平面向量综合题
平面向量综合题答案
1、已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[).,0(+∞∈++=λλ则P 点的轨迹一定通过△ABC 的(A )A .重心B .垂心C .内心D .外心3、已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB ,则△ABC 为( C ) A. 等腰三角形 B. 等边三角形 C. 直角三角形D. 等腰直角三角形【方法】选择基底;数量积公式4、非零向量OA a =,OB b =,若点B 关于OA 所在直线的对称点为1B ,则向量1OB OB +为( A )A 、22(a b )aa⋅ B 、2(a b )aa⋅ C 、2(a b )aa⋅ D 、(a b )a a⋅【方法】待定系数法;向量三角形法则5、如右图所示,,,A B C 是圆O 上的三点,CO 的延长线与线段AB交于圆内一点D ,若OC xOA yOB =+,则( C ) A .01x y <+< B .1x y +>C .1x y +<-D .10x y -<+<6、定义平面向量的正弦积为||||sin 2a b a b θ⋅=,(其中θ为a 、b 的夹角),已知△ABC 中,AB BC ⋅=BC CA ⋅,则此三角形一定是( A )A .等腰三角形B . 直角三角形C . 锐角三角形D . 钝角三角形7、已知四边形ABCD的对角线相交于一点,()1,3 AC=,()3,1BD=-,则AB CD⋅的取值范围是()A.()2,0B.(]4,0C.[)0,2-D.[)0,4-【答案】C.【解析】取(0,0)A,则(1,3)C;设11(,)B x y,22(,)D x y,则21213,1.x xy y⎧-=-⎪⎨-=⎪⎩所以()()1122,3,1AB x y x y==+-,()221,3CD x y=--,求得22223131()()2222AB CD x y-+⋅=++--≥-,当1131,231,2xy⎧+=⎪⎪⎨-⎪=⎪⎩且2231,231,2xy⎧-+=⎪⎪⎨+⎪=⎪⎩时,AB CD⋅取到最小值2-,此时四边形ABCD的对角线恰好相交于一点,故选C.9、已知点OAOQOPAyxyxyxyxP(sin),0,3(,13211294:),(∠⎪⎩⎪⎨⎧≤--≤-+≥-+则设的坐标满足为坐标原点)的最大值为 510、如图,已知1||=→OA,3||=→OB,0=⋅→→OBOA点C在线段AB上,且AOC∠=030,设→→→+=OBnOAmOC,)(Rnm∈,则mn等于 311、已知→→ba,为平面向量,若→→+ba与→a的夹角为3π,→→+ba与→b的夹角为4π,则→→||||ba=【解】图解法12、已知直线x y a +=与圆224x y +=交于,A B 两点,且||||OA OB OA OB +=-(其中O 为坐标原点),则实数a 的值为 2或2-13、设O 为ABC ∆的外心,且543=++ ,则ABC ∆的内角C 的值为4π【方法】基底选择C AOB ∠=∠2 , o 22900)5()43(=∠⇒=•⇒-=+→→→→→AOB OB OA OC OB OA15、设P 为ABC ∆所在平面内一点,且→→→→=--025AC AB AP ,则PAB ∆的面积与ABC ∆的面积之比等于 15【方法】图解法;向量平行四边形法则16、在直角△ABC 中,︒=∠90BCA ,1==CB CA ,P 为AB 边上的点且AB AP λ=,若PB PA AB CP ⋅≥⋅,则λ的取值范围是 ]1,222[- 【方法】建立坐标系18、在ABC ∆中,点D 在线段BC 的延长线上,且→→=CD BC 3,点O 在线段CD 上(与点C 、D 不重合),若→→→-+=AC x AB x AO )1(则x 的取值范围是 1(,0)3-【方法】选择基底;向量相等19、在△ABC 中,E 、F 分别为AB ,AC 中点.P 为EF 上任一点,实数x ,y 满足PA +x PB +y PC =0.设△ABC ,△PBC ,△PCA ,△P AB 的面积分别为S ,1S ,2S ,3S ,记11S S λ=,22SS λ=,33S Sλ=,则当λ2·λ3取最大值时,2x +y 的值为220、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解析】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλAB AC AC AB AC AB ,选D21、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλ,选D 22、已知点G 是ABC ∆的重心,AB μλ+=(λ, R ∈μ ),若0120=∠A ,2-=⋅AC AB3223、在矩形ABCD P若→→→+=AD AB AP μλ,24、P 是ABC ∆所在平面上一点,满足→→→→=++AB PC PB PA 2,若12ABC S ∆=,则PAB ∆的面积为4【解析】由()22PA PB PC AB PB PA ++==-,得3PA PB PC CB =-=,所以PABC ,且13PA BC=,ABC∆的边AB上的高是ABP∆边AB上的高的3倍,所以13ABPABCSS∆∆=,由12,4ABC ABPS S∆∆=∴=25、已知点O为ABC∆内一点,且→→→→=++0OCOBOA则:ABC BOCS S∆∆=________3:1.【解】330OA OB OC OA OA AB OA AC OA AB AC OA AD++=++++=++=+=,即3AO AD=,又12AE AD=,所以有21,33AO AE OE AE==即,则:ABC BOCS S∆∆=3:1AE OE=:.26、已知菱形ABCD的边长为a,∠DAB=60°,2EC DE=,则.AE DB的值为32a-.27、如图,∆AOB为等腰直角三角形,1OA=,CO为斜边AB的高,点P在射线CO上,则AP⋅OP 的最小值为18-.【解析】如图所示,AP =OP -OA ,设0t OP =≥.∴()2AP ⋅OP =OP -OA ⋅OP =OP -OA ⋅OP2222112488t t t⎛⎫=-=--≥- ⎪ ⎪⎝⎭,当24t =时取等号,∴AP ⋅OP 的最小值为18-.28、在长方形ABCD 中,,,12==AD AB 点N M 、分别是CD BC 、边上的点,且._________,的取值范围是则AN AM CDCN BCBM ⋅=2),(4329、在ABC ∆中,若D 是AB 的中点,P 在线段CD 上移动,当222CP BP AP ++最小时,求:PC PD 的比值为 230、在ABC ∆中,D 是BC 上一点,→→-=DB DC 2,若2||=→AB ,3||=→AC ,则||→AD 的取值范围为 .)37,31(31、已知平面向量)(,βαβα≠满足2=α,且α与αβ-的夹角为120°,t R ∈,则βαt t +-)1( 的取值范围是 ),3[+∞.32、 设点M 是线段BC 的中点,点A 在直线BC 外,ABC ∆中BC 边上的高为h ,且216BC =||||→→→→-=+AC AB AC AB 则h 的最大值为_____________2.平面向量8.O 是ABC ∆所在平面内一点,动点P 满足(),0sin sin AB AC OP OA AB BAC Cλλ=++>,则动点P 的轨迹一定通过ABC ∆的 ( C )(A) 内心 (B) 外心 (C) 重心 (D) 垂心10.如图放置的正方形, 1.,ABCD AB A D =分别在x 轴、y 轴的正半轴(含原点) 上滑动,则OC OB ⋅的最大值是 ( D ) (A) 1 (B)2(C) 3 (D) 2ABOC第10题图13.已知正△ABC 的边长为1,点G 为边BC 的中点,点,D E 是线段,AB AC 上的动点,DE 中点为F .若AD AB λ=,(12)AE AC λ=-()λ∈R ,则FG 的取值范围为 17,24⎡⎤⎢⎥⎣⎦.14@.如图,//AB MN ,且2OA OM =,若OP xOA yOB =+,(其中,x y R ∈),则终点P 落在阴影部分(含边界) 时,21y x x +++的取值范围是 4[,4]3 .16.已知O 是ABC ∆的外心,2,3AB AC ==,若AO xAB y AC =+且21x y +=,则cos BAC ∠=4316.已知(0,0)O ,(cos ,sin )A αα,(cos ,sin )B ββ,(cos ,sin )C γγ,若(2)0kOA k OB OC +-+=,(02)k <<,则cos()αβ-的最大值是 12-.14.已知向量,a b 满足:||13a =,||1b =,|5|12a b -≤,则b 在a 上的投影的取值范围是 5113[,].8.(2009山东卷理)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++= 【解析】:因为2BC BA BP +=,所以点P 为线段AC 的中点,所以应该选B 。
专题28 平面向量综合练习(新高考地区专用)(解析版).pdf
2
2
23
解得
x
2
| ,∴
AC
|
2
2 3
2
,故选B。
3 | AB | 2 3
5.已知 | a | 1 , | b | 2 ,且 a (a b) ,则向量 a 在 b 方向上的投影为( )。
1 A、
2
2 B、
2
【参考答案】B
C、 1
D、 2
【解析】设 a 与 b 的夹角为 ,∵ a (a b) ,∴ a (a b) | a |2 a b | a |2 | a | | b | cos 0 ,
AE AF ( AB BC) ( AD 1 DC) AB AD AB 1 DC BC AD 1 BC DC ,
B、 | a | | b || a b |
C、 (b c)a (c a)b 不与 c 垂直
D、 (3a 2b)(3a 2b) 9 | a |2 4 | b |2
【参考答案】BD 【解析】A选项,平面向量的数量积不满足结合律,故A假,
B选项,由向量的减法运算可知 | a | 、 | b | 、 | a b | 恰为一个三角形的三条边长, 由“两边之差小于第三边”,故B真,
【参考答案】 (2, )
【解析】令 c a b ,则 a b c , b 与 c 的夹角为 60 ,
∴|
a
|2 | b
c
|2
2
b
2b
c
2
c
|
c
|2
2 2 |
c
| cos 60
22
|
c
|2
2 |
c
|
4
(|
c
|
1)2
高一数学平面向量试题答案及解析
高一数学平面向量试题答案及解析1.正六边形中,()A.B.C.D.【答案】D【解析】故选D2.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略3.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.4.(本小题满分10分)已知向量,,且,(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.【答案】(1),;(2)【解析】(1)首先根据向量积的坐标表示,然后再根据两角和的余弦公式进行化简,求向量的模,根据公式,展开公式,然后按照向量数量积的坐标表示和二倍角公式进行化简;(2),第一步先按二倍角公式展开,转化为关于的二次函数求最值,第二步,进行换元,配方,所以讨论,,三种情况,得到最小值,确定参数的取值.试题解析:(1),(2分)|,因为所以.(2)令因为,.∴原函数可化为①当,,即(不合题意,舍去).②当时,,即或(不合题意,舍去).③当时,矛盾.综上所述.【考点】1.向量数量积的坐标表示;2.三角函数的化简;3.二次函数求最值.5.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.6.已知屏幕上三点满足,则的形状是()A.等腰三角形B.对边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】设的中点为,则,为等腰三角形.故选A.【考点】(1)三角形的形状判断;(2)平面向量数量积的运算.7.在中,设,若点满足,则A.B.C.D.【答案】A【解析】由得,,答案选A.【考点】向量的线性运算8.已知,,若与垂直,则等于()A.1B.C.2D.4【答案】C【解析】,因为与垂直,则,【考点】(1)平面向量的数量积(2)向量的模9.如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.【答案】(1);(2);【解析】(1)根据中点坐标公式求出B点坐标,再利用向量数量积坐标式表示出即可;(2)结合已知图形,求出B点坐标,再求出C点坐标,然后写出OC所在直线方程,最后根据点到直线距离公式即可求出点A到OC的距离.试题解析:(1)点在轴正半轴上,,又点是线段的中点,,,;(2),,由点是线段的中点,,直线的方程为,即,点到直线的距离.【考点】1.中点坐标公式;2.向量数量积的坐标式;3.点到直线距离;10.(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值;(Ⅱ)若向量与的夹角为锐角,求的取值范围【答案】(1)(2)且【解析】(1)本题考察的是两向量的平行,可以先根据条件写出两个向量与的坐标,利用平行向量的条件,即可求出的值.(2)因为向量与的夹角为锐角,则向量的数量积大于0且不共线,根据条件代入公式即可求出的取值范围.试题解析:(Ⅰ)依题意得-------2分∵向量与平行∴,解得(Ⅱ)由(2)得∵向量与的夹角为锐角∴,且∴且【考点】平面向量的综合题11.若,则向量的夹角为()A.B.C.D.【答案】C【解析】因为,设与的夹角为,,则,故选C.【考点】数量积表示两个向量的夹角12.已知向量,,若,则代数式的值是()A.B.C.D.【答案】C【解析】因为向量,,,所以,解得,而=,故选择C【考点】1.共线向量的坐标表示;2.同角函数基本关系式13.如图,在正方形中,,点为的中点,点在边上.若,则.【答案】【解析】以A为坐标原点,AB为x轴,AD为y轴建立直角坐标系,则,可得,即,所以【考点】向量坐线性运算14.已知向量,,若⊥,则实数的值为()A.B.C.-D.2【答案】A【解析】两向量垂直,所以数量积为0,代入公式,解得,故选A.【考点】向量数量积的坐标表示15.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.【答案】(1)2 (2)【解析】(1)由两向量垂直得到数量积为零,代入向量的坐标可得到关于的关系式,将其整理可得到的值;(2)将转化为用角的三角函数表示,求向量的模的最大值转化为求函数最大值问题,求解时要注意正余弦值的范围试题解析:(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),又a与b-2c垂直,∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,∴4sin(α+β)-8cos(α+β)=0,得tan(α+β)=2.(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),∴|b+c|=当sin2β=-1时,|b+c|==4.max【考点】1.向量的坐标运算;2.向量的模;3.三角函数化简16.设为所在平面内一点,,则()A.B.C.D.【答案】A【解析】,.故A正确.【考点】平面向量的加减法.17.已知向量,且∥,则的最小值等于A.B.C.D.【答案】B【解析】由知,即,则.【考点】平面向量的坐标运算及用基本不等式求最值.18.已知的夹角为,则【答案】【解析】.【考点】1.向量的模;2.向量的内积.19.平面向量与的夹角为60°,=(2,0),=1,则|+2|等于()A.B.C.4D.12【答案】B【解析】【考点】向量的模与向量运算20.(本小题满分12分)已知平面向量,.(1)若,求的值;(2)若,求|-|.【答案】(1)(2)【解析】(1)由得到坐标关系式,代入相应坐标即可得到的值;(2)由直线平行得到坐标满足的的关系式,求得x值后,将向量用坐标表示,利用坐标求向量的模试题解析:(1)即(2)即当时,当时,【考点】1.向量平行垂直的判定;2.向量的模21.(本题满分15分)已知,,是同一平面上不共线的三点,且.(1)求证:;(2)若,求,两点之间的距离.【答案】(1)详见解析;(2).【解析】(1)将条件当中的式子变形,利用向量数量积的定义证明是等腰三角形即可;(2)根据(1)中所证再结合等腰三角形的性质,可将转化为与有关的方程,从而求解.试题解析:(1)由得,设为的中点,则,从而有,即,由于为的中点,且,因此由“三线合一”性质可知;(2)由(1)可知,,故,即,两点之间的距离为.【考点】1.等腰三角形的性质;2.平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.22.已知为非零向量,且,,则下列说法正确的个数为()(1)若,则;(2)若,则;(3)若,则;(4)若,则.A.1B.2C.3D.4【答案】D【解析】(1)因为,,,均为非零向量,且,所以,必不共线,则,表示以是,为邻边的平行四边形的两条对角线,且该平行四边形为菱形,所以,,故(1)正确;(2),所以,故(2)正确;(3)若,则必不共线,所以以为邻边的平行四边形是矩形,所以,故(3)正确;(4)若非零向量满足,即,则以为邻边的平行四边形是矩形,所以,故(4)正确.【考点】向量加法、减法的几何意义,数量积的运算性质和向量垂直的条件.23.(2015秋•大兴安岭校级期末)已知向量=(1,2),=(2,2).(1)求(2﹣)•(2+);(2)设=(﹣3,λ),若与夹角为钝角,求λ的值.【答案】(1)12;(2)λ>﹣,且λ≠6.【解析】(1)向量的坐标运算和向量的数量积的坐标运算计算即可,(2)若与夹角为钝角,则则•<0,问题得以解决.解:(1)∵=(1,2),=(2,2),∴2﹣=(2﹣2,4﹣2)=(0,2),2+=(2+2,4+2)=(4,6),∴(2﹣)•(2+)=0×4+2×6=12;(2)若与夹角为钝角,则•<0,•=(﹣3,λ)•(1,﹣2)=﹣3﹣2λ<0,即λ>﹣,且与不能方向,即﹣3×(﹣2)﹣λ≠0,解得λ≠6,故λ的范围为λ>﹣,且λ≠6.【考点】平面向量数量积的运算;平面向量的坐标运算.24.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.25.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-B.C.D.【答案】C【解析】,所以设与的夹角为.,,.故C正确.【考点】1向量的数量积;2向量的模长.【易错点睛】本题主要考查向量的数量积和模长问题,难度一般.先由向量的数量积公式求得夹角的余弦值,由余弦值可求得角的大小.但应注意两向量的夹角范围为,若忽略角的范围容易出错.26. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.27.已知,,,且与垂直,则实数λ的值为()A.B.C.D.1【答案】C【解析】由,所以,然后根据与垂直,展开后由其数量积等于0可求解λ的值.解:因为,所以,又,,且与垂直,所以==12λ﹣18=0,所以.故选C.【考点】数量积判断两个平面向量的垂直关系.28.(2015秋•嘉兴期末)已知向量是同一平面内的三个向量,其中.(1)若,且向量与向量反向,求的坐标;(2)若,且,求与的夹角θ.【答案】(1).(2).【解析】(1)令,根据模长关系列方程解出λ;(2)将展开求出,代入夹角公式计算.解:(1)设∵∴,∴.(2)∵||=,,∴2=5,2=.∵,∴22+3﹣22=+3=,∴.∴,∴.【考点】平面向量数量积的运算;平面向量的坐标运算.29.已知向量.(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.【答案】(1)3y﹣x≠1(2)或【解析】(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值解:(1)若点A,B,C能构成三角形,则这三点不共线,∵∴=(3,1),=(2﹣x,1﹣y),又与不共线∴3(1﹣y)≠2﹣x,∴x,y满足的条件为3y﹣x≠1(2)∵=(3,1),=(﹣x﹣1,﹣y),若∠B为直角,则AB⊥BC,∴3(﹣x﹣1)﹣y=0,又|AB|=|BC|,∴(x+1)2+y2=10,再由3(﹣x﹣1)﹣y=0,解得或.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.30.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6B.6C.3D.﹣3【答案】B【解析】根据与垂直的条件,得到数量积等于0,求变量K的值,展开运算时,用到|a|=|b|=1,a与b夹角是90°代入求解.解:∵×=(2+3)×(k﹣4)=2k+(3k﹣8)×﹣12=0,又∵×=0.∴2k﹣12=0,k=6.故选B【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.31.已知.(1)若,求的坐标;(2)设,若,求点的坐标.【答案】(1);(2).【解析】(1)由可求得的坐标,再利用向量的运算用表示出,从而求得的坐标;(2)可假设,能求的的坐标,由可得关系式,,将此关系式转化成关于的方程,求出,从而得到点的坐标.试题解析:(1)(2)设则,,解得因此,点的坐标为【考点】向量的运算.32.在中,,,,下列推导不正确的是()A.若,则为钝角三角形B.,则ΔABC为直角三角形C.,则为等腰三角形D.,则为正三角形【答案】D【解析】A中,由可知,,得为钝角三角形;B中,由可知,,得为直角三角形;C中,由知得,,,,则为等腰三角形;D中,,总是成立,不能得到为正三角形.故选D.【考点】平面向量的数量积.33.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1B.1:2C.1:3D.1:4【答案】B【解析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.【考点】向量的加法及其几何意义.34.如图,已知:,为的中点,为以为直径的圆上一动点,则的最大值是()A.B.C.D.【答案】A【解析】以直线为轴,圆心为坐标原点建立如图所示的直角坐标系,则,所以,,设,则,,其中(,),所以的最大值为.故选A.【考点】平面向量的线性运算,平面向量的数量积.【名师】本题考查平面向量的数量积,解题的关键是建立适当的直角坐标系,把向量用坐标表示出来.本题中建立如解析中所示的坐标系后,可以把表示出来了,引入圆的参数方程表示法,可以把向量用参数表示,这样就可两向量的数量积表示为的函数:,由三角函数的性质可求得最大值.35.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于 ( ) A.B.C.-D.-【答案】A【解析】,而,代入原式得到,整理为,即为,所以,故选A.【考点】向量36.设是平行四边形的对角线的交点,为平面上任意一点,则= A.B.C.D.【答案】D【解析】由已知得,,,,,而,,所以.故选D.【考点】平面向量的加法;相反向量.37.已知的三个顶点及所在平面内一点,若,若实数满足,则()A.B.3C.-1D.2【答案】B【解析】根据向量减法的运算法则可得所以,又因为,所以,故选B.【考点】平面向量的线性运算.38.在四边形中,设且,,则四边形的形状是()A.梯形B.矩形C.菱形D.正方形【答案】B【解析】,,故四边形为平行四边形,又因为,,,故平行四边形为矩形.【考点】向量加法、减法的几何意义.39.已知向量,,,若∥,则= .【答案】 5;【解析】由题:,, ,∥,则:【考点】向量的坐标运算及平行的性质.40.已知非零向量、,且,,,则一定共线的三点是()A.、B.、C.、、D.、【答案】A【解析】根据三点共线的性质,、;、、皆不可能共线,只有、,、有可能共线,假设、共线,,令,可求得,、共线成立,假设、共线,,令,无解,假设不成立,故本题的正确选项为A.【考点】三点共线的证明.【方法点睛】证明三点共线的方法有多种,有向量法,因为共线的三点中任意连接两点所成向量必共线,而由共线向量的性质可知,当两向量共线时(两向量均不为零向量),其对应坐标成比例或者满足,以此来判断三点是否共线;也可建立坐标系,由其中两点确定一条直线,再将第三点代入直线方程,看其是否在直线上;三点钟任意连接两点,可形成三个向量,通过三个向量的模长的关系也可判断三点是否共线.41.已知,点是线段上的点,,则点的坐标为()A.B.C.D.【答案】D【解析】假设,则有,所以有,可求得,故本题的正确选项为D.【考点】三点共线的性质.42.设和是两个单位向量,夹角是,试求向量和的夹角.【答案】.【解析】本题考查的知识点是数量积表示两个向量的夹角,由和是两个单位向量,夹角是,我们易得,,进而我们可以求出,,,然后代入,即可求出答案.试题解析:,,,.,,故.【考点】数量积表示两向量的夹角.43.已知点,,,,则向量在方向上的投影为【答案】【解析】,,则向量在方向上的投影为.【考点】向量数量积的几何意义.44.下列四个式子中可以化简为的是()①②③④A.①④B.①②C.②③D.③④【答案】A【解析】由向量加法三角形法则可知①正确,由向量减法的三角形法则可知④正确,故选A.【考点】向量加法、减法的三角形法则.45.已知向量满足:(1)求向量与的夹角(2)求【答案】(1)(2)【解析】(1)设向量的夹角为θ,求出,展开,代入后求得θ值;(2)利用,展开后求得答案试题解析:(1)设向量与的夹角为,,,得,(2)【考点】平面向量数量积的运算46.在菱形中,若,则等于()A.2B.-2C.D.与菱形的边长有关【答案】B【解析】由题在菱形中,若,由,【考点】向量的运算及几何意义.47.已知是两个单位向量.(1)若,试求的值;(2)若的夹角为,试求向量与的夹角【答案】(1)(2)【解析】(1)由题为单位向量,且,可利用向量乘法运算的性质;,化为向量的乘法运算,求出,进而可求得(2)由的夹角为,可利用向量乘法的性质,分别先求出的值,再利用可得.试题解析:(1),是两个单位向量,,又,,即.(2),,,夹角 .【考点】向量的乘法运算及性质.48.设向量,若,则.【答案】【解析】由题//,可得:【考点】向量平行的性质.49.已知向量=(3,x),=(﹣2,2)(1)若向量⊥,求实数x的值;(2)若向量﹣与3+2共线,求实数x的值.【答案】(1)x=3(2)x=﹣3【解析】解:(1)∵⊥,∴•=﹣6+2x=0,解得x=3.(2)﹣=(﹣5,2﹣x),3+2=(7,3x+2).∵﹣与3+2共线,∴7(2﹣x)+5(3x+2)=0,解得x=﹣3.【点评】本题考查了向量坐标运算性质、向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.50.若,且,则向量与的夹角为A.30°B.60°C.120°D.150°【答案】C【解析】由,则;,得:与的夹角为120°。
新教材高中数学第2章平面向量及其应用综合检测题北师大版必修第二册
第二章综合检测题考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( D ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →[解析] 起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0.2.如右图,a -b 等于( C )A .2e 1-4e 2B .-4e 1-2e 2C .e 1-3e 2D .3e 1-e 2[解析] a -b =e 1-3e 2.3.设O ,A ,M ,B 为平面上四点,OM →=λOB →+(1-λ)OA →,且λ∈(1,2),则( B ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线[解析] OM →=λOB →+OA →-λOA →,所以OM →-OA →=λ(OB →-OA →),AM →=λAB →,由λ∈(1,2)可知,A ,B ,M 三点共线,且B 在线段AM 上.4.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边,b =7,c =3,B =π6,那么a 等于( C )A .1B .2C .4D .1或4[解析] 在△ABC 中,b =7,c =3,cos B =32,由余弦定理有b 2=a 2+c 2-2ac cos B ,即7=a 2+3-3a ,解得a =4或a =-1(舍去).故a 的值为4.5.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( C ) A .-12B .12C .-2D .2[解析] a +λb =(1,2)+(-2λ,3λ) =(1-2λ,2+3λ),由(a +λb )⊥c ,可得(1-2λ)×4+(2+3λ)×5=0,解得λ=-2.6.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为(D )A .1B .2C . 2D . 3[解析] 由sin 2A +sin 2B -sin A sin B =sin 2C ,得a 2+b 2-ab =c 2,cos C =a 2+b 2-c 22ab =12.∵C ∈(0°,180°),∴C =60°. ∴sin C =32,∴S △ABC =12ab sin C = 3. 7.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC →,则AD 的长为⎝ ⎛⎭⎪⎫sin 75°=6+24( C )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3)[解析] 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin 45°sin 75°=8(3-1),因为BD →=3-12BC →,所以BD =3-12BC .又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos 60° =4(3-3).故选C .8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值是( D )A .2B .0C .-1D .-2[解析] 由平行四边形法则得PA →+PB →=2PO →,故(PA →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2),则(PA →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1].∵0≤t ≤2,∴当t =1时,(PA →+PB →)·PC →取得最小值-2,故选D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)9.设向量a ,b 满足:|a |=3,|b |=4,a ·b =0,以a ,b ,a -b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数可以是( ABC )A .0或1B .2或3C .4D .6[解析] 由题意可知该三角形为直角三角形,其内切圆半径恰好为1,它与半径为1的圆的公共点个数可能为0个,1个,2个,3个,4个,故选ABC .10.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( AB ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n[解析] 对于A 和B 属于数乘对向量与实数的分配律,正确;对于C,若m =0,则不能推出a =b ,错误;对于D,若a =0,则m ,n 没有关系,错误.故选AB .11.对于△ABC ,有如下命题,其中正确的有( ACD ) A .若sin 2A =sin 2B ,则△ABC 为等腰三角形 B .若sin A =cos B ,则△ABC 为直角三角形 C .若sin 2A +sin 2B +cos 2C <1,则△ABC 为钝角三角形D .若AB =3,AC =1,B =30°,则△ABC 的面积为34或 32[解析] 对于A,sin 2A =sin 2B ,∴A =B ⇒△ABC 是等腰三角形;对于B,由sin A =cos B ,∴A -B =π2或A +B =π2.∴△ABC 不一定是直角三角形,B 错误;对于C,sin 2A +sin 2B <1-cos 2C=sin 2C ,∴a 2+b 2<c 2,∴△ABC 为钝角三角形,C 正确;对于D,如图所示,由正弦定理,得sin C =c ·sin B b =32.而c >b ,∴C =60°或C =120°,∴A =90°或A =30°,∴S △ABC =12bc sin A =32或34,D 正确.故选ACD .12.给出下列四个命题,其中正确的选项有( ABC )A .非零向量a ,b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角是30°B .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形C .若单位向量a ,b 的夹角为120°,则当|2a +x b |(x ∈R )取最小值时x =1D .若OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34[解析]A 中,令OA →=a ,OB →=b .以OA →,OB →为邻边作平行四边形OACB . ∵|a |=|b |=|a -b |,∴四边形OACB 为菱形,∠AOB =60°,∠AOC =30°,即a 与a +b 的夹角是30°,故A 正确;B 中,∵(AB →+AC →)·(AB →-AC →)=0,∴|AB →|2=|AC →|2,故△ABC 为等腰三角形,故B 正确;C 中,∵(2a +x b )2=4a 2+4x a ·b +x 2b 2=4+4x cos 120°+x 2=x 2-2x +4=(x -1)2+3,故|2a +x b |取最小值时x =1.故C 正确;D 中,∵BA →=OA →-OB →=(3,-4)-(6,-3)=(-3,-1),BC →=OC →-OB →=(5-m ,-3-m )-(6,-3)=(-1-m ,-m ),又∠ABC 为锐角,∴BA →·BC →>0,即3+3m +m >0,∴m >-34.又当BA →与BC →同向共线时,m =12,故当∠ABC 为锐角时,m 的取值范围是m >-34且m ≠12,故D 不正确.故选ABC .三、填空题(本大题共4小题,每小题5分,共20分)13.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉= 23.[解析] 由题意,得cos 〈a ,c 〉=a ·2a -5b|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23. 14.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a|=1,则|a|2+|b|2+|c|2的值是 4 .[解析] 由于a ⊥b ,由此画出以a ,b 为邻边的矩形ABCD ,如图所示,其中,AD →=a ,AB →=b ,∵a +b +c =0,∴CA →=c ,BD →=a -b .∵(a -b )⊥c ,∴矩形的两条对角线互相垂直,则四边形ABCD 为正方形. ∴|a |=|b |=1,|c |=2,|a|2+|b|2+|c|2=4.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B = 217,c = 3 . [解析] 由正弦定理,得a sin A =b sin B ,∴7sin 60°=2sin B ,得sin B =217,由余弦定理,得cos A =b 2+c 2-a 22bc =4+c 2-74c =12,解得c =3.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(a +b -c )·(a +b +c )=3ab ,且c =4,则△ABC 面积的最大值为 4 3 .[解析] (a +b -c )(a +b +c )=(a +b )2-c 2=a 2+2ab +b 2-c 2=3ab ,∴a 2+b 2-c 2=ab . 又∵a 2+b 2-c 2=2ab cos C , ∴2ab cos C =ab ,∴cos C =12,∵C ∈(0,π),∴C =π3.由余弦定理,得c 2=a 2+b 2-2ab cos C ,∴16=a 2+b 2-2ab cos π3=a 2+b 2-ab ≥2ab -ab =ab ,∴ab ≤16.∴△ABC 面积的最大值S =12ab sin C ≤12×16×sin π3=4 3.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a ,b 满足b =(1,3),a ·b =4,(a -2b )⊥a . (1)求向量a 与b 的夹角; (2)求|2a -b |的值;(3)若向量c =3a -4b ,d =m a +b ,c ∥d ,求m 的值.[解析] (1)因为(a -2b )⊥a ,所以(a -2b )·a =0,|a |2=8,即|a |=2 2.设向量a 与b 的夹角为θ,则cos θ=b ·a |b ||a |=22,又θ∈[0,π],所以θ=π4.(2)由向量模的计算公式|a |=a ·a ,得|2a -b |=2a -b2=4|a |2-4a ·b +|b |2=32-16+4=2 5.(3)因为c ∥d ,所以c =λd ,设3a -4b =λ(m a +b ),则⎩⎪⎨⎪⎧3=λm ,-4=λ,解得m =-34.18.(本小题满分12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. [解析] (1)AB →=(3,5),AC →=(-1,1),求两条对角线的长即求|AB →+AC →|与|AB →-AC →|的大小.由AB →+AC →=(2,6),得|AB →+AC →|=210,由AB →-AC →=(4,4),得|AB →-AC →|=4 2.∴以线段AB ,AC 为邻边的平行四边形的两条对角线的长分别为210和4 2. (2)OC →=(-2,-1),∵(AB →-tOC →)·OC →=AB →·OC →-tOC →2, 易求AB →·OC →=-11,OC →2=5, ∴由(AB →-tOC →)·OC →=0得t =-115.19.(本小题满分12分)(2021·新高考全国卷Ⅰ)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .[解析] (1)由BD sin ∠ABC =a sin C 得,BD =a sin C sin ∠ABC ,在△ABC 中由正弦定理知:csin C=bsin ∠ABC ,即sin C sin ∠ABC =cb,∴BD =acb,又b 2=ac ,∴BD =b . (2)由题意知:BD =b ,AD =2b 3,DC =b3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠BDC =b 2+b 29-a 22b ·b 3=10b 29-a22b 23, ∵∠ADB =π-∠CDB ,∴cos ∠ADB =-cos ∠BDC ,即13b 29-c 24b 23=a 2-10b 292b 23, 整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,在由余弦定理知:cos ∠ABC =a 2+c 2-b 22ac =43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意; 当a 2b 2=32时,cos ∠ABC =712; 综上,cos ∠ABC =712.20.(本小题满分12分)△ABC 是等腰直角三角形,∠B =90°,D 是边BC 的中点,BE ⊥AD ,垂足为E ,延长BE 交AC 于F ,连接DF ,求证:∠ADB =∠FDC .[解析] 如图,以B 为原点,BC 所在直线为x 轴建立直角坐标系,设A (0,2),C (2,0),则D (1,0),AC →=(2,-2).设AF →=λAC →,则BF →=BA →+AF →=(0,2)+(2λ,-2λ)=(2λ,2-2λ). 又DA →=(-1,2),BF →⊥DA →, ∴BF →·DA →=0,∴-2λ+2(2-2λ)=0, ∴λ=23.∴BF →=⎝ ⎛⎭⎪⎫43,23,DF →=BF →-BD →=⎝ ⎛⎭⎪⎫13,23.又DC →=(1,0),∴cos ∠ADB =DA →·DB →|DA →|·|DB →|=55,cos ∠FDC =DF →·DC →|DF →|·|DC →|=55,又∠ADB ,∠FDC ∈(0,π), ∴∠ADB =∠FDC .21.(本小题满分12分)如图所示,甲船以每小时30 2 n mile 的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20 n mile.当甲船航行20 min 到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距10 2 n mile,问乙船每小时航行多少n mile?[解析] 如图,连接A 1B 2,由题意知A 2B 2=10 2 n mile,A 1A 2=302×2060=10 2 n mile. 所以A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, 所以△A 1A 2B 2是等边三角形. 所以A 1B 2=A 1A 2=10 2 n mile.由题意知,A 1B 1=20 n mile,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. 所以B 1B 2=10 2 n mile.因此,乙船速度的大小为10220×60=302(n mile/h).答:乙船每小时航行30 2 n mile.22.(本小题满分12分)已知向量a =(2+sin x,1),b =(2,-2),c =(sin x -3,1),d =(1,k ),(x ∈R ,k ∈R ).(1)若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,且a ∥(b +c ),求x 的值; (2)若函数f (x )=a ·b ,求f (x )的最小值;(3)是否存在实数k ,使得(a +d )⊥(b +c )?若存在,求出k 的取值范围;若不存在,请说明理由.[解析] (1)∵b +c =(sin x -1,-1),又a ∥(b +c ), ∴-(2+sin x )=sin x -1,即sin x =-12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴x =-π6.(2)∵a =(2+sin x,1),b =(2,-2), ∴f (x )=a ·b =2(2+sin x )-2=2sin x +2.又x∈R,∴当sin x=-1时,f(x)有最小值,且最小值为0.(3)∵a+d=(3+sin x,1+k),b+c=(sin x-1,-1),若(a+d)⊥(b+c),则(a+d)·(b+c)=0,即(3+sin x)(sin x-1)-(1+k)=0,∴k=sin2x+2sin x-4=(sin x+1)2-5.由sin x∈[-1,1],∴-5≤(sin x+1)2-5≤-1,得k∈[-5,-1].∴存在k∈[-5,-1],使得(a+d)⊥(b+c).。
2024全国高考真题数学汇编:平面向量及其应用章节综合
2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。
高中数学(平面向量)综合练习含解析
高中数学(平面向量)综合练习含解析1.在△ABC 中,AB c ,AC b .若点 D 满足BD 2DC ,则AD ()A.2 1b c B.3 35 2c b C.3 32 1b c D.3 31 2b c3 32.已知OA 1, OB 3 ,OA OB 0 ,点 C 在AOB 内,且AOC 30 ,OC mOA nOB m,n R ,则mn等于()A.3 B.13C.33D. 33.若向量a,b,c 满足a∥b,且a c,则c a 2b ()A.4 B.3 C.2 D.04.已知向量m (a, 2), n (1,1 a) ,且m∥n,则实数a ()A. 1 B.2 或 1 C.2 D. 25.已知向量a (1,2) ,向量b (x, 2) ,且a(a b) ,则实数x等于A. 4 B.4 C.0 D. 96.已知| a| =1,| b | = 2 ,且a (a b),则向量a与向量b 的夹角为()A. B . C . D .6 4 3 2 37.已知平面向量a,b 满足a a b 3 ,且 a 2 ,b 1,则向量a与b 夹角的正弦值为()A.12B .32C .12D .328.在平行四边形ABCD 中,AD 2 ,BAD 60 ,E为CD 的中点.若AD BE 1,则AB 的长为( )A. 6 B .4 C .5 D .69 .O 为平面上的定点, A , B , C 是平面上不共线的三点,若(OB OC ) (OB OC 2OA) 0,则ABC 是()A.以AB为底面的等腰三角形B.以BC为底面的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三角形试卷第 1 页,总 4 页10.在ABC 中,则有()1MB AB ,且对AB边上任意一点N,恒有NB NC MB MC ,4A.AB BC B .AB ACC.AB AC D .AC BC11.点P是ABC 所在平面内的一点,若CB PA PB( R) ,则点P在()A.ABC 内部B.AC边所在的直线上C.AB边所在的直线上D.BC边所在的直线上12.在ABC 中,角A,B,C 所对的边分别为a,b ,c,c b 6,c b a 2 ,且O 为此三角形的内心,则AO CB ()A.4 B .5 C .6 D .713.在ABC 中,BC a, AC b,| a|2,| b| 3,a b 3则∠C的大小为()A.30 B .60 C .120 D .15014.在ABC 中,A、B 、C 的对边分别为a、b 、c,且b c o s C 3 a c o s B c o s B ,BA BC 2,则ABC 的面积为()A. 2 B .32C .2 2D .4 215.若非零向量a, b满足| a b | | a b | 2 | a |,则向量b与a b 的夹角为.16.在平面直角坐标系中,设M , N,T 是圆C : 2 2(x 1) y 4上不同三点,若存在正实数a,b,使得CT aCM bCN ,则3 2 2 1a ab ab ba的取值范围为.17.已知向量a (1, 3) ,向量a,c 的夹角是3 ,a c 2,则|c|等于.18.已知正方形ABCD ,过正方形中心O的直线MN 分别交正方形的边AB ,CD 于点2MNM、N ,则最小值为_________________.2BN19.若a,b均为非零向量,且a 2b a, b 2a b ,则a,b的夹角为.120.在等腰梯形ABCD中,已知AB//DC,∠ABC=60°,BC=2AB=2,动点 E 和F 分别在线段BC和DC上,且BE = BC ,DF =12DC ,则AE ·BF 的最小值为.试卷第 2 页,总 4 页21.已知ABC 是边长为 1 的正三角形,动点M 在平面ABC内,若AM AB 0,|CM | 1,则CM AB的取值范围是.22.向量a (1,1),且a与a b 的方向相反,则 a b的取值范围是.23.如图,在三棱锥中 D ABC 中,已知AB 2,AC BD 3,设AD a,BC b ,CD c ,则2cab 1的最小值为.24.已知 A 点坐标为( 1,0) ,B 点坐标为(1,0) ,且动点M 到A 点的距离是 4 ,线段MB 的垂直平分线l 交线段MA 于点P .(1)求动点P 的轨迹C方程.(2)若P是曲线C上的点,,求k PA PB 的最大值和最小值.25.△ABC中,内角为A,B,C,所对的三边分别是a,b,c,已知 2b ac ,cos3 B .4(1)求1 1 tan A tan C;(2)设BA·3BC , 求a c.226.已知函数 f x1x 1,点O为坐标原点, 点A n n, f n (n N *) ,向量i0,1 ,cos cos cosn 是向量OA n 与i的夹角,则 1 2 2016sin sin sin1 2 2016的值为.27.已知向量3a (sin x, ),b (cos x, 1).2试卷第 3 页,总 4 页(1)当a//b时,求22cos x sin2x的值;(2)求f(x)(a b)b在,02上的值域.2y2DX Ey F28.如图,在平面直角坐标系中,方程为x0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.(1)若四边形ABCD的面积为40,对角线AC的长为8,AB AD0,且ADC为锐角,求圆的方程,并求出B,D的坐标;(2)设四边形ABCD的一条边CD的中点为G,OH AB,且垂足为H,试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.29.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在ABC中三边围成的区域(含边界)上,且OP AB AC(,R).(1)若23,求OP;(2)用x,y表示并求的最大值.30.已知椭圆22x yC:1(a b0)22a b,过左焦点F1(1,0)的直线与椭圆C交于M、N两点,且F2MN的周长为8;过点P(4,0)且不与x轴垂直的直线l与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)求OA OB的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.试卷第4页,总4页参考答案1.C【解析】试题分析:如图所示,在ABC 中,AD AB BD又BD 2DC ,2 2 2 2 1BD BC BC AC AB b c AD AB BC c b c b c3 3 3 3 3故选C.考点:向量加法2.A【解析】试题分析:如图所示,建立直角坐标系.则OA 1,0 ,OB 0, 3 ,.故选 B∴, 3 , tan 30 3n 3 m 3OC mOA nOB m nm 3 n考点:共线向量【名师点睛】本题主要考查了共线向量及向量的模等知识,属基础题.解题时对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.3.D【解析】试题分析:设 a b ,则由已知可得c (a 2b) c a c (2b) c a c (2 b) 2 1 c a 0考点:向量的运算4.B【解析】试题分析:由已知m∥n,则a (1 a) 2 1 a2 a 2 0 a 1,a 2考点:共线向量5.D答案第 1 页,总13 页【解析】试题分析: a b 1 x,4 由a(a b) 1,2 1 x,4 1 x 8 0 x 9考点;向量垂直的充要条件6.B【解析】试题分析:由题意得 2 a b 2a (a b) 0 ab a 1 cos a,b| a | | b | 2r ,所以向量a与r向量b的夹角为 4 ,选B.考点:向量夹角7.D【解析】试题分析:2 1 2a ab 3 a a b 3 a b 1 cos a,b a,b .2 3选D.考点:向量夹角8.D【解析】试题分析:1 1AD BE AD(BA+ AD DE) AD(- AB +AD AB) AD(AD AB)2 21 14 2 AB cos 4 AB 12 3 2,因此AB 6. 选D.考点:向量数量积9.B【解析】试题分析:设BC 的中点为 D ,∵(OB OC) (OB OC 2OA) 0 ,∴CB (2OD 2OA )0,∴CB 2AD 0,∴C B AD ,故△A BC的B C边上的中线也是高线.故△ABC是以BC为底边的等腰三角形,故选B.考点:三角形的形状判断.10. D【解析】试题分析:以 A 为原点,AB 为x轴,建立直角坐标系,设B(4,0), C(a,b) ,N ( x,0) ,则M (3,0) ,MB MC (1,0) (a 3,b ) a 3 ,答案第 2 页,总13 页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
平面向量复习综合练习题及答案
10、(全国2 理5)在?ABC中,已知D是AB边上一点,若 =2 , = ,则?=
(A) (B) (C) - (D) -
11、(北京理4)已知 是 所在平面内一点, 为 边中点,且 ,那么
A. B. C. D.
12、(福建理4文8)对于向量,a、b、c和实数 ,下列命题中真命题是
A.(2,14)B.(2,- )C.(-2, )D.(2,8)
答案:选B
16.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b= mq-np,下面说法错误的是( )
A.若a与b共线,则a⊙b =0B.a⊙b =b⊙a
C.对任意的 R,有( a)⊙b = (a⊙b)D.(a⊙b)2+(a·b)2= |a|2|b|2
求 。
31、已知A(2,0),B(0,2),C(cos ,sin ),且0< <
(1)若|OA+OC|= ,求OB与OC的夹角;
(2)若AC⊥BC,求tan 的值。
32、
求证:(1)A、B、D三点共线.
33、已知 之间有关系 ,其中k>0,
(1)k表示 ;(2)求 的最小值,并求此时 夹角的大小。
20.P是圆C: 上的一个动点,A( ,1),则 的最小值为______2( -1)
21.已知 =(3,2), =(-1,0),向量 + 与 -2 垂直,则实数 的值为_________1
22.在直角三角形 中, ,点 是斜边 上的一个三等分点,则
23、(江西理15)如图,在 中,点 是 的中点,过点 的直线分别交直线 , 于不同的两点 ,若 , ,则 的值为.
(1)求角 的大小;
期末专题01 平面向量综合学生版
期末专题01平面向量综合一、单选题1.(2022春·江苏泰州·高一统考期末)已知向量a =1,t ,b =3,-6 ,且a ⎳b ,则实数t =()A.-12B.-2C.12D.22.(2022春·江苏扬州·高一统考期末)已知向量a =2,4 ,b =1,x ,且a ⎳b,则x =()A.2B.-2C.8D.-83.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)已知向量|a |=2,b 在a 方向上的投影向量为-2a ,则a⋅b =()A.4B.8C.-8D.-44.(2022春·江苏南通·高一统考期末)在△ABC 中,已知D 是AB 边上一点,且3CD =CA +2CB ,则()A.AD =2BDB.AD =12DBC.AD =2DBD.AD =13AB5.(2022春·江苏南通·高一统考期末)已知向量a ,b 满足a +b = a -b =233a,则a +b ,a=()A.5π6B.2π3C.π3D.π66.(2022春·江苏徐州·高一统考期末)在△ABC 中,BD =2DA ,若CB =λCA +μCD ,则λμ的值为()A.-23B.-32C.23D.327.(2022春·江苏无锡·高一统考期末)已知△ABC 的外接圆圆心为O ,且2AO =AB +AC ,|OA |=|AB|,则向量BA 在向量BC上的投影向量为()A.14BCB.34BCC.12BCD.-34BC8.(2022春·江苏无锡·高一统考期末)已知向量a =(1,0),b =(1,1),若a +λb 与λa +b共线,则实数λ的值为()A.-1B.1C.±1D.09.(2022春·江苏常州·高一统考期末)已知非零向量a ,b 满足b =2a ,且a +b ⊥a ,则a +b 与b 的夹角为()A.π6 B.π3C.2π3 D.5π610.(2022春·江苏盐城·高一统考期末)在△ABC 中,AB =AC =2,∠A =120°,点M 满足AM =λAB+μAC ,λ+2μ=1,则AM 的最小值为()A.217B.2114C.2D.111.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知i ,j 是平面内互相垂直的单位向量,且a=i +2j ,b =-3i +4j ,则a 与b 夹角余弦值为()A.55B.12C.58D.1512.(2022春·江苏镇江·高一统考期末)某人向东偏北60°方向走50步,记为向量a;向北偏西60°方向走100步,记为向量b ;向正北方向走200步,记为向量c .假设每步的步长都相等,则向量c可表示为()A.23a +bB.a +23bC.2a +3bD.3a+2b 13.(2022春·江苏宿迁·高一统考期末)在△ABC 中,BO =2OC ,过点O 的直线分别交直线AB ,AC 于M ,N两个不同的点,若AB =mAM ,AC =nAN,其中m ,n 为实数,则m 2+4n 2的最小值为()A.1B.4C.92D.514.(2022春·江苏南通·高一统考期末)已知两个单位向量a ,b 的夹角为60°,若2a -b +c =0,则c=()A.3B.7C.3D.115.(2022春·江苏南通·高一金沙中学校考期末)如图,矩形ORTM 内放置5个边长均为1的小正方形,其中A ,B ,C ,D 在矩形的边上,且E 为AD 的中点,则AE +BC ⋅BD=()A.-7B.-5C.5D.7二、多选题16.(2022春·江苏南京·高一南京市中华中学校考期末)如果a ,b是两个单位向量,则下列结论中正确的是()A.a =bB.a=±bC.a 2=b2 D.a=b17.(2022春·江苏常州·高一统考期末)设向量a ,b 满足a =b =1,且a-3b =13,则下列结论正确的是( ).A.a ,b =13πB.a +b =12C.a -b=3D.a+3b =718.(2022春·江苏徐州·高一统考期末)设向量a ,b 满足a +b =a -b=1,则()A.a 与b的夹角为60°B.a 2+b 2=1C.a +2b ⋅2a +b=2D.a ⊥b19.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)下列说法错误的是()A.零向量没有方向B.共线向量是同一条直线上的向量C.若向量e 1 与向量e 2 共线,则有且只有一个实数λ,使得e1=λe 2D.|a ⋅b |≤|a |⋅|b |20.(2022春·江苏南通·高一统考期末)向量是近代数学中重要和基本的概念之一,它既是代数研究对象,也是几何研究对象,是沟通代数与几何的桥梁.若向量a ,b 满足a = b =2,a +b=23,则()A.a ⋅b=-2 B.a 与b 的夹角为π3C.a -b <a +bD.a -b 在b 上的投影向量为12b21.(2022春·江苏泰州·高一统考期末)如图,已知菱形ABCD 的边长为6,E 为BC 中点,CF =2FD,下列选项正确的有()A.EF =12AD -23ABB.若∠BAD =60°,则AF=213C.若∠BAD =60°,则AC ⋅EF=9 D.-21<AE ⋅EF<-922.(2022春·江苏苏州·高一校考期末)如图所示,四边形ABCD 为梯形,其中AB ⎳CD ,AB =2CD ,M ,N 分别为AB ,CD 的中点,则结论正确的是()A.AC =AD +12ABB.CM =12CA +12CBC.MN =AD +14ABD.BC =AD +12AB23.(2022春·江苏常州·高一校联考期末)如图所示设Ox ,Oy 是平面内相交成θθ≠π2 角的两条数轴,e 1 ,e 2 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系,若OM =x e 1 +y e 2,则把有序数对x ,y 叫做向量OM 的反射坐标,记为OM =x ,y .在θ=23π的反射坐标系中,a =1,2 ,b =2,-1 .则下列结论中,错误的是()A.a -b=-1,3B.a=3C.a ⊥bD.a 在b 上的投影向量为-3714b 24.(2022春·江苏宿迁·高一统考期末)下列说法中错误的是()A.若a ∥b ,b ∥c ,则a ∥cB.若a ⋅b =a ⋅c .且a≠0,则b =cC.已知|a |=6,|b |=3,a ⋅b =12,则a 在b 上的投影向量是43bD.三个不共线的向量OA ,OB ,OC 满足OA ⋅AB |AB |+CA |CA | =OB ⋅BA |BA |+CB|CB |=OC ⋅BC |BC |+CA|CA |=0,则O 是△ABC 的外心25.(2022春·江苏淮安·高一统考期末)我国古代数学家早在几千年前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为作注时给出的,被后人称为赵爽弦图.赵爽弦图是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若直角三角形的直角边的长度比为1:2,则下列说法正确的是()A.5AE =2DCB.AC ⊥EGC.AE ⋅DC =45BC2 D.AF =35AB +45AD26.(2022春·江苏南通·高一金沙中学校考期末)直角△ABC 中,斜边AB =2,P 为△ABC 所在平面内一点,AP =12sin 2θ⋅AB +cos 2θ⋅AC(其中θ∈R ),则()A.AB ⋅AC的取值范围是(0,4) B.点P 经过△ABC 的外心C.点P 所在轨迹的长度为2D.PC ⋅(PA +PB )的取值范围是-12,0三、填空题27.(2022春·江苏南通·高一统考期末)已知向量a =0,5 ,b =1,2 ,则a 在b 上的投影向量的坐标为.28.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,若AP ⋅AC=6,则AP =.29.(2022春·江苏宿迁·高一统考期末)已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 平行,则实数k =.30.(2022春·江苏无锡·高一统考期末)点P 是边长为2的正三角形ABC 的三条边上任意一点,则|PA +PB+PC|的最小值为.31.(2022春·江苏南通·高一金沙中学校考期末)如图,正八边形ABCDEFGH 中,若AE =λAC+μAFλ,μ∈R ,则λ+μ的值为.32.(2022春·江苏南通·高一统考期末)如图,P 为矩形ABCD 边AB 中点,M ,N 分别在线段EF 、CD 上,其中AB =4,BC =3,AE =BF =1,若PM ⋅PN =4,则PM +PN的最小值为.四、解答题33.(2022春·江苏扬州·高一期末)在平面直角坐标系中,已知向量a (1,1),b (2, 1).(1)求|3a -b|;(2)若m =2a -b ,n =ta +b ,m ⊥n ,求实数t 的值.34.(2022春·江苏常州·高一校联考期末)已知向量a=(2,-1),b =(1,x ).(Ⅰ)若a ⊥(a +b),求|b |的值;(Ⅱ)若a +2b =(4,-7),求向量a 与b夹角的大小.35.(2022春·江苏常州·高一统考期末)已知a ,b 为平面向量,且a =1,-2 .(1)若a ⊥b,且b =25,求向量b 的坐标;(2)若b =-3,2 ,且向量ka -b 与a +2b 平行,求实数k 的值.36.(2022春·江苏连云港·高一统考期末)已知向量a ,b 满足a =1,b =3,a -b=3,-1 .求:(1)a +b ;(2)a +b 与a -b的夹角.37.(2022春·江苏苏州·高一江苏省昆山中学校考期末)已知平面向量a ,b ,满足a=2,b =1.(1)若a +b ⋅b =0,求向量a 与b的夹角;(2)若a ⋅b =32,函数f x =sin xa +cos xb ,求f π8的值.38.(2022春·江苏南通·高一统考期末)已知向量a =3,1 ,a ⋅b=4.(1)当b =4,求a +b ;(2)求b 的最小值,并求此时向量a ,b 的夹角大小.39.(2022春·江苏南通·高一统考期末)已知向量a=2cos x ,sin x +2sin θ ,b =2sin x ,-cos x +2cos θ .(1)若a ∥b ,求cos x +θ ;(2)若θ=π4,函数f x =a ⋅b x ∈0,π ,求f x 的值域.40.(2022春·江苏无锡·高一统考期末)平面直角坐标系中,O 为坐标原点,已知e 1 ,e 2为两个夹角成60°的单位向量,OA =e 1 +3e 2 ,OB =5e 1 +e 2 .(1)求|AB |;(2)设OC =t e 1 ,问是否存在实数t ,使得△ABC 是以AB 为斜边的直角三角形?若存在,求t 的值;若不存在,请说明理由.。
2020-2021学年人教A版必修4第二章平面向量综合测试卷(A)含答案(共3套)
必修4 第二章 向量(一)一、选择题:1.下列各量中不是向量的是 ( )A .浮力B .风速C .位移D .密度2.下列命题正确的是( )A .向量AB 与BA 是两平行向量B .若a 、b 都是单位向量,则a =bC .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 44.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则( )A .AB 与AC 共线 B .DE 与CB 共线 C .与相等D .与相等6.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .0 D .2 7. 设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为 ( ) A .-9 B .-6 C .9 D .6 8. 已知a 3=,b 23=,a ⋅b =-3,则a 与b 的夹角是( )A .150︒B .120︒C .60︒D .30︒9.下列命题中,不正确的是( )A .a =2aB .λ(a ⋅b )=a ⋅(λb )C .(a -b )c =a ⋅c -b ⋅cD .a 与b 共线⇔a ⋅b =a b10.下列命题正确的个数是( ) ①=+0 ②0=⋅0③=-④(a ⋅b )c =a (b ⋅c )A .1B .2C .3D .411.已知P 1(2,3),P 2(-1,4),且12P P 2PP =,点P 在线段P 1P 2的延长线上,则P 点的坐标为( )A .(34,-35) B .(-34,35) C .(4,-5)D .(-4,5) 12.已知a 3=,b 4=,且(a +k b )⊥(a -k b ),则k 等于( )A .34±B .43±C .53±D .54±二、填空题13.已知点A(-1,5)和向量a ={2,3},若AB =3a ,则点B 的坐标为 . 14.若3=OA 1e ,3=OB 2e ,且P 、Q 是AB 的两个三等分点,则=OP ,=OQ . 15.若向量a =(2,-x )与b =(x, -8)共线且方向相反,则x= . 16.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .三、解答题17.已知菱形ABCD 的边长为2,求向量AB -CB +CD 的模的长.18.设OA 、OB 不共线,P 点在AB 上.求证: OP =λOA +μOB 且λ+μ=1,λ、μ∈R .19.已知向量,,32,32212121e e e e e e 与其中+=-=不共线向量,9221e e -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线20.i、j是两个不共线的向量,已知AB=3i+2j,CB=i+λj, CD=-2i+j,若A、B、D三点共线,试求实数λ的值.必修4 第二章 向量(一)必修4第三章向量(一)参考答案 一、选择题1.D 2.A 3.C 4.C 5.B 6. A 7. D 8.C 9.B 10.A 11.D 12.C 二、填空题 13.3 14.12e 2e +122e e + 15.4- 16.4三、解答题17.解析: ∵AB -CB +CD =AB +(CD -CB )=AB +BD =AD又|AD |=2 ∴|AB -CB +CD |=|AD |=218.证明: ∵P 点在AB 上,∴AP 与AB 共线.∴AP =t AB (t ∈R )∴OP =OA +AP =OA +t AB =OA +t (OB -OA )=OA (1-t )+ OB令λ=1-t ,μ=t ∴λ+μ=1∴OP =λOA +μOB 且λ+μ=1,λ、μ∈R19.解析:222,2,,.2339,k R k λμλμλμλμλμ+=⎧=-∈=-⎨-+=-⎩解之故存在只要即可.20.解析: ∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j∵A 、B 、D 三点共线,∴向量AB 与BD 共线,因此存在实数μ,使得AB =μBD , 即3i +2j =μ[-3i +(1-λ)j ]=-3μi +μ(1-λ)j ∵i 与j 是两不共线向量,由基本定理得:⎩⎨⎧=-=∴⎩⎨⎧=-=-312)1(33λμλμμ 故当A 、B 、D 三点共线时,λ=3.第二章平面向量(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .2.【2017届北京房山高三上期末】已知向量31,2BA ⎛⎫= ⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A.π6 B. π4 C. π3 D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2 【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C. 4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或【答案】C 【解析】∵向量,且∴, ∴.选C.5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e 【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( ) A. 4 B. 4- C. 2 D. 2- 【答案】A 【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABACλ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 23C. 7D. 4 【答案】C8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3- 【答案】D 【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D.10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A.322 B. 2 C. 322- D. 3152- 【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CD AB AB CD AB AB CD⋅=⋅== 故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =, 3BC =,2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( ) A. 3- B. 6- C. 2- D. 83- 【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-()222366x y ⎡⎤=+--≥-⎢⎥⎣⎦, ∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________. 【答案】12-【解析】由题意得()11:2:12λλ=-∴=-. 14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a a b -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点 O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______【答案】2133a b +【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF =AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥;【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以2,64,22cos ,240204020a b a b -⋅-+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解λ=-.得:119.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.【答案】(1) ;(2) 与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
平面向量及其应用综合练习题 百度文库
一、多选题1.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( ) A .若a b →→=,则a b →→= B .若a c b c →→→→⋅=⋅,则a b →→= C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥2.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为2 3.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S = 4.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<5.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒6.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .8.ABC 中,4a =,5b =,面积S =c =( )A BC D .9.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆ 10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形11.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量12.给出下列命题正确的是( ) A .一个向量在另一个向量上的投影是向量 B .a b a b a +=+⇔与b 方向相同 C .两个有共同起点的相等向量,其终点必定相同D .若向量AB 与向量CD 是共线向量,则点,,,A B C D 必在同一直线上 13.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±14.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥15.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=的格点B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个二、平面向量及其应用选择题16.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .2B .106C .103D .1017.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 18.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( ) A .MB .NC .22D .119.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒20.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,42c =,45B =︒,则sin C 的值等于( )A .441B .45C .425D .44121.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且27sin 7BAD ∠=,则CD 等于( )A 23B 3C 33D 4322.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=23.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-26.题目文件丢失!27.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形 B .等腰三角形C .等腰直角三角形D .直角三角形28.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 29.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形30.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A 7B 27C .2D 21 31.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .332C .33D 332.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭33.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A .3 B .2 C .31- D .21-34.题目文件丢失!35.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同 解析:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD 【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.2.CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(解析:CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2a b b⋅=,错误;对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=(2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.3.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin a R A ===,R =D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.4.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.5.BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为csin 83sin 115B C b ==<,且c b >,所以角C 有两解; 对于选项C 中:因为sin 2sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b AB a=<,且b a <,所以角B 仅有一解. 故选:BC .【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.ACD【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确;对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.AC 【分析】利用余弦定理:即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:,即,解得.故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC【分析】利用余弦定理:2222cos b a c ac B =+-即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a =故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.8.AB【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解.【详解】中,因为,,面积,所以,所以,解得或,当时,由余弦定理得:,解得,当时,由余弦定理得:,解得所以或解析:AB【分析】在ABC 中,根据4a =,5b =,由1sin 2ABC S ab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABC S =所以1sin 2ABC S ab C ==所以sin 2C =,解得60C =或120C =,当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题. 9.ACD【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可.【详解】因为所以可设:(其中),解得:所以,所以A 正确;由上可知:边最大,所以三角形中角最大,又 ,所以角为解析:ACD【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可.【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确;由上可知:c 边最大,所以三角形中C 角最大, 又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小, 又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以2R =,解得:7R =,所以D 正确. 故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.10.AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误.【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确;对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒=所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确; 对D ,因为2220a b c +->,所以222cos 02a b c A ab +-=>,A 为锐角. 但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.故选:AC本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题. 11.AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若a b=,则a与b平行,A选项合乎题意;=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题对于B选项,若a b意;对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.12.C【分析】对A,一个向量在另一个向量上的投影是数量;对B,两边平方化简;对C,根据向量相等的定义判断;对D,根据向量共线的定义判断.【详解】A中,一个向量在另一个向量上的投影是数量,A解析:C【分析】对A,一个向量在另一个向量上的投影是数量;+=+;对B,两边平方化简a b a b对C,根据向量相等的定义判断;对D,根据向量共线的定义判断.A 中,一个向量在另一个向量上的投影是数量,A 错误;B 中,由a b a b +=+,得2||||2a b a b ⋅=⋅,得||||(1cos )0a b θ⋅-=,则||0a =或||0b =或cos 1θ=,当两个向量一个为零向量,一个为非零向量时,a 与b 方向不一定相同,B 错误;C 中,根据向量相等的定义,且有共同起点可得,其终点必定相同,C 正确;D 中,由共线向量的定义可知点,,,A B C D 不一定在同一直线上,D 错误. 故选:C 【点睛】本题考查了对向量共线,向量相等,向量的投影等概念的理解,属于容易题.13.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确;当共线同向时,,当共线反解析:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.14.BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:与显然方向不相同,故不是相等向量,故错误;与表示等腰梯形两腰的长度,所以,故正确;向量无法比较大小,只能比较向量模的大小,故解析:BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误; AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.15.BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,,设,若,所以解析:BCD【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确. 若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.二、平面向量及其应用选择题16.B【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高.【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有3x ,23x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CD BDC CBD = 可得,BC=10sin 453102sin 303x ==. 则6;所以塔AB 的高是6米;故选B .【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.17.A【分析】根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B cC ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B C a b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==, 由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin a R A ===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A.【点睛】 本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题.18.C【分析】当直线CD AB ⊥时,由直角三角形的勾股定理和等面积法,可得出222+=a b c , 1ab c =⨯,再由基本不等式可得出2c ≥,从而得出M 的范围.当D 为边AB 的中点时,由直角三角形的斜边上的中线为斜边的一半和勾股定理可得2c =,2224a b c +==,由基本不等式可得出2ab ≤,从而得出N 的范围,可得选项.【详解】当直线CD AB ⊥时,因为90C ∠=︒,1CD =,所以222+=a b c ,由等面积法得1ab c =⨯,因为有222a b ab +≥(当且仅当a b =时,取等号),即()22>0c c c ≥,所以2c ≥, 所以+M a b ===≥(当且仅当a b =时,取等号),当D 为边AB 的中点时,因为90C ∠=︒,1CD =,所以2c =,2224a b c +==, 因为有222a b ab +≥(当且仅当a b =时,取等号),即42ab ≥,所以2ab ≤,所以+N a b ===≤(当且仅当a b =时,取等号),当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为(此时,a b =);故选:C.【点睛】本题考查解直角三角形中的边的关系和基本不等式的应用,以及考查对新定义的理解,属于中档题.19.C【分析】 首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=, 即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒,故选:C.【点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目.20.B【分析】在三角形ABC 中,根据1a =,c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解. 【详解】在三角形ABC 中, 1a =,c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,13221252=+-⨯⨯=,所以5b =, 由正弦定理得:sin sin b c B C=,所以2sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 21.A【分析】首先根据余弦定理求AB ,再判断ABC 的内角,并在ABD △和ADC 中,分别用正弦定理表示AD ,建立方程求DC 的值.【详解】AB =3==,222cos 22AB BC AC B AB BC +-∴===⋅, 又因为角B 是三角形的内角,所以6B π=,90BAC ∴∠=,sin BAD ∠=,cos 7BAD ∴∠==,sin cos 7DAC BAD ∴∠=∠=, 在ABD △中,由正弦定理可得sin sin BD B AD BAD ⋅=∠, 在ADC 中,由正弦定理可得sin sin DC C AD DAC⋅=∠,()1DC DC ⨯=,解得:3DC =. 故选:A【点睛】本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型.22.C【分析】由三角形的重心定理和平面向量的共线定理可得答案.【详解】 ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G 为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++= 故选:C【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题.23.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】 解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题.24.C【解析】【分析】取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得.【详解】解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心0DW BC ∴⋅=()()22113323AG AD AB AC AB AC ∴==⨯+=+ ()12AW AD DW AB AC DW =+=++ ()()()115326AW AG AB AC AB AC DW AB AC DW +=++++=++ ()()()5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦()56AB A BC C =⋅+ ()()56C AC AB AB A =⋅+- ()()222242105566AC AB =-=-= 故选:C【点睛】本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题.25.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+,∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=.解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.26.无27.D【分析】先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.【详解】因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.【点睛】判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论.28.D 【分析】 利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案.【详解】 利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +, E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力.向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).29.D【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =, 由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A AB B B B B B AB===, ∵sin sin B 0A ≠, ∴sin cos sin cos A B B A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形, 故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.30.C【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】 ()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭ 故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立.故选:C .【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力.31.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,②所以由①②可知,62ab ab -=-,即6ab =,则ABC 的面积为11sin 62222S ab C ==⨯⨯=. 故选:B【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型.32.D【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x 的取值范围.【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭.故选:D【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.33.C【分析】易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案.【详解】45CBD ∠=︒,30ACB ∴∠=︒,在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,解得25(62)BC =-, 在BCD 中,由正弦定理,得sin sin BC CD BDC CBD =∠∠,即25(62)50sin 45-=︒, 31sin BDC -∴∠=,即31sin(90)θ-+︒=, 31cos θ-∴=, 故选:C .【点睛】该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键.34.无35.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.。
平面向量常见题型汇编(含答案)
解析:外心 在 上的投影恰好为它们的中点,分别设为 ,
所以 在 上的投影为 ,而 恰好为 中点,
故考虑 ,
所以
2.范围问题
例题8: 若过点 的直线 与 相交于 两点,则 的取值范围是_______
解析:本题中因为 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过 作直线 的垂线,
,则 , ,
由 , 为中点可得: 为 中点,从而 在 方向上的投影分别为 ,由 即可求得 的范围为
3.综合问题
例题10:已知 为直角三角形 的外接圆, 是斜边 上的高,且 , ,点 为线段 的中点,若 是 中绕圆心 运动的一条直径,则 _________
解析:本题的难点在于 是一条运动的直径,所以很难直接用定义求解。
解析:由 可将三角形放入平面直角坐标系中,建立如图坐标系,
其中 , ,
∵ ∴
∵ ,即 当且仅当 时取等号
∴
变式2:已知点A在线段BC上(不含端点),O是直线BC外一点,且 ,则 的最小值是___________
分析:本题主要考查了不等式,不等式求最值问题,属于中档题。解决此类问题,重要的思路是如何应用均值不等式或其他重要不等式,很多情况下,要根据一正、二定、三取等的思路去思考,本题根据条件构造 ,研究的式子分别加1后变形,即可形成所需条件,应用均值不等式.
解析: ,
变式9:在平面上, , ,若 ,则 的取值范围是
分析:以 为入手点,考虑利用坐标系求解,题目中用字母表示:设 ,则 ,所求 范围即为求 的范围。下一步将题目的模长翻译成 关系,再寻找关于 的不等关系即可
解析:如图以 为轴建立坐标系:设 ,
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
(完整版)平面向量综合检测、解析及答案
平面向量综合检测、分析及答案一、选择题:本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 平面向量a与b的夹角为 60°,a=(2,0),|b| =1,则 | a+2b| = ()A. 3B.2 3C.4D.12分析: | a+2b| =( a+2b) 2=4+4+4=2 3.答案: B2. 已知 |a| =1,|b| =6,a·(b -a) =2,则向量 a 与 b 的夹角是 ()ππA. 6B. 4ππC. 3D. 2分析:由 a·(b-a)=2得 a·b=2+1=3=6×cos<a,b>,∴cos<a,1b>=2,又<a,b>∈[0,π],π∴<a,b>=3.答案: C3.一质点遇到平面上的三个力 F1、F2、F3( 单位:牛顿 ) 的作用而处于均衡状态.已知 F1、F2 成 60°角,且 F1、F2 的大小分别为 2 和 4,则 F3 的大小为()A.2 7B.2 5C.2D.6分析:由题意得 F1+F2+F3=0.答案: A4.(2009 ·福建福州模拟 ) 把一颗骰子扔掷两次,并记第一次出现的点数为 a,第二次出现的点数为b,向量 m= (a ,b) ,n=(1,2) ,则向量 m与向量 n 不共线的概率为 ()15A. 12B. 12711C.12D. 12分析: m 与 n 共线的情况共有三种: m =(1,2) ,m =(2,4) ,m =(3,6) ,3 11故 m 与 n 不共线的概率 P =1-36=12.答案: D5. 已知向量 a =(λ2+6和 j =(0,1) ,若 a ·j =- 3,3 ,λ) ,i =(1,0)且向量 a 与 i 的夹角为 θ,则 cos θ 的值为 ()3 3A .- 2 B. 2 1 1 C .-2 D. 2答案: Buuur uuur uuur uuur)6.四边形 ABCD 中,AB · BC =0,且 AB = DC,则四边形 ABCD 是( A .平行四边形 B .矩形 C .菱形 D .正方形 uuuruuuruuur分析:由AB =可知为平行四边形,由 AB ·BC =0 知∠=DCABCDABC90°,故 ABCD 为矩形.答案: B7.设 a 与 b 是两个不共线向量,且向量a +λb 与- (b -2a) 共线,则λ= ( )1A .0B .- 21C .- 2D.2分析:由题意得 a +λb =- k ( b -2a ) ∴2k =1,,=- k1∴λ=- 2. 答案: B8. 设向量 a ,b 知足: |a| =3,|b| =4,a ·b =0,以 a ,b ,a -b 的模为第2页共 8页分析:三角形的内切圆半径为 1,将圆平移,最多有 4 个公共点. 答案: B9.设 a ,b ,c 是非零向量,以下命题中正确的选项是 ( )A .( a ·b ) ·c =a ·(b ·c )B .| a -b | 2=| a | 2-2| a || b | +| b | 2C .若 | a | =| b | =| a +b | ,则 a 与 b 的夹角为 60°D .若 | a | =| b | =| a -b | ,则 a 与 b 的夹角为 60°分析:A 、B 明显不正确. 由平行四边形法例可知, 若| a | =| b | =| a +b | ,可知 <a ,b >=120°,故 C 不正确.答案为 D.答案: D10. 设 a 、b 、c 是单位向量,且 a ·b =0,则 (a -c) ·(b -c) 的最小值为()A .- 2B. 2-2C .- 1D .1- 2分析:( a -c ) ·(b -c ) =a ·b -b ·c +c 2-a ·c =1-( a +b ) · c ,又 a ·b=0,| a | =| b | =1,∴|a +b | = 2.设 a +b 与 c 的夹角为 θ,则上式= 1-2cos θ当 cos θ=1 时( a -c ) ·(b -c ) 获得最小值 1- 2. 答案: Duuur uuuruuur11.点 O 在△ABC 内部且知足 OA +2 OB +2 OC=0,则 △ABC 的面积与△OBC 的面积之比为 ( )5A.4 B .3 C .4 D .5uuuruuuruuur1 uuuruuur1 uuur分析:由 OA +2 OB +2OC =0,∴2( OB + OC ) =4AO ,∴△ABC△OBC底边 BC 的高之比为 5 1,∴ S △ABC S △OBC =5 1.答案: D12.在直角 △ABC 中,CD 是斜边 AB 上的高,则以下等式不建立的是( )uuur2uuuruuurA .| AC | =AC· AB uuur2uuuruuurB .|BC | =BA · BCuuur 2uuuruuurC .| AB | =AC · CDuuurD .| CD |uuur uuuruuur uuur2 (ACgAB )(BA gBC ) =uuur 2ABuuur uuur uuur分析:∵AB ·AC =| ACuuur uuur uuur uuur(AC gAB )(BA gBC )同理:uuur 2AB| 2 uuuruuur 2,故 B 建立.故 A 建立,又 BA ·BC ] =| BC |uuur uuurACBA=uuur 2ABuuuruuur uuuruuur又| AC |·|BC | =| AB || CD |uuuruuuruuuruuur uuuruuur 2ACACuuur 2∴|CD |2 =uuur2,故 D 也正确.,又AC ·CD =| CD≠|| ,故AB AB选 C.答案: Cm13.设两个向量 a =( λ+2,λ2-cos2α) 和 b =(m ,2+sin α) ,此中λλ, m ,α 为实数,若 a =2b ,则 m 的取值范围是 ()A .[ -6,1]B .[4,8]C .[ -1,1]D .[ -1,6]+ =①,分析:由 a =2b 知2 2m,2-2= + ②)cos m 2sin , =2m -2,∴2-m = cos 2 +2sin又 cos 2α+2sin α=- (sin α-1) 2+2∴- 2≤cos 2 α+2sin α≤2,即- 2≤ λ2-m ≤2,由 λ=2m -22 1 -2≤(2 m -2) -m ≤2,得 4≤m ≤2λ 2m -22∴==2- ∈[ -6,1] . mm m答案: A二、填空题:本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上.uuur uuur uuur uuuruuuur14.在? ABCD 中, AB =a ,AD =b ,AN=3 NC ,M 为 BC 的中点,则 MNuuur uuur分析:由 AN =3 NC 得 4 AN =3 AC =3( a +b ) .uuuur1AM =a +2b ,uuuur 3111∴ MN =4( a +b ) -( a +2b ) =- 4a +4b .1 1答案:- 4a +4b711715.向量 c 与 a =( 2,2) ,b =( 2,- 2) 的夹角相等,且 |c| =1,则 c =________.x2+ 2=分析:设 c =( x ,y ) ,由题意得:y 1,得 =bgcagcx= 4 , x=-455 ,y= 3 y=- 355434 3答案: ( 5,- 5) 或( -5,5)16.已知点 G 为△ABC 的重心,过 G 作直线与 AB 、AC 两边分别交于 M 、Nuuuur uuur uuur uuur 1 1两点,且 AM =xAB , AN = y AC ,则 + =________.xyuuur1 uuuruuur1 1 uuuur1 uuur1分析: AG =3( AB + AC ) =3( x AM +y AC ) ,∵M 、N 、G 三点共线, ∴3x11 1+3y =1,即 x +y =3.答案: 317. 如图,在平面斜坐标系 xOy 中, ∠xOy =60°,平面上任一点 P 在斜uuur OPuuur轴方向同样的单位向量 ) ,则点 P 的斜坐标为 (x ,y) .若点 P 知足 |OP| =1,则点 P 在斜坐标系 xOy 中的轨迹方程是 ________.uuuruuur22122又| OP | =1,∴ x +y +2xy ×2=1,即 x +y +xy =1. 答案: x2+y2+xy =1三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.uuur uuur uuur uuur uuur18.(10 分) 在△ ABC 中, AB · AC = | AB - AC | =2,求|AB|2 +| AC|2. 解:由题意可知uuur uuuruuurABgAC 2uuur 2 uuur2=8.2 uuur uuur uuur 得| AB | +| AC| AB2 ABgAC AC 4uuuruuuruuuruuur uuur19.(12 分) 如图 |OA| =|OB|=1,| OC|=3,∠AOB =60°,OB ⊥ OC.uuuruuuruuur设 OC =x OA +y OB,求 x 、y 的值.uuur uuur uuur解: ∵ OC =x OA +y OB uuur 2uuur uuur uuur uuur①∴ OB · OC =x OA · OB+y OBuuur 2uuur uuur uuuruuurOC =x OA· OC +y OB · OC ②将①②联立得12x +y =0332×( - 2 ) x =3 得 x =-2,y =1π20.(12 分 ) 已知 a ,b 知足 |a| =3,|b| = 1,a 与 b 的夹角为 3 ,求 2a+3b 与 a -b 的夹角的余弦值.1 3解: ∵a ·b =| a || b |cos< a ,b >=3×1× 2=2又(2 a +3b ) 2=4a 2+9b 2+12a ·b =36+9+18=63, ∴|2 a +3b | =3 7.同理可得 | a -b | = 7 ∵ (2 a +3b ) ·(a -b ) =2a 2+a ·b -3b 23 33 =18+2-3= 2+ · -333b )211(2 a( a b ) =∴cos 〈 (2 a +3b ) ,( a -b ) 〉=a -b | = .|2 a +3b ||37·7 1421.(12 分) (2009 ·上海 ) 已知 △ABC 的角 A 、B 、C 所对的边分别为 a ,b ,c ,设 m =(a ,b) ,n =(sinB ,sinA) ,p =(b -2,a -2)(1) 若 m ∥n ,求证 △ABC 为等腰三角形;π(2) 若 m ⊥p ,边长 c =2,∠C = 3 ,求 △ABC 的面积. 解: (1) 证明:∵ m ∥n ,∴ a sin A =b sin B .由正弦定理得 a 2=b 2,a =b ,∴△ ABC 为等腰三角形. (2) ∵m ⊥p ,∴ m ·p =0. 即 a ( b -2) +b ( a -2) =0 ∴a +b =ab由余弦定理得 4=a 2+b 2-ab =( a +b ) 2-3ab 即( ab )2-3ab -4=0,∴ ab =4 或 ab =- 1( 舍)11 π∴S △ABC =2ab sin C =2×4×sin 3 = 3.uuur uuuruuur22.(12 分) 已知 OA =(3 ,- 4) , OB = (6 ,- 3) , OC=(5 -m ,- 3-m).(1) 若点 A 、B 、C 不可以组成三角形,务实数 m 知足的条件;(2) 若△ABC 为直角三角形,务实数 m 的值.解: (1) uuur uuur∵ OA =(3 ,- 4) , OB =(6 ,- 3)uuurOC =(5 -m ,-3-m ) .若 A 、B 、C 三点不可以组成三角形, 则这三点共线,uuur∵ AB =(3,1)uuur1AC =(2 -m,1-m ) ,∴ 3(1 - m ) =2-m ,得 m =2(2) ∵△ ABC 为直角三角形.uuuruuur7若∠ A =90°,则 AB · AC =0,∴ 3(2 - m ) +(1 -m ) =0,得 m =4.uuuruuuruuur若∠ B =90°,则 AB · BC =0,又 BC =( -1-m ,- m )3∴ 3( -1-m ) +( -m ) =0 得 m =- 4.uuur uuur若∠ C =90°,则 BC ⊥ AC .1± 5∴(2 -m ) ·( - 1-m ) +(1 -m ) ·( -m ) =0,得 m =2731±5综上得 m=4或 m=-4或 m=223.(12 分) 已知 a=(1,2) ,b=( -2,1) ,k、t 为正实数, x=a+(t2 +1 11)b ,y=-k a+t b(1)若 x⊥y,求 k 的最大值;(2)能否存在 k、t ,使 x∥y?若存在,求出 k 的取值范围,若不存在,说明原因.解: x=a+( t 2+1) b=(1,2)+( t 2+1)(-2,1)=(-2t2-1,t2+3)1111y=-k a+t b=-k(1,2)+t(-2,1)1 2 2 1=( -k-t,-k+t )2 1 22 2 1(1) 若x⊥y,则x·y= 0,即:( -2t-1) ·( -k-t ) +( t+3)( -k+t )=0t111整理得:k=t2+1=1≤2(当且仅当t=t即t=1时“=”建立)故k maxt+t1=2.(2)假定存在正实数 k、t ,使 x∥y,则221212( -2t-1)(-k+t ) -( t+3)( -k-t ) =0t 2+113整理得k+t=0,即t+t +k=0∵k、t 为正实数,故知足上式的k、t 不存在.即不存在这样的正实数k、t 使 x∥y.。
(完整版)平面向量综合试题(含答案)
BACD平面向量一.选择题: 1. 在平面上,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论:①BCCAAB=-②OBOCOA=+③OAOBAC2-=其中正确..结论的个数是()A.1个B.2个C.3个D.0个2.下列命题正确的是()A.向量AB的长度与向量BA的长度相等B.两个有共同起点且相等的向量,其终点可能不同C.若非零向量AB与CD是共线向量,则A、B、C、D四点共线D.若→a→b→c,则→a→c3. 若向量= (1,1), = (1,-1), =(-1,2),则等于( )A.+B.C.D.+4.若,且与也互相垂直,则实数的值为( )A. B.6 C. D.35.已知=(2,3) , =(,7) ,则在上的正射影的数量为()A. B. C. D. 6.己知(2,-1) .(0,5) 且点P在的延长线上,, 则P点坐标为( )A.(-2,11)B.(C.(,3)D.(2,-7)7.设,a b是非零向量,若函数()()()f x x x=+-a b a b的图象是一条直线,则必有()A.⊥a b B.∥a b C.||||=a b D.||||≠a b8.已知D点与ABC三点构成平行四边形,且A(-2,1),B(-1,3),C(3,4),则D点坐标为()A.(2,2)B.(4,6)C. (-6,0)D.(2,2)或(-6,0)或(4,6)9.在直角ABC∆中,CD是斜边AB上的高,则下列等式不成立的是(A)2AC AC AB=⋅(B)2BC BA BC=⋅(C)2AB AC CD=⋅(D)22()()AC AB BA BCCDAB⋅⨯⋅=10.设两个向量22(2,cos)aλλα=+-和(,sin),2mb mα=+其中,,mλα为实数.若2,a b=则mλ的取值范围是 ( ) A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]-10.已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}是两个向量集合,则P∩Q等于()A.{(1,1)} B.{(-1,1)} C.{(1,0)} D.{(0,1)}二. 填空题:11.若向量a b,的夹角为60,1a b==,则()a a b-=.12.向量2411()(),,,a=b=.若向量()λ⊥b a+b,则实数λ的值是.13.向量a 、b=1,a 3-=3,则a +3 =14. 如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD =则AD BC =__________.15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.三. 解答题:16.设两个非零向量e 1、e 2不共线.如果AB =e 1+e 2,=BC 2e 1+8e 2,CD =3(e 1-e 2) ⑴求证:A 、B 、D 共线; ⑵试确定实数k,使k e 1+e 2和e 1+k e 2共线.17. 已知△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .⑴求证:AB ⊥AC ;⑵求点D 与向量AD 的坐标.17.(10分)已知sin(α+π2)=-55,α∈(0,π).(1)求sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)的值;(2)求cos(2α-3π4)的值.18.已知矩形相邻的两个顶点是A (-1,3),B (-2,4),若它的对角线交点在x 轴上,求另两个顶点的坐标.19. 已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.20.已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<<.(1)若a b ⊥,求θ; (2)求a b +的最大值.21.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+.(Ⅰ)求函数()f x 的最大值与最小正周期; (Ⅱ)求使不等式3()2f x ≥成立的x 的集合.22.(12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255. (1)求cos(α-β)的值; (2)若0<α<π2,-π2<β<0,且sin β=-513,求sin α.平面向量参考答案一、选择题:1-5:BABBC 6.A 7. A 【解析】222()()()(||||)f x x x x x =+-=-+-+a b a b a b a b a b ,若函数()f x 的图象是一条直线,即其二次项系数为0, ∴a b =0, ⇒⊥a b.8.D 9. C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.10. A 【分析】由22(2,cos )a λλα=+-,(,sin ),2m b m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A 10. A二、填空题: 11. 21【解析】()2211cos60122a a b a a b a a b -=-⋅=-⋅︒=-=。
高中数学平面向量精选题目(附答案)
高中数学平面向量精选题目(附答案)一、平面向量的概念及线性运算1.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.[解析] ∵AM ―→=2MC ―→,∴AM ―→=23AC ―→. ∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→), ∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→ =12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16. [答案] 12 -16 注:向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:选D ∵AB ―→=(-8,8),AC ―→=(3,y +6). 又∵AB ―→∥AC ―→,∴-8(y +6)-24=0.∴y =-9.3.如图,点A ,B ,C 是圆O 上不重合的三点,线段OC 与线段AB 交于圆内一点P .若OC ―→=m OA ―→+2m OB ―→,AP ―→=λAB ―→,则λ=( )A.56B.45C.34D.23解析:选D 由题意,设OP ―→=n OC ―→. 因为AP ―→=OP ―→-OA ―→=λ(OB ―→-OA ―→), 故n OC ―→-OA ―→=λ(OB ―→-OA ―→),n (m OA ―→+2m OB ―→)-OA ―→=λ(OB ―→-OA ―→), 即(mn +λ-1)OA ―→+(2mn -λ)OB ―→=0.而OA ―→与OB ―→不共线,故有⎩⎨⎧mn +λ-1=0,2mn -λ=0,解得λ=23.选D.4.如图,半径为1的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°.若OC ―→=λOA ―→+μOB ―→,则λ+μ=________.解析:由已知,可得OA ⊥OC ,以O 为坐标原点,OC ,OA 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则有C (1,0),A (0,1),B (cos 30°,-sin 30°),即B ⎝ ⎛⎭⎪⎫32,-12.于是OC ―→=(1,0),OA ―→=(0,1),OB ―→=⎝ ⎛⎭⎪⎫32,-12,由OC ―→=λOA ―→+μOB ―→,得(1,0)=λ(0,1)+μ⎝ ⎛⎭⎪⎫32,-12=⎝ ⎛⎭⎪⎫32μ,λ-12μ,∴⎩⎪⎨⎪⎧32μ=1,λ-12μ=0,解得⎩⎪⎨⎪⎧μ=233,λ=33.∴λ+μ= 3. 答案:3二、平面向量的数量积5.(1)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D.32(2)设四边形ABCD 为平行四边形,|AB ―→|=6,|AD ―→|=4.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.(2)如图所示,由题设知:AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,NM ―→=NC ―→-MC ―→=13AB ―→-14AD ―→, ∴AM ―→·NM ―→=⎝ ⎛⎭⎪⎫AB ―→+34 AD ―→ ·⎝ ⎛⎭⎪⎫13 AB ―→-14 AD ―→ =13|AB ―→|2-316|AD ―→|2+14AB ―→·AD ―→-14AB ―→·AD ―→=13×36-316×16=9. [答案] (1)A (2)C 注:(1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行计算.6.已知△ABC 中,AB ―→=c ,BC ―→=a ,CA ―→=b ,若a ·b =b ·c 且c ·b +c ·c =0,则△ABC 的形状为( )A .锐角三角形B .等腰非直角三角形C .钝角三角形D .等腰直角三角形解析:选D 由c ·b +c ·c =c ·(b +c )=0,即AB ―→·(CA ―→+AB ―→)=AB ―→·CB ―→=0,可得∠B 是直角. 又由a ·b =b ·c ,可得b ·(a -c )=0, 即CA ―→·(BC ―→+BA ―→)=0, 所以CA 与CA 边的中线垂直, 所以△ABC 是等腰直角三角形.7.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2D .2解析:选B 由题意,知a 2=1,b 2=1,c 2=1,由a ·b =0及(a -c )·(b -c )≤0,知(a +b )·c ≥c 2=1.因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =3-2(a ·c +b ·c )≤1,故|a +b -c |的最大值为1.8.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.答案:19.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ―→·BE ―→=1,则AB 的长为________.解析:设|AB ―→|=x ,x >0,则AB ―→·AD ―→=12x .又AC ―→·BE ―→=(AD ―→+AB ―→)·⎝ ⎛⎭⎪⎫AD ―→-12 AB ―→ =1-12x 2+14x =1,解得x =12,即AB 的长为12. 答案:12三、平面向量与三角函数的综合问题10.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值. [解] (1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3, ∴m ·n =|m |·|n |cos π3, 即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 注:在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.11.已知向量a =(6sin α,2)与向量b =(3,4sin α)平行,则锐角α=( ) A.π4B.π6C.π3D.5π12解析:选B 因为向量a =(6sin α,2)与向量b =(3,4sin α)平行,所以24sin 2α=6,所以sin 2α=14,sin α=±12.又α是锐角,所以sin α=12,α=π6.12.(2017·江苏高考)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x . 则tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3; 当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.巩固练习:1.如图所示,在△ABC 中,设AB ―→=a ,AC ―→=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP ―→=( )A.12a +12bB.13a +23bC.27a +47bD.47a +27b2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0B .1C .2 D. 53.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)4.已知平面向量a ,b 满足|a +b |=1,|a -b |=x ,a ·b =-38x ,则x =( ) A. 3 B .2 C. 5D .35.在△ABC 中,(BC ―→+BA ―→)·AC ―→=|AC ―→|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .67.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 8.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 9.已知向量OA ―→=(1,7),OB ―→=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA ―→·MB ―→的最小值是________.10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.11.已知a =(cos α,sin α),b =(cos β,sin β),a 与b 满足|ka +b |=3|a -kb |,其中k >0.(1)用k 表示a ·b ;(2)求a ·b 的最小值,并求出此时a ,b 的夹角.12.已知平面上三个向量a ,b ,c 的模均为1,它们两两之间的夹角均为120°. (1)求证:(a -b )⊥c ;(2)若|ka +b +c |>1(k ∈R),求实数k 的取值范围.参考答案:1.解析:选C 连接BP ,则AP ―→=AC ―→+CP ―→=b +PR ―→, ① AP ―→=AB ―→+BP ―→=a +RP ―→-RB ―→. ② 由①+②,得2AP ―→=a +b -RB ―→.③ 又RB ―→=12QB ―→=12(AB ―→-AQ ―→)=12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,④将④代入③,得2AP ―→=a +b -12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,解得AP ―→=27a +47b .2.解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D.3.解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.解析:选B |a +b |2=a 2+2a ·b +b 2=1,|a -b |2=a 2-2a ·b +b 2=x 2,两式相减得4a ·b =1-x 2.又a ·b =-38x ,所以1-x 2=-32x ,解得x =2或x =-12(舍去).故选B.5.解析:选C 由(BC ―→+BA ―→)·AC ―→=|AC ―→|2,得AC ―→·(BC ―→+BA ―→-AC ―→)=0,即AC ―→·(BC ―→+BA ―→+CA ―→)=0,∴2AC ―→·BA ―→=0,∴AC ―→⊥BA ―→,∴A =90°.故选C.6.解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝ ⎛⎭⎪⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝ ⎛⎭⎪⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝ ⎛⎭⎪⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝ ⎛⎭⎪⎫-1-3-32=3,∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.解析:∵|a +b |2=|a |2+|b |2+2a ·b =|a |2+|b |2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-28.解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0.∴m =-6. 答案:-69.解析:设M ⎝ ⎛⎭⎪⎫x ,12x ,则MA ―→=⎝ ⎛⎭⎪⎫1-x ,7-12x ,MB ―→=⎝ ⎛⎭⎪⎫5-x ,1-12x ,MA ―→·MB―→=(1-x )(5-x )+⎝ ⎛⎭⎪⎫7-12x ⎝ ⎛⎭⎪⎫1-12x =54(x -4)2-8.所以当x =4时,MA ―→·MB ―→ 取得最小值-8.答案:-810.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13.11.解:(1)将|ka +b |=3|a -kb |两边平方,得|ka +b |2=(3|a -kb |)2,k 2a 2+b 2+2ka ·b =3(a 2+k 2b 2-2ka ·b ),∴8ka ·b =(3-k 2)a 2+(3k 2-1)b 2, a ·b =(3-k 2)a 2+(3k 2-1)b 28k.∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=1,b 2=1,∴a ·b =3-k 2+3k 2-18k =k 2+14k .(2)∵k 2+1≥2k (当且仅当k =1时等号成立),即k 2+14k ≥2k 4k =12,∴a ·b 的最小值为12.设a ,b 的夹角为γ,则a ·b =|a ||b |cos γ. 又|a |=|b |=1,∴12=1×1×cos γ,∴γ=60°,即当a ·b 取最小值时,a 与b 的夹角为60°.12.解:(1)证明:∵|a |=|b |=|c |=1,且a ,b ,c 之间的夹角均为120°, ∴(a -b )·c =a ·c -b ·c =|a ||c |cos 120°-|b ||c |·cos 120°=0,∴(a -b )⊥c . (2)∵|ka +b +c |>1,∴(ka +b +c )2>1, 即k 2a 2+b 2+c 2+2ka ·b +2ka ·c +2b ·c >1,∴k 2+1+1+2k cos 120°+2k cos 120°+2cos 120°>1. ∴k 2-2k >0,解得k <0或k >2.∴实数k 的取值范围为(-∞,0)∪(2,+∞).。
平面向量练习题大全及答案
平面向量练习题大全及答案平面向量练习题大全及答案平面向量是数学中的重要概念,广泛应用于几何、物理等领域。
通过练习平面向量的题目,可以帮助我们巩固和深化对平面向量的理解。
本文将为大家提供一些平面向量的练习题,并给出详细的答案解析。
一、基础练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的和。
解析:向量的和等于对应分量相加,所以a + b = (2 + (-1), 3 + 4) = (1, 7)。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的差。
解析:向量的差等于对应分量相减,所以a - b = (3 - 5, -2 - 1) = (-2, -3)。
3. 已知向量a = (4, 5),求向量a的模长。
解析:向量的模长等于各分量平方和的平方根,所以|a| = √(4^2 + 5^2) =√(16 + 25) = √41。
4. 已知向量a = (3, -2),求向量a的单位向量。
解析:向量的单位向量等于将向量除以其模长,所以a的单位向量为a/|a| = (3/√41, -2/√41)。
二、综合练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的数量积。
解析:向量的数量积等于对应分量相乘再相加,所以a·b = 2*(-1) + 3*4 = -2 + 12 = 10。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的向量积。
解析:向量的向量积等于两个向量的模长乘以它们夹角的正弦值,所以a×b =|a|*|b|*sinθ,其中θ为a和b的夹角。
首先计算|a|和|b|:|a| = √(3^2 + (-2)^2) = √(9 + 4) = √13,|b| = √(5^2 +1^2) = √(25 + 1) = √26。
然后计算夹角θ的正弦值:sinθ = |a×b|/(|a|*|b|),其中|a×b|为向量a×b的模长。
千题百炼- 平面向量综合必刷100题(原卷版)
专题12 平面向量综合必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =( )A .BC .-2D .22.设ABC 中BC 边上的中线为AD ,点O 满足2AO DO =-,则OC =( )A .1233AB AC -+B .2133AB AC -C .1233AB AC -D .2133AB AC -+3.若平面向量,,a b c 两两的夹角相等,且||||1,||3a b c ===,则||a b c ++=( )A .2B .5C .2或5D4.在菱形ABCD 中,M 、N 分别是BC 、CD 的中点,若2AB =,3DAB π∠=,则DM AN ⋅=( )A .0B .32C .4D .1325.如图,点C 在半径为2的AB 上运动,3AOB π∠=若OC mOA nOB =+,则m n +的最大值为( )A .1BC D6.已知向量,a b 满足||1,||2,1a b a b ==⋅=,则a b -与b 夹角为( ) A .23π B .34π C .2π D .4π7.已知()1,2a =-,()1,3b =,,则2a b -在a b +方向上的投影为( )A .1B .5C D8.在ABC 中,23AB AC ==,,且3AB AC ⋅=,则AC AB R λλ-∈()取最小值时λ的值为( )A .34-B .34C .32D .9.在ABC 中,点D 是线段BC 上靠近点C 的三等分点,点E 在线段AD 上,:3:5AE ED =,则EB EC +=( )A .1324AB AC +B .3142AB AC +C .1243AB AC +D .3342AB AC +10.已知点(2,4)M ,若过点(4,0)N 的直线l 交圆于C :22(6)9x y -+=于A ,B 两点,则||MA MB +的最大值为( )A .12B .C .10D .11.以下四个命题中正确的是( ) A .若1123OP OA OB =-,则P A B ,,三点共线B .若{}a b c ,,为空间的一个基底,则{}a b b c c a +++,,构成空间的另一个基底 C .()a b c a b c ⋅⋅=⋅⋅D .ABC 为直角三角形的充要条件是0AB AC ⋅=12.已知向量a 、b 满足a b b +=,且2a =,则b 在a 方向上的投影是( ) A .2 B .2-C .1D .1-13.在△ABC 中,已知AB =3,AC =5,△ABC 的外接圆圆心为O ,则AO BC ⋅= A .4 B .8C .10D .1614.已知向量a 与向量b 不共线,()1,1b =,对任意t R ∈,恒有2a tb a b -≥-,则( ) A .a b ⊥ B .()2a a b ⊥- C .()2b a b ⊥-D .()()22a b a b +⊥-15.如图所示,矩形ABCD 的对角线相交于点O ,点E 在线段OB 上且13OE OB =,若AE AB AD λμ=+(λ,μ∈R ),则λμ-=( )A .13B .13-C .1D .23二、多选题16.已知平面向量OA 、OB 、OC 为三个单位向量,且0OA OB ⋅=,若OC xOA yOB =+(,x y R ∈),则x y +的取值可能为( )A .B .1C D17.下列说法中错误的是( )A .已知(1,3)a =-,(1,3)b =-,则a 与b 可以作为平面内所有向量的一组基底B .若a 与b 共线,则a 在b 方向上的投影为||aC .若两非零向量a ,b 满足||||a b a b +=-,则a b ⊥D .平面直角坐标系中,(1,1)A ,(4,2)B ,(5,0)C ,则ABC 为锐角三角形18.设a ,b 是两个非零向量,下列四个命题为真命题的是( ) A .若a b a b ==-,则a 和b 的夹角为3π B .若a b a b ==+,则a 和b 的夹角为2π3C .若a b a b +=+,则a 和b 方向相同D .若0a b ⋅<,则a 和b 的夹角为钝角19.在ABC 中,有如下四个命题正确的有( ) A .若0AC AB ⋅>,则ABC 为锐角三角形B .若BA BC AC +=,则ABC 的形状为直角三角形C .ABC 内一点G 满足0GA GB GC ++=,则G 是ABC 的重心D .若PA PB PB PC PC PA ⋅=⋅=⋅,则点P 必为ABC 的外心20.已知向量,a b 是两个非零向量,在下列条件中,一定能使,a b 共线的是( ) A .234a b e -=且22a b e +=-B .存在相异实数,λμ,使0a b λμ-=C .0xa yb +=(其中实数x ,y 满足0x y +=)D .已知梯形ABCD ,其中,AB a CD b ==第II 卷(非选择题)三、填空题21.已知在ABC 中,3,1,,,23AB AC BAC BD DC AE ED π==∠===,则CE BC ⋅=___________.22.在ABC 中,点D 满足34BD BC =,当E 点在线段AD 上移动时,若AE AB AC λμ=+,则()221t λμ=-+的最小值是________.23.在ABC 中,点D 是边BC 的中点,点G 在AD 上,且是ABC 的重心,则用向量AB 、AC 表示BG 为___________.24.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________.25.如图,在菱形ABCD 中,2AB =,60BAD ∠=︒.已知13BE BC =,DF FC =,12EG EF =,则AG EF ⋅=______.四、解答题26.已知4a =,3b =,()()23243a b a b -⋅-=. (1)求a 与b 的夹角θ;(2)求a b +;(3)若()()a b a b λ-⊥+,求实数λ的值.27.已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈ (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.28.如图,已知D ,E ,F 分别为ABC 的三边BC ,AC ,AB 的中点,求证:0AD BE CF ++=.29.已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---. (1)若点A ,B ,C 能够成三角形,求实数m 应满足的条件; (2)若ABC 为直角三角形,且A ∠为直角,求实数m 的值.30.设ABC 的内角A ,B ,C 的对边长a ,b ,c 成等比数列,()2cos 2sin 12A C B π⎛⎫--+= ⎪⎝⎭,延长BC 至D使3BD =.(1)求B 的大小; (2)求AC CD ⋅的取值范围.任务二:中立模式(中档)1-40题一、单选题1.设a 、b 、c 为非零不共线向量,若()()1a tc t b a c t R -+-≥-∈,则( ) A .()()a b a c +⊥- B .()()a b b c +⊥+ C .()()a b a c -⊥- D .()()a cbc -⊥+2.在平面直角坐标系xOy 中,已知点()()0211A N -,,,.若动点M 满足MA MO=,则OM ON ⋅的取值范围是( )A .[]22-,B .[]44-,C .[]46,-D .[]26-,3.已知ABCD 是边长为2的正方形,P 为平面ABCD 内一点,则()PA PB PC +⋅的最小值是( ) A .2- B .52-C .3-D .4-4.已知点O 为正ABC 所在平面上一点,且满足(1)0OA OB OC λλ+++=,若OAC 的面积与OAB 的面积比值为1:4,则λ的值为( ) A .12 B .13C .2D .35.已知直线l :()20ax y a R -+=∈与圆M :22430x y y +-+=的交点为A ,B ,点C 是圆M 上一动点,设点()0,1P -,则PA PB PC ++的最大值为( ) A .9 B .10C .11D .126.已知平面向量,,a b c 满足24b a a b ==⋅=,()()3c a c b -⋅+=-,则c a -的最小值为( )A1 B 1 C2 D 27.已知向量a ,b ,c 为平面向量,21a b a b ==⋅=,且c 使得2c a -与-c b 所成夹角为60,则c 的最大值为( )A1 B C .1 D 18.非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形9.在ABC 中,BC CA CA AB ⋅=⋅,||2BA BC +=,且32B ππ≤≤,则BA BC ⋅的取值范围是( )A .(1]-∞,B .[01],C .203⎡⎤⎢⎥⎣⎦,D .223⎡⎤-⎢⎥⎣⎦,10.已知ABC 的三个内角分别为A ,B ,C ,动点P 满足sin sin AB AC OP OA AB B AC C λ⎛⎫⎪=++ ⎪⎝⎭,(0,)λ∈+∞,则动点P 的轨迹一定经过ABC 的( ) A .重心 B .垂心 C .内心 D .外心11.已知平面向量,a b 满足||1a =,||2b =,||7a b -=,若对于任意实数k ,不等式||1ka tb +>恒成立,则实数t 的取值范围是( )A .(,)-∞⋃+∞B .3(,(,)3-∞+∞C .)+∞D .)+∞12.已知A 、B 、C 是平面上不共线的三点,O 为△ABC 的外心,动点P 满足(1)(1)(12)()3OA OB OCOP λλλλ-+-++=∈R ,则点P 的轨迹一定过△ABC 的( )A .内心B .垂心C .重心D .AC 边的中点13.平面内ABC 及一点O 满足 ,AO AB AO AC CO CA CO CBABAC CA CB⋅⋅⋅⋅==,则点O 是ABC 的( ) A .重心 B .内心 C .外心 D .垂心14.设点G 是ABC ∆的重心,且满足2sin 3sin 2sin 0B AB A GA C GC ⋅+⋅+⋅=,则cos C ( ) A .34B .23C .13D .91615.若直线MN 过△ABC 的重心G ,且AM mAB =,AN nAC =,其中0m >,0n >,则2m n +的最小值是(). A 1B 1+C .2D .16.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫ ⎪+ ⎪⎝⎭=+,m R ∈,则点P 的轨迹一定通过ABC 的( ) A .重心 B .内心 C .外心 D .垂心17.在ABC ∆中,角A 、B 、C的对边分别为a 、b 、c ,若2b =,(()cos 24sin 1A B C ++=,点P 是ABC ∆的重心,且APa =( )A .B .C .D .18.在ABC 中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .1419.已知圆O 的半径为2,A 为圆内一点,12OA =,B ,C 为圆O 上任意两点,则AC BC ⋅的取值范围是( ) A .1,68⎡⎤-⎢⎥⎣⎦B .[1,6]-C .1,108⎡⎤-⎢⎥⎣⎦D .[]1,1020.已知2=a ,3b =,4a b -=,若对任意实数t ,21ka tb +>(0k >)恒成立,则k 的取值范围是( )A .⎫+∞⎪⎭B .⎛⎝C .)+∞D .(二、多选题21.数学家欧拉于1765年在其著作《三角形中的几何学》首次指出:ABC 的外心O ,重心G ,垂心H ,依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为欧拉线. 若4AB =,2AC =,则下列各式正确的是( )A .20GO GH +=B .4AG BC ⋅= C .6AO BC ⋅=-D .OH OA OB OC =++22.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,重心为G ,垂心为H ,M 为BC 中点,且AB =4,AC =2,则下列各式正确的有( ) A .4AG BC ⋅= B .6AO BC ⋅=-C .OH OA OB OC =++D .42AB AC OM HM +=+23.在ABC 中,2A π=,2AB AC ==,下述四个结论中正确的是( )A .若G 为ABC 的重心,则1331AG AB AC =+ B .若P 为BC 边上的一个动点,则()AP AB AC ⋅+为定值2C .若M ,N 为BC 边上的两个动点,且MN =AM AN ⋅的最小值为32D .已知P 为ABC 内一点,若1BP =,且AP AB AC λμ=+,则λ的最大值为224.已知P 为ABC 所在平面内一点,且4AB BC ==,60ABC ∠=︒,D 是边AC 的三等分点靠近点C ,AE EB =,BD 与CE 交于点O ,则( )A .2132DE AC AB =-+B .BOCSC .32OA OB OC ++=D .()PA PB PC +⋅的最小值为-625.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,点P 是其所在平面内一点,( ) A .若202020210PA PB PC ++=,则点P 在ABC 的中位线上 B .若3AP AB AC =+,则P 为ABC 的重心 C .若222a b c +>,则ABC 为锐角三角形 D .若cos cos c B b C =,则ABC 是等腰三角形26.下列说法中错误的为( )A .已知()1,2a →=,()1,1b →=且a →与a b λ→→+夹角为锐角,则5,3λ⎛⎫∈-+∞ ⎪⎝⎭B .点O 为ABC 的内心,且20OC OC OA OB OB →→→→→⎛⎫⎛⎫-⋅+-= ⎪ ⎪⎝⎭⎝⎭,则ABC 为等腰三角形;C .若a →与b →平行,a →在b →方向上的投影为a →D .若非零a →,b →满足a b a b →→→→==-则a →与a b →→+的夹角是60︒27.如图,ABCD 中,AB =1,AD =2,∠BAD =3π,E 为CD 的中点,AE 与DB 交于F ,则下列叙述中,一定正确的是( )A .BF 在AB 上的投影向量为(0,0) B .1233AF AB AD =+C .1AF AB ⋅=D .若12FAB α=∠,则tan α=28.已知O 是△ABC 所在平面内一点,则下列说法正确的是( ) A .若OA OB OB OC OC OA ⋅=⋅=⋅,则O 是△ABC 的重心B .若向量0OA OB OC ++=,且OA OB OC ==,则△ABC 是正三角形 C .若O 是△ABC 的外心,3AB =,5AC =,则OA BC ⋅的值为-8D .若240OA OB OC ++=,则::4:1:2OAB OBC OAC S S S =△△△第II 卷(非选择题)三、填空题29.如图,∠ABC 中,8AB =,7AC =,5BC =,G 为∠ABC 重心,P 为线段BG 上一点,则PA PC ⋅的最大值为___________.30.在ABC 中,下列命题中正确的有:___________ ∠AB AC BC -=;∠若0AC AB ⋅>,则ABC 为锐角三角形;∠O 是ABC 所在平面内一定点,动点P 满足()OP OA AB AC λ=++,[)0,λ∈+∞,则动点P 一定过ABC 的重心;∠O 是ABC 内一定点,且20OA OC OB ++=,则13AOCABCS S=△△; ∠若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=⋅,则ABC 为等边三角形.31.已知向量a ,b 是平面内的两个非零向量,则当a b a b ++-取最大值时,a 与b 夹角为________.32.点D 为ABC 所在平面内一点,1233AD AB AC =+,AC AB AB AC AD AC AB+=+,若ABC 的面积为1,则BC 的最小值是________.33.∠若()3,4OA =-,()6,3OB =-,()5,3OC m m =--,ABC ∠为锐角,则实数m 的取值范围是34m >-∠点O 在ABC 所在的平面内,若OA OB OB OC OA OC ⋅=⋅=⋅,则点O 为ABC 的垂心 ∠点O 在ABC 所在的平面内,若230OA OB OC ++=,ADC S △,ABCS 分别表示AOC △,ABC 的面积,则:1:6AOC ABC S S =△△∠点O 在ABC 所在的平面内,满足AO AB AO AC ABAC⋅⋅=且CO CA CO CB CACB⋅⋅=,则点O 是ABC 的外心.以上命题为假命题的序号是___________.34.如图,两块斜边长相等的直角三角板拼在一起,若||1AC =,则AD AE ⋅=________.35.已知向量a ,b 满足2a b -=,12ab +=,则a b b ++的最大值是________.36.已知平面向量a ,b 的夹角为45°,1a =且()2c a b R λλ=-+∈,则c c a +-的最小值是___________.四、解答题37.平面直角坐标系xOy 中,已知向量()61AB =,∠()BC x y =,∠()23CD =--,,且AD BC ∠ (1)若已知M (1,1),N (y +1∠2∠∠y∠[0∠2],则求出MN BC ⋅的范围; (2)若AC BD ⊥,求四边形ABCD 的面积.38.在ABC 中,角,,A B C 所对边分别为,,a b c ,3b =,6c =,sin2sin C B =,且AD 为BC 边上的中线,E 点在BC 上,满足//()AB AC AE ABAC+.(1)求cos C 及线段BC 的长; (2)求ADE 的面积.39.已知向量a 与b 的夹角为π6,且3a =,2b =.(1)若向量a b +与a b λ+共线,求实数λ的值;(2)若向量a b +与a b λ+的夹角为锐角,求实数λ的取值范围.40.在等边ABC中,2=,点Q为AC的中点,BQ交AM于点N.CM MB(1)证明:点N为BQ的中点;(2)若6⋅=-,求ABC的面积.NA NM任务三:邪恶模式(困难)1-30题一、单选题1.如图,在等腰△ABC 中,已知o1,120,,AB AC A E F ==∠=分别是边,AB AC 的点,且,AE AB AF AC ==λμ,其中(),0,1λμ∈且21λμ+=,若线段,EF BC 的中点分别为,M N ,则MN 的最小值是( )A BC D2.在ABC 中,()sin sin sin A B B C -+=,点D 在边BC 上,且2CD BD =,设sin sin ABDk BAD∠=∠,则当k 取最大值时,sin ACD ∠=( )A .14BC D .(363.已知12,e e 为单位向量,且1222e e +≤,若非零向量a 满足12a e a e ⋅≤⋅,则()122a e e a⋅+的最大值是( )A B C D4.如图,在平面四边形ABCD 中,AB BC ⊥,60BCD ∠=,150ADC ∠=,3BE EC =,CD BE 若点F 为边AD 上的动点,则EF BF ⋅的最小值为( )A .1B .1516C .3132D .25.在ABC 中,已知9AB AC ⋅=,cos b c A =⋅,ABC 的面积为6,若P 为线段AB 上的点(点P 不与点A ,点B 重合),且CA CBCP x y CACB=⋅+⋅,则1132x y ++的最小值为( ).A .9B .34C .914D .126.在ABC ∆中,已知9AB AC ⋅=,sin cos sin B A C =⋅,6ABC S ∆=,P 为线段AB 上的一点,且CA CBCP x y CACB=⋅+⋅,则11x y +的最小值为( )A B C D7.已知O 是ABC ∆所在平面上的一点,若aPA bPB cPCPO a b c++=++(其中P 是ABC ∆所在平面内任意一点),则O 点是ABC ∆的( ) A .外心 B .内心C .重心D .垂心8.已知向量a ,b ,c 满足4a =,a 在b 方向上的投影为2,()3c c a ⋅-=-,则||b c -的最小值为( )A 1B 1C .2D .29.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1210.如图,在等腰梯形ABCD 中,2AB =,4CD =,BC =E ,F 分别为AD ,BC 的中点.如果对于常数λ,在等腰梯形ABCD 的四条边上,有且只有8个不同的点P 使得PE PF λ⋅=成立,那么λ的取值范围是( )A .59,420⎛⎫-- ⎪⎝⎭B .911,204⎛⎫- ⎪⎝⎭C .91,204⎛⎫-- ⎪⎝⎭D .511,44⎛⎫- ⎪⎝⎭11.已知平面向量a ,b ,c (a 与b 不共线),满足2a b c -==,1c a c b -=-=,设(),c a b λμλμ=+∈R ,则λμ+的取值范围为( ) A .[)2,2,3⎛⎤-∞+∞ ⎥⎝⎦B .2,23⎡⎤⎢⎥⎣⎦C .[)2,+∞D .(],2-∞12.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,过点1F 且斜率为247-的直线与双曲线在第二象限的交点为A ,若1212()0F F F A F A +⋅=,则双曲线C 的渐近线方程是( )A .43y x =±B .34yx C .y = D .y x =13.半径为2的圆O 上有三点A 、B 、C 满足0OA AB AC ++=,点P 是圆内一点,则PA PO PB PC ⋅+⋅的取值范围为( )A .[414)-,B .[0)4,C .[414],D .[416],14.已如平面向量a 、b 、c ,满足33a =,2b =,2c =,2b c ⋅=,则()()()()222a b a c a b a c ⎡⎤-⋅---⋅-⎣⎦的最大值为( )A .B .192C .48D .15.平面上的两个向量OA 和OB ,||cos OA α=,||sin OB α=,0,2απ⎡∈⎤⎢⎥⎣⎦,0OA OB ⋅=若向量OC OA OBλμ=+(,)R λμ∈,且22221(21)cos (21)sin 4λαμα-+-=,则||OC 的最大值为( ) A .32B .34C .35D .37二、多选题16.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .212AO AB AB ⋅=B .OA OB OA OC OB OC ⋅=⋅=⋅C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则113λμ+=D .AH 与cos cos AB AC AB BAC C+共线17.如图,直角ABC 的斜边BC 长为2,30C ∠=︒,且点B ,C 分别在x 轴正半轴和y 轴正半轴上滑动,点A 在线段BC 的右上方则( )A .||OA OC +有最大值也有最小值B .OA OC ⋅有最大值无最小值 C .||OA BC +有最小值无最大值D .OA BC ⋅无最大值也无最小值18.在OAB 中,4O OC A =,2O OD B =,AD 、BC 的交点为M ,过M 作动直线l 分别交线段AC 、BD 于E 、F 两点,若OE OA λ=,(),0OB OF μλμ=>,则λμ+的不可能取到的值为( )A B C D 19.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz )的logo 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是ABC 内的一点,BOC 、AOC △、AOB 的面积分别为A S 、B S 、C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC 内的一点,BAC ∠、ABC ∠、ACB ∠是ABC 的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则( )A .O 为ABC 的垂心B .AOB ACB π∠=-∠C .sin :sin :sin ::OA OB OC BAC ABC ACB ∠∠∠=D .tan tan tan 0BAC OA ABC OB ACB OC ∠⋅+∠⋅+∠⋅=20.对于△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .OA OB OA OC OB OC ⋅=⋅=⋅B .212AO AB AB ⋅=C .向量AH 与cos cos ABACAB B AC C +共线D .过点G 的直线l 分别与AB 、AC 交于E 、F 两点,若AE AB λ=,AF AC μ=,则113λμ+=21.已知平面向量,,a b c →→→满足2a →=,1b →=,0a b →→⋅=,对任意的实数t ,均有c t b →→-的最小值为a c →→-,则下列说法正确的是( )A .b a →→+与b a →→-夹角的余弦值为35 B .c →的最小值为2C .a b c c a →→→→→+-+-的最小值为2D .若2c a -=时,这样的c →有3个第II 卷(非选择题)三、填空题22.已知平面向量,,a b c 满足:12,0,12a b a b c a ==⋅=+=,当-a c 与b c -所成角θ最大时,则sin θ=______23.已知ABC 中,1AB =,t R ∈,且()1AC t AC AB t +-的最小值为,则3BA BC ⋅=__________.24.在平面内,若有||1,2a a b b =⋅==,()(2)0c a c a b -⋅--=,则c b ⋅的最大值为________.25.已知OA ,OB 是非零不共线的向量,设111r OC OA OB r r =+++,定义点集||||KA KC KB KC M K KA KB ⎧⎫⋅⋅⎪⎪==⎨⎬⎪⎪⎩⎭,当1K ,2K M ∈时,若对于任意的2r ≥,不等式12||K K c AB ≤恒成立,则实数c 的最小值为______.26.如图,在∠ABC 中,BD DE EC →→→==,2AF FB →→=,2AM MD →→=,直线FM 交AE 于点G ,直线MC 交AE 于点N ,若∠MNG 是边长为1的等边三角形,则MA MC →→⋅=___________.27.如图,在△ABC 中,2C π=,AC =1BC =.若O 为△ABC 内部的点且满足0OAOB OC OA OB OC ++=,则::OA OB OC =________.28.在三角形ABC 中,ABC 的三个内角,,A B C 的对边分别是,,a b c ,则下列给出的五个命题:①若(,2)a λ=,(3,1)b =-,且a 与b 夹角为锐角,则2,3λ⎛⎫∈-∞ ⎪⎝⎭; ②若cos cos a A b B =,则ABC 为等腰三角形;③点O 是三角形ABC 所在平面内一点,且满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是三角形ABC 的重心; ④()tan tan ,tan a A B C =+,()1,1b =,若0a b ⋅>,则ABC 为锐角三角形; ⑤若O 为ABC 的外心,()2212AO BC b c ⋅=-. 其中正确的命题是:_______________________.(填写正确结论的编号)四、解答题29.已知O 为ABC 的外心,求证.sin sin sin 0OA BOC OB AOC OC AOB ∠+∠+∠=.30.在△ABC 中,重心为G ,垂心为H ,外心为I .(1)若△ABC 三个顶点的坐标为(),0A a ,()0,B b ,()0,0C ,证明:G ,H ,I 三点共线; (2)对于任斜三角形ABC ,G ,H ,I 三点是否都共线,并说明理由.。
湖北省武汉市第六中学平面向量及其应用综合练习题 百度文库
一、多选题1.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=-⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 2.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 3.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( ) A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭4.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=-5.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6π B .3π C .23π D .2π 6.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为27.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<8.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆外接圆半径为79.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-10.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e11.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 12.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =13.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,3B a c π=+=,则ac=( ) A .2B .3C .12 D .1314.已知ABC ∆的面积为32,且2,b c ==,则A =( )A .30°B .60°C .150°D .120°15.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同二、平面向量及其应用选择题16.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( ) A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦17.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥-18.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lg sin a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( ) A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形19.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( )A .2B .4CD .20.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=21.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对22.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒23.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,c =45B =︒,则sin C 的值等于( )A .441B .45C .425D24.若向量123,,OP OP OP ,满足条件1230OP OP OP ++=,1231OP OP OP ===,则123PP P ∆的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .不能确定 25.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形26.已知ABC 中,1,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°27.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +28.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .25929.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( )A .35 B .107C .57D .1430.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( )A B .3C D 31.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7232.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为A BC .4D .533.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A .4B .14C .4D .234.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B C .D35.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13-D .34-【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵,,与的夹角为锐角, ∴ ,且(时与的夹角为0), 所以且,故A 错误; 对于B 解析:ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a ab a a b a ⋅+=+⋅=,222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.2.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD.【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.3.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =,则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩,解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.4.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.5.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅, 即2313232BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题. 6.CD【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用()∥判断;对于D,利用C 的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量(解析:CD【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用(a b-)∥c判断;对于D,利用C的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量a=(2,1),b=(1,﹣1),则2110a b⋅=-=>,则,a b的夹角为锐角,错误;对于B,向量a=(2,1),b=(1,﹣1),则向量a在b方向上的投影为22a bb⋅=,错误;对于C,向量a=(2,1),b=(1,﹣1),则a b-=(1,2),若(a b-)∥c,则(﹣n)=2(m ﹣2),变形可得2m+n=4,正确;对于D,由C的结论,2m+n=4,而m,n均为正数,则有mn12= (2m•n)12≤(22m n+)2=2,即mn的最大值为2,正确;故选:CD.【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.7.ABD【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.【详解】解:由正弦定理得,故正确;对于,,选项:如图解析:ABD【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.【详解】 解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确; 对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数.易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个. 故B ,D 正确,C 错误.故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.8.ACD【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可.【详解】因为所以可设:(其中),解得:所以,所以A 正确;由上可知:边最大,所以三角形中角最大,又 ,所以角为解析:ACD【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可.【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确;由上可知:c 边最大,所以三角形中C 角最大, 又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小, 又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯, 所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭ 所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin C ==所以2R =,解得:R =D 正确. 故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.9.BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确;对于C 选项:,故正确;对于D 选项:,而,故解析:BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错;对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确; 对于C 选项:cos 248BD BA BC BA BC B BA BC BA ⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC.【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.10.ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.11.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.12.ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等, 解析:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确.故选:ABD【点睛】本小题主要考查向量数乘运算,属于基础题.13.AC【分析】将两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,∴①,由余弦定理可得,②,联立①②,可得,即,解得或.故选:AC.【点睛】本题考查余弦定理的应解析:AC【分析】将a c +=两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,3B a c π=+=,∴2222()23a c a c ac b +=++=①,由余弦定理可得,2222cos 3a c ac b π+-=②,联立①②,可得222520a ac c -+=, 即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 解得2a c =或12a c =. 故选:AC.【点睛】 本题考查余弦定理的应用,考查计算能力,是基础题.14.BD【分析】由三角形的面积公式求出即得解.【详解】因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin 2A =即得解. 【详解】 因为13sin 22S bc A ==,所以13222A ⨯=,所以sin 2A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 15.AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据解析:AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.二、平面向量及其应用选择题16.B【分析】 根据方程有实根得到24cos 0a a b θ∆=-≥,利用向量模长关系可求得1cos 2θ≤,根据向量夹角所处的范围可求得结果.【详解】关于x 的方程20x a x a b ++⋅=有实根 240a a b ∴∆=-⋅≥ 设a 与b 的夹角为θ,则24cos 0a a b θ-≥又20a b =≠ 24cos 0b b θ∴-≥ 1cos 2θ∴≤ 又[]0,θπ∈ ,3πθπ⎡⎤∴∈⎢⎥⎣⎦本题正确选项:B【点睛】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果. 17.D【分析】由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】 ()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈. 对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误;对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题.18.C【分析】化简条件可得sin a B c ==,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】lg lg lg sin a c B -==-,sin 2a B c ∴==.0,2B π⎛⎫∈ ⎪⎝⎭, 4B π∴=.由正弦定理,得sin sin 2a A c C ==,3sin cos sin 422C A C C C π⎫⎛⎫∴==-=+⎪ ⎪⎪⎝⎭⎭, 化简得cos 0C =.()0,C π∈,2C π∴=, 则4A B C ππ=--=, ∴ABC 是等腰直角三角形.故选:C.【点睛】本题主要考查了正弦定理,三角恒等变换,属于中档题.19.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】 由正弦定理可知2sin sin sin a b c r A B C ===已知sin cos sin a b c A B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC ,即等腰直角三角形的斜边长为所以122ABC S =⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 20.C【分析】取,a b 夹角为3π,计算排除ABD ,得到答案. 【详解】取,a b 夹角为3π,则0a b -≠,12a b ⋅=,排除ABD ,易知1a b ==. 故选:C .【点睛】本题考查了单位向量,意在考查学生的推断能力.21.B【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.【详解】 2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=. 设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力.22.C【分析】 首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=, 即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒,故选:C.【点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目.23.B【分析】在三角形ABC 中,根据1a =,42c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解. 【详解】 在三角形ABC 中, 1a =,42c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,21322142252=+-⨯⨯=, 所以5b =,由正弦定理得:sin sin b c B C=,所以2sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 24.C【分析】根据三角形外心、重心的概念,以及外心、重心的向量表示,可得结果.【详解】由123||||||1OP OP OP ===,可知点O 是123PP P ∆的外心, 又1230OP OP OP ++=,可知点O 是123PP P ∆的重心, 所以点O 既是123PP P ∆的外心,又是123PP P ∆的重心,故可判断该三角形为等边三角形,故选:C【点睛】本题考查的是三角形外心、重心的向量表示,掌握三角形的四心:重心,外心,内心,垂心,以及熟悉它们的向量表示,对解题有事半功倍的作用,属基础题.25.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】 由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 26.D【分析】由正弦定理可得,sin B =,根据b a>,可得B 角的大小. 【详解】由正弦定理可得,sin sin b A B a ==,又0,,π<<>∴>B b a B A ,60︒∴=B 或120B =.故选:D【点睛】本题考查了正弦定理的应用,考查了运算求解能力和逻辑推理能力,属于基础题目. 27.D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 28.C【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BC R A=求解. 【详解】在ABC 中,5AB AC ==,6BC =, 由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==, 由正弦定理得:625224sin 425BC R A ===, 所以258R =, 此三角形的外接圆半径是258故选:C【点睛】 本题主要考查余弦定理,正弦定理的应用,还考查了运算求解的能力,属于中档题. 29.C【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出.【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A =,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=--=.sin C ∴= 由正弦定理可得:sin sin b c B C =,∴1sin 5sin 7c B b C ===. 故选:C .【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.30.A【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解.【详解】 因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.故选:A.【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.31.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】 ()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC=-=-≥-52=.故选B.【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.32.B【分析】先根据向量的模将||+||m n n+转化为关于||n的函数,再利用导数求极值,研究单调性,进而得最大值.【详解】()22224419||=1||3m m n m n n m n=+∴+=+⋅+=,,,22n m n+⋅=,()2222=52-m n m m n n n∴+=++⋅,25||+||m n n n n∴+=-+,令()(0x x f x xn=<≤=,则()'1f x=,令()'0f x=,得x=∴当0x<<()'0f x>x<<()'0f x<,∴当2x=时,()f x取得最大值f=⎝⎭,故选B.【点睛】向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 33.B【分析】利用正弦定理可得sin2sinB C=,结合a b=和余弦定理,即可得答案;【详解】cos cos2sin cos sin cos2sinc A a C c C A A C C+=⇒+=,∴sin()2sin sin2sinA C CB C+=⇒=,∴2b c=,又a b=,∴22222114cos12422ba c bBac b⋅+-===⋅⋅,故选:B.【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 34.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,② 所以由①②可知,62ab ab -=-,即6ab =,则ABC 的面积为11sin 622S ab C ==⨯=. 故选:B【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型. 35.B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】 13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+, 56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量
一、选择题
1.已知△ABC 的三个顶点A 、B 、C 及所在平面内一点P 满足AB PC PB PA =++,则点P 与△ABC 的关系为是 ( )
A .P 在△ABC 内部 B.P 在△ABC 外部
C. P 在AB 边所在直线上
D.P 在△ABC 的AC 边的一个三等分点上
2.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5=== ( )
A .)35(2121e e +
B .)35(2121e e -
C .)53(2112e e -
D .)35(2
112e e - 3.设平面上有四个互异的点ABCD ,已知(则,0)()2=-⋅-+△ABC 的形状( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .等边三角形
4.化简)]24()82(21[31b a b a --+的结果是 ( )
A .-2
B .-2
C .-
D .- 5.对于菱形ABCD ,给出下列各式:
①= ②||||BC AB = ③||||BC AD CD AB +=- ④||4||||22AB BD AC =+2其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个
6.已知|→p |=22,|→
q |=3,→p 、→q 的夹角为45°,则以→a =5→p +2→q ,→b =→p -3→q 为邻边的平行四边形过→a 、→b 起点的对角线长为( )
A .14
B .15
C .15
D .16
7.已知A (2,3),B (-4,5),则与共线的单位向量是
( ) A .)10
10,10103(-= B.)1010,10103()1010,10103(--=或 C.)2,6(-=e D.)2,6()2,6(或-=e
8.已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为( )
A .17
B .18
C .19
D .20
9.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e
)4
3,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是( ) A .① B .①③ C .②③ D .①②③
10.若32041||-=-,5||,4||==,则与的数量积为 ( )
A .103
B .-103
C .102
D .10
11.设k ∈R ,下列向量中,与向量)1,1(-=Q 一定不平行的向量是 ( )
A .),(k k =
B .),(k k --=
C .)1,1(22++=k k
D .)1,1(22--=k k
12.已知12||,10||==b a ,且36)5
1)(3(-=,则b a 与的夹角为( )
A .60°
B .120°
C .135°
D .150°
二、填空题
13.已知向量,的夹角为
3
π,=-⋅+==||||,1||,2||b a b a b a 则 . 14.已知)2,3(=,)1,2(-=b ,若b a b a λλ++与平行,则λ= .
15.已知为单位向量,||=4,与的夹角为π32,则在方向上的投影为 . 三、解答题
17、已知(0,0),(5,4),(7,10)O A B ,若)(OB OA OP R ∈+=→→→λλ
当λ为何值时,点P 在第一、三象限角平分线上?
18、设向量)2,1(),1,3(-==OB OA ,向量OC 垂直于向量OB ,向量BC 平行于OA , 试求OD OC OA OD ,时=+的坐标.
19、设→a ,→b 是不共线的两个向量,已知→AB =2→a +k →b ,→BC =→a +→b ,=→CD →a -2→b ,
若A 、B 、D 三点共线,求k 的值.
20、已知向量→a =(1,2),→b =(-3,2)
(1)若K →a +2→b 与2→a -4→b 平行,求实数k 的值;
(2)若K →a +2→b 与2→a -4→b 垂直,求实数k 的值.
21、已知: 、、是同一平面内的三个向量,其中=(1,2)
⑴若|c |52=,且//,求的坐标;
⑵若||=
,25且2+与2-垂直,求与的夹角θ.。