声学知识普及
《声学知识科普》PPT课件
精选ppt
20
声音的量度
我们听起来,有的声音大,有的声音小,那么究竟用什么尺 度来衡量声音的大小呢?
原来声波是疏密波,它使空气时而变密,时而变稀。空气变 密,压强就增高;空气变稀,压强就降低。这样,由于声波的 存在,使大气压产生迅速的起伏。这个起伏部分称为声压,声 压越大,声音越强,声压越小,声音越弱,人们就用声压作为 衡量声音大小的尺子。
线声源---平面波
精选ppt
16
声波的衰减
在大多数情况下在大多数实际情况下,可以近似地认为声波 在声源附近具有球面波形状。球面波的强度与离开声源距离的 平方成反比而降低,即当离声源的距离增为2、3、4、5倍时, 声音的强度将相应地减为 、 、1 、1 。1 1
这是因为声源每秒钟发出的能4 量是9 一16 个2恒5 量,离开声源的距 离越大,能量的分布面也越大,因此,通过单位面积的能量就 越小。这也就是离声源距离越近,声音越强,离声源的距离越 远,声音越弱的原因。这叫做声波的距离衰减。
敲一下音叉,它就会一来一回的摆动。这个有规则的摆动就 叫振动。音叉往返一次算作一次振动,每秒振动的次数叫频率, 用 来表示,单位是赫。1千赫或1000赫表示每秒经过一给定 点的声波有f 1000个周期。
但不是所有的振动人耳都听得见,只有频率为20~20000 赫的振动人耳才能产生声音的感觉。低于20赫的声波叫次声, 高于20000赫的声音叫超声。
正常人耳刚刚听到的得声音的声压称为可听阈声压,而当声 压使人耳产生疼痛感觉称为痛阈声压。
精选ppt
21
声压级
但是从听阈到痛阈,声压的绝对值相差一百万倍。用声压的 绝对值来表示声音的强弱是很不方便的。
声学专业基本知识
声学专业基本知识Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998声学专业基本知识的简单描述?1.人耳能听到的频率范围是20Hz—20KHz。
2. 把声能转换成电能的设备是传声器。
3. 把电能转换成声能的设备是扬声器。
4. 声频系统出现声反馈啸叫,通常调节均衡器。
5. 房间混响时间过长,会出现声音混浊。
6.房间混响时间过短,会出现声音发干。
7、唱歌感觉声音太干,当调节混响器。
8、讲话时出现声音混浊,可能原因是加了混响效果。
9、声音三要素是指音强、音高、音色。
10、音强对应的客观评价尺度是振幅。
11、音高对应的客观评价尺度是频率。
12、音色对应的客观评价尺度是频谱。
13、人耳感受到声剌激的响度与声振动的频率有关。
14、人耳对高声压级声音感觉的响度与频率的关系不大。
15、人耳对中频段的声音最为灵敏。
16、人耳对高频和低频段的声音感觉较迟钝。
17、人耳对低声压级声音感觉的响度与频率的关系很大。
18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。
19、等响曲线中,每条曲线上标注的数字是表示响度级。
20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。
21、响度级的单位为phon。
22、声级计测出的dB值,表示计权声压级。
23、音色是由所发声音的波形所确定的。
24、声音信号由稳态下降60dB所需的时间,称为混响时间。
25、乐音的基本要素是指旋律、节奏、和声。
26、声波的最大瞬时值称为振幅。
27、一秒内振动的次数称为频率。
28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。
29、人耳对1~3KHZ的声音最为灵敏。
30、人耳对100Hz以下,8K以上的声音感觉较迟钝。
31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用。
32、观众席后侧的反射声对原发声起回声作用,属有害反射作用。
公共基础知识声学基础知识概述
《声学基础知识概述》一、引言声学是一门研究声波的产生、传播、接收和效应的科学。
从我们日常的言语交流到音乐演奏,从医学超声诊断到建筑声学设计,从水下声呐探测到航空航天领域的噪声控制,声学无处不在。
它不仅在科学研究中具有重要地位,也在工程技术、医学、艺术等领域发挥着关键作用。
本文将对声学基础知识进行全面的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、声学的基本概念1. 声波的定义与性质声波是一种机械波,是由物体的振动产生的。
它通过介质(如空气、水、固体等)传播,引起介质分子的振动。
声波具有以下主要性质:(1)频率:指声波每秒振动的次数,单位为赫兹(Hz)。
人耳能够听到的声音频率范围大约在 20Hz 到 20kHz 之间。
(2)波长:指声波在一个周期内传播的距离。
波长与频率和波速之间的关系为:波长=波速/频率。
(3)波速:声波在不同介质中的传播速度不同。
在空气中,声速约为 343 米/秒;在水中,声速约为 1480 米/秒;在固体中,声速则更高。
(4)振幅:表示声波的强度,即介质分子振动的幅度。
振幅越大,声音越响亮。
2. 声音的三要素声音的三要素是音调、响度和音色。
(1)音调:由声音的频率决定,频率越高,音调越高。
例如,女高音的音调比男低音高。
(2)响度:与声音的振幅和距离有关,振幅越大、距离越近,响度越大。
通常用分贝(dB)来表示声音的响度。
(3)音色:也称为音品,是由声音的波形决定的。
不同的发声体发出的声音具有不同的音色,这使得我们能够区分不同的乐器和人的声音。
3. 噪声与乐音噪声是指那些杂乱无章、令人厌烦的声音。
噪声的来源广泛,如交通噪声、工业噪声、建筑施工噪声等。
噪声对人的身心健康会产生不良影响,如引起听力损伤、心理压力等。
乐音则是有规律、悦耳动听的声音,如音乐演奏中的声音。
三、声学的核心理论1. 波动方程波动方程是描述声波传播的基本方程。
对于一维情况,波动方程可以表示为:$\frac{\partial^{2}u}{\partialt^{2}}=c^{2}\frac{\partial^{2}u}{\partial x^{2}}$ 其中,$u$表示介质的位移,$t$表示时间,$x$表示空间坐标,$c$表示波速。
声学知识普及ppt课件
声学基本术语
1、声的基本特性参数
1.1频率和周期
每秒声振动的次数称为声的频率,记作f,单位是赫兹(Hz)。人耳能听到的声, 其频率范围是20~20000Hz。低于20Hz的称为次声,高于20000Hz的称为超声。人 耳对于3000Hz左右的声感觉最灵敏;对低于63Hz和高于16000Hz的声,即使勉强 听得见,反应也很不灵敏。所以,在噪声控制领城内,主要对63~16000Hz的声有 兴趣。
声音 :来源于物体的振动。声音是一种物理现象,是描述 由于媒体质点振动运动引起的质点密度随时间变化的情况
声音传播
周期T是一次声振动所经历的时间。单位是s
波长:声波传播过程中两个相继的同相位点之间的空间距离 用符号λ表示,单位是m
频率:每秒声振动的次数,记作f,单位是赫兹(Hz)
不同声源的频率范围
信号类型
稳态信号
Байду номын сангаас
非稳态信号
确定性
时间
时间
随机
连续
时间
瞬态
时间
时间
时间
频率
频率
频率
频率
由于许多声学性质,如吸声、隔声、绕射、衰减、阻尼等等都与频率大小有关, 我们研究声学不能只研究声压、声强、声功率等等而忽略声的频率结构。所以噪 声控制工程中分析声的频率是一件十分重要的工作。常用的方法有两种,一种是 根据声压的时间历程记录进行快速Fourier变换(FFT),另一种是将整个频率范围 划分成许多首尾相连的频带(频程),对应于每一个频带设置一个带通滤波器,以 便测定每个频带的声压值。频谱分析因其带宽的划分方法不同而分成:
2.
2 dB + 2 dB = 5 dB
3.
3 dB + 3 dB = 6 dB
声学基础知识
声学基础知识一、声音声音是空气分子的振动。
物体的振动(我们称之为"声源")引起空气分子相应的振动,传入人耳导致鼓膜振动,通过中耳、内耳等一系列听觉器官的共同作用使人听到了声音。
二、声波把石头扔进平静的水面,会形成一组向四周扩散的水波,这是我们所能见到的比较直观"波",空气分子振动形成的声波要复杂一点,它是从声源向四周立体扩散的一组疏密波,空气分子并不是从声源一直跑到您的耳朵,而是在它本来的位置振动,从而引起与它相邻的空气分子随之振动,声音就是这样从声源很快地向外传播的,声音在空气中的传播速度是331米/秒。
举一个简单的例子,麦浪的运动跟声波很相似,粒子的振动方向与波的运动方向是平行的。
波需要通过介质来传播,麦浪的运动到田埂边就自然停止了,声波的传播介质是空气分子,所以,真空里声音是不能传播的。
三、声音的频率声波每秒的振动次数称为频率,频率在20Hz~20KHz之间称为声波;频率大于20khz称为超声波;频率小于20hz称为次声波。
超声波和次声波人耳是听不到的,地震波和海啸都是次声波。
有些动物的耳朵比人类要灵敏得多,比如蝙蝠就能"听到"超声波。
世界上很少存在单一频率的"纯音",我们所听到的声音大都是各种频率的复合音,如乐器发出的单音就是周期性的复合音,语音则是非周期性的复合音。
让我们对声音的频率有一个比较直观的概念:大鼓的"蓬蓬"声频率很低,大约在35Hz-7kHz;人的语音频率范围主要在200 Hz到40 00 Hz之间;锣声、铃声的频率大约在2000 Hz到3000 Hz左右;在人类语音中,女声比男声频率要高一点;童声要比成人频率高一点;"啊啊"声频率较低,"咿咿"声频率稍高,"嗤嗤、嘶嘶"声频率最高。
知道这一点很有用,在实际中,可以经常用来测试病人戴助听器前后对声音频率的反应。
声学基本知识
声学基本知识一、声音的基本性质声音来源于振动的物体。
辐射声音的振动物体称为“声源”。
声源要在弹性介质中发声并向外传播。
声波是纵波。
(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。
低于20Hz的声音称为次声;高于20000Hz的声音称为超声。
次声与超声不能使人产生声音的感觉。
(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。
-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。
表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。
(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。
声线表示声波的传播方向和途径。
在各向同性的介质中,声线是直线且与波阵面垂直。
依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。
一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。
当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。
所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。
(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。
这种现象称为绕射,或衍射。
(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。
从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。
声学基础与常识
A加权(A-weighted)
A加权(A-Weighted)是一种用于音频测量的标准权重曲线,用于反映人耳的响应特性。声压电平源于A加权,用dbA表示,或称为A加 权dB电平。A加权是广泛采用的噪声的单值评价指标,可以通过声级计测量得到。 由于噪声的测量要反映人耳引起的响度感觉大小,其次,需要充分考虑到人耳的听觉特性。人的耳朵对于不同频段的声音变化敏感程 度是不一样的,太高或者太低就越不敏感,就像一个A字,所以叫A-Weighted。A加权的标准是由美国标准协会在20世纪40年代制定, 用于描述人耳对于不同频段声音变化敏感程度。此外,还有B加权,C加权,D加权等等。A加权是模拟人耳对40方纯音的响应;B加权 模拟的是人耳对70方纯音的响应;C加权模拟的是100方纯音的响应;D加权主要用于飞机噪声的评价。一般规定24~55方的噪声测量选 择A加权;55~85方的噪声测量选用B加权;对85方以上的噪声测量选用C加权。在进行音频功率放大器的噪声测试的时候,一般采用的 都是A加权后的数值。可以从手册中看出,在进行输出噪声的电气参数描述的时候,一般会在备注栏写上A-weighted。
听觉的分辨力
声压级不连续变化:声压级不连续变化的时候,听觉对于两 个不同的声压级声音的分辨阈要小于声压级连续变化的情况。 下图反映的是1KHz纯音在连续和非连续的情况下的分辨阈的 对比曲线。可以看到,连续变化的分辨阈基本上是非连续变 化分辨阈的2.5倍左右。
声压级越大,频率越高,声压级不连续变化,这样就更容易 被分辨。
声学知识科普课件
• 声学基 • 声学用域 • 声学研究方法与技 • 声学在生活中的用 • 声学展前景与
01
声学基知
声音的产生与传播
声音的产生
声音的反射、折射和吸收
声音是由物体振动产生的,包括机械 振动、电磁振动等。
声音在传播过程中,遇到不同介质会 发生反射、折射和吸收等现象。
声音的传播
声音通过介质(如空气、水、固体等) 传播,传播速度与介质性质有关。
建筑声学与环境声学
建筑声学
建筑设计需要考虑声学原理,以提供良好的音质和隔音效果。 例如,采用适当的材料和结构可以减少声音的反射和传播。
环境声学
环境声学研究声音对人类生活和自然环境的影响。例如,噪 声污染和控制、动物声音交流、声波在环境中的传播等。
医学超声与生物声学
医学超声
医学超声是利用声波在人体组织中的反射和传播特性进行诊断和治疗的一种技 术。例如,超声成像、超声治疗和超4
声学在生活中的用
声音艺术与文化
音乐表演
音乐表演是声音艺术的重 要形式,通过乐器演奏、 歌唱等手段,传达情感和 美感。
戏剧演出
戏剧演出中,声音扮演着 重要的角色,通过台词、 音效等手段,营造出特定 的氛围和情感。
语言交流
语言交流是人们日常生活 中不可或缺的一部分,通 过声音传递信息、表达情感。
声学在军事领域的应用 利用声波进行水下探测和武器制导,提高军事作 战能力。
声学在环境保护领域的发展前景
01
声学在噪声控制中的应用
通过声学技术降低噪声污染,保护人类健康和生态环境。
02
声学在水下生态保护中的应用
利用声学技术监测水下生态系统的变化,为水下生态保护提供科学依据。
声学基础知识介绍
5
二 聲音的特性參數
倍频程定义为两个声音的频率或音调 之比的对数(以2为底), 其公式为: n=㏒2 f2/f2 f1为基准频率; f2为欲求其倍频程数的信号频率; n为倍频程数。
聲功率:聲源在單位時間內輻射出來的總能量 声功率级 Lw = 10*log(W/W0 ) W0為基準音功率, 10-12 W 聲功率級不能直接測量,是由測的的聲壓級換 算的出
11
二 聲音的特性參數
聲功率級與聲壓級的關係
12
二 聲音的特性參數
5.频谱 频谱是把时间函数 的分量按幅值或相 位表示为频率函数 的分布图形。
19
四 聲場(音場)
自由音場-音源輻射區域內,每距離音源1倍 距離,其聲壓級衰減6dB. 迴響音場-封閉與半封閉空間,聲波重複並連 續自壁面反射,音壓位準受到反射干擾而產生 顯著變動.
20
噪音測試設備
半無響室(半消聲室) (Semi-Anechoic Chamber) 背景噪音: < 15 dBA 截止頻率: 100 Hz 隔音量: > 50 dB 振動自然頻率: < 10 Hz B&K 振動噪音量測系統 多功能振動噪音分析系統 實時頻譜分析儀 ½” 麥克風組 x 10 音位校正器 低重量加速規
3
二 聲音的特性參數
频率与倍频程 1 频率与声音的对应关系是:频率低。 相应的音调就低,声音就越低沉;频 率高,相应的音调就高,声音就越尖 锐。 人耳可以听到的声音频率范围通常是 20Hz—20kHz,其频率称为声频或音 频。频率低于20Hz的叫次声,高于 20kHz的叫超声
声学原理知识普及
注:还有 另一个著名品牌 SONOS 。
典型音质的评价
“德国声”—— (又称欧洲声)
其特点介于“英国声”和“美国声”之间, 声音表现比较均衡,音色纯正而朴实,声音通透而富有弹性,清晰度
高,质感强烈,素有中性之称,对于不同类型的音乐都有很大的宽 容度,为现代国际电声界努力发展的方向。
典型音质的评价
“英国声”、“美国声”和“德国声”
典型音质的评价
“英国声”——
此类器材音色柔和、细腻、温暖,音乐感浓郁,久听不厌, 比较适合聆听古典音乐、交响乐、轻音乐和美声歌曲等艺术类作品。 但是动态不如美国器材大,瞬态反应较慢,效率也相对较低。
典型音质的评价
“英国声”——
常见音箱品牌有TANNOY(天朗)、B&W(宝华)、KEF(卡夫)、 SPENDOR(思奔达)、HARBETH(雨后初晴)、ATC、LINN (莲)、PROAC(贵族)、MISSION(美声)、CELESTION (百变龙)Acoustic Energy (AE)等等。
电动式扬声器主要性能参数
灵敏度SPL(声压)
声压级dB
▪ 定义
SPL20lg prms dB pref
在空气中参考声压Pref,一般取为 2×10-5帕
电动式扬声器主要性能参数
额定功率
是指扬声器能长时间运行在不引起损坏前所能接受的最大功率。 使用时要注意不应长时间超过该值的80%,以保证扬声器的安全。
双声道立体声的摆放
以正确的音量播放音乐
正确摆放: 高保真双声道立体声 音箱典型摆放方法
家庭影院音箱摆放
ITU国际电信联盟
家庭影院音箱摆放
杜比Dolby
人声及乐器重要频率范围
声学基础知识(高教课堂)
u
p
0
t
2 1 2 c2 t 2
教学运用
8
3 声场中能量
声能:声波传播引起的介质能量增量称为声能
声能密度
E
Ek
Ep
1 2
0 u 2
p2
2 0
c
2
V0
i
1 2
0
u
2
p2
2 0
c
2
1 T
T
0
i
dt
理想平面波的平均声能密度处处相等,因此平面 声波声能量具有无损耗、无扩展的传递特性。
教学运用
注意:轴线声压随距离 起伏变化,呈现很强的 相干效应。
远场声压
pr
,
, t
j
k0cu a a 2
2r
2
J1 ka sin
kasin
e
j
t
kr
注意:活塞远场声压与球面波一样与距离成反比,声场具有方 向性。
教学运用
35
9 无限大障板上平面辐射器的声辐射
方向性函数
活塞辐射声场方向性函数为:
D 2J1kasin
2 2 2 2 x 2 y 2 z 2
2
1 r2
r
r 2
r
r2
1 sin
sin
r2
1 sin 2
2 2
2
1 r
r r
r
1 r2
2
2
2 z 2
教学运用
7
2 波动方程
速度势
介质单位质量具有的声扰动冲量 :
p dt 0
声压、质点振速与速度势关系
s 0 0 1 0
描述声场,通常采用上述各物理量的时空 分布函数?
声学常识100个
声音无处不在,却也极容易被忽略。
知道什么是声染色吗?知道双耳效应、哈斯效应、德波埃效应、掩敝效应分别指什么吗?知道何为厅堂的死点吗?知道什么是……这些声学常识并不复杂,但未被广泛知道。
许多声学从业人员也未必全都知晓,很多朋友更是连及格线都过不了。
这里就一起好好学习学习声学常识100项吧。
1、人耳能听到的频率范围是20Hz—20KHz。
2、把声能转换成电能的设备是传声器。
3、把电能转换成声能的设备是扬声器。
4、声频系统出现声反馈啸叫,通常要调节均衡器。
5、房间混响时间过长,会出现声音混浊。
6、房间混响时间过短,会出现声音发干。
7、唱歌感觉声音太干,当调节混响器。
8、讲话时出现声音混浊,可能原因是加了混响效果。
9、声音三要素是指音强、音高、音色。
10、音强对应的客观评价尺度是振幅。
11、音高对应的客观评价尺度是频率。
12、音色对应的客观评价尺度是频谱。
13、人耳感受到声剌激的响度与声振动的频率有关。
14、人耳对高声压级声音感觉的响度与频率的关系不大。
15、人耳对中频段的声音最为灵敏。
16、人耳对高频和低频段的声音感觉较迟钝。
17、人耳对低声压级声音感觉的响度与频率的关系很大。
18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同。
19、等响曲线中,每条曲线上标注的数字是表示响度级。
20、用分贝表示放大器的电压增益公式是20lg(输出电压/输入电压)。
21、响度级的单位为phon。
22、声级计测出的dB值,表示计权声压级。
23、音色是由所发声音的波形所确定的。
24、声音信号由稳态下降60dB所需的时间,称为混响时间。
25、乐音的基本要素是指旋律、节奏、和声。
26、声波的最大瞬时值称为振幅。
27、一秒内振动的次数称为频率。
28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度。
29、人耳对1—3KHz的声音最为灵敏。
30、人耳对100Hz以下,8K以上Hz的声音感觉较迟钝。
声学基础知识简介
19.5
16.6 13.8 28.9 41.4 47.8 52.0
2K
4K 8K 16K 20K A声级
52dB
52dB 40dB 38dB 30dB
1.2
1.0 -1.1 -6.6 -9.3 58.1dB
53.2
53.0 38.9 31.4 20.7
1、在声源处抑制噪声:
选用发声小的材料制造机
件
改革设备结构 改革传动装置
噪声控制的基本途径
2、在声传播途径中的控制: 闹静分开 利用声源的指向性降低噪声 利用地形地物降噪 绿化降噪 利用声学控制手段降噪
噪声控制的基本途径
3、接收器的保护措施 耳塞 防声棉 耳罩、头盔 隔声岗亭
隔声技术
应用隔声构件将噪声源和接受者分开、隔 离噪声在介质中的传播,从而减轻噪声污 染程度的技术称为隔声技术。
隔声罩是一种可取的有 效降噪措施,它把噪声 较大的装置封闭起来, 可以有效地阻隔噪声的 外传和扩散,以减少噪 声对环境的影响。隔声 罩可达到罩内外声级差 20-30dB(A)
消声技术
A声级
频率
声压级 加权值
加权后
20
31.5 63 A声级是对声音的频带上使用A 计权网络得到的加权值。单位是 dB(A)。A声级反映了人耳对不 同频率声音响度的计权。A声级 越大,人感觉越吵。 125 250 500 1K
69dB
55dB 40dB 45dB 50dB 51dB 52dB
-50.5
声音与人感觉的关系
声音 火箭导弹发射 喷气飞机喷口 噪声级(A) 150-160 130-140 120-130 110-120 100-110 90-100 70-80 60-70 50-60 30-40 10-20 0-10 对人的影响 听觉器官物理损伤 痛、无法忍受 痛 难于忍受 较难忍受 很吵,难于语言通讯 较吵 对其他讲话者有干扰 较静 非常静 极静 听(0)
声学基础知识
一、声学基础:1、名词解释(1)波长——声波在一个周期内的行程。
它在数值上等于声速(344米/秒)乘以周期,即λ=CT(2)频率——每秒钟振动的次数,以赫兹为单位(3)周期——完成一次振动所需要的时间(4)声压——表示声音强弱的物理量,通常以Pa为单位(5)声压级——声功率或声强与声压的平方成正比,以分贝为单位(6)灵敏度——给音箱施加IW的噪声信号,在距声轴1米处测得的声压(7)阻抗特性曲线——扬声器音圈的电阻抗值随频率而变化的曲线(8)额定阻抗——在阻抗曲线上最大值后最初出现的极小值,单位欧姆(9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功(10)音乐功率——以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO)(11)音染——声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份(12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围2、问答(1)声音是如何产生的?答:世界上的一切声音都是由物体在媒质中振动而产生的。
扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。
(2)什么叫共振?共振声对扬魂器音质有影响吗?答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动。
当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。
部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于共振声不是声源所发出的声音,将会影响扬声器的重放,使音质变坏,尤其是低频部分(3)什么是吸声系数与吸声量?它们之间的关系是什么?答:吸声性能拭目以待好坏通常用吸声系级“α”表示,即α=1-K;吸声量是用吸声系数与材料的面积大小来表示。
声学基本知识
声学基本知识一、声音的基本性质声音来源于振动的物体。
辐射声音的振动物体称为“声源”。
声源要在弹性介质中发声并向外传播。
声波是纵波。
(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。
低于20Hz的声音称为次声;高于20000Hz的声音称为超声。
次声与超声不能使人产生声音的感觉。
(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。
-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。
表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。
(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。
声线表示声波的传播方向和途径。
在各向同性的介质中,声线是直线且与波阵面垂直。
依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。
一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。
当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。
所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。
(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。
这种现象称为绕射,或衍射。
(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。
从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。
声学原理知识点总结高中
声学原理知识点总结高中声学是研究声音的产生、传播和感知的学科。
它涵盖广泛的领域,包括声音的物理特性、声波的传播规律、声学仪器的设计和应用等内容。
声学的研究对于我们理解声音的本质、提高声音质量和保护听力都具有重要意义。
在高中物理课程中,我们也会学习一些声学的基本知识。
下面将对声学的一些重要知识点进行总结。
1. 声音的产生声音是由物体振动而产生的。
当物体振动时,会使周围的空气产生压缩和稀疏的交替波动,这就是声波。
我们常见的声音多是由物体的机械振动所产生,例如乐器演奏、人类语音、交通车辆等。
在声学中,我们会学习声波的基本性质,如频率、波长、振幅等。
2. 声音的传播声音是通过介质传播的,通常是通过空气传播,也可以通过固体或液体传播。
声音传播的速度取决于介质的性质,例如空气中声音的速度约为340米/秒。
声音的传播可以产生折射、反射、衍射和干涉等现象,这些现象都可以用声学原理进行解释。
3. 声音的感知人类的耳朵是感知声音的器官,耳蜗内的毛细胞可以将声波转化为电信号,然后通过神经传递到大脑进行处理。
人类对声音的感知包括声音的响度、音调、音色和方向等。
声学原理可以用来解释为什么我们能够感知到不同的声音特性,以及如何保护听力免受噪音和高分贝声音的伤害。
4. 声学仪器声学原理也被广泛应用于声学仪器的设计和应用中。
例如,麦克风是将声波转换为电信号的装置,扬声器是将电信号转换为声波的装置,音响系统、声纹识别系统、声波测距仪等都是基于声学原理设计的仪器。
5. 声学在生活中的应用声学的研究成果在日常生活中有着重要的应用。
例如声学可以用来设计音响系统、改善室内声学环境、开发新型听力辅助设备、设计防噪音耳塞等。
此外,声学还被广泛应用于医学、海洋学、天文学、地震学等领域。
以上是对声学的一些基本知识点的总结。
声学是一个综合性学科,它涉及物理学、工程学、生物学、心理学等多个学科,因此它的研究内容非常广泛而且有深刻的理论和实践意义。
通过学习声学原理,我们可以更好地理解声音的本质,更好地利用声音,在工程技术、医学、文化娱乐等领域有着广泛的应用前景。
声学研究的知识点整理
声学研究的知识点整理声学研究是研究声音及其传播和接收的学科。
它涵盖了广泛的领域,包括声波的产生、传播、衰减、反射、折射、干涉和共振等。
以下是声学研究的一些核心知识点:1. 声音的特性- 声音的频率:声音的频率是指声波在单位时间内完成的完整振动周期数。
一般用赫兹(Hz)来表示。
- 声音的振幅:声音的振幅是指声波振动的幅度大小,它决定了声音的响度。
一般用分贝(dB)来表示。
- 声音的波长:声音的波长是声波一个完整波动的长度,它与声音的频率和声速有关。
2. 声音的传播- 声音的传播媒介:声音需要通过某种介质传播,如空气、水或固体等。
不同的媒介对声波的传播速度有影响。
- 声音的传播方式:声音可以通过空气中的纵波传播,也可以通过固体中的横波传播。
- 声音的衰减:声音在传播过程中会逐渐减弱,衰减程度受媒介的吸收和声波的扩散等因素影响。
3. 声音的反射和折射- 声音的反射:当声波遇到障碍物时,一部分声波将被反射回去。
反射的方向和强度取决于障碍物的形状和材质。
- 声音的折射:当声波从一种介质传播到另一种介质时,会发生折射现象。
折射使声音的传播方向发生改变,其程度由介质的折射率差决定。
4. 声音的干涉和共振- 声音的干涉:当两个或多个声波相遇时,它们可能会相互加强或相互抵消,这就是声音的干涉现象。
- 声音的共振:当一个系统受到与其固有频率相同的声波的激励时,系统将发生共振现象。
共振可以导致物体振动、声音放大或声音传输增强。
以上是声学研究的一些核心知识点的简要介绍。
声学是一个广泛而复杂的学科,涉及到更多的细节和应用。
深入研究声学将有助于我们更好地理解声音的特性和传播规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p 式中,pm为幅值,即最大值,ω为圆频率,ω=2πf。 (t ) = p m cos(ωt + θ )
声压平均值为
p av 1 = T
∫
T
0
p (t )dt
对纯音来说,其平均值为零。幸好人耳听到的声音强弱不是由平均值的大小决定 的,否则将听不到任何纯音。声音的强弱是由声压的有效值决定的。
有效值就是均方根值,记作prms,时常简单地写成p,对周期函数有:
频率: 频率:每秒声振动的次数,记作f,单位是赫兹(Hz)
不同声源的频率范围
声学基本术语
1、声的基本特性参数 、
1.1频率和周期 频率和周期 每秒声振动的次数称为声的频率,记作f,单位是赫兹(Hz)。人耳能听到的声, 其频率范围是20~20000Hz。低于20Hz的称为次声,高于20000Hz的称为超声。人 耳对于3000Hz左右的声感觉最灵敏;对低于63Hz和高于16000Hz的声,即使勉强 听得见,反应也很不灵敏。所以,在噪声控制领城内,主要对63~16000Hz的声有 兴趣。 周期T是一次声振动所经历的时间。它是频率的倒数,单位是s。 T=1/f 1.2波长和声速 波长和声速 声波传播过程中两个相继的同相位点之间的空间距离叫波长,用符号λ表示, 单位是m。 声速是扰动在介质中传播的速度,记作c,单位是m/s。空气中的声速和风速 是两个不同的概念。风速是空气分子往某个方向迁移的速度,而声速是空气分子 在某个方向上的往复振动的传播速度。 15℃时空气中的声速为340m/s。 频率f、波长λ、声速c之间有如下关系式:
) f0
3、声级与分贝 、
描述风力大小用1~12级。每一级对应于一定的风速范围。天气预报一般只说 风力多少级,而不说风速多少。这样做似乎不很精确,但一听便知道风力多大, 清楚明了。反之,如果天气预报不讲风力的级别而报风速多少,便可能因为风速 的数值范围太大,反倒觉得不能跟日常生活经验联系了。声学中的情况类似。从 刚刚听得出的声强到人耳可能接触到的最大声强,数值相差10000亿倍,即1012倍 以上。在这样广阔的数值范围内描述其大小极不方便。所以声学中也用声级来描 述声的强弱。声级包括声强级、声压级和声功率级等。这是一种无量纲的对数值, 对数能压缩数值范围。 3.1 声强级和声压级 声强级的定义为
3.5 声压级加、减法图解 声压级加、
1.声压级加法图解 已知Lp1和Lp2,求两者叠加后得到的Lp。 设Lp1>Lp2。公式 10
L p / 10
= 10
L p1 / 10
+ 10
L p 2 / 10
L 两边同除以 10
p1
/ 10
,得
10
( L p − L p1 ) / 10
= 1 + 10
− ( L p1 − L p 2 ) / 10
2.1倍频程分析 2.1倍频程分析
倍频程频带是这样划分的,每个频带的上限截止频率为其下限截止频率的两 倍。而中心频率为上、下限截止频率乘积的平方根。所以,若设 f1=下限截止频率; f2=上限截止频率; f0=中心频率; bw=带宽,即上、下限截止频率之差。
f 2 = 2 f1
则
f0 =
f1 f 2
声学知识普及
车辆试验部 2012年3月6日
来源于物体的振动。 声音 :来源于物体的振动。声音是一种物理现象,是描述 来源于物体的振动 由于媒体质点振动运动引起的质点密度随时间变化的情况
声音传播
周期T是一次声振动所经历的时间。单位是s
波长: 波长:声波传播过程中两个相继的同相位点之间的空间距离 用符号λ表示,单位是m
10
3.4 声压级的减法
L p / 10
= 10
L p 1 / 10
+ 10
L p 2 / 10
下面的问题涉及声压级的减法: 已知两台机器同时开动和只开一台机器时某点的声压,求另一台机器单独开动时该点 的声压。 或测量某台机器的声压级时要剔除背景噪声的影响。 或已知某台完整的机器开动时和拆除某一部件后机器开动时某点的声压,求被拆除的 部件单独发出的噪声传到该点的声压。 声压级的减法也要以能量为基础进行。
L p 2 = 10 lg 10
(
L p / 10
− 10
L p 2 / 10
)
两个声源
1. 2. 3. 4. 5. 6. 7. 8. 9. 1 dB + 1 dB = 4 dB 2 dB + 2 dB = 5 dB 3 dB + 3 dB = 6 dB 80 dB + 80 dB = 83 dB 80 dB x 2 = 83 dB 80 dB - 77 dB = 77 dB 80 dB - 70 dB =79.5 dB 90 dB x 10 = 100 dB 80 dB + (-80 dB) = 80 dB
I LI = 10 lg I re
式中,I为所论声强(W/m2),Ire为参考声强,为10-12(W/m2)。 有的文献用SIL表示声强级,但我国国家标准规定用LI表示。 这一定义自电讯工程移植而来。电讯工程中为了描述一个电学量的大小,往 往将其数值与人为地规定的参考数值之比取以10为底的对数,单位为贝(Bel),以 纪念电话发明人贝尔(Bell)。通常因为贝这个单位太大,故取其1/10作单位,叫 分贝,简写为dB。既然单位缩小到原先的1/10,数值便要相应地乘以10,故得前 文所示的定义式。
此式给出了(Lp-Lp1)与(Lp1-Lp2)之间的隐函数。这一隐函数示于下图,横坐标为 (Lp1-Lp2) ,纵坐标为(Lp-Lp1) 。从图上查出∆Lp=Lp-Lp1,便可得出 Lp=Lp1+ ∆Lp
2.声压级的减法图解 已知两声压级之和Lp和其中之一Lp1,求另一声压级Lp2。
L 公式 10
bw = f 2 − f 1 = f 1
由上面公式可得
f 0 = 2 f1 = f 2 / 2
下一个倍频带的下限截止频率就是上一个倍频带的上限截止频率。因此,两 个相邻的倍频程频带的上、下限截止频率、中心频率和带宽之间均相差一倍。 在可闻的频率范围内,各个倍频程倍频带的中心频率为31.5,63,125,250, , , , , 500,1k,2k,4k,8k和16k(Hz)。这是国际标准化组织ISO的规定。 , , , , 和
2.2 1/3倍频程分析 / 倍频程分析
将一个倍频程频带再分成三个频带,每个频带的上限截止频率f2为其下限截止频 1 率f1的21/3倍,即 f = 23 f
2 1
这样的频带称为1/3倍频程频带。相应地有
f0 = f1 f 2 = 2 f1 = f 2 / 2
1 3 1 6 1 6 1 6 − 1 6
bw = f 2 − f1 = (2 − 1) f1 = (2 − 2 ) f 0
一般地,一个m倍颠程的上、下限截止颠率、中心频率和带宽之间有如下关系
f 2 = 2m f f 0 = 2 f1 = f 2 / 2
m 2 m 2 m 2 − m 2
bw = (2 m − 1) f1 = (2 − 2
3.3 声压级的加法 噪声控制工程中经常会遇到这类问题: 已知各声源单独开动时传到某点的声压,求各声源同时开动时该点的声压。 或已知同一声源传到某点的各频带的声压,求总声压。 显然,由于分贝是对数值,所以声压叠加时不能简单地通过分贝值的算术相加来求取 声压叠加的结果。 因为声压的均方值与能量成正比,所以按下式相加的方法称为以能量为基础的加法
2 2 声压级定义 L p = 10 lg( p rms / p re ) = 20 lg( p rms / p re )
声压可以用传声器作为传感器直接测定,声强却不能利用某种传感器直接地测定, 而只能利用声压传感器间接地测定。所以,虽然声压与声强之间有着如前面公式 所描述的确定的关系,早期却只能用声压来描述人耳能听到的最弱声音的强度。 大量统计数据表明,听觉正常的青年人能听得出的最低声压在20×10-6Pa即20µPa 左右。因此将这一声压定为参考声压。即 −5
p re = 2.0 × 10 ( Pa )
3.2 声功率级
声功率级定义与声强的定义有类似的形式:
LW = 10 lg W Wre
式中,W为所论声功率,Wre为参考声功率,Wre=10-12W
某些典型声源的声功率和声功率级
声源 声功率(W) 10-9 2*10-8 10-5 10-3 2*10-3 10-2 10-1 10-1 1 10 102 104 4*107 声功率级(dB) 30 43 70 90 93 100 110 110 120 130 140 160 196
c = f ⋅λ
1.3质点振动速度 质点振动速度 介质分子在声传播过程中往复运动的速度叫质点振动速度,记作v。质点振 动速度 有别于声速。在声传播过程中,质点在平衡位置附近振动。这种振动被传 播出去,而质点振动的平衡位置却保持原地不动。 1.4声压及其瞬时值、平均值和有效值 声压及其瞬时值、 声压及其瞬时值 考虑声在理想气体介质中传播的情况。设没有声波传播时介质处于平衡状态, 压力为p0。声在气体介质中以疏密波 疏密波的形式进行传播。因此声场中每一点的压力 疏密波 都在平衡压力p0上叠加一个瞬息变化的微小压力,叫做声压,单位是帕(Pa)。声 压瞬时值记作p(t)。测量声压的传感器是传声器。有了声压,人耳才能听到声音。 假定讨论的是纯音,就是由单一频率组成的声音,则其声压瞬时值可用余弦 函数表述:
p
p rms 1 = T
p rms =
∫
T
0
p 2 (t )dt
pm 2
对纯音来说,有效值
通常我们说到声压,如果不加说明,那么就是指声压的有效值。 1.5声强 声强 单位时间内在某一点通过与某一方向垂直的单位面积的声能量的平均值叫声 强,用符号I表示,单位是W/m2。 显然,谈论声强而不提所论方向,是毫无意义的。迄今还没有能够直接测量 声强的传感器。只能用两个声压传感器通过信号分析及处理来间接测量声强。 1.6声功率 声功率 声功率是声源以空气声的形式辐射的功率,记作W,单位是W(瓦)。 声功率不能直接测量,而只能根据声压和测量面等间接测量。 声压是就声场中某一点而论的,声强是就声场中某一点和某一方向而论的。 声压是就声场中某一点而论的,声强是就声场中某一点和某一方向而论的。 而声功率是就某一声源而论的。 而声功率是就某一声源而论的。