平方根教学反思_心得体会

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根教学反思

本文是关于心得体会的平方根教学反思,感谢您的阅读!

篇一:平方根教学反思

一般新知识都是建立在原有知识的基础之上的,这样引入新课是建立在学生对数字的规律和联系的把握上的,学生是比较容易接受的。因此在上一章勾股定理一章时,有意识的让学生知道类似X2=4时X的值有两个即X=2或X=-2,因为在直角三角形中求边长,边长不能为负数,故只取正数,这样反复训练学生哪个数的平方等于4或16等等,又为何取正数的道理,从而使学生接触到如何求X 的值,为学习平方根、算术平方根的概念奠定了基础,接触到这个概念时,学生就没有太多困惑了。另外,我设计了两种题目:一种是知道正方形的边长求面积;还有一种是知道正方形的面积求边长,对于第一种题目,学生利用正方形的面积公式很快就可以解决,对于第二种题目,面积为9、16、49的,学生也可以很快利用平方的知识进行解答,但是当面积=7时的,学生就被难住了,到底边长应该是多少呢?学生无法找到一个数,使它的平方等于7,这时,我告诉同学们,当我们无法找到符合这个条件的数时,我们就需要引入一个新的知识:平方根。我也及时给出了表示方法。那到底什么叫做平方根呢?我要求学生自己阅读教材中的相关内容,让学生自己去发现规律,并能用自己的语言加以表达,加深学生对平方根概念的理解,从而归纳出三个结论:一个正数的平方根有2个,它们互为相反数;0的平方根有1个,还是0;负数没有平方根。通过这些探索,最后让学生体会到,要求一个非负数的平方根,可以利用平方来检验或寻找。

接着就要和学生学习平方根的表示方法了,为了让学生正确掌握“算术平方根”的表示,我还特意把与之相反的“负的平方根”的表示也同时列举出来,让学生通过对比进一步加深印象。

得到概念后正面的强化很重要,因此在第三个环节,我设计了例题:如何求一个数的平方根,算数平方根,负的平方根?通过搭建脚手架,给了学生正确的表达方法,进行强化训练。

随后就是通过不同形式的练习,分组分层进行训练,让学生对平方根的概念及表示方法形成正确的一印象并加以巩固。但是在练习中还是发现部分学生存在一些问题,如:求49的平方根,他写成出现错误。“对于容易混淆的概念,要引

导学生用对比的方法,弄清它们的区别与联系”,因此我在讲课中重点强调书写格式,反复强调平方根与算术平方根的区别与联系。

课后反思得失,感触颇多:

一、明确的学习目标是有效学习的前提美国着名心理学家、教育家布鲁姆说:“有效的教学,始于期望达到的目标。学生开始时就知道教师期望他们做什么,那么他们便能更好地组织学习。”我校现在施行的以“导学案”为载体的“先学后教,当堂达标”的教学模式就突出了明确学习目标这一点。然而从课堂上来看,学生对学习目标的重视程度还远远不够。学生只是读了一下学习目标,学习目标并没有深入其内心深处,没有成为他学习行为的指南。在上课快结束时回扣目标做得不是很好。事实上出示目标和回扣目标都是一节课非常重要的环节。学习目标应贯穿整节课的始终。二、充足的时间是探究学习质量的保证所谓探究学习就是学生象科学家一样地去探索某个结论或规律。学生经历观察、猜想、验证、归纳等,使他们经历发现问题、提出问题、解决问题的过程,从而总结解决问题的方法,提高解决问题的能力,这需要充足的时间。在本节课中探究:对于正数a,根号a的平方=______时,由于时间的关系,没有给予学生充足的时间。致使学生的探究学习只停留在了观察、猜想的层次,而没有达到预想的层次。在探究学习时,要舍得花费时间,正所谓“磨刀不误砍柴功”。三、及时检查反馈是小组合作学习的保障初中生自制力较差,小组合作学习涉及人多,若组织不当就会使学生精力分散。所以在小组合作学习前就要明确任务要求,并及时检查、评价。在本节课的自主学习1、2过程中,学生明确了学习的任务要求,在检查反馈时学生掌握很好,从而增强了学生的成功感,激发了学习的兴趣,为下一个环节的进行做了良好的准备。“思考着往前走”,是教学改革中教师自我成长的现实之路。只要每一位教师善于发现、敢于承认自己教学中存在的不足,并执着探索解决的方法。相信“教得轻松,学得快乐”的教学境界会到来的。掌握好概念是学好数学的基础和关键,每个教师都要重视概念课教学,综合运用各种教学方法和教学手段,优化课堂,力求使学生能正确理解概念,从而能够灵活使用概念解答问题。

篇二:平方根教学反思

本节内容主要介绍平方根与算术平方根的概念,先讲平方根,再讲算术平方根。平方根和算术平方根的概念属本章的重点内容。它是后面学习实数的准备知

识,是学习二次根式,一元二次方程的基础。本节课是第一课时内容,主要介绍平方根和算术平方根的概念。下一节立方根的学习可以类比平方根进行,因而平方根的学习必须要打牢基础。另外,从运算角度来看,加与减,乘与除,平方与开方互为逆运算,所以平方根的概念在某种程度上也起到了承上的作用。在教材处理上,本节课我除了利用课本上的引例,提出问题外,还增加了一些与教学内容紧密相关的活动,通过实际例子的引入,让学生自己动手,使学生能够在活动的过程中,主动发现,主动探索知识,和主动建构所学知识的意义。本课时的重点是:使学生经历观察、探索、思考的过程,理解平方根的概念。本课时的难点是:经历探索平方根性质的过程,并能在与他人交流的过程中,合理清晰地表达自己的思维过程。

二、教学过程设计

1.设置情景引入

平方根概念的引入,由实际问题引入(一个正方形的面积为16,它的边长为多少?面积为9时?4时?边长分别为多少呢?),到提出问题(面积为a的正方形,边长是多少呢?),再到解决问题(若设正方形的边长为x,则符合题意的方程为),最后归纳出问题的实质(要找一个正数,使这个数的平方等于a)。本环节通过学生动脑,动口,充分调动了学生学习的积极性,同时也激发了学生的求知欲望。

2.通过复习过渡

首先由学生回答3道计算平方的算式,然后由学生通过观察,并结合互逆运算的知识,启发学生找出等式两边存在的联系,最后我在学生总结的基础上,进行点播:等号右边的数叫做等号左边各数的平方数;反过来,等号左边各数就叫做等号右边各数的平方根。这样做,有利于使学生意识到本章的学习将是前面所学知识的一个再发展的过程,并激发学生饱满的学习热情,引导他们以积极的态度和旺盛的精力主动探索,并且在思考中感受思维的美,在探索解决问题中体验快乐,从而获得最佳效益。

3.引导概念的符号表示

通过学生动脑,动口对平方根概念进行正说与逆说(如:9的平方根是,反过来是9的平方根),加深对平方根概念的初步理解;然后在上面叙述的基础上

相关文档
最新文档