中考数学大题专项训练01含解析.doc
人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析
中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。
考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。
备战中考数学专项练习(全国通用)有理数的大小比较卷一(含解析)
备战中考数学专项练习(全国通用)有理数的大小比较卷一(含解析)一、单选题1.小于5的正整数有()个.A.1B.2C.3D.42.在-0.1,这四个数中,最小的一个数是()A.-0.1B.C.1D.3.在–1,–2,1,2四个数中,最大的一个数是()A.–1B.–2C.1D.24.下列各数中,在﹣2和0之间的数是()A.﹣1B.1C.﹣3D.35.下列各数中最小的数是()A.﹣8B.﹣4C.0D.76.比2小3的数是()A.-1B.-5C.1D.57.下列大于﹣5的负整数是()A.﹣3B.﹣2.5C.4D.﹣68.下列各数中,最小的数是()A.-2B.-1C.0D.二、填空题9.比较大小:﹣1________﹣2.10.比较大小:________ ;(填“>”或“<”).11.最小的正整数是________,最大的负整数是________.12.所有小于3.14的非负整数是________,不小于-3同时小于2的整数是________.13.3与﹣4的大小关系是________.14.观看下面各数列,研究它们各自的变化规律,并接着填出后面的两个数.①1,-1,1,-1,1,-1,1,-1,________,________;②2,-4,6,-8,10,-12,14,-16,________,________;③1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,________,________.15.将有理数0,﹣,2.7,﹣4,0.14按从小到大的顺序排列,用“<”号连接起来应为________16.冷库甲的温度是-5℃,冷库乙的温度是-15℃,则温度高的是冷库____ ____.17.若|a|=20,|b|=9,且a<b,则a=________,b=________.18.比较大小:4________5三、解答题19.把下列各数在数轴上表示出来,并用“>”连接各数.3,﹣4,﹣2,0,﹣1,1.20.将下列各数在数轴上表示出来,并用“<”把它们连接起来.﹣3,﹣(﹣1)4 ,0,|﹣2.5|,﹣1.四、综合题21.已知a ,b ,c ,d四个有理数,它们在数轴上的对应点的位置如图所示.(1)在a ,b , c ,d四个数中,正数是________,负数是__ ______;(2)a , b ,c ,d从大到小的顺序是________;(3)按从小到大的顺序用“<”将-a ,-b ,-c ,-d四个数连接起来.答案解析部分一、单选题1.【答案】D【考点】有理数大小比较【解析】【解答】解:小于5的正整数有:1,2,3,4,共有4个.故选:D.【分析】直截了当利用正整数的定义得出答案.2.【答案】B【考点】有理数大小比较【解析】【分析】依照有理数的大小比较法则即可得到结果.,∴最小的一个数是,故选B.【点评】有解答本题的关键是熟练把握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.3.【答案】D【考点】有理数大小比较【解析】【分析】负数定义:任何正数前加上负号都等于负数。
中考数学专题练习常用角的单位及换算(含解析)
2019中考数学专题练习-常用角的单位及换算(含解析)一、单选题1.把10.26°用度分秒表示为()A.10°15′36"B.10°20′6"C.10°14′6"D.10°26".2.下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′2 4″4.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′5.0.25°等于()分.A.60B.15C.90D.3606.下列计算错误的是()A.0.25°=900″B.1.5°=90′C.1000″=()°D.125.45°=1254.5′7.∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对8.已知∠1=37°36′,∠2=37.36°,则∠1与∠2的大小关系为()A.∠1<∠2B.∠1=∠2C.∠1>∠2D.无法比较9.下列计算错误的是()A.0.25°=900″B.1.5°=90′C.1000″=()°D.125.45°=1254.5′10.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠1=∠2=∠311.已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是()A.∠A=∠BB.∠B=∠CC.∠A=∠CD.三个角互不相等12.下列算式正确的是()∠33.33°=33°3′3″∠33.33°=33°19′48″∠50°40′33″=50.43°∠50°40′33″=50.675°A.∠和∠B.∠和∠C.∠和∠D.∠和∠二、填空题13.34.37°=34°________′________″.14.0.5°=________′=________″;1800″=________°=________′.15.计算:180°﹣20°40′=________.16.8.31°=________°________′________″.17.计算,________18.计算:33.21°=________°________′________″.19.角度换算:26°48′=________°.三、计算题20.计算:(1)46゜39′+57゜41;(2)90゜﹣77゜29′32″;(3)31゜17′×5;(4)176゜52′÷3(精确到分)21.计算下列各题:(1)153°19′42″+26°40′28″;(2)90°3″﹣57°21′44″;(3)33°15′16″×5;(4)175°16′30″﹣47°30′÷6+4°12′50″×3.22.计算:(1)13°29’+78°37‘ (2)62°5’-21°39‘ (3)22°16′×5(4)42°15′÷5四、解答题23.把65°28′45″化成度.24.3.5°与3°5′的区别是什么?25.计算:(1)22°18′×5;(2)90°﹣57°23′27″.五、综合题26.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.27.综合题。
中考数学专项练习一元一次方程的实际应用几何问题(含解析)
中考数学专项练习一元一次方程的实际应用几何问题(含解析)【一】单项选择题1.一个圆柱的底面半径为Rcm,高为8cm,假设它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,那么R=〔〕A.4cmB.5cmC.6cmD.7cm2.一个长方形的周长是26cm,假设这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,那么长方形的长是〔〕A.5cmB.7cmC.8cmD.9cm3.如图〔1〕,把一个长为m,宽为n的长方形〔m>n〕沿虚线剪开,拼接成图〔2〕,成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为〔〕A.B.m﹣nC.D.4.一个角比它的余角大25°,那么这个角的补角是〔〕A.67.5°B.22.5°C.57.5°D.122.5°5.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60c m,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离〔即在圆周上两人之间的圆弧的长〕相等.设每人向后挪动的距离为x,根据题意,可列方程〔〕A.=B.=C.2π〔60+10〕×6=2π〔60+π〕×8 D.2π〔60-x〕×8=2π〔6 0+x〕×66.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框〔如下图〕.铺这个框恰好用了504块边长为0.5米的正方向花岗岩〔接缝忽略不计〕.假设设此标志性建筑底面长方形的宽为x米,给出以下方程:①4×3〔2x+3〕=0.5×0.5×504;②2×3〔2x+6〕+2×3x=0.5×0.5×504;③〔x+6〕〔2x+6〕﹣2x•x=0.5×0.5×504,其中正确的选项是〔〕A.②B.③C.②③D.①②③7.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,那么需直径为4厘米的圆钢柱长〔〕A.10厘米B.20厘米C.30厘米D.40厘米8.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是〔〕A. 5.4米B.7米C. 5.08米D. 6.67米9.用A、B两种规格的长方形纸板〔如图1〕无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,A种长方形的宽为1cm,那么B种长方形的面积是〔〕A.10cm2B.12cm2C.14cm2D.16cm210.钟表的时针与分针在运行过程中每隔一定时间就相遇一次,相遇间隔的时间是〔〕A.1小时B.小时C. 1.2小时D. 1.1小时11.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为〔〕A.10和2B.8和4C.7和5D.9和312.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的选项是〔〕A.2〔x﹣10〕=120B.2[x+〔x﹣10〕]=120C.2〔x+10〕=120D.2[x+〔x+10〕]=12013.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.3cm,5cmB. 3.5c m,4.5cmC.4cm,6cm D.10cm,6cm 【二】填空题14.线段AB=30cm,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点 B 向点 A 以3cm/s 的速度运动,那么________秒钟后,P、Q 两点相距10cm.16.如图,长方形MNPQ 是某市民健身广场的平面示意图,它是由6 个正方形拼成的长方形,中间最小的正方形 A 的边长是1,观察图形特点可知长方形相对的两边是相等的〔如图中MN=PQ〕,请根据这个等量关系,计算长方形MNPQ 的面积,结果为________.17.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2c m,就可成为一个正方形,设长方形的长为xcm,可列方程________.18.在同一条数轴上,点B位于有理数—8处,点C位于有理数16处,假设点B每秒向右匀速运动6个单位长度,同时点C每秒向左匀速运动2个单位长度,当运动________秒时,BC的长度为8个单位长度.19.假设一个角的余角比它的补角的还多1°,那么这个角的大小是_ _______.【三】解答题20.一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?22.一艘载重480吨的船,容积是1050立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨.问是否都能装上船?如果不能,请说明理由;并求出为了最大限度的利用船的载重量和容积,两种货物应各装多少吨?【四】综合题23.某校开展爱心义卖活动,同学们纷纷推销自己的手工制品并将获得的利润捐给贫困结对学校,小明以3元/张的价格买了400张金属板,其长和宽分别为30厘米,12厘米,现将金属板按图1方式剪去四个相同的小正方形,制成无盖形状的桌面收纳盒.并使其底面长与宽之比为4:1〔金属板厚度略去不计,粘合损耗不计〕.〔1〕求制成的无盖收纳盒的高.〔2〕现小明将360张金属板按图1方式裁剪,40张金属板按图2方式裁剪后给部分盒子配上盖子,现定价无盖收纳盒5元/个,有盖收纳盒8元/个,那么全部销售后能获利多少元?24.数轴上有A,B,C三点,分别代表﹣30,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.〔1〕甲,乙在数轴上的哪个点相遇?〔2〕多少秒后,甲到A,B,C的距离和为48个单位?〔3〕在甲到A,B,C的距离和为48个单位时,假设甲调头并保持速度不变,那么甲,乙还能在数轴上相遇吗?假设能,求出相遇点;假设不能,请说明理由.【一】单项选择题1.一个圆柱的底面半径为Rcm,高为8cm,假设它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,那么R=〔〕A.4cmB.5cmC.6cmD.7cm【解析】【解答】解:依题意得:8π〔R+2〕2﹣8πR2=192,解得r=5.应选:B、【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.2.一个长方形的周长是26cm,假设这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,那么长方形的长是〔〕A.5cmB.7cmC.8cmD.9cm【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设长方形的长为x cm,∵长方形的周长是26cm,∴长方形的宽为〔-x〕cm,∵长方形的长减少1cm为〔x-1〕cm,宽增加2c m为〔-x+2〕cm,根据题意得:x-1=-x+2,解得:x=8,应选C.【分析】周长除以2减去长方形的长即为长方形的宽,等量关系为:长-1=宽+2. 得到长方形的宽是解决此题的突破点.3.如图〔1〕,把一个长为m,宽为n的长方形〔m>n〕沿虚线剪开,拼接成图〔2〕,成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为〔〕A.B.m﹣nC.D.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设去掉的小正方形的边长为x,那么:〔n+x〕2=mn+x2 ,解得:x= .应选A、【分析】此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.4.一个角比它的余角大25°,那么这个角的补角是〔〕A.67.5°B.22.5°C.57.5°D.122.5°【考点】一元一次方程的实际应用-几何问题【解析】【解答】设这个角的度数为x°,根据题意得:x-(90-x)=25,解得x=57.5,所以这个角为57.5°,所以这个角的补角为180°-57.5°=12 2.5°.【分析】先根据题意利用一元一次方程求的这个角,再根据补角的定义求这个角的补角.5.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60c m,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离〔即在圆周上两人之间的圆弧的长〕相等.设每人向后挪动的距离为x,根据题意,可列方程〔〕A.=B.=C.2π〔60+10〕×6=2π〔60+π〕×8 D.2π〔60-x〕×8=2π〔6 0+x〕×6【解析】【解答】设每人向后挪动的距离为x,那么这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得:=.应选A、【分析】首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.列方程解应用题的关键是找出题目中的相等关系.6.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框〔如下图〕.铺这个框恰好用了504块边长为0.5米的正方向花岗岩〔接缝忽略不计〕.假设设此标志性建筑底面长方形的宽为x米,给出以下方程:①4×3〔2x+3〕=0.5×0.5×504;②2×3〔2x+6〕+2×3x=0.5×0.5×504;③〔x+6〕〔2x+6〕﹣2x•x=0.5×0.5×504,其中正确的选项是〔〕A.②B.③C.②③D.①②③【考点】一元一次方程的实际应用-几何问题7.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,那么需直径为4厘米的圆钢柱长〔〕A.10厘米B.20厘米C.30厘米D.40厘米【解析】【解答】解:设应截取直径4厘米的圆钢x厘米,由题意得:π×〔〕2×16×10=π×〔〕2•x解得:x=40.应选:D、【分析】根据题意可知,圆柱形毛坯与圆钢的体积相等,利用此相等关系列方程,求解.8.一只方形水箱,其底面是边长为5米的正方形,箱内盛水,水深4米,现把一个棱长为3米的正方体沉入箱底,水面的高度将是〔〕A. 5.4米B.7米C. 5.08米D. 6.67米【解析】【解答】水箱上升3×3×3÷〔5×5〕=1.08〔米〕水面的高度将是:4+1.08=5.08〔米〕.应选C、【分析】此题的关键是把握小正方形的体积,它相当于底面是边长为5米的正方形的水箱上升x米的体积,求出x ,再加上4米即可.9.用A、B两种规格的长方形纸板〔如图1〕无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,A种长方形的宽为1cm,那么B种长方形的面积是〔〕A.10cm2B.12cm2C.14cm2D.16cm2【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设A长方形的长是xcm,那么B长方形的宽是〔4﹣x〕cm,B长方形的长是〔8﹣x〕cm,依题意有4[〔4﹣x〕+〔8﹣x〕]=32,解得x=4,〔4﹣x〕〔8﹣x〕=〔4﹣2〕×〔8﹣2〕=2×6=12.故B种长方形的面积是12cm2 .应选:B、【分析】可设A长方形的长是xcm,那么B长方形的宽是〔4﹣x〕cm,B长方形的长是〔8﹣x〕cm,根据大正方形周长为32cm,列出方程求解即可.10.钟表的时针与分针在运行过程中每隔一定时间就相遇一次,相遇间隔的时间是〔〕A.1小时B.小时C. 1.2小时D. 1.1小时【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设相遇间隔的时间是x小时,时针的速度为x格/小时,那么分针的速度为12x格/小时,12x﹣x=12,解得:x=.答:相遇间隔的时间是小时.应选:B、【分析】由题意可知:钟表的时针每转动一大格,那么分钟就转动12个大格,也就是一周,每隔一定时间就相遇一次也就是分针比时针就多运行12个大格,设相遇间隔的时间是x小时,那么时针转了为x格,那么分针转了12x格,由此列出方程解答即可.11.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为〔〕A.10和2B.8和4C.7和5D.9和3【考点】一元一次方程的实际应用-几何问题【解析】【分析】设这个长方形的长是x,那么宽就是12-x,因为长与宽的差是4,即x-〔12-x)=4.解方程求解.【解答】设这个长方形的长是x,根据题意列方程得:x-〔12-x)=4,解得x=8,那么宽就是12-8=4.这个长方形的长宽分别为8和4.应选B、【点评】列方程解应用题的关键是正确找出题目中的相等关系,把列方程的问题转化为列代数式12.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的选项是〔〕A.2〔x﹣10〕=120B.2[x+〔x﹣10〕]=120C.2〔x+10〕=120D.2[x+〔x+10〕]=120【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:由题意可得,2[x+〔x+10〕]=120,应选D、【分析】根据题意可以列出相应的一元一次方程,此题得以解决.13.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.3cm,5cmB. 3.5c m,4.5cmC.4cm,6cm D.10cm,6cm 【考点】一元一次方程的实际应用-几何问题【解析】【分析】设长方形的宽为xcm,那么长为〔x+1〕cm,列方程得x+x+1=8或2x+2〔x+1〕=16,解得x=3.5.应选B.【二】填空题14.线段AB=30cm,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点 B 向点 A 以3cm/s 的速度运动,那么________秒钟后,P、Q 两点相距10cm.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:设经过xs,P、Q两点相距10cm,由题意得:2x+3x+10=30或2x+3x-10=30,解得:x=4或x=8.那么4秒或8秒钟后,P、Q两点的距离为10cm.【考点】一元一次方程的实际应用-几何问题16.如图,长方形MNPQ 是某市民健身广场的平面示意图,它是由6 个正方形拼成的长方形,中间最小的正方形 A 的边长是1,观察图形特点可知长方形相对的两边是相等的〔如图中MN=PQ〕,请根据这个等量关系,计算长方形MNPQ 的面积,结果为________.【考点】一元一次方程的实际应用-几何问题【解析】【解答】解:由中间最小的正方形A的边长是1米,设图中最大正方形B的边长是x米,可得正方形F的边长x-1,E的边长x-2,C的边长x-3;根据题意得:2〔x-3〕+x-2=x+x-1.解得:x=7.所以A的面积为1,B的面积为49,F的面积为36,E的面积为25,D、C 的面积为16,所以长方形的面积为:1+49+36+25+16×2=143.【分析】此题主要考查了一元一次方程的应用,利用长方形相对的两边相等得出等式是解题关键.17.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2c m,就可成为一个正方形,设长方形的长为xcm,可列方程________.18.在同一条数轴上,点B位于有理数—8处,点C位于有理数16处,假设点B每秒向右匀速运动6个单位长度,同时点C每秒向左匀速运动2个单位长度,当运动________秒时,BC的长度为8个单位长度.【解析】【解答】设时间为t,那么运动后点B所表示的数为:-8+6t,点C所表示的数为16-2t;①、当点B在点C的左边时,16-2t-〔-8+ 6t〕=8,解得:t=2;②、当点B在点C的右边时,〔-8+6t〕-〔16-2t〕=8,解得:t=4.【分析】设时间为t,那么运动后点B所表示的数为:-8 +6t,点C所表示的数为16-2t;然后分两类讨论:①、当点B在点C的左边时,列出方程16-2t-〔-8+6t〕=8,②、当点B在点C的右边时,列出方程〔-8+6t〕-〔16-2t〕=8 ,分别解两个方程得出t的值。
2023年中考数学解析题专项训练题集(含答案五篇)
2023年中考数学解析题专项训练题集(含答案五篇)> 本文档旨在通过五篇详细的解析题训练,帮助考生们掌握中考数学的核心考点和题型,提高解题能力和效率。
第一篇:代数与函数题目1:已知一元二次方程$x^2-2ax+a^2=0$,求证其两根之和等于2a。
解析:根据一元二次方程的求根公式,我们有:$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$代入本题的系数,得到:$x_{1,2}=a$因此,两根之和为:$x_1+x_2=2a$答案:两根之和等于2a。
题目2:已知函数$f(x)=ax^2+bx+c$(a≠0),若$f(1)=3$,$f(-1)=5$,求$f(0)$的值。
解析:根据题意,我们可以列出以下方程组:$\begin{cases}a+b+c=3 \\a-b+c=5\end{cases}$解这个方程组,得到:$\begin{cases}a=2 \\b=-1 \\c=0\end{cases}$因此,$f(0)=c=0$。
答案:$f(0)=0$。
第二篇:几何题目1:已知直角三角形ABC,∠C=90°,AB=10,BC=6,求AC的长度。
解析:根据勾股定理,我们有:$AC^2=AB^2-BC^2$代入本题的数值,得到:$AC^2=100-36$因此,$AC=8$。
答案:AC的长度为8。
题目2:已知菱形ABCD,对角线AC和BD相交于点O,且AC=6,BD=8,求菱形的面积。
解析:根据菱形的性质,对角线互相垂直平分,因此AO=OC=3,BO=OD=4。
我们可以将菱形分成四个直角三角形,每个直角三角形的面积为:$\frac{1}{2}\times AO \times BO = \frac{1}{2}\times 3 \times4=6$因此,菱形的面积为:$4\times 6=24$答案:菱形的面积为24。
第三篇:概率与统计题目1:一个袋子里有5个红球,3个蓝球,2个绿球,随机取出一个球,求取出红球的概率。
中考数学总复习《45多边形与平行四边形》试题训练及解析.doc
第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
2024年河北省中考数学试卷(Word版含解析)
2024年河北省中考数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A.B.C.D.2.下列运算正确的是()A.a7﹣a3=a4B.3a2•2a2=6a2C.(﹣2a)3=﹣8a3D.a4÷a4=a3.如图,AD与BC交于点O,△ABO和△CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A.AD⊥BC B.AC⊥PQ C.△ABO≌△CDO D.AC∥BD4.下列数中,能使不等式5x﹣1<6成立的x的值为()A.1B.2C.3D.45.观察图中尺规作图的痕迹,可得线段BD一定是△ABC的()A.角平分线B.高线C.中位线D.中线6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A.B.C.D.7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍8.若a,b是正整数,且满足=,则a与b的关系正确的是()A.a+3=8b B.3a=8b C.a+3=b8D.3a=8+b9.淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则a=()A.1B.﹣1C.+1D.1或+110.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,△ABC中,AB=AC,AE平分△ABC的外角∠CAN,点M是AC的中点,连接BM并延长交AE于点D,连接CD.求证:四边形ABCD是平行四边形.证明:∵AB=AC,∴∠ABC=∠3.∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴①______.又∵∠4=∠5,MA=MC,∴△MAD≌△MCB(②______).∴MD=MB.∴四边形ABCD是平行四边形.若以上解答过程正确,①,②应分别为()A.∠1=∠3,AAS B.∠1=∠3,ASA C.∠2=∠3,AAS D.∠2=∠3,ASA11.直线l与正六边形ABCDEF的边AB,EF分别相交于点M,N,如图所示,则α+β=()A.115°B.120°C.135°D.144°12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D13.已知A为整式,若计算﹣的结果为,则A=()A.x B.y C.x+y D.x﹣y14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120°时,扇面面积为S,该折扇张开的角度为n°时,扇面面积为S n,若m=,则m与n关系的图象大致是()A.B.C.D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“■”表示5C.运算结果小于6000D.运算结果可以表示为4100a+102516.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P(2,1)按上述规则连续平移3次后,到达点P3(2,2),其平移过程如下:.若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1,9),则点Q的坐标为()A.(6,1)或(7,1)B.(15,﹣7)或(8,0)C.(6,0)或(8,0)D.(5,1)或(7,1)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.18.已知a,b,n均为正整数.(1)若n<<n+1,则n=;(2)若n﹣1<<n,n<<n+1,则满足条件的a的个数总比b的个数少个.19.如图,△ABC的面积为2,AD为BC边上的中线,点A,C1,C2,C3是线段CC4的五等分点,点A,D1,D2是线段DD3的四等分点,点A是线段BB1的中点.(1)△AC1D1的面积为;(2)△B1C4D3的面积为.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为﹣4,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21.甲、乙、丙三张卡片正面分别写有a+b,2a+b,a﹣b,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=﹣2时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.a+b2a+b a﹣b第一次和第二次a+b2a+2b2a2a+ba﹣b2a22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m,仰角为α;淇淇向前走了3m后到达点D,透过点P恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ的距离AB=CD=1.6m,点P到BQ 的距离PQ=2.6m,AC的延长线交PQ于点E.(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;(2)求CP的长及sin∠APC的值.23.情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.某公司为提高员工的专业能力,定期对员工进行技能测试.考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0≤x<p时,y=;当p≤x≤150时,y=+80.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若p=100,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值;(3)下表是该公司100名员工某次测试的原始成绩统计表:95100105110115120125130135140145150原始成绩(分)人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知⊙O的半径为3,弦MN=2.△ABC中,∠ABC=90°,AB=3,BC=3.在平面上,先将△ABC和⊙O按图1位置摆放(点B与点N重合,点A在⊙O上,点C在⊙O内),随后移动△ABC,使点B在弦MN上移动,点A始终在⊙O上随之移动.设BN=x.(1)当点B与点N重合时,求劣弧的长;(2)当OA∥MN时,如图2,求点B到OA的距离,并求此时x的值;(3)设点O到BC的距离为d.①当点A在劣弧上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.26.如图,抛物线C1:y=ax2﹣2x过点(4,0),顶点为Q.抛物线C2:y=﹣(x﹣t)2+t2﹣2(其中t为常数,且t>2),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将C1的顶点Q向左平移2个单位长度后一定落在C2上.淇淇说:无论t为何值,C2总经过一个定点.请选择其中一人的说法进行说理.(3)当t=4时,①求直线PQ的解析式;②作直线l∥PQ,当l与C2的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设C1与C2的交点A,B的横坐标分别为x A,x B,且x A<x B,点M在C1上,横坐标为m(2≤m≤x B).点N在C2上,横坐标为n(x A≤n≤t),若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.。
中考数学必考点提分专练01实数混合运算与代数式的化简求值含解析
|类型1| 实数的运算1.[2019·南充]计算:(1-π)0+|√2−√3|-√12+1√2-1. 解:原式=1+√3−√2-2√3+√2=1-√3.2.[2019·广安]计算:(-1)4-|1-√3|+6tan30°-(3-√27)0.解:原式=1-(√3-1)+6×√33-1=1-√3+1+2√3-1=1+√3.3.[2019·遂宁]计算:(-1)2019+(-2)-2+(3.14-π)0-4cos30°+|2-√12|.解:(-1)2019+(-2)-2+(3.14-π)0-4cos30°+|2-√12|=-1+14+1-4×√32+2√3-2=-74.4.[2018·陕西] 计算:(-√3)×(-√6)+|√2-1|+(5-2π)0.解:(-√3)×(-√6)+|√2-1|+(5-2π)0=√18+√2-1+1=3√2+√2=4√2.|类型2| 整式的化简求值5.[2019·常州]如果a -b -2=0,那么代数式1+2a -2b 的值是 5 .6.[2019·常德]若x 2+x=1,则3x 4+3x 3+3x+1的值为 4 .解:3x 4+3x 3+3x +1=3x 2(x 2+x )+3x +1=3x 2+3x +1=3(x 2+x )+1=4.7.[2019·淮安]计算:ab (3a -2b )+2ab 2.解:ab (3a -2b )+2ab 2=3a 2b -2ab 2+2ab 2=3a 2b .8.[2019·吉林] 先化简,再求值:(a -1)2+a (a+2),其中a=√2.解:原式=a 2-2a +1+a 2+2a=2a 2+1,当a=√2时,原式=2×(√2)2+1=2×2+1=5.实数混合运算与代数式的化简求值 提分专练019.若x+y=3,且(x+3)(y+3)=20.(1)求xy 的值;(2)求x 2+3xy+y 2的值.解:(1)∵(x +3)(y +3)=20,∴xy +3x +3y +9=20,即xy +3(x +y )=11.将x +y=3代入得xy +9=11,∴xy=2.(2)当xy=2,x +y=3时,原式=(x +y )2+xy=32+2=9+2=11.|类型3| 分式的化简求值10.[2019·淮安]先化简,再求值:a 2-4a ÷(1-2a ),其中a=5. 解:a 2-4a ÷(1-2a )=a 2-4a ÷a -2a =a 2-4a ·a a -2=(a+2)(a -2)a ·aa -2=a +2. 当a=5时,原式=5+2=7.11.[2019·黄石]先化简,再求值:(3x+2+x -2)÷x 2-2x+1x+2,其中|x|=2. 解:原式=x 2-1x+2÷(x -1)2x+2=(x+1)(x -1)x+2·x+2(x -1)2=x+1x -1. ∵|x|=2,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.12.[2019·菏泽]先化简,再求值:1x -y ·(2y x+y -1)÷1y 2-x 2,其中x=y+2019.解:1x -y ·(2y x+y -1)÷1y 2-x 2=1x -y ·2y -(x+y )x+y ·(y +x )(y -x )=-(2y -x -y )=x -y .∵x=y +2019,∴原式=y +2019-y=2019.13.[2019·天水]先化简,再求值:(x x 2+x -1)÷x 2-1x 2+2x+1,其中x 的值从不等式组{-x ≤1,2x -1<5的整数解中选取.解:原式=x -x 2-x x (x+1)·x+1x -1=-x x+1·x+1x -1=x1-x .解不等式组{-x ≤1,2x -1<5得-1≤x<3,则不等式组的整数解为-1,0,1,2. ∵x ≠±1,x ≠0,∴x=2,原式=21-2=-2.14.[2019·荆门]先化简,再求值:(a+b a -b )2·2a -2b 3a+3b −4a 2a 2-b 2÷3a b ,其中a=√3,b=√2.解:原式=2(a+b )3(a -b )−4ab 3(a+b )(a -b )=2(a+b )2-4ab 3(a+b )(a -b )=2(a 2+b 2)3(a+b )(a -b ).当a=√3,b=√2时,原式=3(3+2)(3-2)=103. 15.[2019·长沙]先化简,再求值:⎝ ⎛⎭⎪⎫a +3a -1-1a -1÷a 2+4a +4a 2-a ,其中a =3.解:原式=a +2a -1·a (a -1)(a +2)2=a a +2,当a =3时,原式=33+2=35.16.[2019·成都]先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6,其中x =2+1.解:原式=⎝ ⎛⎭⎪⎫x +3x +3-4x +3×2(x +3)(x -1)2=x -1x +3×2(x +3)(x -1)2=2x -1.将x =2+1代入,原式=22+1-1=2. 17.[2019·遂宁]先化简,再求值:a 2-2ab+b 2a 2-b 2÷a 2-aba −2a+b ,其中a ,b 满足(a -2)2+√b +1=0.解:原式=(a -b )2(a+b )(a -b )÷a (a -b )a −2a+b =a -b a+b ·1a -b −2a+b =-1a+b .∵(a -2)2+√b +1=0,∴a=2,b=-1,∴原式=-1.。
2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)
2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)1.中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.【分析】设高铁的平均速度为xkm/h,由运行里程缩短了40千米得:x+40=3.5(x﹣200),可解得高铁的平均速度为296km/h.【解答】解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣200)km/h,由题意得:x+40=3.5(x﹣200),解得:x=296,答:高铁的平均速度为296km/h.2.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.3.为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?【分析】(1)设桂花树的单价是x元,可得:3x+2(x﹣40)=370,解得桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得w=40n+3000,由一次函数性质得购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.【解答】解:(1)设桂花树的单价是x元,则芒果树的单价是(x﹣40)元,根据题意得:3x+2(x﹣40)=370,解得x=90,∴x﹣40=90﹣40=50,答:桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得:w=90n+50(60﹣n)=40n+3000,∴w关于n的函数关系式为w=40n+3000,∵40>0,∴w随n的增大而增大,∵桂花树不少于35棵,∴n≥35,∴n=35时,w取最小值,最小值为40×35+3000=4400(元),此时60﹣n=60﹣35=25(棵),答:w关于n的函数关系式为w=40n+3000,购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.4.某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?【分析】(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;(2)设购进mkg菠萝,则购进kg苹果,根据“菠萝的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,均为正整数,即可得出各进货方案.【解答】解:(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,依题意得:,解得:,∴(6﹣5)x+(8﹣6)y=(6﹣5)×100+(8﹣6)×200=500(元).答:这两种水果获得的总利润为500元.(2)设购进mkg菠萝,则购进kg苹果,依题意得:,解得:88≤m<100.又∵m,均为正整数,∴m可以为88,94,∴该经营户第二天共有2种批发水果的方案,方案1:购进88kg菠萝,210kg苹果;方案2:购进94kg菠萝,205kg苹果.5.某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A 种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.6.在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?【分析】(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,利用工作时间=工作总量÷工作效率,结合乙比甲多用0.4小时完成任务,即可得出关于x的分式方程,解之经检验后即可求出甲操控A型号收割机每小时收割水稻的亩数,再将其代入(1﹣40)x中即可求出乙操控B型号收割机每小时收割水稻的亩数;(2)设安排甲收割y小时,则安排乙收割小时,根据要求平均损失率不超过2.4%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:﹣=0.4,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴(1﹣40%)x=(1﹣40%)×10=6.答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.(2)设安排甲收割y小时,则安排乙收割小时,依题意得:3%×10y+2%×6×≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时.7.习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?【分析】(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,利用数量=总价÷单价,结合用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同,即可得出关于x的分式方程,解之经检验后即可得出购买1件乙种农机具所需费用,再将其代入(x+1)中即可求出购买1件甲种农机具所需费用;(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,利用总价=单价×数量,结合总价不超过46万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:=,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,依题意得:3m+2(20﹣m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.8.金鹰酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲、乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“绿色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度;据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时.若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费W(单位:元)的范围?【分析】(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,根据甲、乙两个工程队同时完成安装任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每天有m(100≤m≤140)间客房有旅客住宿,利用每天所有客房空调所用电费W=电费的单价×每天旅客住宿耗电总数,即可得出W关于m的函数关系式,再利用一次函数上点的坐标特征,即可求出W的取值范围.【解答】解:(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,依题意得:=,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴x+5=15+5=20.答:甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务.(2)设每天有m (100≤m ≤140)间客房有旅客住宿,则W =0.8×1.5×8m =9.6m . ∵9.6>0,∴W 随m 的增大而增大,∴9.6×100≤W ≤9.6×140,即960≤W ≤1344.答:该酒店每天所有客房空调所用电费W (单位:元)的范围为不少于960元且不超过1344元.9.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的32,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?【分析】(1)设去年每吨土豆的平均价格是x 元,则第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x ﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列出分式方程求解即可;(2)先求出今年采购的土豆数,根据采购的土豆需不超过60天加工完毕,加工成薯片的土豆数量不少于加工成淀粉的土豆数量的,据此列出不等式组并求解,然后由一次函数的性质求出最大利润即可.【解答】解:(1)设去年每吨土豆的平均价格是x元,则今年第一次采购每吨土豆的平均价格为(x+200)元,第二次采购每吨土豆的平均价格为(x﹣200)元,由题意得:×2=,解得:x=2200,经检验,x=2200是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:×3=375(吨),设应将m吨土豆加工成薯片,则应将(375﹣m)吨加工成淀粉,由题意得:,解得:150≤m≤175,设总利润为y元,则y=700m+400(375﹣m)=300m+150000,∵300>0,∴y随m的增大而增大,∴当m=175时,y的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.10.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x 的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.11.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【分析】(1)设该市改造老旧小区投入资金的年平均增长率为x,利用2021年投入资金金额=2019年投入资金金额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设该市在2022年可以改造y个老旧小区,根据2022年改造老旧小区所需资金不多于2022年投入资金金额,即可得出关于y的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.12.南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w 关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.13.为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?【分析】(1)设参加此次劳动实践活动的老师有x人,可得:30x+7=31x﹣1,即可解得参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)根据每位老师负责一辆车的组织工作,知一共租8辆车,设租甲型客车m辆,可得:,解得m的范围,解得一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,由一次函数性质得学校租车总费用最少是2800元.【解答】解:(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)∵7×35=245<255,8×35=280>255,∴租车总费用最少时,至少租8两辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.14.金师傅近期准备换车,看中了价格相同的两款国产车.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)【分析】(1)根据表中的信息,可以计算出新能源车的每千米行驶费用;(2)①根据燃油车的每千米行驶费用比新能源车多0.54元和表中的信息,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;②根据题意,可以列出相应的不等式,然后求解即可.【解答】解:(1)由表格可得,新能源车的每千米行驶费用为:=(元),即新能源车的每千米行驶费用为元;(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,∴﹣=0.54,解得a=600,经检验,a=600是原分式方程的解,∴=0.6,=0.06,答:燃油车的每千米行驶费用为0.6元,新能源车的每千米行驶费用为0.06元;②设每年行驶里程为xkm,由题意得:0.6x+4800>0.06x+7500,解得x>5000,答:当每年行驶里程大于5000km时,买新能源车的年费用更低.15.2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【分析】(1)设购进A款钥匙扣x件,B款钥匙扣y件,利用总价=单价×数量,结合该网店第一次用850元购进A、B两款钥匙扣共30件,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,利用总价=单价×数量,结合总价不超过2200元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出(78﹣2a)件,利用平均每天销售B款钥匙扣获得的总利润=每件的销售利润×平均每天的销售量,即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:.答:购进A款钥匙扣20件,B款钥匙扣10件.(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,依题意得:30m+25(80﹣m)≤2200,解得:m≤40.设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.∵3>0,∴w随m的增大而增大,∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,依题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.16.某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨。
北师大版中考数学复习:中点问题常考热点 专项练习题汇编(Word版,含答案)
北师大版中考数学复习:中点问题常考热点专项练习题汇编一.选择题1.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论正确的有:()①AP=FP,②AE=AO,③若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,④CE•EF=EQ•DE.A.4个B.3个C.2个D.1个2.如图,矩形ABCD中,AB=2,AD=2,动点P从点A出发向终点D运动,连BP,并过点C作CH⊥BP,垂足为H.①△ABP∽△HCB;②AH的最小值为﹣;③在运动过程中,BP扫过的面积始终等于CH扫过的面积;④在运动过程中,点H的运动路径的长为π,其中正确的有个()个.A.1B.2C.3D.43.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连接AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.5.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE⊥BF;②S△BCF=5S△BGE;③QB=QF;④tan∠BQP=.A.1B.2C.3D.46.正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.下列结论:①AD垂直平分EE′,②tan∠ADE=﹣1,③C△ADE﹣C△ODE=2﹣1,④S四边形AEFB=,其中结论正确的个数是()A.4个B.3个C.2个D.1个7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABC=2S△ABF.其中正确的结论有()A.4个B.3个C.2个D.1个8.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=9﹣4:4;④EM:MG =1:(1+),其中正确的结论有()A.1个B.2个C.3个D.4个9.如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题10.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=2,CD=1.下列结论:①∠AED =∠ADC,②=,③BF=2AC,④BE=DE.其中结论正确的个数有.11.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F,若△AB′F为直角三角形,则AE的长为.12.已知:△ABC中,D为BC的中点,E为AB上一点,且BE=AB,F为AC上一点,且CF=AC,EF交AD于P,则EP:PF=.13.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.14.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有.15.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.则4个结论:①DN=DG;②△BFG∽△EDG∽△BDE;③CM垂直BD;④若MC=,则BF=2;正确的结论有.16.如图,四边形ABCD中,AB=AD,∠DAB=90°,AC与BD交于点H,AE⊥BC于点E,AE交BD于点G,点F是BD的中点,连接EF,若HG=10,GB=6,tan∠ACB=1,则下列结论:①∠DAC=∠CBD;②DH+GB=HG;③4AH=5HC;④EC﹣EB=EF;其中正确结论序号是.17.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.18.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BP A;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三.解答题19.在矩形ABCD中,AB=12cm,BC=16cm,EF分别是AB、BD的中点,连接EF,点P 从点E出发沿EF方向匀速运动,速度为1cm/s.同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ.设运动时间为t(0<t<8)s.解答下列问题:(1)如图①,求证:△BEF∽△DCB;(2)如图②,过点Q作QG⊥AB,垂足为G,若四边形EPQG为矩形,t=;(3)当△PQF为等腰三角形时,请直接写出t的值.20.如图①,在Rt△ABC中,∠ABC=90°,AB=BC,延长CA至点E,作DE⊥CE交BA 的延长线于点D,连接CD,点F为CD的中点,连接EF,BF.(1)直接写出线段EF和BF之间的数量关系为;(2)将△ADE绕点A顺时针旋转到图②的位置,猜想EF和BF之间的关系,并加以证明;(3)若AC=3,AE=2,将△ADE绕点A顺时针旋转,当A,E,B共线时,请直接写出EF的长.参考答案一.选择题1.解:连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠P AF=∠PF A=45°,∴AP=FP,故①正确,设BE=EC=a,则AE=a,OA=OC=OB=OD=a,∴,即AE=AO,故②正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE∥CD,∴,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故③错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴,∵EQ=PE,∴CE•EF=EQ•DE,故④正确,故选:B.2.解:①∵四边形ABCD是矩形,∴∠BAP=90°,AD∥BC,∴∠APB=∠HBC.∵CH⊥BP,∴∠BHC=90°.∴∠BAP=∠CHB=90°.∴△ABP∽△HCB.∴①的结论正确;②如下图,点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,设BC的中点为O,∵AH+HO≥AO,∴当A,H,O在一条直线上时,AH最小.∵BC=2,∴OB=BC=.∴AO==,∴AH的最小值=AO﹣OB=﹣,∴②的结论正确;③BP扫过的面积=.∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴CH扫过的面积为S扇形OBH+S△OHC.∵CD=2,BC=2,∴tan∠DBC=,∴∠DBC=30°,∴∠HOC=2∠DBC=60°,∴∠BOH=120°.∴CH扫过的面积为S扇形OBH+S△OHC=+××=π+,∴③的结论错误;④∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴点H的运动路径的长为:=.∴④的结论错误;综上,正确的结论有:①②,故选:B.3.解:①∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是BC的中点,∴BE=BC,∵AD∥BE,∴==2,即AG:GE=2:1;故①正确;②∵AD∥BE,∴,∴BG=BD,同理得:DH=BD,∴BG=GH=HD,∴BG:GH:HD=1:1:1;故②正确;③∵AD∥BE,∴△BEG∽△DAG,∴=,∵BG=GH=HD,∴S5=S3=S4,设S1=x,则S5=S3=S4=2x,∴S=12x,同理可得:S2=x,∴S1+S2+S3=x+x+2x=4x=S;故③正确;④由③知:S6=6x﹣x﹣x=4x,∴S2:S4:S6=1:2:4,故④正确;所以本题的4个结论都正确;故选:D.4.解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.5.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF=5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.6.解:如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,根据对称性,△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,故①正确,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=1,AO=DO=+1,∴tan∠ADE=tan∠ODE==﹣1,故②正确,∴AB=AD=AO=2+,∴C△ADE﹣C△ODE=AD+AE﹣DO﹣EO=,故③错误,∴S△AEB=S△AED=×1×(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+,∵DF=EF,∴S△EFB=,∴S四边形AEFB=S△AEB+S△BEF=,故④错误,故选:C.7.解:如图,过D作DM∥BE交AC于N,交BC于M,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB,∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DN垂直平分CF,∴DF=DC,故③正确;∵CF=2AF,∴S△ABC=3S△ABF.∴④不正确;其中正确的结论有3个,故选:B.8.解:∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,即HG⊥BE,故①正确;在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO=BG,且HO∥BG,故②正确;设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴=,即=,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),则=﹣1;则S正方形ABCD:S正方形ECGF=(﹣1)2=3﹣2,故③错误;∵EF∥OH,∴△EFM∽△OMH,∴==,∴=,=,∴===,故④正确.故选:C.9.解:①如图:正方形ABCD中BA=BC,∠ABP=∠CBP,BP=BP,∴△ABP≌△CBP,那么∠1=∠2,在直角三角形ABG中∠1与∠G互余,∠PCE=90°,那么∠2与∠5互余,∴∠5=∠G,∴EC=EG.在直角三角形FCG中∠3与∠G互余,∠4与∠5也互余,而∠5=∠G,∴∠3=∠4,∴EC=EF,从而得出EG=EF,即E为FG的中点.∴①正确.③∵AB=BC,∠ABD=∠CBD,BP=BP,∴△ABP≌△CBP,∴∠1=∠2,∵AB∥CD,∴∠1=∠DF A,∵AB=BP,∴∠1=∠BP A,∵∠DPF=∠APB,∵EF=CE,∴∠3=∠4,∴∠4=∠DPE,∴D、P、C、E四点共圆,∴∠DEA=∠DCP,∵∠1+∠DAP=90°,∠2+∠DCP=90°,∴∠DAP=∠DCP=∠DEA,∴AD=DE,∴③正确,②∵∠3=∠4,AD=DE(③已求证),∴△CEF∽△CDE,∴=,即CE2=CF•CD,∵∠3=∠4,∴CE=EF,∵E为FG的中点.∴FG=2CE,即CE=FG,∴=CF•CD,即FG2=4CF•CD,∴②正确.④∵四边形ABCD是正方形,∴△PDF∽△PBA,∴==,∴=,∴=,即CF=DF,∴④错误,综上所述,正确的由①②③.故选:C.二.填空题(共9小题)10.解:①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∵AD平分∠CAB,∴∠EAD=∠DAC,∴∠AED=∠ADC,故①正确;②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,∴,∵AC的值未知,故②不一定正确;③连接DM,∵MD为斜边AE的中线,∴DM=MA,∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,∴,∴,∴BF=2AC,故③正确;④由③知,,∵,∴DM∥AC,DM⊥BC,∴∠MDA=DAC=DAM,∵∠ADE=90°,∴DM=MA=ME,∵BM=2AM,∴BE=EM,∴ED=BE,故④正确,故答案为:3个.11.解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=BC=2,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴,即=,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3﹣x),解得:x=2,∴AE=8﹣2=6.②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(8﹣x),EH=B′H=(8﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴[(8﹣x)]2+[4+(8﹣x)]2=x2,解得:x=,综上所述,满足条件的AE的值为6或.故答案为:6或.12.解:∵BE=AB,CF=AC,∴则=,=,分别作EE1,FF1平行于BC且与AD交于E1、F1两点.则EE1∥FF1,∴△EE1P∽△FF1P,=,==,==,又BD=CD,∴=,∴==,故答案为:.13.解:如图所示,以BD为对称轴作N的对称点N',连接MN′并延长交BD于P,连NP,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.解:①如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE,故①正确;②∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO是△EBG的中位线,∴OH∥BG,HO=BG,故②正确;③由①得△EHG是直角三角形,∵O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,故③错误;④如图2,连接CF,由③可得点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF,故④正确;故答案为:①②④.15.解:正方形ABCD中,AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∴∠EDF=∠FDC+∠CDE=∠FDC+∠ADF=∠ADC=90°,∴∠DEF=45°,∵∠DGN=45°+∠FDG,∠DNG=45°+∠CDE,∠FDG≠∠CDE,∴∠DGN≠∠DNG,∴DN≠DH,判断出①错误;∵△DEF是等腰直角三角形,∵∠ABD=∠DEF=45°,∠BGF=∠EGD(对顶角相等),∴△BFG∽△EDG,∵∠DBE=∠DEF=45°,∠BDE=∠EDG,∴△EDG∽△BDE,∴△BFG∽△EDG∽△BDE,故②正确;连接BM、DM.∵△AFD≌△CED,∴∠FDA=∠EDC,DF=DE,∴∠FDE=∠ADC=90°,∵M是EF的中点,∴MD=EF,∵BM=EF,∴MD=MB,在△DCM与△BCM中,,∴△DCM≌△BCM(SSS),∴∠BCM=∠DCM,∴CM在正方形ABCD的角平分线AC上,∴MC垂直平分BD;故③正确;过点M作MH⊥BC于H,则∠MCH=45°,∵MC=,∴MH=×=1,∵M是EF的中点,BF⊥BC,MH⊥BC,∴MH是△BEF的中位线,∴BF=2MH=2,故④正确;综上所述,正确的结论有②③④.故答案是:②③④.16.解:①以BD中点F为圆心,BD为直径可以作出△ABC的外接圆,∵tan∠ACB=45°,∴∠ACB=∠ADB=45°,∴A、B、C、D四点共圆,∴∠DAC=∠CBD,故①正确;②∵△ABH∽△GDA,∴AB2=BH•DG,即AB2=16×(10+DH),叉∵BD=AB,即16+DH=AB,解得DH=8,∵DH+GB=8+6=14≠10,∴DG+GB≠HG,故②错误;③∵△AHG∽△BHA,∴AH2=BH•HG=160,∴AH=4,根据相交弦定理:AH•HC=BH•DH,∴HC=,∴4AH=5HC,故③正确;④∵BD=BH+DH=24,△ABD为等腰直角三角形,∴AB=12,∵AC=AH+HC=,且△AEC是等腰直角三角形,∴AE=CE=,根据勾股定理可得,BE=,∴CE﹣BE=,由△ABH∽△DCH,得CD=,而FN=CD=,BF=12,由勾股定理可得,BN=,BE=,∴EN=BN﹣BE=,EF=,∴CE﹣EB=EF,故④正确.综上,正确的结论是①③④.故答案为:①③④.17.解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.18.解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠P AB=90°,∴∠CPM=∠P AB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BP A.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BP A,∴=,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,由折叠知,AE=AB=AD,∠AEP=∠B=90°,∴∠AEN=90°=∠D,∵AN=AN,∴Rt△ADN≌Rt△AEN(HL),∴DN=EN,设ND=NE=y,在Rt△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∴MG=AD=4,根据勾股定理得:AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣2)2+3,∴x=2时,AG最小值=3,∴AM最小值==5,故④错误.∵△ABP≌△ADN时,∴△ABP≌△ADN≌△AEN≌△AEP,∴∠P AB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KP A=∠KAP=22.5°∵∠PKB=∠KP A+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4,故⑤正确.故答案为①②⑤.三.解答题(共22小题)19.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∴∠EBF==∠CDB,∵E、F分别是AB、BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∴EF∥BC,∴∠EFB=∠CBD,∴△BEF∽△DCB;(2)当四边形EPQG为矩形时,如图所示,在矩形ABCD中,AB=12cm,BC=16cm,∴BD=20cm,AD=BC=16cm,∵E、F分别是AB、BD的中点,∴BF=DF=10cm,EF=AD=×16=8m,∴QF=(2t﹣10)cm,PF=(8﹣t)cm,∵四边形EPQG是矩形,∴PQ∥BE,∴△QPF∽△BEF,∴,∴,解得:t=,∴当t=时,四边形EPQG为矩形,故答案为;(3)当点Q在DF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(10﹣2t)cm,∴8﹣t=10﹣2t,解得:t=2,当点Q在BF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(2t﹣10)cm,∴8﹣t=2t﹣10,∴t=6,当点Q在BF上,PQ=QF,如图所示,过点Q作QG⊥EF于点G,则GQ∥BE,∴△QGF∽△BEF,∴,∵PQ=QF,∴GF=PF=(8﹣t),∴,∴t=,当点Q在BF上,PQ=PF,如图所示,过点P作PM⊥BF于点M,则∠PMF=∠BEF=90°,∵∠PFM=∠BFE,∴△PFM∽△BFE,∴,∵PQ=PF,∴MF=QF=(2t﹣10),∴,∴t=,综上所述,t=2或6或或时,△PQF是等腰三角形.20.解:(1)如图①中,结论:EF=BF.理由:∵DE⊥CE,∴∠CED=90°,∵∠CBD=90°,CF=DF,∴BF=CD,EF=CD,∴EF=BF.故答案为:EF=BF.(2)如图②中,结论:EF=BF,EF⊥BF.理由:过点C作CT∥DE交EF的延长线于点T,连接BT,ET,延长DE交BC于点J,设AB交DJ于点K.∵CT∥DE,∴∠CTF=∠DEF,∵∠CFT=∠DFE,CF=DF,∴△CFT≌△DFE(AAS),∴FT=EF,CT=DE,∵CT∥DJ,∴∠TCB=∠DJB,∵∠AEK=∠JBK=90°,∠AKE=∠JKB,∴∠EAK=∠BJK,∴∠BCT=∠BAE,∵AE=DE,CT=DE,∴CT=AE,∵CB=AB,∴△BCT≌△BAE(SAS),∴BT=BE,∠CBT=∠ABE,∴∠TBE=ABC=90°,∴△EBT是等腰直角三角形,∵FT=EF,∴BF⊥EF,BF=EF.(3)如图③﹣1中,当点E在BA的延长线上时,∵AB=BC,AC=3,∠ABC=90°,∴AB=AC=3,∵AE=2,∴BE=5,∵△BFE是等腰直角三角形,∴EF=AE=如图③﹣2中,当点E在线段AB上时,同法可得EF=,综上所述,满足条件的EF的长为或.。
中考数学专题练习直接开平方法解一元二次方程(含解析)
2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。
3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。
专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.
中考数学专项训练: 新定义型(含解析)
一、选择题1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2019·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2019·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=o o ;当∠A 是底角时,则底角是20°,k=201804=o o ,故答案为:85或14.三、解答题1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
人教版九年级数学上册中考专题复习题含答案全套
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
中考数学专项培优训练--二次函数面积最值问题(含解析)
二次函数几何动点问题(含解析)一、面积最大值问题1.(2020九上·休宁月考)如图,已知二次函数的图象经过点、和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为,并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,求的最大面积.2.(2021·芜湖模拟)如图,抛物线与直线相交于点,,且这条抛物线的对称轴为.(1)若将该抛物线平移使其经过原点,且对称轴不变,求平移后的抛物线的表达式及k的值:(2)设P为直线下方的抛物线上一点,求面积的最大值及此时P点的坐标.3.(2020九上·寻乌期末)已知二次函数的图象的对称轴是直线,它与x轴交于A、B两点,与y轴交于点C,点A的坐标是.(1)请在平面直角坐标系内画出示意图,并根据图象直接写出时x的取值范围;(2)求此图象所对应的函数关系式;(3)若点P是此二次函数图象上位于x轴上方的一个动点,求面积的最大值.4.(2020九上·瑶海月考)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(-1,0),且对称轴为直线x=1(1)求该抛物线的解析式;(2)点M是第四象限内抛物线上的一点,当△BCM的面积最大时,求点M的坐标;5.(2020·洞头模拟)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.6.(2020九上·山亭期末)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?7.(2020九上·旬阳期末)已知抛物线经过点,,与y轴交于点C.(1)求这条抛物线的解析式;(2)如图,点P是第三象限内抛物线上的一个动点,求四边形面积的最大值.8.(2020九上·永年期末)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)当C为抛物线顶点的时候,求的面积.(3)是否存在这样的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.二、等腰三角形问题9.(2020九上·呼和浩特期中)如图,抛物线y= +bx+c的对称轴为x=﹣1,该抛物线与x轴交于A、B 两点,且A点坐标为(1,0),交y轴于C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并予证明.(3)在对称轴上是否存在一点P,使得△ACP为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.10.(2020·肇东模拟)如图,抛物线与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0).求d与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.三、直角三角形问题11.(2020九下·扎鲁特旗月考)如图,二次函数的图象经过点,直线与y轴交于点为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E是直线上方抛物线上一点,过E分别作和y轴的垂线,交直线于不同的两点在G的左侧),求周长的最大值;(3)是否存在点E,使得是以为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.12.(2020九上·芦淞期末)如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,直线经过点C,与x轴交于点D.(1)求该抛物线的函数关系式;(2)点P是(1)中的抛物线上的一个动点,设点P的横坐标为t(0<t<3).①求△PCD的面积的最大值;②是否存在点P,使得△PCD是以CD为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由.13.(2020九上·泉州期中)如图,直线交轴于点,交轴于点B,抛物线的顶点为,且经过点.(1)求该抛物线所对应的函数表达式;(2)点是抛物线上的点,是以为直角边的直角三角形,请直接写出点的坐标.四、平行四边形问题14.(2019九上·武威期中)如图,抛物线y=x2+bx+c与直线y=x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.15.(2020九上·广丰期末)如图二次函数的图像交轴于、,交轴于,直线平行于周,与抛物线另一个交点为.(1)求函数的解析式;(2)若是轴上的动点,是抛物线上的动点,求使以、、、为顶点的四边形是平行四边形的的横坐标.16.(2020九上·桐城期末)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图,当点C的横坐标为1时,求直线BC的表达式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.答案解析部分一、综合题1.【答案】(1)设,把A点坐标代入得:,∴二次函数的解析式是(2),轴,P在上,∴,∵点,∴直线OA的解析式为y=x,又点C在直线OA上,∴点C(m,m)当点P在直线OA的上方时,,,,,开口向下,当m= 时,PC有最大值,即当点P在直线OA的上方时,线段PC的最大值是.(3)∵A点坐标,且PC有最大值,∴.【解析】【分析】(1)利用待定系数法求解即可;(2)由题意可知,易求得直线OA 的解析式,可得点,由= ,利用二次函数最值求法求解即可;(3)根据点A坐标和PC的最大值即可求解.2.【答案】(1)解:抛物线过点,,且这条抛物线的对称轴为.代入得,解得.∴抛物线为.∵该抛物线平移使得其经过原点,且对称轴不变,∴平移后的抛物线为.将代入得.(2)解:如图,过P作轴,交于Q.设,则,则.∴.∵∴当时,的面积最大,,当t=2时,∴.【解析】【分析】利用待定系数法求一次函数的解析式和二次函数式的解析式。
中考数学专项训练 矩形、菱形与正方形(含解析)
矩形、菱形与正方形一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.矩形、菱形与正方形参考答案与试题解析一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形【考点】旋转的性质;矩形的判定.【分析】根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.【解答】解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF是矩形.故选:A.【点评】本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解答】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x﹣y)2,解得x=y,∴MD=MB=2x﹣y=y,∴==.故选:C.【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm【考点】菱形的性质;勾股定理;解直角三角形.【分析】先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.【解答】解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm,在Rt△AOB中,AB==5cm,∵BD×AC=AB×DH,∴DH=cm,在Rt△DHB中,BH==cm,则AH=AB﹣BH=cm,∵tan∠HAG===,∴GH=AH=cm.故选:B.【点评】本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个【考点】正方形的性质.【分析】根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE 和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.【解答】解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴AE=BF(故①正确),S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∵S△AOB=S△BAF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,∴S△AOB=S四边形DEOF(故④正确),∵∠ABF+∠AFB=∠DAE+∠D EA=90°∴∠AFB+∠EAF=90°∴AE⊥BF一定成立(故②正确).假设AO=OE,∵AE⊥BF(已证),∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),∵在Rt△BCE中,BE>BC,∴AB>BC,这与正方形的边长AB=BC相矛盾,∴,假设不成立,AO≠OE(故③错误);故错误的只有一个.故选:A.【点评】本题考查了正方形的四条边都相等,每一个角都是直角的性质,全等三角形的判定与性质,综合题但难度不大,求出△ADE≌△BAF是解题的关键,也是本题的突破口.二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是 3 .【考点】菱形的性质.【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答】解:由题意,知:S菱形=×2×3=3,故答案为:3.【点评】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积;具体用哪种方法要看已知条件来选择.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .【考点】含30度角的直角三角形;矩形的性质.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.【点评】本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= 20°.【考点】旋转的性质;矩形的性质.【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为:20°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【专题】压轴题.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.【点评】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质;三角形中位线定理.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;平行四边形的判定.【分析】(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.【解答】(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.。
中考数学试卷加解析题
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2.5C. -2D. -1.5答案:D解析:绝对值表示一个数与0的距离,所以绝对值最小的数应该是最接近0的数,即-1.5。
2. 若a=3,b=-2,则a²+b²的值为()A. 5B. 7C. 9D. 11答案:C解析:将a和b的值代入公式,得3²+(-2)²=9+4=13,所以选C。
3. 已知函数f(x)=2x+1,若f(2x-1)=5,则x的值为()A. 2B. 1C. 0D. -1答案:B解析:将f(2x-1)=5代入函数表达式,得2(2x-1)+1=5,解得2x=3,x=1.5,所以选B。
4. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)答案:A解析:点P关于x轴的对称点,横坐标不变,纵坐标互为相反数,所以选A。
5. 已知等腰三角形ABC中,底边BC=6,腰AB=AC=8,则三角形ABC的周长为()A. 14B. 20C. 22D. 26答案:C解析:等腰三角形两腰相等,所以周长为底边加上两腰,即6+8+8=22,所以选C。
6. 若x²-5x+6=0,则x的值为()A. 2B. 3C. 2或3D. 0答案:C解析:这是一个一元二次方程,可以通过因式分解或者求根公式解得x=2或x=3,所以选C。
7. 在△ABC中,∠A=45°,∠B=30°,则∠C的度数为()A. 60°B. 90°C. 120°D. 135°答案:B解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入已知角度,得45°+30°+∠C=180°,解得∠C=105°,所以选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年中考数学(大题)专项训练01(含解析)
一、解答题(共10题,每题10分,共100分)
1.【试题来源】 2016 届四川省乐山市市中区九年级上学期期末数学试卷(带解析)
如图所示,在矩形 ABCD中, E 是 BC上一点, AF⊥ DE于点 F.
求证: DF?CD=AF?CE.
若AF=4DF, CD=12,求 CE的
长.【答案】 1)见解析;( 2)
CE=3.【解析】
(2)∵△ ADF∽△ DCE;
∴DF AF ,
CE DC
∴DF CE ,
AF DC
又∵ AF=4DF, CD=12,
∴DF CE ,
4DF12
∴CE=3.
考点: 1、相似三角形的判定与性质;2、矩形的性质.
2、【试题来源】2014-2015 学年江苏省江都实验初中八年级下学期第一次月考数学试卷(带解析)
若 x =2 1,y= 2 1,求 x 2 y xy2 的值
( x y) 2
【答案】
1
【解析】
2
考点:分式的化简求值.
3、【试题来源】201 6 届广东省深圳市17 所名校九年级下学期联考数学试卷(带解析)
如图,AB 是⊙O 的直径,点 C 是⊙ O 上一点,AD 与过点 C 的切线垂直,垂足为点 D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 于点 F ,连接BE .
(1)求证:AC平分∠DAB;
(2)求证: PC=PF;
( 3)若tan ABC 4
, AB=14,求线段PC的长.3
【答案】( 1)证明过程见解析;(2)证明过程见解析;(2) 24.【解析】
试题解析:(1)∵ PD切⊙ O于点 C,∴ OC⊥ PD
又AD⊥ PD,∴ OC∥AD.∴∠ ACO=∠ DAC.
又OC= OA,∴∠ ACO=∠ CAO,
∴∠ DAC=∠ CAO,即 AC平分∠ DAB.
(2)∵ AD⊥ PD,∴∠ DAC+∠ ACD=
90°.又 AB为⊙ O的直径,∴∠ ACB=
90°.∴∠ PCB+∠ ACD= 90°,
∴∠ DAC=∠ PCB.
又∠ DAC=∠ CAO,∴∠ CAO=∠ PCB.
∵CE平分∠ ACB,∴∠ ACF=∠
BCF,∴∠ CAO+∠ ACF=∠ PCB+
∠ BCF,∴∠ PFC=∠ PCF,
∴ PC= PF
(3)∵∠PAC=∠ PCB,∠ P=∠ P,
∴△ PAC∽△ PCB,
∴PC AC .
PB BC
又tan ∠ ABC=
4
, 3
∴ AC 4 ,
BC 3
∴PC 4
PB 3
设 PC 4k , PB 3k ,则在 Rt △ POC中, PO 3k7 ,
∵AB=14,
∴OC 7 ,
∵PC2 OC 2 OP 2,
∴ (4k) 2 72 (3k 7) 2,
∴ k= 6 (k= 0 不合题意,舍去).
∴ PC 4k 4 6 24 .
考点: 1、圆的基本性质;2、三角形相似;3、勾股定理.
4.【试题来源】2016 届安徽省阜阳市太和县北城中学九年级上学期期末数学试卷(带解析)
如图,在正方形ABCD中, E, F 分别是边AD, DC上的点,且AF⊥ BE.求证: AF=BE.
【答案】见解析
【解析】
试题解析:证明:∵四边形ABCD是正方形,
∴AB=BC,∠ A=∠ ABC=90°,
∴∠ CBM+∠ABF=90°,
∵ CE⊥ BF,
∴∠ ECB+∠MBC=90°,
∴∠ ECB=∠ABF,
在△ ABF和△ BCE中,
CBE A
AB BC
ABF BCE
∴△ ABF≌△ BCE( ASA),
∴BE=AF.
考点: 1、全等三角形的判定与性质;2、正方形的性质.
5、【试题来源】2016 届山东省菏泽市牡丹区九年级上学期期末数学试卷(带解析)
“ 4?20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800 顶,该商家备有 2 辆大货车、 8 辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200 顶,大、小货车每天均运送一次,两天恰好运完.( 1)求大、小货车原计划每辆每次各运送帐篷多少顶?
( 2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m 顶,每辆小货车每次比
1 m 次,小货车每天比原计划原计划少运300 顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑
2
多跑 m次,一天恰好运送了帐篷14400 顶,求 m的值.
2.
【答案】( 1)小货车每次运送800 顶,大货车每次运送1000 顶;(2) m的值
为
【解析】
答:小货车每次运送800 顶,大货车每次运送1000 顶;
(2)由题意,得 2×( 1000﹣ 200m)( 1+ 1
m) +8( 800﹣300)( 1+m) =14400,2
解得: m1=2, m2=21(舍去).
答: m的值为 2.
考点: 1、一元二次方程的应用;2、一元一次方程的应用.
6、【试题来源】 2014-2015 学年江苏省江都实验初中八年级下学期第一次月考数学试卷(带解析)如图, AD∥BC, AE∥CD, BD平分∠ ABC,求证 AB=CE.
【答案】证明过程见解析.
【解析】
考点: 1、平行线的性质;2、平行四边形的性质.
7.【试题来源】2014-2015 学年江苏省江都实验初中八年级下学期第一次月考数学试卷(带解析如图,在△ ABC中,∠ C=90°,∠ B=30°, AD是 BC边上的中线,若AB=8,求 AD的长.
【答案】 27
【解析】
考点:勾股定理.
8.【试题来源】 2016 届江西省萍乡市芦溪县九年级上学期期末数学试卷(带解析)
已知:如图,在平行四边形ABCD中, AE是 BC边上的高,将△ABE沿 BC方向平移,使点 E 与点 C 重合,得△GFC.
( 1)求证: BE=DG;
( 2)若∠ B=60°,当 AB与 BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
【答案】( 1)见解析;( 2)四边形ABFG是菱形,见解析
【解析】
试题分析:(1)根据平移的性质,可得:BE=FC,再证明Rt △ ABE≌ Rt △CDG可得: BE=DG;
( 2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的 AB与 BC满足的数量关系即可.
试题解析:(1)证明:∵四边形ABCD是平行四边形,
∴ AB=CD.
∵AE 是 BC边上的高,且 CG是由 AE沿 BC方向平移而
成.∴ CG⊥ AD.
∴∠ AEB=∠CGD=90°.
∵AE=CG,
∴Rt △ ABE≌ Rt △ CDG( HL).
∴BE=DG;
考点: 1、菱形的判定;2、直角三角形全等的判定;3、平行四边形的性质;4、平移的性质.9.【试题来源】 2015-2016 学年山东省武城县育才实验学校七年级上第二次月考数学卷(带解析)
观察下图,每个小正方形的边长均为1,
(1)图中阴影部分的面积是多少?边长是多少?
(2)边长的值在哪两个整数之间.
(3)把边长在数轴上表示出来.
【答案】( 1) 17;17 ;(2)4和5之间;(3)图形详见解析.
【解析】
( 3)如图所示:
考点: 1、图形的面积; 2、算术平 方根; 3、数轴 .
10. 【试题来源】 2016 届四川省乐山市市中区九年级上学期期末数学试卷(带解析)
在一个不透明的盒子里,装有四个分别标有数字﹣2,﹣ 1, 1, 4 的小球,它们的形状、大小、质地等完全 相同,小强先从盒子里随机取出一个小球,记下数字为 a ;放回盒子摇匀后,再由小华随机取出一个小球,
记下数字为 b .
( 1)用列表法或画树状图表示出( a ,b )的所有可能出现的结果;
( 2)求小强、小华各取一次 小球所确定的点( a ,b )落在二次函数 y=x 2 的图象上的概率;
( 3)求小强、小华各取一次小球所确定的数a , b 满足直线 y=ax+b 经过一、二、三象限的概率. 【答案】( 1)见解析;( 2)
3
;( 3) 1
.
16
4
【解析】
试题分析:( 1)利用树状图展示所有 16 种等可能的结果;
( 2)根据二次函数图象上点的坐标特征得到点(﹣ 2,4),(﹣ 1,1),( 1,1)落在二次函数 y=x 2 的图象上,然后根据概率公式求解;
( 3)根据一次函数图象与系数的关系可得到 a > 0, b >0,则点( 1, 1),( 1, 4),( 4,1),( 4, 4)满足直线 y=ax+b 经过一、二、三象限,然后根据概率公式求解.
试题解析:解:( 1)画树状图如下:
共有 16 种等可能的结果,它们为(﹣ 2,﹣ 2)、(﹣ 2,﹣ 1)、(﹣ 2, 1)、(﹣ 2,4)、(﹣ 1,﹣ 2)、(﹣ 1,﹣ 1)、(﹣ 1, 1)、(﹣ 1, 4)、( 1,﹣ 2)、( 1,﹣ 1)、( 1, 1)、( 1,4)、( 4,﹣ 2)、( 4,﹣ 1)、( 4, 1)、( 4,4);
考点: 1、列表法与树状图法; 2、一次函数图象与系数的关系; 3、二次函数图象上点的坐标特征.。