拔比赛中的成绩情况:根据以上信息,整理分析数据如下:学生平均数(分)中位数(分)方差(分2)甲8b 3.6乙a8c(1)a=,b=,c=;(2)根据五次选拔比赛的成绩,你认为选谁较为合适?请说明理由.19.(8分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球后放回,再随机摸出一个小球.(1)第二次摸到1号小球的概率是;(2)求两次摸出的小球标号和为3的概率.20.(7分)如图,学校打算用长16m的篱笆围成一个一面靠墙且面积是30m2的矩形生态园饲养小兔,求生态园的长和宽.21.(8分)如图,二次函数图象顶点坐标为(﹣1,﹣4),与x轴一个交点坐标为(1,0).(1)该函数图象与x轴的另一个交点坐标为;(2)求这个二次函数的表达式;(3)当﹣4<x<0时,y的取值范围为.22.(8分)如图,在△ABC中,BC的垂直平分线分别交BC,AC于点D,E,BE交AD于点F,AB=AD.(1)判断△FDB与△ABC是否相似,并说明理由.(2)AF与DF相等吗?为什么?23.(8分)某种服装,平均每天可销售20件,每件盈利44元.若每件降价1元,则每天可多售5件,降价幅度不超过10元,那么每件应降价多少元,可获得最大利润?最大利润是多少?24.(7分)在四边形ABCD中,用无刻度的直尺和圆规完成下列作图(保留作图痕迹,不写作法,写出必要的文字说明).(1)如图①,连接BD,在CD边上作点M,使得∠AMB=∠ADB;(2)如图②,在CD边上作点N,使得∠BND=∠A.25.(8分)如图,在⊙O的内接四边形ABCD中,AB=BC,直径AE⊥CD,垂足为点F.(1)当时,求∠D的度数;(2)当AB=5,AD=8时,求CD的长.26.(8分)已知二次函数y=ax2+bx+c的图象经过(﹣1,3),(1,﹣1)两点.(1)求b的值;(2)求证该二次函数的图象与x轴的总有两个公共点;(3)设该函数图象与x轴的两个公共点分别为(m,0)、(n,0).当mn<0时,直接写出a的取值范围.27.(10分)已知⊙O的半径为2cm,P是⊙O外一点,PO=4cm,点A、B在⊙O上,在△PAB中,BP=BA.(1)如图①,PB是⊙O的切线,当PA=PB时,求证:PA是⊙O的切线;(2)如图②,PA、PB分别交⊙O于点C、D,当点C为PA中点时,求PD的长;(3)线段PA的取值范围是.2023-2024学年江苏省南京市建邺区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】两边直接开平方得:x=±3,进而可得答案.【解答】解:x2=9,两边直接开平方得:x=±3,则x1=3,x2=﹣3.故选:C.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.【分析】根据众数、极差、平均数、中位数的含义和求法,逐一判断即可.【解答】解:∵7,5,9,3,9,15这组数据的最大值是15最小值是3∴这组数据的极差是:15﹣3=12,选项A正确,不符合题意;∵这组数据中9出现了2次,最多,∴众数为9,∴选项B确,不符合题意;∵7,5,9,3,9,15这组数据的中位数是8∴选项C不正确,符合题意;据的平均数是:(7+5+9+3+9+15)÷6=48÷6=8.∴选项D正确,不符合题意;故选:C.【点评】此题主要考查了众数、极差、平均数、中位数的含义和求法,要熟练掌握.3.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠OCA=50°,根据三角形内角和定理求得∠AOC=80°,由圆周角定理即可求出∠ABC的度数.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠OCA=50°,∴∠AOC=180°﹣(OAC+∠OCA)=80°,∴∠ABC=∠AOC=40°,故选:B.【点评】本题主要考查了三角形的外接圆与外心,圆周角定理,等腰三角形的性质,正确作出辅助线,熟练掌握圆周角定理是解决问题的关键.4.【分析】根据二次函数的性质对各选项进行判断.【解答】解:∵y=(x﹣2)2+2,∴抛物线开口向上,对称轴为直线x=2,与x轴有两个公共点,顶点坐标为(2,2),则最低点的坐标为(2,2);其当x=0时,y=6,即与y轴交点坐标为(0,2),与x轴没有交点,故选项A、C、D说法错误,选项B说法正确,故选:B.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.5.【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵直线l1∥l2∥l3,∴,∵DF=6,∴,∴EF=4,故选:C.【点评】本题主要考查了平行线分线段成比例的性质,能够熟练运用其性质是解题的关键.6.【分析】根据正多边形的性质一一判断即可.【解答】解:(1)各角相等的圆内接五边形是正五边形,因为圆内接五边形的角度都是相等的,所以是正五边形,说法正确;(2)各边相等的圆内接五边形是正五边形,因为圆内接五边形的边长都相等,所以是正五边形,说法正确;(3)各角相等的圆内接六边形,因为圆内接六边形的角度相等,但各边不一定相等,所以不一定是正六边形,说法错误;(4)各边相等的圆内接六边形是正六边形,因为圆内接六边形的边长都是相等的,所以是正六边形,说法正确.故选:B.【点评】本题考查正多边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共10个小题,每小题2分,共20分.不需写出解答过程,请把正确答三、案直接填写在答题卡相应位置上)7.【分析】根据判别式的意义得到(﹣2)2﹣4m=0,然后解关于m的方程即可.【解答】解:根据题意得Δ=(﹣2)2﹣4m=0,解得m=1.故答案为1.【点评】本题考查了根的判别式:利用一元二次方程根的判别式(Δ=b2﹣4ac)判断方程的根的情况.8.【分析】根据根与系数的关系得出即可.【解答】解:∵x1,x2是一元二次方程x2+4x﹣1=0的两个根,∴x1+x2=﹣=﹣1,故答案为:﹣1.【点评】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键.9.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=10的黄金分割点,且AP是较长线段;则AP=AB=,故答案为:5﹣5.【点评】本题考查黄金分割点的概念.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.10.【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程.【解答】解:设平均每年增产的百分率为x;第一年粮食的产量为:3000(1+x);第二年粮食的产量为:3000(1+x)(1+x)=3000(1+x)2;依题意,可列方程:3000(1+x)2=3630;故答案为:3000(1+x)2=3630.【点评】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.11.【分析】利用二次函数平移规律进而求出即可.【解答】解:把二次函数y=2x2的图象先向右平移3个单位长度,再下平移1个单位长度,所得图象对应的函数表达式是:y=2(x﹣3)2﹣1.故答案为y=2(x﹣3)2﹣1.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.【分析】用黑色小正方形的个数除以小正方形的总个数可得.【解答】解:∵共有9种小正方形,其中黑色正方形的有3个,∴小刚任意投掷飞镖一次,刚好击中黑色区域的概率是=,故答案为:.【点评】本题考查几何概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.13.【分析】利用勾股定理易得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:由勾股定理易求得AB==5cm.∵旋转后的圆锥母线为AB,长度为5cm,底面半径为BC,长度为3cm,则底面圆的周长,即侧面展开图的弧长是6πcm.∴圆锥的侧面积是:×6π×5=15πcm2.圆锥的底面积是32π=9πcm2,∴圆锥的面积是15π+9π=24πcm2.【点评】本题从圆锥的形成过程中,考查其侧面积公式,明确BC为底面半径,AB为母线长.14.【分析】根据题意确定二次函数的开口方向、对称轴和顶点坐标,根据二次函数的性质解答即可.【解答】解:由题意得,抛物线的顶点坐标为(2,1),对称轴是直线x=2,开口向上,∴当x=0时的函数值与x=4时的函数值相等,∴当y<y1时,自变量x的取值范围是0<x<4,故答案为:0<x<4.【点评】本题考查的是二次函数的图形和性质,根据表格确定二次函数的开口方向、对称轴和顶点坐标是解题的关键.15.【分析】过D作DH⊥BC于H,由切线长定理得到DE=AD=3cm,CE=BC=4cm,由切线的性质定理得到直径AB⊥AD,直径AB⊥BC,推出四边形ABHD是矩形,得到DH =AB,BH=AD=3cm,求出CH=BC﹣BH=4﹣3=1(cm),DC=DE+CE=3+4=7(cm),由勾股定理求出DH==4(cm),得到AB=4(cm),即可得到圆的半径长.【解答】解:过D作DH⊥BC于H,∵BC、CD、DA分别与⊙O相切于B、E、A三点,∴DE=AD=3cm,CE=BC=4cm,直径AB⊥AD,直径AB⊥BC,∴四边形ABHD是矩形,∴DH=AB,BH=AD=3cm,∴CH=BC﹣BH=4﹣3=1(cm),∵DC=DE+CE=3+4=7(cm),∴DH==4(cm),∴AB=4(cm),∵AB为⊙O的直径,∴⊙O的半径为2cm.故答案为:2.【点评】本题考查切线的性质,切线长定理,勾股定理,矩形的判定和性质,关键是由切线长定理得到CD的长,由矩形的性质得到CH的长,由勾股定理求出DH的长.16.【分析】先画出点E运动的路线EE′,过E作EF⊥AQ,交AQ于点F,根据△EAF∽△CAB,可得EF=AF,设EF=x cm,则BF=(3﹣x)cm,QF=(4.5﹣x)cm,再根据△EQF∽△DQA,可求得EF、E′F,利用勾股定理可得EE′.【解答】解:当点P在点A处时,如图,∵BP=2BQ,BP=3cm,∴BQ=1.5cm,当点P运动到点B时,如图,,所以点E运动的路线EE′,如图,,过E作EF⊥AQ,交AQ于点F,即∠AFE=∠EFQ=90°,∵四边形ABCD为正方形,∴BC=AD=3cm,在Rt△ABC中,AC==3cm,∵∠AFE=∠ABC=90°,∠CAB=∠EAF,∴△EAF∽△CAB,∴=,∵AB=BC,∴EF=AF,设EF=x cm,则BF=(3﹣x)cm,QF=(4.5﹣x)cm,∵∠EQF=∠DQA,∠EFQ=∠DAQ=90°,∴△EQF∽△DQA,∴,即,解得:x=,∴EF=cm,E′F=BF=cm,在Rt△EFE′中,EE′===(cm),故答案为:.【点评】本题考查了正方形的综合题,关键是借助相似三角形对应边成比例解决问题.三、解答题(本人题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】(1)利用配方法求解;(2)利用公式法求解.【解答】解:(1)x2﹣4x=2,x2﹣4x+4=2+4,(x﹣2)2=6,∴x﹣2=,∴x1=2+,x2=2﹣;(2)3x(x﹣2)﹣2x=4,3x2﹣6x﹣2x=4,3x2﹣8x﹣4=0,a=3,b=﹣8,c=﹣4,Δ=64﹣4×3×(﹣4)=112>0,∴x===,∴x1=,x2=.【点评】本题考查解一元二次方程﹣公式法,配方法,解题的关键是掌握公式法,配方法解一元二次方程.18.【分析】(1)根据平均数,中位数,方差的定义解决问题即可;(2)利用方差小成绩稳定判断即可.【解答】解:(1)由题意a=(2×7+8+2×9)=8,b=8,c=[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8.故答案为:8,8,0.8;(2)从方差看,乙的成绩比较稳定,选乙比较合适.【点评】本题考查折线统计图,条形统计图,中位数,平均数,方差等知识,解题的关键是掌握中位数,平均数,方差的定义,属于中考常考题型.19.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及两次摸出的小球标号和为3的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意得,第二次摸到1号小球的概率是.故答案为:.(2)列表如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)共有9种等可能的结果,其中两次摸出的小球标号和为3的结果有:(1,2),(2,1),共2种,∴两次摸出的小球标号和为3的概率为.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.20.【分析】设生态园的宽为x m,则长为(16﹣2x)m,根据生态园的面积是30m2的矩形,列出一元二次方程,解方程即可.【解答】解:设生态园的宽为x m,则长为(16﹣2x)m,由题意得:x(16﹣2x)=30,解得:x1=3,x2=5,当x=3时,16﹣2x=16﹣2×3=10;当x=5时,16﹣2x=16﹣2×5=6.答:生态园的长为10m,宽为3m或长为6m,宽为5m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【分析】(1)根据函数的对称性可得结论;(2)用待定系数法可求解析式即可;(3)根据函数的性质结合函数图象求y的取值范围.【解答】解:(1)∵二次函数的对称轴为直线x=﹣1,与x轴一个交点坐标为(1,0),∴二次函数图象与x轴的另一交点为(﹣3,0),故答案为:(﹣3,0);(2)设二次函数的表达式为y=a(x+1)2﹣4,把(1,0)代入解析式得:4a﹣4=0,解得a=1,∴二次函数的表达式表达式为y=(x+1)2﹣4;(3)∵抛物线开口向上,顶点坐标为(﹣1,﹣4),∴抛物线的最小值为﹣4,∵﹣1﹣(﹣4)=3>0﹣(﹣1)=1,∴当x=﹣4时,y=5,∴当﹣4<x<0时,y的取值范围为﹣4≤y<5,故答案为:﹣4≤y<5.【点评】本题考查了抛物线与x轴的交点,二次函数图象的性质,用待定系数法求二次函数解析式,熟练掌握二次函数图象的性质是本题的关键.22.【分析】(1)根据相似三角形的判定即可求出答案.(2)由相似三角形的性质即可知道AB=2FD,由于AB=AD,所以AD=2FD,从而可知DF=AF【解答】解:(1)∵DE是BC垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵AB=AD,∴∠ABC=∠ADB,∴△FDB∽△ABC;(2)∵△FDB∽△ABC,∴==∴AB=2FD,∵AB=AD,∴AD=2FD,∴DF=AF.【点评】本题考查相似三角形的性质,涉及相似三角形的判定与性质,等腰三角形的性质,垂直平分线的性质等知识,综合程度较高.23.【分析】设每件应降价x元,利润为y元,则每天的销量为(20+5x)件,每件的利润为(44﹣x)元;再根据“y=降价后每件的盈利×降价后每天的销量”可列式配方后可求解,注意降价幅度不超过10元.【解答】解:设每件应降价x元,利润为y元,根据题意得:y=(44﹣x)(20+5x)=﹣5x2+200x+880=﹣5(x﹣20)2+2880,∵﹣5<0,∴当x<20时,y随x的增大而增大,∵x≤10,∴当x=10时,y有最大值是:﹣5(10﹣20)2+2880=2380,答:每件应降价10元,可获得最大利润,最大利润是2380元.【点评】此题考查了二次函数的应用,其中根据每件降价1元,则每天可多售5件表示出每件的利润及卖的件数是列函数解析式的关键.24.【分析】(1)作△ABD的外接圆交CD于M点,则根据圆周角定理得到∠AMB=∠ADB;(2)先作A点关于BD的对称点A′,则∠BAD=∠BA′D,再作△A′BD的外接圆交CD于N点,则根据圆周角定理得到∠BND=∠BA′D,所以∠BND=∠A.【解答】解:(1)如图①,作AB和AD的垂直平分线,它们相交于点O,然后以O点为圆心,OA为半径作圆交CD于M点,则点M为所作;(2)如图②,作A点关于BD的对称点A′,再作DA′和BD的垂直平分线,它们相交于点O,然后以O点为圆心,OB为半径作圆交CD于N点,则N点为所作.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.25.【分析】(1)根据题意得到关于∠CAD和∠ACD的二元一次方程组求解即可,(2)根据题意,利用勾股定理及两个三角形相似的判定定理求解即可.【解答】解:(1)连接AC,OC,OD,BD ∵,所以∠BAC=∠CAD,∵AB=BC,∴∠BCA=∠BAC=∠CAD,∵A,B,C,D在同一个圆上,∴∠BAD+∠BCD=180°,∴∠BCA+∠ACD+∠BAC+∠CAD=180°,3∠CAD+∠ACD=180°,∵OC=OD且OF⊥CD,∴CF=FD,∴△ACD为等腰三角形,∴∠ACD=∠ADC,∴∠CAD+2∠ACD=180°,联立,解得:,∴∠D=∠ACD=72°.(2)延长CB,过A作AG⊥CB,于G,设BG=x,由(1)知,AC=AD=8,BC=AB=5,在Rt△ABG中,AG2=AB2﹣BG2,在Rt△ACG中,AG2=AC2﹣CG2,∴62﹣x2=82﹣(5+x)2,解得:x=,∵∠ABG+∠ABC=180°,∠ABC+∠ADC=180°,∠ADC=∠ACD,∴∠ABG=∠ACD,又∵∠AGB=∠AFC=90°,∴△ABG∽△ACF,∴,∴,CF=,∴CD=2CF==,∴CD的长为.【点评】本题考查的是圆内接四边形的性质及圆周角定理,熟知圆内接四边形的对角互补是解题的关键.26.【分析】(1)依据题意,由二次函数图象经过(﹣1,3),(1,﹣1)两点,进而代入计算得a﹣b+c=3①,a+b+c=﹣1②,再由②﹣①得,2b=﹣4,从而求出b的值;(2)依据题意,由(1)得,b=﹣2,又a﹣b+c=3,从而a+c=1,最后c=1﹣a,进而Δ=b2﹣4ac=4﹣4a(1﹣a)=(2a﹣1)2+3,进而可以判断得解;(3)依据题意,由该函数图象与x轴的两个公共点分别为(m,0)、(n,0),进而求得mn==,又mn<0,再依据a的值进行分类讨论即可判断得解.【解答】解:(1)由题意,∵二次函数图象经过(﹣1,3),(1,﹣1)两点,∴a﹣b+c=3①,a+b+c=﹣1②.∴②﹣①得,2b=﹣4.∴b=﹣2.(2)由(1)得,b=﹣2,又a﹣b+c=3,∴a+c=1.∴c=1﹣a.∴Δ=b2﹣4ac=4﹣4a(1﹣a)=4﹣4a+4a2=(2a﹣1)2+3.∵对于任意的a都有(2a﹣1)2≥0,∴Δ=(2a﹣1)2+3≥3>0.∴该二次函数的图象与x轴的总有两个公共点.(3)由题意,∵该函数图象与x轴的两个公共点分别为(m,0)、(n,0),∴mn==.又mn<0,∴<0.①当a<0时,∴1﹣a>0.∴a<1.∴a<0.②当a>0时,∴1﹣a<0.∴a>1.综上,a<0或a>1.【点评】本题主要考查了图象与性质,解题时要熟练掌握并能灵活运用是关键.27.【分析】(1)连接OA,OB,证明△PBO≌△PAO得到∠PAO=∠PBO=90°即可得证;(2)连接BC,AD,OD,先根据圆的有关性质求出BA=BP=4cm,再证明△OBD∽△POB,根据相似比求出BD即可解答;(3)先确定P的运动轨迹,当P,O,A三点共线时,PA最大,求出此时的PA,当BP 最小时PA最小,根据勾股定理求出此时的PA几颗解答.【解答】解:(1)连接OA,OB,∵PB是⊙O的切线,∴∠PBO=90°,在△PBO与△PAO中,,∴△PBO≌△PAO(SSS),∴∠PAO=∠PBO=90°,∵OA是⊙O的半径,∴OA是⊙O的切线;(2)连接BC,AD,OD,如图:∵BA=BP,点C为PA中点,∴BC⊥AP,∴AB是⊙O的直径,设圆心为O,连接OP,∵⊙O的半径为2cm,∴BA=BP=4cm,∵OB=OD,PO=PB,∴∠OBD=∠ODB,∠OBP=∠POB,∴△OBD∽△POB,∴,即,∴BD=1,∴PD=PB﹣BD=4﹣1=3cm;(3)∵OP=4cm,∴P的运动轨迹为以O为圆心,半径为4cm的圆,如图:∴P,O,A三点共线时,PA最大,此时PA=PO+OA=4+2=6cm,延长PB交圆O于点M,连接MA,当点B是PM的中点且PA⊥MA时,PA最小,如图:过点B作BH⊥PA,设PH=x,∴PA=2x,∵BO=2,∴PC=4,根据割线定理,PA•PC=PE•PF,即2x•4=2×6,∴x=,∴PA=3,∴3≤PA≤6.故答案为:3≤PA≤6.【点评】本题考查与圆有关的性质和概念,全等三角形的判定和性质,相似三角形的判定和性质,正确作出辅助线是解题关键。

2023-2024学年江苏省南京市部分学校九年级(上)期末数学试卷+答案解析

2023-2024学年江苏省南京市部分学校九年级(上)期末数学试卷+答案解析

一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一元二次方程化成一般形式后,常数项是,一次项系数是( )A. 2B.C. 4D.2.已知点P 是线段AB 的黄金分割点,若,则AP 的长约为( )A.B.C.D.3.在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是( )A.B.C.D.4.将二次函数的图象向下平移1个单位长度后,所得二次函数的表达式是( )A. B.C.D.5.如图,若的半径为6,圆心O 到一条直线的距离为3,则这条直线可能是2023-2024学年江苏省南京市部分学校九年级(上)期末数学试卷( )A. B.C. D.6.如图,高的小淇晚上在路灯下散步,DE 为他到达D 处时的影子.继续向前走8m 到达点N ,影子为若测得,则路灯AH 的高度为( )A. 6mB. 7mC. 8mD. 9m二、填空题:本题共10小题,每小题3分,共30分。

7.若,则为__________.8.一组数据7,,,6的极差为__________.9.若、是方程的两个实数根,则的值为__________.10.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是__________11.若方程的两根为,则方程的两根为__________.12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是__________.13.如图,AB是的直径,C是上一点,若,则__________14.如图,在边长为1的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则AE的长为__________.15.如图,在中,半径OC与弦AB垂直于点D,M为AD的中点,N为上的点,且若,,则的半径为__________.16.如图,在中,P是斜边AB边上一点,且,分别过点A、B作、平行于CP,若,则与之间的最大距离为__________.三、计算题:本大题共1小题,共6分。

江苏省南京市九年级(上)期末数学试卷(含答案)

江苏省南京市九年级(上)期末数学试卷(含答案)

江苏省南京市九年级(上)期末数学试卷(含答案)一、选择题1.sin 30°的值为( ) A .3B .32C .12D .222.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒3.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个4.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-15.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;6.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74 B .44 C .42 D .40 7.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1808.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103π D .π9.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差B .众数C .平均数D .中位数10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π- C .3π-D .3π-12.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .213.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 14.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .1010D .3101015.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( ) A .1B .3C .4D .6二、填空题16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.18.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.19.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 20.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.21.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).22.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 23.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.24.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.25.如图,O 2ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.26.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.27.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.28.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.29.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM=_____.30.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.三、解答题31.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.32.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于10cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.33.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是 ;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.34.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次 第二次 第三次 第四次 甲 9 8 8 7 乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.35.(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ 的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.四、压轴题36.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.37.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.38.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?39.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 40.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E (3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.3.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.5.C解析:C【解析】【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC++==,所以cosB=313BCAB=,sinB=21233AC ACtanBAB BC===,所以只有选项C正确;故选:C.【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.7.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.8.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=6010101803π=.故选C.9.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=3BD=3,∴△ABC的面积为12BC•AD=1232⨯⨯=3,S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 的高为3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯ =233π-. 故选B . 12.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =, OAB ∴为等边三角形, 60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.13.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A 、方程2x ﹣3=x 为一元一次方程,不符合题意;B 、方程2x +3y =5是二元一次方程,不符合题意;C 、方程2x ﹣x 2=1是一元二次方程,符合题意;D 、方程x +1x=7是分式方程,不符合题意, 故选:C .【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.14.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.15.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB 133===, ∴OA+AB 1+B 1C 2=53+133+4=10, ∴B 2的横坐标为:10,同理:B 4的横坐标为:2×10=20,B 6的横坐标为:3×10=30,∴点B 2020横坐标为:2020102⨯=10100. 故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B 点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力. 18.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF, 设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=232-,x 2=232(不符合题意,舍去) ∴DM=232+,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.19.2-2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=AB ,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×=cm ,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则=)21cm,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般.20.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.21.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分51【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.22.60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB ∥CD∴△ABE ∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB ∥CD∴△ABE ∽△DCE ∴AB DC BE CE=, 由题意知AB=50,CD=15,CE=18, 即,501518x =, 解得x =60, 经检验,x=60是原方程的解,即高为50m 的旗杆的影长为60m .故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例. 23.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.24.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.25.【解析】【分析】先求得正方形的边长,取AB的中点G,连接GF,CG,当点C、F、G在同一直线上时,根据两点之间线段最短,则CF有最小值,此时即可求得这个值.【详解】如图,连接OA、OD,取51【解析】【分析】先求得正方形的边长,取AB的中点G,连接GF,CG,当点C、F、G在同一直线上时,根据两点之间线段最短,则CF有最小值,此时即可求得这个值.【详解】如图,连接OA、OD,取AB的中点G,连接GF,CG,∵ABCD 是圆内接正方形,2OA OD ==, ∴90AOD ∠=︒,∴()222222AD OA OD =+==, ∵AF ⊥BE ,∴90AFB ∠=︒,∴112GF AB ==, 2222125CG BG BC =+=+=,当点C 、F 、G 在同一直线上时,CF 有最小值,如下图:51,51.【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF 的最小值是解决本题的关键.26.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.27.【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.28..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】 平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法. 29.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM 即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM. 30.【解析】【分析】作OH⊥AB,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB∥CD,所以四边形ABCD 是平行解析:163【解析】【分析】作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,∵弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG , 又∵OB=OD ,∴Rt △OHB ≌Rt △OGD ,∴HB=GD ,同理,可得AH=CG= HB=GD∴AB=CD又∵AB ∥CD∴四边形ABCD 是平行四边形,在Rt △OHA 中,由勾股定理得:22224223OA OH -=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163.故答案为:163.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.三、解答题31.(1)(﹣1,4);(2)①278;②Q(﹣52,74).【解析】【分析】(1)将点A坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q作y轴的平行线交AC于点N,先求出直线AC的解析式,点Q(x,﹣x2﹣2x+3),则点N(x,x+3),则△QAC的面积S=12×QN×OA=﹣32x2﹣92x,然后根据二次函数的性质即可求解;②tan∠OCB=OBCO=13,设HM=BM=x,则CM=3x,BC=BM+CM=4x=10,解得:x=104,CH=10x=52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-1 2x+12,即可求解.【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q作y轴的平行线交AC于点N,如图1,设直线AC的解析式为y=kx+b,。

南京市九年级上学期期末数学试卷 (解析版)

南京市九年级上学期期末数学试卷 (解析版)

南京市九年级上学期期末数学试卷 (解析版)一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y <<B .123y y <<C .213y y <<D .213y y <<3.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=4.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1 B .k≥-1 C .k <-1 D .k≤-15.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差 B .平均数 C .众数 D .中位数 6.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定 7.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1- 8.一个扇形的半径为4,弧长为2π,其圆心角度数是( ) A .45B .60C .90D .1809.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8910.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根11.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣212.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 13.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上 B .点M 在⊙C 内 C .点M 在⊙C 外 D .点M 不在⊙C 内 14.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)15.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题16.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .17.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.18.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 19.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.20.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.21.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 22.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.23.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.24.抛物线()2322y x =+-的顶点坐标是______.25.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).26.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒27.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.29.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市九年级(上)期末数学试卷(含答案)一、选择题1.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm2.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③3.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <15.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .358.下列方程是一元二次方程的是( ) A .2321x x =+ B .3230x x --C .221x y -=D .20x y +=9.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .210.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10011.二次函数y =()21x ++2的顶点是( ) A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)12.cos60︒的值等于( ) A .12B .22C .32D .3313.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323D 314.如图,△ABC 中,∠C =90°,∠B =30°,AC 7,D 、E 分别在边AC 、BC 上,CD=1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .3715.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题16.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.17.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).18.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.19.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.20.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;21.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.22.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .23.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 24.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .25.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.26.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.27.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…28.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.29.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,;②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43,求FH 的长.32.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.33.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.34.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:成绩/分888990919596979899学生人数2132121数据分析:样本数据的平均数、众数和中位数如下表:平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.35.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.四、压轴题36.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.37.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C 但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 40.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.2.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a ->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a-的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.3.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.4.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可.【详解】∵BC 是⊙O 的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D .【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为35. 【详解】摸到红球的概率=33235=+, 故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键. 8.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.9.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.10.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.11.C解析:C【解析】【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标.【详解】解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握. 12.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值. 13.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO≌△BPO(AAS),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.14.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC7,∠ABC=30°,∴AB=2AC=7,BC3AC21,∵DE ∥AB , ∴CD CA =CE CB , ∴17=21CE , ∴CE =3,∵∠CHE ′=90°,∠CE ′H =∠CAB =60°,CE ′=CE =3∴E ′H =12CE ′=32,CH =3HE ′=32, ∴BH =22BC CH -=9214-=532 ∴BE ′=HE ′+BH =33,故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.15.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD ,∴12EF FC . 故选D . 二、填空题16.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O 是△ABC 的内切圆,MN 是圆O 的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC 周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN 的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.17.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.18.46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD ∥BC ,可得∠DBC=∠ADB =54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC 的度数,从而使问题得解.【详解】解:连接OB ,OC ,∵直线EF 是⊙O 的切线,B 是切点∴∠OBF=90°∵AD ∥BC∴∠DBC=∠ADB =54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.19.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.20.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.21.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红 解析:58【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.23.6【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.25.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=,解得203 EF ,故答案为:203.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.26..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.27.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.28.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 29.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,。

相关文档
最新文档