第16章 二端口网络(总结)

合集下载

第十六章 二端口网络

第十六章   二端口网络
1)二端口应用很广,其分析方法易推广应用于 n 端口网络; 2)可以将任意复杂的二端口网络分割成许多子网络(二端 口)进行分析,使分析简化; 3)当仅研究端口的电压电流特性时,可以用二端口网络的电 路模型进行研究。
6
§16.1 二端口网络
三、分析方法
1)分析前提:讨论初始条件为零的无源线性二端口网络;
但是二端口的串联、并联和级联是需要满足一定条件 的,即不能因为某种联接而破坏了端口处的端口条件。
几个二端口网络在做各种连接以后,可以用一个等效 的二端口来等效。考虑到在做不同联接时的参数方程的特 点,其等效二端口也应有不同的网络参数与其对应。
44
§16.3 二端口的连接
一、级联(链接,cascade)
17
§16.2 二端口的参数和方程
在端口
2
上外施电流

I
2
,把端口
1
开路,如图所示,由
Z
参数方程得:
18
§16.2 二端口的参数和方程
由以上各式得 Z 参数的物理意义: Z11 表示端口 2 开路时,端口 1 处的输入阻抗或驱动点阻抗; Z22 表示端口 1 开路时,端口 2 处的输入阻抗或驱动点阻抗; Z12 表示端口 1 开路时,端口 1 与端口 2 之间的转移阻抗; Z21 表示端口 2 开路时,端口 2 与端口 1 之间的转移阻抗, 因 Z12和 Z21 表示一个端口的电压与另一个端口的电流之间的 关系。故 Z 参数也称开路阻抗参数。

A Aa Ab
等效A参数矩阵为两个级联二端口的A参数之矩阵之积。
48
§16.3 二端口的连接
二、串联和并联:
1、串联:
1
i
1
u

二端口网络相关知识简介

二端口网络相关知识简介

对称二端口只有两个参数是独立的。
对称二端口是指两个端口电气特性上对称。电路结 构左右对称的,端口电气特性对称;电路结构不对称的 二端口,其电气特性也可能是对称的。这样的二端口也 是对称二端口。使用时可以不分彼此。

I1 2
+

U1
5
10 10


I2
I1 2
++
U U •

21
2

I2
+ 4 •
U2 2
U 2
Y21 Δ
I1
Y11 Δ
I2
Z 21 I1
Z22 I2
其中 =Y11Y22 –Y12Y21
其矩阵形式为
U U
1 2
Z11
Z
21
Z12 Z 22
I1 I2
Z
Z11
Z
21
Z12
Z
22
称为Z参数矩阵
Z参数的实验测定
U 1 Z11I1 Z12 I2 U 2 Z21I1 Z22 I2
互易 对称
Y Y12=Y21 Y11=Y22
Z Z12=Z21 Z11=Z22
T
H
detA=1 H12= -H21 T11=T22 detH=1
5 .含有受控源的电路四个独立参数。
§3 二端口的等效电路
(1) 两个二端口网络等效: 是指对外电路而言,端口的电压、电流关系相同。
(2) 求等效电路即根据给定的参数方程画出电路。
i2

1 i1 3
4 i2
1-1’ 2-2’是二端口
3-3’ 4-4’不是二端口,是四端网络
i1' i1 i i1 i2' i2 i i2

第十六章 二端口网络

第十六章 二端口网络

1、一般情况
+
I1 z11–z12 z22–z12
-
I2
++
U1
z12
(z21–z12)I1 U2
-
-
2、如果二端口网络满足互易条件,即z12= z21
z11–z12 z22–z12
+
I1
U1
z12
I2
+
U2
-
-
二、用Y参数表示的等效电路 1、一般情况
+ I1
-Y12
I2
+
U1
U2
-
- ( Y21-Y12 )U1
. 1 I1
+.
-U1
1
.
I2
+. 2
NIC
-U2
2
T参数
电流反向型
. U. 1 = 1 I1 0
. 0 U. 2 -k -I2
电压反向型
. U. 1 = -k I1 0
0 U.. 2 1 -I2
1、负阻抗变换器应用
电路设计中,实现负阻抗——负R、L、C
.
.
I1 1
- Z1
+. U1
I2
2
.+
例1 求Y 参数。

I1
Yb

I2
I1 Y11U 1 Y12U 2 +
+

I2

Y21U 1
Y22U 2

U1

Ya
Yc

U2

解:

I1
+

U1


U1 0

第16章-b-二端口网络

第16章-b-二端口网络

L di1 dt
L r 2C
BACK NEXT
从端口1看,u1, i1关系为一等效电感关系,L= r2C. 若 r =50k, C =1F 则 等效电感 L=2500H !
3. 回转器不消耗功率(能量),也不储能。是线性无源元件。
u1i1 u2i2 ri2i1 ri1i2 0
4. 回转器是非互易元件。
T11 T21
T12 T11
T22
T21
T12 T22
UI22
得 T T T
结论: 级联后所得复合二端口T 参数矩阵等于级联旳二 端口T 参数矩阵相乘。上述结论可推广到n个二端 口级联旳关系。
...
T1
T2
... Tn
T=[T1][T2] …. [Tn]
BACK NEXT

4
Z11 Z 21
Z12
Z
22
结论:
串联后复合二端口Z 参数矩阵等于原二端口Z 参数 矩阵相加。可推广到n端口串联。
BACK NEXT
注意: (1)串联后端口条件可能被破坏。
2A
2 Z” 2
1A
1.5A
3A 1¸
3 1¸ 1.5A
2A
1A


1.5A
1.5A 2
2A
2 2 端口条件破坏
1A
[Z] [Z'][Z"]
i2
+ u1
UNIC
+ u2
电压反向型
ui11
ku2 i2
u1
i1
k
0
0 u2
1
i
2
T 参数矩阵
BACK NEXT

二端口网络

二端口网络

第十六章 二端口网络重点:1. 二端口网络的有关基本概念 2. 熟练计算二端口网络的四种参数矩阵3. 掌握分析网络参数已知的二端口网络组成的复杂电路的分析方法16.1 概述16.1.1 N 端网络与N 端口网络前面的电路分析与计算中,我们常常是研究一个具体的电路在一定电路结构与电路参数的情况下所产生的响应。

如果一个网络N 有2n 个端子向外接出(在大多数情况下,我们又并不关心电路的内部结构及内部各个支路的情况,而只讨论外电路的状态与变化,当这2n 个端子成对出现,即端口处的输入电流等于输出电流时,该网络可以视为一个n 端口网络,特别的,当网络只有四个端子引出时,我们称其为二端口网络。

(注意二端口网络与四端网络的区别与联系)sL U s I s I 212)()(=-=其实我们前面介绍一般的电路的分析,也可以用网络分析的思路来理解,即分析电路内某一条支路的情况时,可以将该支路划出原电路,而原电路的其他部分可以用戴维南或诺顿等效电路来代替,从而的出结果。

这就将原电路除了待求支路外的其他电路部分组成一个一端口网络,经过戴维南等效,该一端口网络的电量关系就可以表征成为一种简单的端口电压与端口电流的伏安关系,从而研究在此伏安关系下外电路的情况。

在本书中,我们仅仅研究由线性电阻、电容、电感(包括互感)元件所组成的线性非时变无源网络,其中的“无源”是指无独立电压、电流源,动态元件初始状态为零的情况。

另外,本章中我们均采用拉氏变换法来研究二端口网络。

(实际上,如果激励为正弦量即可用相量法分析,方法完全相同)16.1.2 研究的问题对于二端口网络N ,我们需要研究怎样通过定义及电路的计算方法求其各种参数矩阵,另外还需要研究复杂网络中的二端口网络的参数矩阵对复杂网络分析的作用,从而通过模块化的思想将复杂网络等效成为简单的单口网络及二端口网络的组合,分别计算其参数或参数矩阵,得出电路的解。

16.1.3 研究的对象特性在本课程中,对所研究的二端口网络加以下面的限制。

课16 二端口网络

课16 二端口网络

U 1
Y′
U 2
U 1
U 2
− Y0 ⎞ ⎟ ⎟ Y0 ⎟ ⎠
⎛ Y ′+ Y ⎜ 11 0 Y =Y′+ Y′′=⎜ ⎜ Y ′−Y ⎝ 21 0
29
30
5
法2
′=Y ′U +Y ′U I 1 11 1 12 2 ′ ′ ′ =Y U +Y U I
2 21 1 22
1
1 U
1'
2 U
2'
端口1-1'开路时的转移阻抗
1
端口1-1'开路时,端口2-2'处的输入阻抗
2⎤ ⎡ U 2⎤ B⎤⎡ U ⎥⎢ ⎥=T ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ D⎥ 2 ⎦ ⎣− I ⎦ ⎣ − I 2⎦
7
8
⎡A T=⎢ ⎢C ⎣
线性无源: 对称:
B⎤ ⎥ D⎥ ⎦
AD−BC=1
1⎤ ⎡U ⎡ I1⎤ ⎢ ⎥= Y ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ U 2⎦ ⎣ I 2⎦
1⎤ 1⎤ ⎡I ⎡U ⎢ ⎥= Z ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ I 2⎦ ⎣ U 2⎦ 1⎤ ⎡ ⎡U I1 ⎤ ⎢ ⎥=H ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ U 2⎦ ⎣ I2 ⎦
§16-3 二端口的等效电路
1
三、二端口网络的T参数方程 端口2-2'开路时,端口1-1'处的输入阻抗 (二端口网络的A参数方程
T参数(传输参数,一般参数) A参数)
I1 I2
线性 无独立源 2
端口2-2'开路时的转移阻抗
1= A U 2− B U I2 2− D I1= C U I2
1⎤ ⎡ A ⎡U ⎢ ⎥= ⎢ ⎢ ⎥ ⎢ ⎣ I1 ⎦ ⎣ C

十六章 二端口网络

十六章 二端口网络

U 2
11
二端口网络的Y、Z参数特性:
1、对于线性R、L(M)、C元件构成的 任何无源二端口,Z12=Z21,Y12=Y21
2、对于对称的二端口,Z11=Z22,Y11=Y22 3、Z=Y-1参数
I 1 I 2
方法一:分别求Z四个 参数
+ -
+
-
U 1
第十六章 二端口网络(369)
$16-1 二端口网络 一、定义: N0由线性电阻、电感、 电容和受控源组成,不包括 独立电源。 端口条件: i1
i1
i1
i2
N0
i2
i1
i2 i2
满足端口条件的为双口网络,否则为四端网络。 放大器、滤波器、变压器等均可认为二端口网络
1
二端口网络分析特性: 1、对于二端口网络,主要分析端口的电流和电压, 不涉及内部电路的工作状况。因此,本章主要讨论 端口u、i为变量的电路方程(二端口VAR约束方程) 2、二端口网络端口有四个物理量(u1、i1、u2、i2), 若其中两个为自变量,另两个为应变量,可有六组 表征网络特性的独立方程:
4
方法二:分别求出四个Y参数,从而得出Y矩阵
根据方程
1 Y1 1U 1 Y1 2U 2 I 2 Y2 1U 1 Y2 2U 2 I
0 ,U 1V,则如图 1、令 U 1 2
I Y1 2 1 U2
I 1 U 1
0 U 1
I 1
二、电流控制型二端口VAR方程

I 1
U 1 -
No

i2 ) u1 f(i1 , i2 ) u 2 f(i1 , 结构电 路 如 图

电路原理 第16章 二端口(网络)

电路原理 第16章 二端口(网络)

口网络,短路参数为Y
3 80
1 40
1 40
1 20
,求支路电流I1和I2。
解:列写回路方程为
R1I1 R2 I2
+U1 +U2
= Us =0
R1 I 1
US U1
I2
N U2
R2
II12
Y11U1 Y12U2 Y21U1 Y22U2
(R12YR211UY111)U(11RR21YY2122)UU22U0s
即:
I1 I2
Y11U 1 Y12U 2 Y21U 1 Y22U 2
Y 参数方程
写成矩阵形式为:
I1 I2
Y11 Y21
Y12
Y22
UU 12
[Y
]
Y11 Y21
Y12
Y22
Y参数值由内部参数及连接关系决定。
Y 参数矩阵.
(2) Y参数的物理意义及计算和测定
Y11 UI11 U 2 0 自导纳
端口电压电流有六种不同的方程来表示,即可用六套 参数描述二端口网络。
i1 u1 i2 u2
u1 u2 i1 i2
u1 i1 i2 u2
1. Y 参数和方程

(1)Y参数方程
I1
+

U1
N

I2
+ • U2
采用相量形式(正弦稳态)。将两个端口各施加一电压
源,则端口电流可视为这些电压源的叠加作用产生。
互易二端口: 对称二端口:
H12 H21 H11H22 H12H21 1
例3

I1
+

U1
R1

I2

第16章a二端口网络

第16章a二端口网络

BACK NEXT


I 1 2 10
I2
+
+

U1
5
10

U2



I 1 2
+

2
U1


I2
+
4
2
U2

互易
Y12Y21
Z11
2(5//1)016 3
Y11
1 Z11
3s 16
16
Z22
1/0/1[ 0(5//2)] 3
Y22
1 Z22
约定
1. 讨论范围
线性 R、L、C、M与线性受控源
不含独立源 应用运算法分析电路时,规定独立初始条件均为零, 即不存在附加电源。
2. 参考方向(对于端口来说为关联参考方向)
+
i1
u1 –
i1
线性RLCM 受控源
i2
+
u2 – i2
BACK NEXT
分析方法 1. 确定二端口处电压、电流之间的关系,写出参数矩阵。 2. 利用端口参数比较不同的二端口的性能和作用。 3. 对于给定的一种二端口参数矩阵,会求其它的参数矩阵。 4. 对于复杂的二端口,可以看作由若干简单的二端口组 成。由各简单的二端口参数推导出复杂的二端口参数。

I1
+ U1
-
线性 无源

I2 +

-U 2
UI21
H11I1 H21I1
H12U 2 H22U 2
矩阵形式
U I21H H1211 H H1222U I12
BACK NEXT

第十六章 二端口网络

第十六章  二端口网络
反馈 网络
放大器
2 、二端口网络
1
i1in
1
i2 in
2
u1
1 i1out
u2
i2out 2
(1)给定一个四端网络,若 i1in i1out , i2 in i2out , 则这个四端网络构成了二端口网络。 (2)二端口网络的对外联接特性由端口电压 u1 , u2 和电流 i1 , i2 确定。端口四个变量的相互关系可 通过二端口的参数和方程来描述,参数只决定于 二端口本身的元件及联接方式。
Z1 Z 2
[Z ]
Z2
Z2 Z2 Z3
例2:若上图中加上一个受控电压源,如图所示, 求二端口网络的Z参数。 Z I I Z1
1
3
2
U1
Z2 U R
3U R
U2
Z1
Z3
Z2 U R
I1
3U R
解: 方法一:
在左边端口加电流为 I1的电流源,右端开路,则: U1 U1 ( Z1 Z 2 ) I1 Z11 Z1 Z 2 I1 U2 U2 Z 2 I1 3 Z 2 I1 Z 21 4 Z 2 I1 在右边端口加电流为 I 2 的电流源,左端开路,则: U1 U1 Z 2 I 2 Z12 Z 2 I2 U2 U2 ( Z 2 Z 3 ) I 2 3 Z 2 I 2 Z 22 4 Z 2 Z 3 I2
直接列方程
1
Yc
2
I1 YaU1 Yb (U1 U2 ) (Ya Yb )U1 YbU2 I 2 YcU2 Yb (U2 U1 ) YbU1 (Yb Yc )U2

电路第五版课件 第十六章二端口网络

电路第五版课件 第十六章二端口网络

-Yb
(3)互易性和对称性 Y11 Y12 Y = 互易性:二端口满足: Y12 = Y21 Y21 Y22 . . I2 I1 Y21 = . Y12 = . . = Yb . = Yb U1 U2=0 U2 U1=0
1 . I1 1' Yb 1 + + . . U2 U1 2' 1' 2 Yb Ya Yc . I2 2'
. I1 . I2 .+ U1 线性 RLCM 受控源 +. U2
直接列方程法 . . . I1 = Y11 U1+ Y12 U2 . . . I2 = Y21 U1+ Y22 U2 写成矩阵形式: . . Y11 Y12 U1 I1 . = . I2 Y21 Y22 U2 Y11 Y12 Y 参数 Y = Y21 Y22 矩阵。 注意:Y 参数值由内部元 件参数及连接关系决定。
I 1 I
2
U 1 U
2
(1) Z参数方程定义 将两个端口各施加一 电流源,则端口电压可 视为电流源单独作用时 的叠加。
Z参数矩阵
注意:Z 参数值由内部元 件参数及连接关系决定。19
(2) Z参数的的物理意义及计算 开路法 . . . U1= Z11 I1 + Z12 I2 . . . U2= Z21 I1 + Z22 I2
Y11 Y12 Y21 Y22
11
Y =
例1:求P型电路的Y参数。 解法1:短路法 . Yb I1 1 Y11 = . . =Ya+Yb U1 U2=0 Ya Yc . I2 Y21 = . . = Yb 1' . U1 U2=0 Yb I1 . 1 + I1 . Y12 = . . = Yb Ya Yc U1 U2 U1=0 . 1' . I2 Y22 = . . =Yb+Yc Yb I1 U2 U1=0 1 Y = Ya+Yb

二端口网络基本原理总结

二端口网络基本原理总结

二端口网络基本原理总结在计算机网络中,二端口网络是指一个网络设备有两个端口,即可与两台计算机或网络设备进行连接和通信。

二端口网络是网络中最基本的组成单位之一,其原理和功能对于理解和构建网络体系至关重要。

一、二端口网络的定义和分类二端口网络是指具有两个端口的网络设备,常见的二端口网络设备包括交换机、路由器和防火墙等。

根据不同的工作方式和功能特点,二端口网络可以分为以下几种类型:1. 局域网(LAN)二端口网络: 这种网络设备通常被用于连接公司内部的计算机、服务器和其他网络设备,实现内网之间的通信和资源共享。

局域网二端口网络的重要代表是交换机。

2. 广域网(WAN)二端口网络: 这种网络设备常用于连接不同地点或跨越较大区域的网络,实现远程通信和数据传输。

广域网二端口网络的典型代表是路由器。

3. 安全隔离网络(SAN)二端口网络: 这种网络设备用于网络分段和隔离,确保不同网络之间的数据传输安全和稳定。

安全隔离网络二端口网络的主要代表是防火墙。

二、二端口网络的工作原理1. 数据交换原理: 二端口网络通过物理或逻辑链路将源设备发送的数据包转发到目标设备。

交换机通过MAC地址学习和转发数据,路由器通过IP地址和路由表实现数据的选择性转发。

2. 端口连接原理: 二端口网络使用端口连接实现设备之间的通信。

每个端口有唯一的标识符,用于在网络中识别和区分设备。

设备之间的通信通过端口之间的物理连接或逻辑连接完成。

3. 数据传输原理: 数据在二端口网络中通过各种传输介质进行传输,如以太网、光纤、无线等。

通过各种传输方式,网络设备能够将数据按照规定的协议和格式进行传输和接收。

4. 数据处理原理: 二端口网络设备会对接收到的数据进行处理,包括检验、解析和转发等。

交换机会对数据进行帧头的校验和转发决策,路由器会对数据进行IP包的转发和路由选择。

三、二端口网络的特点1. 灵活性和可扩展性: 二端口网络设备通常具有较高的灵活性和可扩展性,可以根据不同的需求和规模进行配置和扩展。

电路分析:二端口网络

电路分析:二端口网络

二、压控型参数—短路导纳矩阵
1、对应的方程 以U1(s)、U2(s)为变量,即激励
II2 1((ss)) y y1 21 1 ((ss))U U1 1((ss)) yy122(2(ss))U U22((ss))
方程的矩阵式:
II1 2((ss))yy1 21 (1 (ss))
Y
Y 12 Y Y 11
Y
H
H 12
H 12
H 22
H 21
1
H 22 H 22
Y11 Y12 Y 21 Y 22
1
H 12
H 11
H 11
H 21
H
H 11
H 11
1 Y 12
Y 11
Y 11
Y 21
Y
Y 11
Y 11
H 11 H 12 H 21 H 22
Y 22 Y 21
三、混合型参数—混合参数矩阵
4、当二端口网络为线性非时变,且不
含受控源时,h12h21
5、注意:当以I1(s)、U2(s)为变量时, 得到的参数矩阵为逆混合参数矩阵H’
elecfans 电子发烧友 bbs.elecfans 电 子技术论坛
四、传输型—传输参数矩阵
1、对应的方程 以U2(s)、I2(s)为变量,即激励
出,在分析中又并不关心电路的内部 结构及内部各个支路的情况,而只讨 论外电路的状态与变化时,称该网络 为N端网络。elecfans 电子发烧友 bbs.elecfans 电
子技术论坛
2.N端口网络 如果一个网络有2N个端子向外
接出,这2N个端子又成对出现,即 端口处的输入电流等于输出电流时, 该网络可以视为一个N端口网络。
由(2)式得:

第十六章 双端口网络

第十六章 双端口网络

C I1
输出端开路时输入端电流与输出端电压比即为转移导纳;
U2 (I2 0)
负载短路时即 U2 0 时有
B U1 I 2 (U2 0)
输出端短路时输入端电压与输出端反向电流比即 为转移阻抗;
D I1 I2 (U2 0)
输出端短路时输入端电流与输出端反向电流比;
其矩阵形式为:
UI11
双端口网络基本方程和参数见表。
参数名称
自变量
因变量
开路阻抗 Z
I1, I2
短路导纳 Y U1,U2
U1 ,U 2
I1, I2
混合参数 H I1,U 2 U1, I2
逆混合参数 G U1, I2
传输参数 T U2, (I2)
逆传输参数 T
U1, I1
I1,U 2 U1, I1
U2, (I2 )
②通过实验求取,
Z11
U1 I1 ( I2 0)
称为输出端口开路时输入端口入端阻抗;
Z12
U1 I2 ( I1 0)
称为输入端口开路时的转移阻抗;
Z21
U2 I1
(I2 0)
称为输出端口开路时的转移阻抗;
Z22
U2 I2
( I1 0)
称为输入端口开路时输出端口入端阻抗;
Z 参数方程的矩阵形式:
解法1:输入端口加 U1 输出端口短路时有
+ I16Ω 3Ω
I2
+
U1 6Ω -
6Ω 6Ω
U2
-
H11
U1 I1 (U2 0)
U1 U1
9
9
H 21
I2 I1 (U2 0)
1 2
(
1 2
)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功率
理想回转器是不储能、 不耗能的无源线性两 端口元件。
2020/12/1
两个二端口并联时,其端口条件可能被破坏,此时上述关系式将不成立。 具有公共端的二端口(三端网络形成的二端口),将公共端并在一起将不会破坏端口条件。
串联后复合二端口Z 参数矩阵等于原二端口Z 参数矩阵相加。可推广到 n 端口串联。
2020/12/1
6.回转器二端口参数及特点
Z参数
Y参数
T参数
回转器是非互易的两端口 网络。
4.已知各参数,求二端口网络的等效电路
方法1、直接由参数方程得到等效电路。 方法2:采用等效变换的方法。
2020/12/1
5.二端口网络的链接特点
级联后所得复合二端口T 参数矩阵等于级联的二端口T 参数矩阵相乘。上 述结论可推广到n个二端口级联的关系。(级联时各二端口的端口条件不 会被破坏。)
二端口并联所得复合二端口的Y 参数矩阵等于两个二端口Y 参数矩阵相加。
1.二端口网络的概念; 2.二端口网络Z、Y、T、H参数及
方程列写; 3.互易、对称网络各参数的特点; 4.已知各参数,求二端口网络的等
效电路; 5.二端口网络的链接特点; 6.回转器二端口参数及特点;
பைடு நூலகம்
第16章 二端 口网络
1.二端口网络的 概念 2.二端口网络Z、 Y、T、H参数及 方程列写
当一个电路与外部电路通过 两个端口连接时称此电路为 二端口网络
3.互易、对称网络各参数的特点
互易二端口(满足互易定理)
互易二端口网络是在端口1上加一个电压,在端口2上产生相应的电流;在端口2上加与 前者相同的电压,在端口1上产生相应的电流。若两个端口产生的电流相等,则称二端 口网络是互易的。(互易二端口四个参数中只有三个是独立的。)
对称二端口
对称二端口是指两个端口电气特性上对称。电路结构左右对称的一般为对称二端口。 结构不对称的二端口,其电气特性可能是对称的,这样的二端口也是对称二端口。 (对称二端口只有两个参数是独立的。)
相关文档
最新文档