吸声、隔声材料及结构
第三章 建筑材料及结构的吸声与隔声

6 饰面的影响 大多数多孔吸声材料要根据强度﹑维护﹑ 清扫﹑艺术处理等项要求进行表面处理,。 为了尽可能地保持原来的吸声特性,饰面 应具有良好的透气性能。 7 声波的频率和入射条件 多孔材料的吸声系数随着频率的提高而增 加。吸声系数和声波的入射条件有关。
8 材料吸湿﹑吸水 多孔材料吸湿吸水后,材料的间隙和小 孔中的空气被水分所代替,使空隙率降低, 因此使吸声性能改变。一般随着含水率的 增加,首先降低了对高频声的吸声系数, 继而逐步扩大其影响范围。
• 弹性垫层是以软木﹑矿棉等弹性材料作为楼板结 构层与面层之间的“浮筑层”,用以减轻结构层 的振动,从而改善楼板隔绝撞击声的性能。要注 意的是在面层和墙的交接处也要采用弹性隔离措 施,以免将振动传递给墙体。 • 楼板下做吊顶,其目的是隔绝上面楼板的撞击声 向下面房间的空气传声。采用弹性吊顶,即吊筋 与吊顶的连接采用弹性挂钩,从而切断吊筋的 “声桥”作用。
三 共振吸声结构 • 空腔共振吸声结构是另一种常用的吸声结 构。根据吸声原理,各种穿孔板﹑狭缝板 背后设置空气层形成的吸声结构,均属于 空腔共振吸声结构。这类结构取材方便。
• 最简单的空腔共振吸声结构是亥姆霍兹共 振器。它是一个封闭空腔通过一个开口与 外部空间相联系的结构。当外界入射波的 频率f等于系统的固有频率时,孔颈中的空 气柱就由于共振而产生剧烈振动。在振动 过程中,由于克服摩擦阻力而消耗声能。
• 多孔材料具有良好的高频吸声性能 • 影响多孔材料吸声特性的因素,主要有以 下几个: 1 材料中空气的流阻 空气流阻太大,声波难于进入材料层内部, 吸声性能会下降;如流阻过小,声能因摩 擦力﹑粘滞力小而损耗的效率就低,吸声 性能也会下降。所以,多孔材料存在最佳 流阻。
2 孔隙率 孔隙率,是指材料中的与外部联通的空隙体积 和材料总体积之比。多孔材料的孔隙率一般都在 70%以上,多数达到90%。 3 材料厚度 同一种纤维材料,容重越大,其孔隙率越小, 流阻就越大。同一种多孔材料,随着厚度的增加, 中﹑低频范围的吸声系数会有所增加,并且吸声 材料的有效频率范围也会扩大
吸声材料和隔声构造

吸声材料和隔声构造吸声材料可以有效地吸收、减少噪音和声波的反射。
在建筑和室内设计中,常用的吸声材料包括吸音板、吸音砖、吸音棉等。
这些材料通常具有开放多孔的结构,能够减少声波的反射,提高声音的可听性。
吸声材料的吸声效果主要取决于材料的密度、厚度以及表面形状。
常见的吸声材料有以下几种:1.吸音板:吸音板是一种用于吸收声波的板材材料,通常由木质纤维或聚酯纤维制成。
吸音板具有良好的吸音效果,可以有效地消除噪音和声波的回声。
2.吸音砖:吸音砖是一种常用的吸声材料,由玻璃纤维、泡沫材料等制成。
吸音砖通常具有波纹或多孔的表面结构,能够有效地吸收声波和噪音。
3.吸音棉:吸音棉是一种轻质的吸声材料,由纤维制成。
吸音棉具有良好的吸声效果,适用于各种室内环境。
4.钢筋混凝土:钢筋混凝土是一种常用的建筑材料,具有较好的隔声效果。
钢筋混凝土结构可以有效地阻挡声波的传播,减少噪音的侵入。
吸声材料的选择和使用应根据具体的需求和环境来确定。
在建筑设计中,需要根据建筑结构和声学特性来选择合适的吸声材料,以达到良好的吸声效果。
吸声材料的安装位置和布局也是影响吸声效果的重要因素,应根据声源和听音位置的相对位置来安排。
隔声构造是用于阻挡噪音和声波传播的构造。
在建筑设计中,常用的隔声构造包括吸音墙、隔声门窗、隔音地板等。
这些构造物的设计目的是减少声波的传播和噪音的侵入,创造一个相对安静的环境。
常见的隔声构造有以下几种:1.吸音墙:吸音墙是一种用于隔绝噪音的墙体结构,通常由多层隔音材料和隔离层构成。
吸音墙能够有效地阻挡声波的传播,减少噪音的侵入。
2.隔声门窗:隔声门窗是一种具有隔声功能的门窗结构,通常采用多层玻璃或密封结构设计。
隔声门窗能够有效地降低室外噪音对室内环境的影响,提供一个相对安静的空间。
3.隔音地板:隔音地板是一种用于减少脚步声和噪音传播的地板结构,通常由隔音材料和缓冲层构成。
隔音地板能够有效地减少噪音传播,提高室内的声学舒适度。
工程材料之吸声材料

工程材料之吸声材料吸声材料是指在一定程度上吸收由空气传递的声波能量的材料,广泛应用在音乐厅、影剧院、大会堂、语音室等的内部墙面、地面、天棚等部位。
适当采用吸声材料,能改善声波在室内传播的质量,获得良好的音响效果。
一、材料的吸声原理声音是由于物体的振动引起的,物体振动迫使临近的空气跟着振动而成为声波,并在空气介质中向四周传播。
声音在传播过程中,一部分由于声能随着距离的增大而扩散,另一部分则因空气分子的吸收而减弱。
声能的这种减弱现象,在室外空旷处尤为明显,但在室内,这种现象就不太明显,而主要是靠室内的墙壁、顶棚和地板等材料表面对声能的吸收来使声音减弱。
当声波遇到材料表面时,一部分被反射,一部分穿透材料,其余部分则被材料吸收。
材料的吸声性能除了与材料本身性质、厚度及材料的表面特征有关外,还与声音的频率及声音的入射方向有关。
为了全面反映材料的吸声性能,通常采用125Hz、250Hz、500Hz、1000Hz、2000Hz和4000Hz6个频率的吸声系数表示材料吸声的频率特征。
任何材料均能不同程度地吸收声音,通常把6个频率的平均吸声系数大于0.2的材料,称为吸声材料。
二、建筑上常用的吸声材料1.无机材料石膏板、水泥蛭石板、石膏砂浆(掺水泥玻璃纤维)水泥膨胀珍珠岩板、水泥砂浆、砖(清水墙面)2.有机材料软木板、木丝板、三合板、穿孔五合板、木花板、木质纤维板三、吸声材料的类型及其结构形式1.多孔性吸声材料多孔性吸声材料是比较常用的一种吸声材料,具有良好的中高频吸声性能。
多孔性吸声材料具有大量内外连通的微孔和连续的气泡,通气性良好。
当声波入射到材料表面时,声波很快地顺着微孔进入材料的内部,引起孔隙内的空气震动,由于摩擦、空气黏滞阻力和材料内部的热传导作用,使相当一部分声能转化为热能而被吸收。
多孔材料吸声的先决条件是声波易进入微孔,不仅在材料内部,在材料表面上也应当是多孔的。
材料的吸声性能与材料的表观密度和内部构造有关。
常用的吸声材料和吸声结构

常用的吸声材料和吸声结构一、吸声材料和吸声结构在没有进行声学处理的房间里,人们听到的声音,除了由声源直接通过空气传来的直达声之外,还有由房间的墙面、顶棚、地面以及其它设备经多次反射而来的反射声,即混响声(reverberant sound)。
由于混响声的叠加作用,往往能使声音强度提高10多分贝。
如在房间的内壁及空间装设吸声结构,则当声波投射到这些结构表面后,部分声能即被吸收,这样就能使反射声减少,总的声音强度也就降低。
这种利用吸声材料和吸声结构来降低室内噪声的降噪技术,称为吸声(sound absorption)。
1.吸声材料材料的吸声性能常用吸声系数(absorption coefficient)来表示。
声波入射到材料表面时,被材料吸收的声能与入射声能之比称为吸声系数,用α表示。
一般材料的吸声系数在0.01~1.00之间。
其值愈大,表明材料的吸声效果愈好。
材料的吸声系数大小与材料的物理性质、声波频率及声波入射角度等有关。
通常把吸声系数α>0.2的材料,称为吸声材料(absorptive material)。
吸声材料不仅是吸声减噪必用的材料,而且也是制造隔声罩、阻性消声器或阻抗复合式消声器所不可缺少的。
多孔吸声材料的吸声效果较好,是应用最普遍的吸声材料。
它分纤维型、泡沫型和颗粒型三种类型。
纤维型多孔吸声材料有玻璃纤维、矿渣棉、毛毡、苷蔗纤维、木丝板等。
泡沫型吸声材料有聚氨基甲醋酸泡沫塑料等。
颗粒型吸声材料有膨胀珍珠岩和微孔吸声砖等。
表10-2如前所述,多孔吸声材料对于高频声有较好的吸声能力,但对低频声的吸声能力较差。
为了解决低频声的吸收问题,在实践中人们利用共振原理制成了一些吸声结构(absorptive structure)。
常用的吸声结构有薄板共振吸声结构、穿孔板共振吸声结构和微穿孔板吸声结构。
(1)薄板共振吸声结构。
把不穿孔的薄板(如金属板、胶合板、塑料板等)周边固定在框架上,背后留有一定厚度的空气层,这就构成了薄板共振吸声结构。
隔声材料种类

隔声材料种类隔声材料是一种用于减少噪音传播和隔离声音的材料。
它们被广泛应用于建筑、交通运输、汽车、航空航天等领域。
不同的隔声材料具有不同的特性和适用范围。
本文将介绍几种常见的隔声材料种类。
1. 吸声材料吸声材料是一种能够吸收声波能量的材料。
它们通常具有多孔结构或表面纹理,能够将声波能量转化为热能或其他形式的能量,从而减少声音的反射和传播。
常见的吸声材料包括吸声板、吸声棉、吸声漆等。
它们广泛应用于音乐厅、录音棚、电影院等需要优质音效的场所。
2. 隔音膜隔音膜是一种薄膜材料,具有良好的隔声性能。
它们通常由聚乙烯、聚氯乙烯等材料制成,具有高强度和耐磨损性。
隔音膜可以被应用于建筑物的隔音墙、天花板和地板,有效地隔离室内外噪音的传播。
3. 隔音砖隔音砖是一种用于隔音的特殊砖块。
它们通常由陶瓷、混凝土等材料制成,具有高密度和良好的隔音性能。
隔音砖可以用于建筑墙体、地板和天花板的隔音,有效地减少噪音的传播。
4. 隔音玻璃隔音玻璃是一种能够减少声音传播的特殊玻璃。
它们通常由两层或多层玻璃之间夹层的隔音膜组成,具有良好的隔声性能。
隔音玻璃广泛应用于建筑的窗户和门,可以有效地减少室内外噪音的传播。
5. 隔音地板隔音地板是一种专门设计用于减少楼板传声的地板。
它们通常由多层复合材料构成,具有良好的隔音性能。
隔音地板可以用于住宅、办公室和商业场所,有效地减少楼上楼下的噪音干扰。
6. 隔音隔热材料隔音隔热材料是一种具有隔音和隔热功能的多功能材料。
它们通常由聚苯乙烯、玻璃纤维等材料制成,具有良好的隔音和隔热性能。
隔音隔热材料可以应用于建筑墙体、屋顶和地板,有效地减少噪音和热量的传播。
总结起来,隔声材料种类繁多,每种材料都有其特定的应用领域和适用范围。
在选择隔声材料时,需要根据具体的需求和环境来选择合适的材料。
通过合理应用隔声材料,可以有效地减少噪音的传播,提升生活和工作环境的舒适性。
吸声材料及吸声结构

离心玻璃棉离心玻璃棉内部纤维蓬松交错,存在大量微小的孔隙,是典型的多孔性吸声材料,具有良好的吸声特性。
离心玻璃棉可以制成墙板、天花板、空间吸声体等,可以大量吸收房间内的声能,降低混响时间,减少室内噪声。
离心玻璃棉的吸声特性不但与厚度和容重有关,也与罩面材料、结构构造等因素有关。
在建筑应用中还需同时兼顾造价、美观、防火、防潮、粉尘、耐老化等多方面问题。
离心玻璃棉属于多孔吸声材料,具有良好的吸声性能。
离心玻璃棉能够吸声的原因不是由于表面粗糙,而是因为具有大量的内外连通的微小孔隙和孔洞。
当声波入射到离心玻璃棉上时,声波能顺着孔隙进入材料内部,引起空隙中空气分子的振动。
由于空气的粘滞阻力和空气分子与孔隙壁的摩擦,声能转化为热能而损耗。
离心玻璃棉对声音中高频有较好的吸声性能。
影响离心玻璃棉吸声性能的主要因素是厚度、密度和空气流阻等。
密度是每立方米材料的重量。
空气流阻是单位厚度时材料两侧空气气压和空气流速之比。
空气流阻是影响离心玻璃棉吸声性能最重要的因素。
流阻太小,说明材料稀疏,空气振动容易穿过,吸声性能下降;流阻太大,说明材料密实,空气振动难于传入,吸声性能亦下降。
对于离心玻璃棉来讲,吸声性能存在最佳流阻。
在实际工程中,测定空气流阻比较困难,但可以通过厚度和容重粗略估计和控制。
1、随着厚度增加,中低频吸声系数显著地增加,但高频变化不大(高频吸收总是较大的)。
2、厚度不变,容重增加,中低频吸声系数亦增加;但当容重增加到一定程度时,材料变得密实,流阻大于最佳流阻,吸声系数反而下降。
对于厚度超过5cm的容重为16Kg/m3的离心玻璃棉,低频125Hz约为0.2,中高频(>500Hz)的吸声系数已经接近于1了。
当厚度由5cm继续增大时,低频的吸声系数逐渐提高,当厚度大于1m以上时,低频125Hz的吸声系数也将接近于1。
当厚度不变,容重增大时,离心玻璃棉的低频吸声系数也将不断提高,当容重接近110kg/m3时吸声性能达到最大值,50mm厚、频率125Hz处接近0.6-0.7。
吸声材料和隔声构造

K — 结构的刚度因素,kg /(m2s2 )
f0
1
2
1
1.4 107 (
K)
mL
一般情况下,K=(1~3)×106kg/(m2s2),当板的 刚度因素K和空气厚度L都比较小时,根号内第二项 可以略去。但是,当L较大,超过100cm,共振频率 就几乎与空气层厚度无关了。该结构的共振频率一
般在80~300Hz之间,属低频率吸声,常见的薄板厚 度为3~6mm,空气层厚度为3~10cm。其吸声系数 一般在0.2~0.5之间。
具有二者的特征
薄的板材如钢板、铝 板、胶合板、塑料板、草 纸棉板、石膏板等按一定 的孔径和穿孔率穿上孔, 在背后留下一定厚度的空 气层,就构成了穿孔板共 振吸声结构。
•单腔共振吸声结构(如左
图)的腔体中空气具有弹 性,相当于弹簧,孔颈中 空气柱具有一定质量,相 当于质量块,整个结构可 以看作是质量块和弹簧的 共振系统。当声波入射到 共振器时,空气柱将在孔 颈中往复运动,由于摩擦 作用,使声能转化为热能。
• 声波传入围护结构的三种途
径:
• (1)经由空气直接传播,即
通过围护结构的缝隙和孔洞 传播。例如敞开的门窗、通 风管道、电缆管道以及门窗 的缝隙等。
• (2)透过围护结构传播。经
由空气传播的声音遇到密实 的墙壁时,在声波的作用下, 墙壁将受到激发而产生振动, 使声音透过墙壁而传到邻室 去。
• (3)由于建筑物中机械的撞
当入射声波频率与单腔共振结构的固有频率一致 时,产生共振,吸声效果最佳。单腔共振结构的固有 频率为:
f0
c
2
P (t 0.8d )L
f0 — 共振频率(Hz) c — 声速,一般取34000cm / s;
吸声材料和隔声材料

墙体的隔声量
工程中:
R=L2-L1
L2 、L1:构件两侧的声压级
三、影响声音在建筑材料中透射的主要因素
1、与建筑构件的透射系数有关
2、与建筑构件的表面情况有关
3、与墙体的质量有关
若墙体的一面铺设吸声材料会减弱墙体的振动
墙的质量越大,惯性越大,声波引起的振动越小
4、共振现象
吻合现象
当声波以θ角斜入射时,墙板在声波作用下产生沿板面传播的弯曲波,波速为
3.2.3.2 双层匀质密实墙
1、双层墙提高隔声量的原因在于 空气间层的作用。
减振作用
2、影响双层墙隔声能力的因素 空气层的厚度 最小厚度为5cm, 最佳厚度为8~12cm (中频声)
02
03
04
共振频率:
m1、m2——每层墙的单位面积质量,Kg/m2
为了消除共振,可在空气层中悬挂或铺设多孔材料.
04
固体的撞击或振动的直接作用 声音由空气传播,称为“空气声”或“空气传声” 声音由围护结构受到直接的撞击而发声,称为“固体声”或“撞击声”
声音的两种透射方式:
由噪声源和听闻地点之间的墙壁(屋顶)直接透射
沿围护结构的相连接部件的间接或侧向透射 各部件对声音的传播取决于部件的重量、位置、刚度以及各部件之间的连接等因素。
3.2.3 墙体隔声材料
3.2.3.1 单层匀质密实墙
声波无规则入射到有限大的墙板时, 墙的隔声量 R=20lgf m+k=20lg f +20lgm+k
f ——入射声波的频率,Hz m ——墙体的面密度,kg/m2 k——常数,当声波为无规则入射时,k=-48
低频声容易激发墙板振动 高频声不易激发墙板振动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 吸声材料及结构
空气层对多孔材料的吸声性能影响 多孔材料置于刚性墙面前一定距离,背后形成空气层或空腔,可以改善低频的吸收。 相当于增加材料厚度,比增加材料后节省材料。一般空气层深度为入射声波的1/4波长时 吸声系数最大,1/2波长时吸声系数最小
第一部分 吸声材料及结构
护面材料对多孔材料的吸声性能影响 面板作保护层时穿孔率大于20%,薄膜用于面层时厚约0.05mm。
折板型
吸声尖劈
十字型
穿孔板结构加入多孔材料位置对吸声性能影响:
Байду номын сангаас
第一部分 吸声材料及结构
不同穿孔率对穿孔板结构吸声性能影响:
第一部分 吸声材料及结构
双层微孔板共振结构的吸声特性(见图):要使共振吸声结构在较
宽的频率范围有良好的吸声性能,可进行共振器的组合。
第一部分 吸声材料及结构
特殊吸声结构(见图)
平板型
第一部分 吸声材料及结构
温度对多孔材料的吸声性能影响 吸水吸湿都会降低吸声性能
第一部分 吸声材料及结构
共振吸声结构特性: 改变开口尺寸或空腔体积可以得到不同的共振频率;单个共振器有很强的频率选 择性,如果吸收频率是单一频率,是有用的;都是由坚硬材料制作。
第一部分 吸声材料及结构
穿孔板共振结构吸声性能影响因素: 1.板厚、孔径、孔距(或穿孔率)和板后空气层深度,主要影响吸声频率范围。 2.板后空腔内设置吸声材料的类型和位置,主要影响吸声系数和吸声频带宽度。 3.一般,当穿孔率大于20%时,穿孔板的声质量很小,其声学作用降低,此时整个 吸声结构的声学特性主要有板后的吸声材料决定,而穿孔板成为吸声材料的罩面板。 共振频率计算公式:
第一部分 吸声材料及结构
厚度对多孔材料的吸声性能影响 增加材料厚度,低频吸收很快增加,对高频吸收影响则很小;厚度增加到一定程度 时厚度增加,吸声系数变化很小。
第一部分 吸声材料及结构
密度对多孔材料的吸声性能影响 材料密度过大或过小都将使吸声系数降低。工程上吸声用超细玻璃棉20-30kg/m3最 佳。
第一部分 吸声材料及结构
第一部分 吸声材料及结构
多孔材料吸声性能的影响因素:
1.材料的透气性可用流阻来定义,流阻是空气质点通过材料空隙中的阻 力。 2.空隙率是材料内部空气体积与材料总体积之比,吸声材料一般在70% 以上,多数达90%左右。 3.结构因子,将多孔材料中微小间隙当作毛细管沿厚度方向纵向排列的 模型。是一个无因次量。目前没有直接测量材料结构因子的方法。结构 因子对低频没有影响,在中高频有周期性变化。 4.厚度(见图) 5.材料密度(见图) 6.背后空气层(见图) 7.护面层影响(见图) 8.温度和吸水、吸湿的影响(见图)
噪声控制知识培训
第一部分 吸声材料及结构
第一部分 吸声材料及结构
吸声材料的种类:多孔材料、共振吸声结构、特殊吸声结构
吸声材料的作用: 缩短和调整室内混响时间,消除回声以改善室内听闻条件,降低室内的噪 声级; 作为管道的衬垫或消声器的原材料,以降低通风系统噪声; 在轻质隔声结构内和隔声罩内表面作辅助材料,以提高构件的隔声量。 选用吸声材料要满足以下条件: 在宽频带范围内吸声系数高,吸声性能长期稳定; 有一定的力学强度,在运输、安装过程中不易破损,经久耐用不易老化; 表面易于装饰,容易清洗; 防潮性能好,耐腐防蛀,不易发霉; 不易燃烧,满足一定防火要求; 不散发特殊气味,无损人健康;易于保养维护; 对于松散材料,不因自重而下沉不因发脆而掉渣,构件填料要均匀; 就地取材,价格便宜。
c P 2 t 0.8dL L板后空气层厚度; t 板的厚度;d 孔径;c 声速;P穿孔率 F0
第一部分 吸声材料及结构
穿孔板共振吸声性能影响因素:
第一部分 吸声材料及结构
孔径、孔距、空气层对吸声性能影响:
第一部分 吸声材料及结构
穿孔板结构加入多孔材料对吸声性能影响:
第一部分 吸声材料及结构