【专业知识】吸声材料的吸声机理及因素

合集下载

吸声材料的吸声原理

吸声材料的吸声原理

吸声材料的吸声原理吸声材料是被广泛应用于各种场合的一类具有吸声功能的材料。

吸声材料的吸声原理主要涉及声能的传播和吸收,下面我将详细介绍吸声材料的吸声原理。

声音是一种机械波,传播时会通过声源的振动导致介质中的分子振动,进而将振动能传递给周围的分子。

当声波碰到物体表面时,一部分声波能量被反射,一部分被透射,而另一部分则被物体吸收。

对于吸声材料而言,其吸声原理主要通过强烈的声能损耗和衰减来实现。

吸声材料的主要吸声原理之一是摩擦损耗。

当声波传播到吸声材料表面时,材料内部的孔隙和纤维等结构会产生空气流动的摩擦,从而把声能转化为热能。

这种摩擦损耗的吸声效应可以通过增加材料表面的粗糙度和面积来增加,比如通过在材料表面加工不规则的凸起或凹陷等结构。

吸声材料的另一个吸声原理是散射效应。

材料内部的多孔结构和异质性会导致声波的传播路径发生扭曲和转向,从而使声波的传播方向散射。

这种散射效应可以有效地将声波的能量从主传播方向扩散到各个方向上,从而减少声波的反射和透射,增加声能的损耗。

除了摩擦损耗和散射效应,吸声材料的吸声原理中还包括共振效应和吸附效应。

共振效应指的是当声波的频率接近或等于材料结构的固有频率时,材料会发生共振现象,产生较大的振幅和能量损耗。

吸声材料的共振效应可以通过调节材料的厚度和孔隙率来实现,以使其共振频率范围覆盖需要吸音的声波频率范围。

吸附效应是指声波在传播过程中与材料表面的分子发生相互作用,导致部分声能被材料吸收。

这种吸附效应与材料的化学性质和表面形态有关,一般来说,具有较高的表面粗糙度和亲水性的材料更容易产生吸附效应,从而提高声能的吸收效率。

总之,吸声材料的吸声原理主要包括摩擦损耗、散射效应、共振效应和吸附效应。

这些原理相互作用,共同发挥作用,实现对声波能量的有效吸收和损耗,从而达到减少噪声、改善声音环境的效果。

吸声材料在建筑、汽车、航空航天等领域具有广泛的应用前景,能够为人们创造更加安静和舒适的生活环境。

吸声消音原理以及材料

吸声消音原理以及材料

吸声消音原理以及材料吸音消音是指通过特定材料来吸收噪音和声波能量,减少或消除噪音的传播和反射。

吸音材料指的是那些具有较好吸声效果的材料。

下面将详细介绍吸声消音的原理和吸音材料。

一、吸声消音的原理吸声消音是基于声波传播的物理原理,主要包括以下几个方面:1.声波的传播与反射:当声波遇到障碍物时,一部分能量会被吸收,一部分会被反射。

吸音消音原理的基本思想就是利用吸音材料吸收声波能量,减少声波的反射。

2.材料的吸声特性:吸音材料的吸声特性是实现吸声消音的关键。

吸声材料必须能够将声波能量转化为其他形式的能量,比如热能或机械能,从而让声波能量得到衰减。

3.表面的多孔结构:吸声材料的表面通常具有多孔的结构,这种多孔结构可以让声波进入材料内部,增加其吸音效果。

多孔结构还可以通过增加材料的表面积,有效地增加声波与材料的接触面积,从而提高吸声效果。

二、常见的吸音材料吸音材料根据其材质和结构的不同,可以分为吸声海绵、吸声板、金属丝网和网眼、玻璃丝绒、聚酯纤维等。

以下是常见的吸音材料及其特点:1.吸声海棉/海绵:是一种泡沫状材料,常用于吸音室内装修。

其具有柔软、轻便、易切割、可塑性强的特点。

吸声海绵可分为开孔式和闭孔式两种,前者拥有较好的吸声效果,后者则适用于防水性要求较高的场合。

2.吸声板:通常由玻璃纤维或岩棉等制成,具有较好的吸声特性。

吸声板可以直接安装在墙壁或天花板上,减少声波的反射和传播。

其优点是稳定性好,不易变形,不易起灰等。

3.金属丝网和网眼:金属丝网和网眼通常用于建筑外墙或隔音设备的制造中。

其多孔结构可以在一定程度上吸收声波,并减少噪音的传播。

4.玻璃丝绒:玻璃丝绒是由玻璃纤维制成的材料,具有较好的吸音性能和耐高温性能。

它能够有效吸收低频声波,是汽车内饰、船舶隔音等领域的常用材料。

5.聚酯纤维:聚酯纤维是一种合成纤维材料,广泛用于各种吸声材料的制造中。

它具有较好的吸音特性,且价格相对较低,易于加工和安装。

多孔吸声材料的吸声原理及其分类

多孔吸声材料的吸声原理及其分类

多孔吸声材料的吸声原理及其分类一、多孔材料的吸声原理惠更斯原理:声源的振动引起波动,而波动的传播是由于介质中粒子之间的相互作用。

在连续介质中,任何一点的振动都会直接引起相邻颗粒的振动。

声波在空气中的传播符合其原理。

多孔吸声材料有许多微小的缝隙和连续的气泡,因此具有一定的透气性。

当声波入射到多孔材料表面时,主要有两种机制导致声波衰减:首先,声波产生的振动导致小孔或缝隙中的空气运动,导致与孔壁摩擦。

靠近孔壁和纤维表面的空气在孔壁的影响下不易移动。

由于摩擦力和粘滞力的作用,相当一部分声能转化为热能,从而衰减声波,减弱反射声,从而达到吸声的目的;其次,小孔中的空气和孔壁与光纤之间的热交换引起的热损失也会衰减声能。

此外,高频声波可以加速空隙间空气颗粒的振动速度,以及空气与孔壁之间的热交换。

这使得多孔材料具有良好的高频吸声性能。

二、多孔吸声材料的分类多孔吸声材料按其选材的柔顺程度分为柔顺性和非柔顺性材料,其中柔顺性吸声材料主要是通过骨架内部摩擦、空气摩擦和热交换来达到吸声的效果;非柔顺性材料主要靠空气的粘滞性来达到吸声的功能。

多孔吸声材料按其选材的物理特性和外观主要分为有机纤维材料,无机纤维材料,吸声金属材料和泡沫材料四大类。

1有机纤维材料早期使用的吸声材料主要是植物纤维制品,如棉麻纤维、毛毡、甘蔗纤维板、木纤维板、水泥木棉板、稻草板等有机天然纤维材料。

有机合成纤维材料主要是化学纤维,如腈纶棉、涤棉等。

这些材料在中高频范围内具有良好的吸声性能,但防火、防腐、防潮等性能较差。

此外,文献还研究了纺织纤维超高频声波的吸声性能,证明该纤维材料在超高频声波场中基本没有吸声效果。

无机纤维2无机纤维材料不断问世,如玻璃棉、矿渣棉和岩棉等。

这类材料不仅具有良好的吸声性能,而且具有质轻、不燃、不腐、不易老化、价格低廉等特性,从而替代了天然纤维的吸声材料,在声学工程中获得广泛的应用。

但无机纤维吸声材料存在性脆易断、受潮后吸声性能急剧下降、质地松软需外加复杂的保护材料等缺点。

多孔吸声材料的吸声机理

多孔吸声材料的吸声机理

多孔吸声材料的吸声机理多孔吸声材料是一种用于降低噪声和改善声学环境的材料。

它通过利用多孔材料的结构特点,使声波在材料内部发生多次反射、散射和吸收,从而起到吸声的作用。

多孔吸声材料的吸声机理主要包括孔隙结构、声波的传播和散射过程以及材料的吸声特性等方面。

多孔吸声材料的吸声机理与其孔隙结构有密切关系。

多孔材料的孔隙结构是指材料内部存在的孔隙的形状、大小、分布等特征。

这些孔隙可以分为连通和非连通两种类型。

连通孔隙是指孔隙之间存在通道,使声波能够在材料内部传播;非连通孔隙是指孔隙之间没有通道,声波无法在材料内部传播。

多孔吸声材料通常采用连通孔隙结构,因为它可以使声波在材料内部发生多次反射、散射和吸收,从而增强吸声效果。

声波在多孔吸声材料中的传播和散射过程也是吸声机理的重要方面。

当声波传播到多孔吸声材料中时,一部分声波会被材料吸收,转化为热能而消失;另一部分声波会在材料内部发生散射,改变传播方向。

这些散射和吸收过程导致声波能量的衰减,从而减少了声波的反射和传播,达到吸声的效果。

此外,多孔吸声材料的孔隙结构也会对声波的散射过程产生影响。

当声波的波长与孔隙的尺寸相当或接近时,声波会被孔隙阻挡或散射,增加了声波能量的损失,提高了吸声效果。

多孔吸声材料的吸声特性也是其吸声机理的重要方面。

多孔吸声材料的吸声特性是指材料对声波的吸收能力。

吸声特性取决于材料的吸声系数,即材料吸收声波能量的能力。

吸声系数越大,材料的吸声效果就越好。

多孔吸声材料的吸声特性与材料的孔隙率、孔隙结构、孔隙大小等因素密切相关。

孔隙率越高,孔隙结构越复杂,孔隙大小越适中,材料的吸声系数就越大,吸声效果就越好。

多孔吸声材料的吸声机理主要包括孔隙结构、声波的传播和散射过程以及材料的吸声特性等方面。

通过合理设计和选择多孔吸声材料的孔隙结构和材料特性,可以实现对声波的吸收和散射,从而达到降噪和改善声学环境的目的。

多孔吸声材料在建筑、交通工具、航空航天等领域有着广泛的应用前景,对提高人们的生活质量和工作环境起到了重要作用。

声环境学院多孔吸声材料

声环境学院多孔吸声材料

声环境学院多孔吸声材料1、多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。

聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。

2、吸声机理:是材料内部有大量微小的连通的孔隙,声波沿着这些孔隙可以深入材料内部,与材料发生摩擦作用将声能转化为热能。

3、构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。

材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。

微孔向外敞开,使声波易于进入微孔内。

4、吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。

(1)材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。

但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。

常用的多孔材料的厚度为:玻璃棉,矿棉 50—150mm 毛毡 4---5mm 泡沫塑料 25—50mm(2)材料容重的影响改变材料的容重可以间接控制材料内部微空尺寸。

一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。

合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。

(3)背后空气层的影响多空材料背后有无空气层,对于吸声特性有重要影响。

大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。

材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料离墙面安装的距离(既空气层的厚度)等于1/4波长的奇数倍时,可获得最大的吸声系数;当空气层的厚度等于1/2波长的整数倍时,吸声系数最小。

(4)材料表面装饰处理的影响大多数吸声材料在使用时常常需要进行表面装饰处理.常见的方法有:表面钻孔开槽,粉刷油漆,利用织布,穿孔板和塑料薄膜等。

吸声材料的吸声机理

吸声材料的吸声机理

吸声材料的吸声机理吸声材料是一种用于吸收噪音和减少声学反射的材料。

吸声材料的吸声机理主要有以下几种:1.声波的分散和散射:吸声材料的表面通常具有粗糙的结构,当声波通过材料表面时,表面的凹凸不平会导致声波的散射和反射。

由于声波被分散和散射,能量传播被削弱,从而减少声波的反射。

2.声波的吸收和转化:吸声材料通常由多孔隙的结构组成,孔隙中充满了空气或其他吸声材料。

当声波通过材料时,其能量会进入孔隙,由于孔隙中的空气分子与材料表面之间的摩擦、稀释和形变等机制,声能被转化为热能,从而实现吸声。

3.极化和共振:吸声材料表面的微观结构可以通过合适的设计和材料选择来实现极化和共振效应。

当声波到达吸声材料表面时,微观结构会与声波频率发生共振,吸收特定频率的声波能量。

此外,合适的材料选择还可以实现对特定频率范围的声波的极化,增加声波的能量损失,从而提高吸声性能。

4.衬底和吸收层:吸声材料通常由两个层面组成,分别是衬底和吸声层。

衬底层主要用于吸收和减少声波的反射,能够改变声波传播的路径和速度;吸声层则负责吸收声波能量,减少声波的传播。

常见的吸声材料如泡沫塑料、纤维板等就是由衬底层和吸声层组成。

在实际应用中,吸声材料通常具有特定的声学参数,如声学吸收系数、隔声量、衰减系数等。

这些参数可以通过测量声波在材料中传播时的反射和吸收情况得到。

总的来说,吸声材料的吸声机理是通过分散和散射声波、吸收和转化声波能量、极化和共振效应以及衬底和吸声层的作用来实现的。

不同的吸声材料可能采用不同的机理或相结合的机理来达到减少声波反射和吸收噪音的目的。

在实际应用中,根据具体的需求和场景,可以选择合适的吸声材料和结构设计来实现最佳的吸声效果。

多孔材料的吸声原理以及影响吸声系数的因素

多孔材料的吸声原理以及影响吸声系数的因素

多孔吸声材料多孔吸声材料是普遍应用的吸声材料,其中包括各种纤维材料:超细玻璃棉、离心玻璃棉、岩棉、矿棉等无机纤维,棉、毛、麻、棕丝、草质或木质纤维等有机纤维。

纤维材料很少直接以松散状使用,通常用胶黏剂制成毡片或板材,如玻璃棉毡(板)、岩棉板、矿棉板、木丝板、软质纤维板凳。

微孔吸声砖等也属于多孔吸声材料。

泡沫塑料,如果其中的空隙相互连通并通向外表,可作为多孔吸声材料。

一、多孔材料的吸声机理多孔吸声材料具有良好吸声性能的而原因,不是因为表面的粗糙,而是因为多孔材料具有大量内外两桶的微小空隙和空洞。

图12-1(a)表示了粗糙表面和多孔材料的差别。

那种认为粗糙墙面(如拉毛水泥)吸声好的概念是错误的。

当声波入射到多孔材料上,声波能顺着微孔进入材料的内部,引起空隙中空气的振动。

由于空气的黏滞阻力、空气与孔壁的抹茶和热传导作用等,使相当一部分声能转化为热能而被损耗。

因此,只有孔洞对外开口,孔洞之间互相连通,且孔洞深入材料内部,才可以有效地吸收声能。

这一点与某些隔热保温材料的要求不同。

如聚苯和部分聚氯乙烯泡沫塑料以及加气混凝土等材料,内部也有大量气孔,但大部分单个闭合,互补连通(见图12-1b),他们可以作为隔热温饱材料,但吸声小郭却不好。

二、影响多孔材料吸声系数的因素多孔材料一般对中高频声波具有良好的吸声。

影响和控制多孔材料吸声特性的因素,主要是材料的孔隙率、结构因子和空气流阻。

孔隙率是指材料中连通的空隙体积和材料总体积之比。

结构因子是有多孔材料结构特性所决定的物理量。

空气流阻反应了空气通过多孔材料阻力的大小。

三则中以空气阻留最为重要,它定义为:当稳定气流通过多孔材料时,材料两面的静压差和气流线速度之比。

单位厚度材料的流阻,称为“比流阻”。

当材料厚度不大时,比流阻越大,说明空气穿透两就小,牺牲性能就下降,但比流阻大小,声能因摩擦力、黏滞力而损耗的效率就低,吸声性能就会下降。

所以,多孔材料存在最佳流阻。

当材料厚度充分大,比流阻小,则吸声就打。

吸声机理

吸声机理

吸声机理按吸声机理的差异,吸声材料可分为共振吸声材料和多孔吸声材料两大类。

共振吸声材料相当于多个亥姆霍兹吸声共振器并联而成的共振吸声结构。

当声波垂直入射到材料表面时,材料内及周围的空气随声波一起来回振动,相当于一个活塞,它反抗体积速度的变化是个惯性量。

材料与壁面间的空气层相当于一个弹簧,它可以起到阻止声压变化的作用。

不同频率的声波人射时,这种共振系统会产生不同的响应。

当入射声波的频率接近系统的固有频率时,系统内空气的振动很强烈,声能大量损耗,即声吸收最大。

相反,当入射声波的频率远离系统固有的共振频率时,系统内空气的振动很弱,因此吸声的作用很小。

可见,这种共振吸声结构的吸声系数随频率而变化,最高吸声作用出现在系统的共振频率处。

多孔材料内部具有大量细微孔隙,孔隙间彼此贯通,孔隙深人材料内部且通过表面与外界相通,当声波入射到材料表面时,一部分在材料表面反射掉,另一部分则透入到材料内部向前传播。

在传播过程中,引起孔隙的空气运动,与形成孔壁的固体筋络发生摩擦,由于粘滞性和热传导效应,将声能转变为热能而耗散掉。

同时,小孔中的空气和孔壁与纤维之间的热交换引起的热损失也使声能衰减。

此外,声波在钢性壁面反射后,经过材料回到其表面时,一部分声波透射到空气中,一部分又反射回材料内部。

声波通过这种反复传播,使能量不断转换耗散,如此反复,直到平衡,进一步降低了部分声能。

吸声系数测量系统SZZB驻波管法吸声系数测量原理:在驻波管一端的扬声器发出一个单频正弦波,声波沿管道传播,在试件端产生反射波,反射波的强度和相位与试件的声学特性有关。

反射波与入射波相加,在管内产生驻波。

移动探管的位置测量驻波比,最后根据驻波比计算材料的吸声系数。

SZZB驻波管法吸声系数测量系统的配置:阻抗管吸声系数测量软件数据采集器功率放大器传声器前置放大器程控信号发生器SZZB驻波管法吸声系数测量系统的应用:驻波管法吸声系数测量系统根据国家标准而设计,采用不锈钢管制作,具有良好的隔声性能。

工程材料之吸声材料

工程材料之吸声材料

工程材料之吸声材料吸声材料是指在一定程度上吸收由空气传递的声波能量的材料,广泛应用在音乐厅、影剧院、大会堂、语音室等的内部墙面、地面、天棚等部位。

适当采用吸声材料,能改善声波在室内传播的质量,获得良好的音响效果。

一、材料的吸声原理声音是由于物体的振动引起的,物体振动迫使临近的空气跟着振动而成为声波,并在空气介质中向四周传播。

声音在传播过程中,一部分由于声能随着距离的增大而扩散,另一部分则因空气分子的吸收而减弱。

声能的这种减弱现象,在室外空旷处尤为明显,但在室内,这种现象就不太明显,而主要是靠室内的墙壁、顶棚和地板等材料表面对声能的吸收来使声音减弱。

当声波遇到材料表面时,一部分被反射,一部分穿透材料,其余部分则被材料吸收。

材料的吸声性能除了与材料本身性质、厚度及材料的表面特征有关外,还与声音的频率及声音的入射方向有关。

为了全面反映材料的吸声性能,通常采用125Hz、250Hz、500Hz、1000Hz、2000Hz和4000Hz6个频率的吸声系数表示材料吸声的频率特征。

任何材料均能不同程度地吸收声音,通常把6个频率的平均吸声系数大于0.2的材料,称为吸声材料。

二、建筑上常用的吸声材料1.无机材料石膏板、水泥蛭石板、石膏砂浆(掺水泥玻璃纤维)水泥膨胀珍珠岩板、水泥砂浆、砖(清水墙面)2.有机材料软木板、木丝板、三合板、穿孔五合板、木花板、木质纤维板三、吸声材料的类型及其结构形式1.多孔性吸声材料多孔性吸声材料是比较常用的一种吸声材料,具有良好的中高频吸声性能。

多孔性吸声材料具有大量内外连通的微孔和连续的气泡,通气性良好。

当声波入射到材料表面时,声波很快地顺着微孔进入材料的内部,引起孔隙内的空气震动,由于摩擦、空气黏滞阻力和材料内部的热传导作用,使相当一部分声能转化为热能而被吸收。

多孔材料吸声的先决条件是声波易进入微孔,不仅在材料内部,在材料表面上也应当是多孔的。

材料的吸声性能与材料的表观密度和内部构造有关。

吸声材料 综述

吸声材料 综述

吸声材料综述吸声材料综述1 综述吸声材料是一类具有可操控的吸声性能的复合材料,其主要用于抑制乒乓球室声学效果,改善声学环境,减少噪声。

它能有效地减弱在特定频率范围内发出的声音。

吸声材料主要由织物、棉絮、金属板和毡子等制成。

在乒乓球室应用中,主要使用噪声控制吸声材料,其中以吸收噪声的乙烯酰胺(EVA)为主,EVA的吸声性能特别强,在半波长波长范围内具有极高的吸收效果,在此范围内有较好的隔声效果。

此外,还可以使用沥青吸声板、吸声棉、植物梗纤、陶瓷颗粒等吸声材料。

2 吸声材料结构及原理(1) 吸声棉吸声棉由高级聚氨酯、棉绒、橡胶等多种原料制成,具有良好的抗震和吸音能力。

它的结构简单,质地轻质,但有较高的吸音性能。

多用于乒乓球室的墙壁和天花板,有效的减弱室外噪声,起到隔声的作用。

(2) 植物梗纤植物梗纤具有良好的抗菌、隔音、吸音和隔热的性能,具有环保无害、棉质柔软、质量轻轻、抗潮湿及耐热性,较好的抑制噪声,非常适用于乒乓球场的墙壁和天花板隔声装饰,提高乒乓球室的绝缘效果。

(3) 陶瓷颗粒陶瓷颗粒有良好的吸音和隔音性能,具有良好的电磁屏蔽效果,可有效抑制室外的噪声,同时可改善乒乓球室的声学环境,改善乒乓球场的声效和品质。

3 吸声材料的应用(1)在乒乓球室中,吸声材料可以用来改善室内噪声污染,改善声学环境,减少噪声,提高乒乓球室的声学效果。

(2)在演讲厅、会议厅、录音室和影剧院等空间中,它可以缩短回声时间,增强声学环境,减少噪音和近场和远场声学环境参差不齐的情况,使环境更舒适。

(3)在工厂和企业中,可以用吸声材料将噪音隔离,使机器的噪声控制在可接受的范围,改善工作环境。

4 结论吸声材料是一类具有可操控的吸声效果,它不仅能够起到隔音的作用,而且具有良好的吸音性能和抗震性能,可以有效改善乒乓球场的声学环境,改善声学效果,让乒乓球比赛环境更加舒适。

吸声材料的相关知识

吸声材料的相关知识

吸声材料的相关知识:常用的吸声材料有多孔吸声材料、穿孔板吸声材料、薄膜、薄板吸声材料、挂帘吸声材料、空间吸声体等。

吸声机理:纤维多孔吸声材料,如离心玻璃棉、岩棉、矿棉、植物纤维喷涂等,吸声机理是材料内部有大量微小的连通的孔隙,声波沿着这些孔隙可以深入材料内部,与材料发生摩擦作用将声能转化为热能。

多孔吸声材料的吸声特性是随着频率的增高吸声系数逐渐增大,这意味着低频吸收没有高频吸收好。

多孔材料吸声的必要条件是:材料有大量空隙,空隙之间互相连通,孔隙深入材料内部。

错误认识之一是认为表面粗糙的材料具有吸声性能,其实不然,例如拉毛水泥、表面凸凹的石才基本不具有吸声能力。

错误认识之二是认为材料内部具有大量孔洞的材料,如聚苯、聚乙烯、闭孔聚氨脂等,具有良好的吸声性能,事实上,这些材料由于内部孔洞没有连通性,声波不能深入材料内部振动摩擦,因此吸声系数很小。

与墙面或天花存在空气层的穿孔板,即使材料本身吸声性能很差,这种结构也具有吸声性能,如穿孔的石膏板、木板、金属板、甚至是狭缝吸声砖等。

这类吸声被称为亥姆霍兹共振吸声,吸声原理类似于暖水瓶的声共振,材料外部空间与内部腔体通过窄的瓶颈连接,声波入射时,在共振频率上,颈部的空气和内部空间之间产生剧烈的共振作用损耗了声能。

亥姆霍兹共振吸收的特点是只有在共振频率上具有较大的吸声系数。

薄膜或薄板与墙体或顶棚存在空腔时也能吸声,如木板、金属板做成的天花板或墙板等,这种结构的吸声机理是薄板共振吸声。

在共振频率上,由于薄板剧烈振动而大量吸收声能。

薄板共振吸收大多在低频具有较好的吸声性能。

吸声材料及吸声结构:离心玻璃棉离心玻璃棉内部纤维蓬松交错,存在大量微小的孔隙,是典型的多孔性吸声材料,具有良好的吸声特性。

离心玻璃棉可以制成墙板、天花板、空间吸声体等,可以大量吸收房间内的声能,降低混响时间,减少室内噪声。

离心玻璃棉的吸声特性不但与厚度和容重有关,也与罩面材料、结构构造等因素有关。

吸声消音原理以及材料

吸声消音原理以及材料

吸声消音原理以及材料吸声是指通过一定的材料和结构改变声波的传播路径和能量分布,从而降低或消除声波的反射、回声和共鸣,达到控制室内声学环境的目的。

吸声能够有效减少噪音、提升音质,提高房间的音频效果。

吸声原理如下:1.阻尼:声波通过吸声材料时,材料中的纤维、孔隙和微粒能够使声波产生摩擦,在声波振动过程中吸收能量并转化为热能,从而减少声波的反射。

2.散射:吸声材料的表面凹凸不平、不规则的结构会使声波的传播方向发生变化,从而使声波的能量散射到其他方向,减少声波的反射。

3.吸收:吸声材料中的孔隙和多孔结构具有密度较高的特点,这些孔隙和多孔结构能够更大程度地吸收声波,使声波能量转化为热能,从而降低声波的反射。

吸声材料主要有以下几种:1.泡沫塑料:泡沫塑料材料是一种经济实用的吸声材料,它具有较好的柔软性和弹性,能够有效吸收高频和中频的声波,但对低频的吸收效果较差。

2.矿棉:矿棉是一种常见的吸声材料,具有较好的吸声效果,能够广泛应用于墙壁、天花板和隔音板等位置。

矿棉具有良好的吸声性能和隔音性能,但易受潮湿影响,导致生长霉菌。

3.聚酯纤维:聚酯纤维是一种常见的吸声材料,具有较好的吸声效果和耐火性能。

聚酯纤维可用于制作吸声板、吸声板和隔音棉等产品,能够有效吸收声波的能量。

4.石墨烯:石墨烯是一种新型的吸声材料,具有较高的吸声效果和超强的吸声能力。

石墨烯能够吸收多个频段的声波,并且对低频、中频和高频的吸声效果均优异。

5.多孔玻璃纤维:多孔玻璃纤维是一种具有良好吸声性能的吸声材料,它具有开放式多孔结构,能够吸收多个频段的声波能量,对声波的吸收效果较为均匀。

除了以上几种材料外,还有其他一些吸声材料如石膏板、吸声毡、隔音毡等,这些材料在吸声技术中都有广泛的应用。

总结起来,吸声是指通过一定的材料和结构对声波进行控制,达到降噪和优化声学环境的目的。

吸声材料主要通过阻尼、散射和吸收作用来减少声波的反射。

常见的吸声材料包括泡沫塑料、矿棉、聚酯纤维、石墨烯和多孔玻璃纤维等。

多孔吸声材料的吸声原理及其分类

多孔吸声材料的吸声原理及其分类

多孔吸声材料得吸声原理及其分类一、多孔材料得吸声原理惠更斯原理:声源得振动引起波动,波动得传播就是由于介质中质点间得相互作用。

在连续介质中,任何一点得振动,都将直接引起邻近质点得振动。

声波在空气中得传播满足其原理。

多孔吸声材料具有许多微小得间隙与连续得气泡,因而具有一定得通气性。

当声波入射到多孔材料表面时,主要就是两种机理引起声波得衰减:首先就是由于声波产生得振动引起小孔或间隙内得空气运动,造成与孔壁得摩擦,紧靠孔壁与纤维表面得空气受孔壁得影响不易动起来,由于摩擦与粘滞力得作用,使相当一部分声能转化为热能,从而使声波衰减,反射声减弱达到吸声得目得;其次,小孔中得空气与孔壁与纤维之间得热交换引起得热损失,也使声能衰减。

另外,高频声波可使空隙间空气质点得振动速度加快,空气与孔壁得热交换也加快。

这就使多孔材料具有良好得高频吸声性能。

二、多孔吸声材料得分类多孔吸声材料按其选材得柔顺程度分为柔顺性与非柔顺性材料,其中柔顺性吸声材料主要就是通过骨架内部摩擦、空气摩擦与热交换来达到吸声得效果;非柔顺性材料主要靠空气得粘滞性来达到吸声得功能。

多孔吸声材料按其选材得物理特性与外观主要分为有机纤维材料,无机纤维材料,吸声金属材料与泡沫材料四大类。

1 有机纤维材料早期使用得吸声材料主要为植物纤维制品,如棉麻纤维、毛毡、甘蔗纤维板、木质纤维板、水泥木丝板以及稻草板等有机天然纤维材料。

有机合成纤维材料主要就是化学纤维,如晴纶棉、涤纶棉等。

这些材料在中、高频范围内具有良好得吸声性能,但防火、防腐、防潮等性能较差。

除此之外,文献还对纺织类纤维超高频声波得吸声性能进行了研究,证实在超高频声波场中,这种纤维材料基本上没有任何吸声作用。

2 无机纤维材料无机纤维材料不断问世,如玻璃棉、矿渣棉与岩棉等。

这类材料不仅具有良好得吸声性能,而且具有质轻、不燃、不腐、不易老化、价格低廉等特性,从而替代了天然纤维得吸声材料,在声学工程中获得广泛得应用。

多孔材料的吸声原理以及影响吸声系数的因素

多孔材料的吸声原理以及影响吸声系数的因素

多孔吸声材料多孔吸声材料是普遍应用的吸声材料,其中包括各种纤维材料:超细玻璃棉、离心玻璃棉、岩棉、矿棉等无机纤维,棉、毛、麻、棕丝、草质或木质纤维等有机纤维。

纤维材料很少直接以松散状使用,通常用胶黏剂制成毡片或板材,如玻璃棉毡(板)、岩棉板、矿棉板、木丝板、软质纤维板凳。

微孔吸声砖等也属于多孔吸声材料。

泡沫塑料,如果其中的空隙相互连通并通向外表,可作为多孔吸声材料。

一、多孔材料的吸声机理多孔吸声材料具有良好吸声性能的而原因,不是因为表面的粗糙,而是因为多孔材料具有大量内外两桶的微小空隙和空洞。

图12-1(a)表示了粗糙表面和多孔材料的差别。

那种认为粗糙墙面(如拉毛水泥)吸声好的概念是错误的。

当声波入射到多孔材料上,声波能顺着微孔进入材料的内部,引起空隙中空气的振动。

由于空气的黏滞阻力、空气与孔壁的抹茶和热传导作用等,使相当一部分声能转化为热能而被损耗。

因此,只有孔洞对外开口,孔洞之间互相连通,且孔洞深入材料内部,才可以有效地吸收声能。

这一点与某些隔热保温材料的要求不同。

如聚苯和部分聚氯乙烯泡沫塑料以及加气混凝土等材料,内部也有大量气孔,但大部分单个闭合,互补连通(见图12-1b),他们可以作为隔热温饱材料,但吸声小郭却不好。

二、影响多孔材料吸声系数的因素多孔材料一般对中高频声波具有良好的吸声。

影响和控制多孔材料吸声特性的因素,主要是材料的孔隙率、结构因子和空气流阻。

孔隙率是指材料中连通的空隙体积和材料总体积之比。

结构因子是有多孔材料结构特性所决定的物理量。

空气流阻反应了空气通过多孔材料阻力的大小。

三则中以空气阻留最为重要,它定义为:当稳定气流通过多孔材料时,材料两面的静压差和气流线速度之比。

单位厚度材料的流阻,称为“比流阻”。

当材料厚度不大时,比流阻越大,说明空气穿透两就小,牺牲性能就下降,但比流阻大小,声能因摩擦力、黏滞力而损耗的效率就低,吸声性能就会下降。

所以,多孔材料存在最佳流阻。

当材料厚度充分大,比流阻小,则吸声就打。

多孔吸声材料吸声机理及相关参数

多孔吸声材料吸声机理及相关参数
错误认识二:内部存在大量孔洞的材料,如聚苯、聚 乙烯、闭孔聚氨脂等,具有良好的吸声性能。
3.3 影响多孔吸声材料吸声系数的因素
多孔吸声材料对声音中高频有较好的吸声性能。影响 多孔吸声材料吸声特性主要是材料的厚度、密度、孔 隙率、结构因子和空气流阻等。
密度:每立方米材料的重量。 孔隙率:材料中孔隙体积和材料总体积之比。 结构因子:反映多孔材料内部纤维或颗粒排列的情况,
3.6 吸声在建筑声学中的应用举例
3.6.1 室内音质的控制
玻璃棉产品可以制成吊顶板、贴墙板、空间吸声 体等,在建筑室内起到吸声作用,降低混响时间。
一般地,房间体积越大,混响时间越长,语言清 晰度越差,为了保证语言清晰度,需要在室内做吸声, 控制混响时间。如礼堂、教室、体育场,电影院。
对音乐用建筑,为了保证一定丰满度,混响时间 要比长一些,但也不能过长,可以使用吸声控制。
3.1 吸声系数与吸声量
吸声系数定义:=(E总-E反)/ E总,即声波接触吸声介面后失去 能量占总能量的比例。吸声系数小于1。
同一吸声材料,声音频率不同时,吸声系数不同。一般常用 100Hz-5000Hz的18个1/3倍频带的吸声系数表示。
有时使用平均吸声系数或降噪系数粗略衡量材料的吸声能力。 平均吸声系数:100Hz-5000Hz的1/3倍频带吸声系数的平均值 降噪系数(NRC):125Hz/250Hz/500Hz/1000Hz吸声系数的平均
第三章 吸声材料与吸声结构
吸声材料和吸声结构,广泛地应用于音质设计和噪 声控制中。
吸声材料:材料本身具有吸声特性。如玻璃棉、岩 棉等纤维或多孔材料。
吸声结构:材料本身可以不具有吸声特性,但材料 制成某种结构而产生吸声。如穿孔石膏板吊顶。
在建筑声环境的设计中,需要综合考虑材料的使用, 包括吸声性能以及装饰性、强度、防火、吸湿、加 工等多方面。

吸声材料原理

吸声材料原理

吸声材料原理
吸声材料是一种可以减少声波反射和增强声波吸收的材料。

它可以用于各种场合,例如音乐会厅、录音棚、机房、办公室、工厂等等。

吸声材料的原理是通过将声波能量转化为热能或机械能来吸收声波。

吸声材料的主要成分是孔隙结构和质量密度。

孔隙结构决定了材料能够吸收多少声波,而质量密度则决定了材料的吸声效率。

孔隙结构越复杂,材料的吸声效果就越好。

然而,孔隙结构过于密集也会导致反射和散射的效果变差。

吸声材料的制造过程包括选择适当的材料、加工出特定的孔隙结构以及涂覆一层吸声面料。

吸声面料通常是一种微孔材料,可以增强吸声效果并且美观。

吸声材料的应用非常广泛。

在音乐会厅和录音棚中,吸声材料可以减少反射和混响效果,提高音乐表现的清晰度。

在机房和办公室中,吸声材料可以降低噪声污染,提高工作效率。

在工厂中,吸声材料可以保护工人的听力,同时提高工作环境的安全性。

总之,吸声材料是一种非常实用的材料,它可以改善各种场合下的声学环境,提高人们的生活质量和工作效率。

- 1 -。

吸声材料的吸声机理

吸声材料的吸声机理

吸声材料的吸声机理吸声材料是一种能够减少声波反射和增加声波吸收的材料。

它可以通过吸收来自声源的声波能量,将其转化为热能或其他形式的能量,达到减少噪声和改善声学环境的目的。

1.散射:吸声材料中的微小颗粒、纤维或孔洞可以散射入射声波,使声波的传播方向发生变化。

通过多次散射,声波的传播路径变长,能量逐渐被吸收。

此时,吸声材料的粗糙表面能够有效增加吸声效果。

2.多层结构:多层吸声材料通常由吸声材料和隔音材料组成。

吸声材料用于吸收声波能量,而隔音材料用于隔离声波传播。

声波进入多层吸声材料后,会在各个层面之间发生反射、散射和透射,从而增加了声波与材料的接触面积,提高了吸声效果。

3.内部摩擦和粘滞阻尼:吸声材料中的微小孔洞和纤维可以使声波通过摩擦和粘滞过程转化为微观的热能,从而起到吸声的作用。

材料的孔洞结构和厚度会影响声波在材料内的传播路径和能量转化效率。

4.共振效应:吸声材料中的共振结构能够吸收其中一特定频率的声波能量。

当声波的频率与共振结构的固有频率相等时,共振结构会发生振动,从而转化声波能量为热能,实现吸声效果。

共振频率由材料的密度和厚度决定。

5.孔隙平流效应:吸声材料中的孔隙可以使声波在材料内部发生多次反射,增加声波与材料的接触面积,提高吸声效果。

孔隙的分布和大小对吸声效果有重要影响。

综上所述,吸声材料的吸声机理主要涉及散射、多层结构、内部摩擦和粘滞阻尼、共振效应和孔隙平流效应。

不同的吸声材料可能具有不同的主要吸声机制。

在实际应用中,可以根据具体的噪声问题选择合适的吸声材料和吸声机理,以达到最佳的吸声效果。

吸声原理和吸声性能评价

吸声原理和吸声性能评价

吸声原理和吸‎声性能评价一、吸声原理声波在介质中‎传播时因振动‎质点的疏密度‎和振动幅度不‎同,会造成声波传‎播时各个振动‎质点间存在速‎度和温度梯度‎差,即在介质中存‎在不同的传播‎速度及能量损‎耗。

多孔吸声材料‎内部具有与外‎表面彼此相互‎连通的微通道‎,当声波入射到‎多孔材料表面‎时会像光一样‎产生多次反射‎(或散射) 、透射、吸收等现象。

声波还会使柔‎性材料的分子‎链甚至更大的‎结构单元发生‎振动,并使材料产生‎内摩擦和发热‎等现象,即将声能转化‎成热能及振动‎能耗散或在材‎料表面产生反‎射。

[1]图1为声波与‎材料的相互作‎用示意图。

图1 声波与材料的‎相互作用示意‎图1.多孔吸声材料‎的吸声机理多孔吸声材料‎内部具有无数‎细微孔隙, 孔隙间彼此贯‎通,且通过表面与‎外界相通, 当声波入射到‎材料表面时, 一部分在材料‎表面反射掉, 另一部分则透‎入到材料内部‎向前传播。

在传播过程中‎引起孔隙的空‎气运动, 与形成孔隙的‎固体筋络发生‎摩擦, 由于粘滞性和‎热传导效应, 将声能转化成‎热能而耗散掉‎。

声波在刚性壁‎面反射后, 经过材料回到‎其表面时, 一部分声波透‎射到空气中, 一部分又反射‎回材料内部,声波通过这种‎反复传播, 使能量不断转‎化耗散, 如此反复, 使得材料“吸收”了部分声能。

2.共振吸声结构‎的吸声机理共振吸声结构‎以各类穿孔板‎最为常见。

穿孔板与后面‎的空腔共同构‎成共振吸声结‎构。

当声波入射到‎材料表面, 一部分在材料‎表面反射掉, 另一部分则透‎射到材料内部‎继续传播。

当入射声波的‎频率和系统的‎固有频率相等‎时,空气中的主空‎气柱由于共振‎产生剧烈振动‎,空气柱和孔径‎侧壁摩擦而消‎耗声能。

[2]二、吸声性能评价‎与表征吸声材料的吸‎声性能好坏, 主要通过其吸‎声系数的高、低来表示。

吸声系数是指‎声波在物体表‎面反射时, 其能量被吸收‎的百分率, 通常用符号a‎表示, a值越大, 吸声性能就越‎好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【专业知识】吸声材料的吸声机理及因素
【学员问题】吸声材料的吸声机理及因素?
【解答】吸声材料,是具有较强的吸收声能、减低噪声性能的材料。

借自身的多孔性、薄膜作用或共振作用而对入射声能具有吸收作用的材料,超声学检查设备的元件之一。

吸声材料要与周围的传声介质的声特性阻抗匹配,使声能无反射地进入吸声材料,并使入射声能绝大部分被吸收。

吸声材料按吸声机理分为:
①靠从表面至内
部许多细小的敞开孔道使声波衰减的多孔材料,以吸收中高频声波为主,有纤维状聚集组织的各种有机或无机纤维及其制品以及多孔结构的开孔型泡沫塑料和膨胀珍珠岩制品。

②靠共振作用吸声的柔性材料(如闭孔型泡沫塑料,吸收中频)、膜状材料(如塑料膜或布、帆布、漆布和人造革,吸收低中频)、板状材料(如胶合板、硬质纤维板、石棉水泥板和石膏板,吸收低频)和穿孔板(各种板状材料或金属板上打孔而制得,吸收中频)。

以上材料复合使用,可扩大吸声范围,提高吸声系数。

用装饰吸声板贴壁或吊顶,多孔材料和穿孔板或膜状材料组合装于墙面,甚至采用浮云式悬挂,都可改善室内音质,控制噪声。

多孔材料除吸收空气声外,还能减弱固体声和空室气声所引起的振动。

将多孔材料填入各种板状材料组成的复合结构内,可提高隔声能力并减轻结构重量。

对入射声能有吸收作用的材料。

吸声材料主要用于控制和调整室内的混响时间,
消除回声,以改善室内的听闻条件;用于降低喧闹场所的噪声,以改善生活环境和劳动条件(见吸声降噪);还广泛用于降低通风空调管道的噪声。

吸声材料按其物理性能和吸声方式可分为多孔性吸声材料和共振吸声结构两大类。

后者包括单个共振器、穿孔板共振吸声结构、薄板吸声结构和柔顺材料等。

影响因素
1.材料的厚度
多孔材料对高频率声音吸声效果明显,即在高频区吸声系数较大;多孔材料对低频率声音吸声效果差,即在低频区吸声系数较小;随着材料厚度的增加,吸声最佳频率向低频方向移动;厚度每增加1倍,最大吸收频率向低频方向移动一个倍频程;材料厚度(最佳吸收频率下的波长)为λ/4为最佳;当声音频率大于500Hz 时,吸声系数与厚度无关。

材料的密度随着材料密度的增大,最大吸收系数向低频方向移动。

材料层于刚性面间的空气层当空气层厚度d=1/4λ时,吸声系数a 最大;对于低频率声音来说,λ较大,空气层厚度也要加大,在工程上增加空气层厚度不太合适(对于房顶可适当增加空气层的厚度),一般5-10cm.
护面层(多应用于多孔疏松材料)多孔材料疏松,无法固定,不美观,需表面覆盖护面层,如护面穿孔板,织物或网纱等;穿孔率(P),即穿孔总面积与未穿孔总面积的比值,穿孔率越大,对中高频率声音吸收效果越好,穿孔率越小,对低频吸收效果越好。

2.空间吸声体(室内悬挂吸声体)
将吸声体悬挂在室内对声音进行多方位吸收;吸声体投影面积与悬挂平面投影面积的比值约等于40%时,对声音的吸声效率最高;该法节省吸声材料,对工厂、企业的
吸声降噪比较适用。

以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。

结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。

事实表明,习惯左右了成败,习惯改变人的一生。

在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一朝一夕的事,需要坚持。

希望大家坚持到底,现在需要沉淀下来,相信将来会有更多更大的发展前景。

相关文档
最新文档