导体半导体和绝缘体
简述导体,半导体,绝缘体的能带结构特点
简述导体,半导体,绝缘体的能带结构特点
1. 导体啊,就像是一条宽阔通畅的高速公路!在导体的能带结构中,导带和价带是重叠的呀。
就好比铜吧,它可以让电流毫无阻碍地通过,这多厉害呀!这就像在高速公路上开车,一路畅通无阻,这样的特点是不是很神奇呢?
2. 半导体呢,嘿,就如同一条有些特别的道路!它的能带结构中价带和导带之间有个小小的间隙,就好像硅呀。
这让它既能导电又不是那么容易导电。
这不就像是一条路有时候能走,有时候又得费点劲才能过去,是不是很有意思呀?
3. 绝缘体啊,那简直就是一条封闭的死胡同!它的能带结构中价带和导带之间的间隙可太大啦。
像橡胶,电流根本就没法通过呀!这不就像你想走一条路,结果发现被一堵高墙挡住了,根本过不去呀,这种感觉可真无奈啊!
4. 导体的特点让它在很多地方大显身手呢,比如电线呀,要是没了导体,电怎么能畅通地传到我们家里呢?这多重要啊!
5. 半导体也超级有用呀,想想那些电子器件,不都是靠半导体的特性工作的吗?没有半导体,我们哪来这么多功能强大的电子产品呀!
6. 绝缘体在生活中也有它的用处呢,电线外面那层皮就是绝缘体呀,要是没有它,那可就危险啦,你说对吧?
7. 总之呀,导体、半导体、绝缘体都各有各的特点和用处。
它们就像三个不同性格的小伙伴,共同构建了我们丰富多彩的电子世界!我们的生活可离不开它们呢!。
导体半导体和绝缘体的能带论解释
导体半导体和绝缘体的能带论解释篇一:嘿,朋友!你知道吗?在神奇的物理世界里,导体、半导体和绝缘体可有着超级有趣的秘密,而能带论就是解开这些秘密的关键钥匙!咱先来说说导体。
你想想看,导体就像是一条畅通无阻的高速公路,电子在上面能自由地奔跑,毫无阻碍。
为啥呢?因为导体的能带结构就决定了这一点!导体的价带和导带是部分重叠的,这意味着电子不需要额外的能量就能轻松地从价带跃迁到导带,然后欢快地流动起来,形成电流。
这难道不神奇吗?就好像你在游乐场里,不需要排队等待,直接就能坐上最刺激的过山车一样!再看看半导体,它就像是一个有点小脾气的家伙。
半导体的价带和导带之间有个能隙,不过这个能隙比较小。
这就像是有一道小门槛,电子要费点劲才能跨过去。
在常温下,只有一小部分电子有足够的能量跨越这个能隙,进入导带参与导电。
这是不是有点像一群小伙伴要翻过一个不太高的墙去探险,只有几个勇敢又有力气的能翻过去?而绝缘体呢,那简直就是一堵高高的围墙!绝缘体的能隙非常大,电子几乎没办法跨越这个巨大的鸿沟。
所以在一般情况下,电流在绝缘体中几乎无法通过,就好像你想翻过一座高耸入云的山峰,那几乎是不可能的事儿!有一次,我和几个物理爱好者朋友一起讨论这个话题。
小李就说:“这导体就像是个热情奔放的舞者,随时都能展现出灵动的舞姿。
”小王接着道:“那半导体岂不是个犹豫不决的孩子,有时候能勇敢地迈出一步,有时候又缩回去了。
”我笑着回应:“哈哈,那绝缘体就是个顽固的老头,把一切都拒之门外!”咱再深入想想,这导体、半导体和绝缘体的能带特性,在我们的日常生活中可有着大用处呢!比如半导体,它被广泛应用在各种电子设备里,像手机、电脑的芯片,不就是利用了半导体的特性嘛!所以啊,通过能带论来理解导体、半导体和绝缘体,就像是打开了一扇通往微观世界的神奇大门。
我们能更清楚地看到物质内部的奥秘,也能更好地利用这些特性来创造更美好的科技生活。
总之,导体、半导体和绝缘体的能带论解释让我们对物质的导电性能有了更深刻的认识,也为我们探索和利用材料的特性提供了有力的理论支持。
固体物理学§5.3 导体、绝缘体和半导体的能带论解释
情况下整个近满带的总电流。设想在空的k态中填入一个
电子,这个电子对电流的贡献为-qv(k)。但由于填入这
个电子后,能带变为满带,因此总电流为0。
I (k ) [qv(k )] 0
11
固体物理
固体物理学
I (k ) qv(k )
这表明,近满带的总电流就如同一个带正电荷q,其速度 为空状态k的电子速度一样。
进一步考查电磁场的作用时,设想在k态中仍填入一
个电子形成满带。而满带电流始终为0,对任意t时刻都成
立。
dI (k) q d v(k)
dt dt
作用在k态中电子上的外力为
q{E [v(k ) B]}
12
固体物理
固体物理学
电子的准经典运动:
dI(k ) q2
dv F dt m
{E [v(k ) B]}
ns态有一个价电子。Li:1s22s1;Na:1s22s22p63s1 等。 由N个碱金属原子结合成晶体时,原子的内层电子刚好 填满相应的能带,而与外层ns态相应的能带却只填充了 一半。因此,碱金属是典型的金属导体。
贵金属(Cu、Ag和Au)的情况(fcc结构)与碱金属相 似,也是典型的金属导体。
26
v空穴 v电子
• 空穴有效质量 m空穴 m电子
与电子有效质量相反,在价带顶,空穴有效质量为正,在导带
底为负
15
固体物理
固体物理学
二、导体、绝缘体和半导体
导体和非导体的基本能带模型
非导体中, 电子恰好填满最 低的一系列能带, 再高的各带 全部是空的,由于满带不导电, 尽管有很多电子, 并不导电。
7
固体物理
固体物理学
• 原来未满能带的电子在外电场作用 下漂移
半导体的特性
一、本征半导体的导电特性1.导体、绝缘体和半导体自然界中的物质从其电结构和导电性能上区分,可分为导体、绝缘体和半导体。
如金、银、铜、铝、铁等金属材料很容易导电,我们称它们为导休。
导体的电阻率小于10-6cm。
如陶瓷、云母、塑料、橡胶等物质很难导电,我们称它们为绝缘体。
绝缘体的电阻率大于108cm。
有一类物质,如硅、锗、硒、硼及其一部分化合物等,它们的导电能力介于导体和绝缘体之间,故称之为半导体。
半导体的电阻率在10-6~108之间。
众所周知,导体具有良好的导电性,绝缘体具有良好的绝缘性,它们都是很好的电工材料。
我们用导体制成电线,用绝缘体来防止电的浪费和保障安全。
而半导体却在很长时间被人们所不齿,因为它的导电性能不好,绝缘性能又差。
然而它的不公正待遇随着人们对它所产生的愈来愈浓厚的兴趣消失了,它终于登上了大雅之堂!这是为什么呢?这是因为它具有一些可以被人们所利用的奇妙特性。
半导体在不同情况下,导电能力会有很大差别,有时犹如导体。
在什么情况下呢?①掺杂:在纯净的半导体中适当地掺入极微量(百万分之一)的杂质,就可以引起其导电能力成百万倍的增加。
②温度:当温度稍有变化,半导体的导电能力就会有显著变化。
如温度稍有增高,半导体的电阻率就会显著减小。
同理光照也会影响半导体的导电能力。
2.本征半导体的原子结构本征半导体——非常纯净且原子排列整齐的半导体。
(纯度约为99.999999999%。
即杂质含量为10的9次方分之一。
)硅原子一14个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在三层电子轨道上。
锗原子一32个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在四层电子轨道上。
由于原子核带正电与电子电量相等,正常情况下原子呈中性。
由于内层电子受核的束缚较大,很少有离开运动轨道的可能。
所以它们和原子核一起组成惯性核。
外层电子受原子核的束缚较小。
叫做价电子。
硅、锗都有四个价电子,故都是四价元素,其简化图见电子课件。
导体、半导体和绝缘体
导体、半导体和绝缘体概述在物理学中,根据不同的导电性质,物质可以被分为三类:导体、半导体和绝缘体。
导体的电导率较高,可以轻易地传导电流,如铜、铝等金属;半导体的电导率介于导体和绝缘体之间,可以通过添加杂质等方法改变其导电性能,如硅、锗等;而绝缘体的电导率非常低,电流不能在其内部传播,如玻璃、陶瓷等。
导体物理特性导体是一种材料,能够轻松地传导电子。
这种传导过程涉及到电子的自由移动。
在导体中,电子不受束缚,被电场作用下移动自如。
这样的电子被称为自由电子。
这些自由电子随时可以离开原子,进入导体中的其他位置,并与其他自由电子碰撞,形成导电电流。
根据欧姆定律,电流强度与两端电压成正比。
就是说,电流强度增加,导体中的自由电子数量也会增加。
如果将较大的电压施加在导体上,就会增加存储在导体中的自由电子数量,进而导致电流的增加。
应用导体的导电性质使它成为许多电子应用的理想材料。
这种材料最广泛的应用是在导线和电线的制造中。
导体材料还可以用于制造电路板、集成电路、变压器等。
导体材料的进一步发展和应用为电子技术开创了更加广阔的领域。
半导体物理特性半导体材料的电导率介于导体和绝缘体之间。
在半导体材料中,电子位于能级中,分布在两侧霍尔展区的堆积能带中。
在去霍尔展区,则是禁带区。
通常情况下,半导体材料的禁带宽度远小于绝缘体材料。
半导体的本征杂质往往增加了其中的自由电子或空穴的数量。
通过加热材料,我们可以激发半导体中的电子,使之跳过禁带,并像导体中的电子一样形成电流。
在半导体中添加不同种类、不同浓度的杂质,则可以控制其电导率和其他性质。
应用半导体材料的应用很广泛,例如晶体管、太阳能电池、场效应晶体管等。
半导体在计算机技术中也扮演着重要角色,例如应用于微处理器、光学学技术等。
半导体技术用于制造现代耳机、随身听等设备。
绝缘体物理特性绝缘体的最大特点是其电导率极低,等几乎可认为不导电。
它也被称为非导体,不具有自由电子。
在绝缘体中,电子位于原子和分子中,分布在不同的能级,形成气体状态的电子云。
导体半导体和绝缘体
第一步绝热近似中,认为离子实在格点上固定不动,忽略
了晶格振动,这样在导电问题上忽略了声子与布洛赫电子的作 用;
第二步周期场近似中,认为晶格势能函数 V ( r ) 处处符合晶
格的严格周期性,忽略了晶体中的杂质和缺陷,这样在导电问 题上忽略了布洛赫电子与这些杂质和缺陷的作用。
6.8.2
纯金属的电阻率
高温 T
5 T 低温
1.实验规律:
2.理论解释 对于纯金属,杂质和缺陷可以忽略不计,电阻率主要来
自晶格振动对电子的散射作用。
虽然金属中存在大量的电子,但参与导电的仅仅是费米面附近 的电子。
电子与晶格
的相互作用
电子与声子
相互作用
费米面附近电子与
声子相互作用
费米面
E=EF的等能面称为费米面。
kh
k k k e k e
k k e
(2) E ( k h ) E ( k e ) h e
ห้องสมุดไป่ตู้
Ee (k e ) Ee ( k e ) Eh ( k e ) Eh (k h )
(3)
v( k h ) v( k e )
k h k e E h (k h ) Ee (k e )
满带:
dk 1 1 F e dt
A
k 轴上各点均以完全相同的速度移动,因此并不改变均 匀填充各 k 态的情况。从A´移出去的电子同时又从A移进
来,保持整个能带处于均匀填满的状况,并不产生电流。
导带: 在外场作用下,电子分布将向一方移,
A 破坏了原来的对称分布,而有一个小的偏移,
实际材料中存在的杂质与缺陷,也将破坏周期性势场,引 起电子的散射。在金属中杂质与缺陷的影响一般来说是不依赖 于温度T的,而与杂质、缺陷的浓度成正比。 在杂质浓度较小时,可以认为晶格振动与杂质、缺陷的散 射相互独立,总的散射概率之和用弛豫时间表示可以写成:
导体半导体与绝缘体
一、能带的填充类型
能带中的量子态
完全被占据时 满带 最高的满带 称价带
部分被占据时
完全不被占据而为空时
不满带或 空带 未满带 最低的空带或未满 带称导带
17
5画图说明导体、半导体和绝缘体能 带结构的基本特征
• 解:在导体中,除去完全充满的一系列能带外,还有只是 部分地被电子填充的能带,后者可以起导电作用,称为导 带。 • 在半导体中,由于能量最高的满带与上面的空带没有重叠, 但禁带宽度Eg小,存在一定的杂质,或由于热激发使导带 中存有少数电子,或满带中缺了少数电子,从而导致一定 的导电性。 • 在绝缘体中,电子恰好填满了最低的一系列能带,再高的 各带全部都是空的,所有被电子填充的能带都是满带,能 量最高的满带与上面的空带没有重叠,禁带宽度Eg较宽 ~ 3 eV 以上.由于满带不产生电流,所以尽管存在很多 电子,并不导电。
电子的能带填充情况就可以判断晶体 的导电性。
7
• [1] 能量最高的满带与最低的空带有重叠, 结果两个能带都不满,晶体仍是导体。 • [2] 能量最高的满带与最低的空带没有重 叠,被禁带分开,这种晶体是绝缘体或半 导体。
8
• 导体,在外电场的作用下,大量共有化电子很易 获得能量,集体定向流动形成电流。 • 绝缘体:在外电场的作用下,共有化电子很难接 受外电场的能量,所以形不成电流。从能级图上 来看,是因为满带与空带之间有一个较宽的禁带 (Eg 约3~6 eV),共有化电子很难从低能级 (满带)跃迁到高能级(空带)上去。 • 半导体:的能带结构,满带与空带之间也是禁带, 但是禁带很窄(E g 约3 eV以下 )。
12
电阻率
金属
金属电阻率随T上升而增大
半导体 半导体的电阻率即温度上升而下降
导体绝缘体半导体
光探测器利用半导体的光电效应检测光信号,广泛应用于 光纤通信、光传感等领域。
半导体材料的应用
硅材料
硅是最常用的半导体材料,具有 优良的物理和化学性质,在集成 电路、太阳能电池等领域有广泛 应用。
化合物半导体
化合物半导体如砷化镓、磷化铟 等具有更高的电子迁移率和光学 性能,在高速、高频电子器件和 光电子器件中有广泛应用。
绝缘体的原子或分子的电子结 构使其不易受到外部电场的影 响,因此其导电性能较差。
绝缘体的原子或分子的电子结 构使其不易受到外部磁场的影 响,因此其磁导率较低。
常见绝缘体材料
玻璃
玻璃是一种常见的绝缘体材料, 常用于制造绝缘器皿和绝缘材料。
塑料
塑料也是一种常见的绝缘体材料, 常用于制造电线绝缘层和电子设备 外壳。
电解质溶液
如食盐水、酸碱溶液等,也是良好的 导体。
02
绝缘体
定义
绝缘体:指在一定条件下,不导 电的物质。
绝缘体在极端的温度和压力下, 或受到某些外界因素影响时,其
导电性能可能会发生变化。
绝缘体通常具有较高的电阻,阻 止电流通过。
特性
绝缘体的电子结构使其不易失 去或获得电子,因此其导电性 能较差。
导体绝缘体半导体
目录
• 导体 • 绝缘体 • 半导体 • 导体的应用 • 绝缘体的应用 • 半导体的应用
01
导体
定义
01
导体是指能够让电流通过的物质 。在电场的作用下,导体内的自 由电子会向电场的反方向移动, 形成电流。
02
金属是最常见的导体,因为金属 内部的自由电子较多,容易形成 电流。
特性
半导体的应用
电子器件
01
半导体材料是制造电子器件的基础,如晶体管、集成电路、太
导体、绝缘体、半导体的能带结构
体中,价带电子被紧密的束缚在其原子周围。
▲ 一般来说,绝缘体的禁带宽度比较大
Eg 3 ~ 6eV
满带 绝缘体
空带
3. 导体一般有两种能带结构:
A) 价带(价电子)只填入了部分电子 B) 满带与导带(或空带)重叠
4. 半导体
半导体的能带特点: 最高的满带(价带)与最低的空带(激发
态)间的禁带宽度较小。 在外界作用下,有两个结果:
Si
Si
E
导带
施主能级 — —局域能级
Eg
满带
Ei ~ 102 eV
电子型半导体
五价原子砷掺入四价硅中,多余的
价电子环绕 As 离子运动
Si
Si
e
Si Si
Si
Si
Si
Si
Si
Si
As
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
★ P 型半导体:例如,在硅半导体中掺入少量三价元素
Si
电子
e
导带
Eg
e
禁带 满带
空穴
锗晶体中的正常键
Ge
Ge
Ge
Ge
Ge
Ge
Ge
Ge
Ge
电子被激发,晶体中出现空穴
e
e Ge
Ge
Ge
Ge
Ge
Ge
Ge
Ge
Ge
(2) 掺杂半导体: 通过掺入部分杂质,提高半导体的导电性能,改善导电机构。
★ N 型半导体:例如,在硅半导体中掺入少量五价元素
Si
Si
P
一、导体、绝缘体和半导体:
一、导体、绝缘体和半导体:大家知道,金属、石墨和电解液具有良好的导电性能,这些有良好导电性能的材料称为导体。
如电线是用铜或铝制成的,因为它们有很强的导电性和良好的延展性。
金属的导电性能由强到弱的顺序为:银、铜、金、铝、锌、铂、锡、铁、铅、汞。
居第一位的银,但因其产量少、价格贵,只在某些电气元件中少量用到。
石墨有良好的导电性,硬度低,在空气中不燃烧,是制造电极和碳刷的好材料。
金属和石墨所以具有良好的导电性,是因为它们中存在大量自由电子,。
酸、碱和盐类的熔化液也能导电。
这些溶解于水或在熔化状态下能导电的物质叫电解质。
电解质和水分子相互作用,能在溶液中分离为正离子和负离子,这些正、负离子能自由活动,形成导电溶液。
如包在电线外面的橡胶、塑料都是不导电的物质,成为绝缘体。
常用的绝缘体材料还有陶瓷、云母、胶木、硅胶、绝缘纸和绝缘油等,空气也是良好的绝缘物质。
绝缘物质的原子结构和金属不同,其原子中最外层的电子受原子核的束缚作用很强不容易离开原子而自由活动,因而绝缘体的导电作用很差。
导体和绝缘体的区别决定于物体内部是否存在大量自由电子,导体和绝缘体的界限也不是绝对的,在一定条件下可以相互转化。
例如玻璃在常温下是绝缘体,高温时就转变为导体。
此外,还有一些物质,如硅、锗、硒等,其原子的最外层电子既不象金属那样容易挣脱原子核的束缚而成为自由电子,也不象绝缘体那样受到原子核的紧紧束缚,这就决定了这类物质的导电性能介于导体和绝缘体之间,并且随着外界条件及掺入微量杂质而显著改变这类物质称为半导体。
一、导体、绝缘体和半导体:大家知道,金属、石墨和电解液具有良好的导电性能,这些有良好导电性能的材料称为导体。
如电线是用铜或铝制成的,因为它们有很强的导电性和良好的延展性。
金属的导电性能由强到弱的顺序为:银、铜、金、铝、锌、铂、锡、铁、铅、汞。
居第一位的银,但因其产量少、价格贵,只在某些电气元件中少量用到。
石墨有良好的导电性,硬度低,在空气中不燃烧,是制造电极和碳刷的好材料。
导体半导体和绝缘体的区别
导体、半导体和绝缘体的区别导体、半导体和绝缘体的区别我们知道导体是导电的那么为什么导体会导电而绝缘体又不会呢?同时我们也经常见到个词叫半导体。
半导体又是什么?那么接下来我们先来了解下他们是什么。
在了解完后再来说他们的区别吧。
导体是什么?导体(conductor)是指电阻率很小且易于传导电流的物质。
导体中存在大量可自由移动的带电粒子称为载流子。
在外电场作用下,载流子作定向运动,形成明显的电流。
金属是最常见的一类导体。
金属原子最外层的价电子很容易挣脱原子核的束缚,而成为自由电子,留下的正离子(原子实)形成规则的点阵。
金属中自由电子的浓度很大,所以金属导体的电导率通常比其他导体材料的大。
金属导体的电阻率一般随温度降低而减小。
在极低温度下,某些金属与合金的电阻率将消失而转化为“超导体”。
半导体是什么?半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。
半导体在收音机、电视机以及测温上有着广泛的应用。
如二极管就是采用半导体制作的器件。
半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。
无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。
常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
定义物质存在的形式多种多样,固体、液体、气体、等离子体等等。
我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。
而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。
可以简单的把介于导体和绝缘体之间的材料称为半导体。
与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。
本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。
导体、半导体和绝缘体
导体、半导体和绝缘体导体、半导体和绝缘体是物理学中非常重要的概念,它们是材料的电学特性的基本分类。
本文将分别介绍导体、半导体和绝缘体的概念、性质、应用和发展历程。
一、导体导体是指具有较高导电性的物质。
导体中,电子自由度较高,电子可以自由移动,用来传导电流。
常见的导体有金属、纯水和硫酸等。
导体的电阻率很低,通常用导电率来度量,即导体在电场作用下的单位面积中传导的电流的强度。
导体的制备通常是利用具有良好导电性的材料,如铜、银、金等制作成线、管、板等形状。
导体的应用极为广泛,如电线、电路、电子设备、汽车零部件等,都离不开导体。
导体在电力传输中也起到着重要的作用,导电材料的纯度和导体的制备工艺对电力传输效率和质量有着决定性的影响。
二、半导体半导体是介于导体和绝缘体之间的一种材料。
半导体中电子自由度介于导体和绝缘体之间,它们的电阻率比导体高,但比绝缘体低。
通常情况下,半导体处于物质的四种电性状态中的中间状态。
常见的半导体材料有硅、锗等。
半导体的特殊性质使其在信息技术、电子设备和光电子技术等领域中具有广泛的应用。
半导体可以用来制作晶体管、二极管、太阳能电池、光电二极管、集成电路等,这些都是现代电子技术中必不可少的组成部分。
三、绝缘体绝缘体是指电阻率极高的材料。
绝缘体内部的电子自由度很小,浑然无法被激发,电子在其中几乎不能自由移动,同时材料本身具有极高的电学阻抗。
常见的材料有玻璃、瓷器、纸张等。
绝缘体的应用领域主要包括电力绝缘材料、隔热、隔音、绝缘板材、电气设备外壳等。
绝缘体在保护电路、防止人体电击等方面也具有重要作用。
总结导体、半导体和绝缘体是电学特性分类的三大基本类别。
导体具有较高的导电性,半导体介于导体和绝缘体之间,绝缘体在电导方面表现非常差。
三种材料各有不同的用途,具有极大的应用价值。
随着科技的不断发展,导体、半导体和绝缘体在各自的领域中也不断的发挥着重要作用。
论导体、绝缘体、半导体的区别与联系
!
No. 5
T ME I EDUCATI ON Ma y
论导体 、 绝缘体 、 半导体 的 区别 与联 系
王韶 宇
摘要 : 导体 、 绝缘 体、 导体 可以从 定义和 实质 两方面来区别。定义划分 : 半 物理学 中, 导体 、 绝缘 体、 导体 主要 是根据导 电性 能的 半 强弱来 区分 的; 实质 区别 : 导体 、 绝缘 体、 导体 实质 上的 区别在 于构成 它们 的物质的微观结构 不同。但 是 , 半 导体 、 绝缘体 、 导体之 间 半 没有绝对的界 线 , 在外部条件 ( 如温度、 高压等 ) 生变化时 , f ̄ N可以相 互转化 。 发 它- l ' ]
用下 , 、 正 负离子向相反的方向发生定 向移动形成 电流 , 正离子移
意义重 大。如有 的半导 体 , 在受到压力后 电阻发生较 大变化 , 利 用这种半导体可 以做成体积很小的压敏元件 , 它可以把压力的变 化 转变成电流的变化 , 使人们测 出电流变化后 而知 压力 变化 。有 的半导体在受 热后电阻随温度的升高而迅速减小 , 利用 这种半 导 体 可以做成体积很小 的热敏电阻 , 热敏 电阻可 以用来测量大 范围 内的温度变化 , 反应快 , 而且精 确度 高。另外还有许多重要应用 , 如半导体二极管 的单 向导 电性 、 三极管 的放大作用等 。 导 体 、 缘体 、 绝 半导体之 间没有绝对 的界线 , 在外部条件 ( 如 温度 、 高压等 ) 发生变化 时 , 它们之间可 以相互转化 。有些绝缘体 可转化为导体 。如干燥 的木柴通常情况下不 导电 , 变湿后就成为 导体能 导电 了; 玻璃是相 当好的绝缘体 , 给玻璃加热 到红炽状 但
电工电子学导体、绝缘体和半导体的能带论解释
绝缘体:禁带宽度一般都较宽, Eg >几个eV。 如-Al2O3: Eg~ 8 eV;NaCl: Eg~ 6 eV。
因此几乎所有杂质原子都处于基态。如果电子在与杂质的 散射中把能量交给杂质原子,电子能量将失去过多,以致 费米球内没有空态可以接纳它。因此,杂质散射所产生的 电阻与温度无关,它是T0时的电阻值,称为剩余电阻。
通常,可用室温电阻率与
(0)之比R来表征样品的纯度。 如: (0)=1.710-9(cm)的Cu
+ ev k B
e + ev k B 为正电荷e在电磁场中所受的力。
所以,在有电磁场存在时,近满带的电流变化就如同 一个带正电荷e,具有正有效质量m*的粒子一样。
结论:当满带顶附近有空状态k时,整个能带中的电流 以及电流在外电磁场作用下的变化,完全如同一个带正 电荷e,具有正有效质量m*和速度v(k)的粒子的情况一 样。我们将这种假想的粒子称为空穴。
禁带宽度是半导体的一个重要特征参量,其大小主要决定于半 导体的能带结构,即与晶体结构和原子的结合性质等有关。
半导体价带中的大量电子都是价键上的电子(称为价电子), 不能够导电,即不是载流子。只有当价电子跃迁到导带(即本 征激发)而产生出自由电子和自由空穴后,才能够导电。空穴 实际上也就是价电子跃迁到导带以后所留下的价键空位(一个 空穴的运动就等效于一大群价电子的运动)。因此,禁带宽度 的大小实际上是反映了价电子被束缚强弱程度的一个物理量, 也就是产生本征激发所需要的最小能量。
导体超导体半导体绝缘体
导体超导体半导体绝缘体导体、超导体、半导体和绝缘体是物质的不同类型,在电子学和固态物理学中起着重要的作用。
它们在电流传导、能量传输和半导体器件等领域都有不同的应用。
在本文中,我们将深入探讨这些材料的特性、应用和区别。
一、导体1. 导体的特性导体是能够良好地传导电子的物质。
它们通常具有以下特性:- 高电导率:导体的电导率(用于衡量其导电能力)非常高,其电子能够轻松地在物质内自由移动。
- 低电阻率:由于电导率高,导体的电阻率很低,这意味着在给定的电压下,电子可以顺畅地通过导体。
- 自由电子:导体中的电子能够脱离原子,并以自由态形式存在。
2. 导体的应用导体在许多领域中都有广泛的应用,包括:- 电线和电缆:导体的高电导率使其成为电线和电缆的理想选择,用于输送电力和数据。
- 电子器件:导体材料如铜和铝在电子器件中起着重要作用,例如电路板和电动机。
- 传感器:某些导体材料具有感应外部环境变化的能力,可作为传感器使用。
二、超导体1. 超导体的特性超导体是在极低温下表现出零电阻的材料。
以下是其主要特性:- 零电阻:在超导态下,电流可以在超导体中无阻力地流动,极大地提高了电流的传导效率。
- 费米液体:超导体中的电子以费米液体的形式存在,其行为和统计特性与常规导体不同。
- 驱动电场:超导体可以抵抗外部驱动电场并排斥磁场的渗透。
2. 超导体的应用超导体的特殊性质使其在以下领域中具有广泛的应用:- 磁共振成像(MRI):超导体磁体被广泛用于医学成像中,MRI技术得益于超导体的零电阻和强磁场能力。
- 磁悬浮列车:超导磁体的强磁场性质使其成为磁悬浮列车的理想选择,在高速交通中提供无接触的悬浮效果。
- 能源传输:超导体的零电阻特性可用于高效能源传输,例如超导电缆和超导输电线路。
三、半导体1. 半导体的特性半导体是介于导体和绝缘体之间的材料,具有以下特性:- 电导率介于导体和绝缘体之间:半导体的电导率较低,但会随着温度、电场和杂质浓度的变化而改变。
固体物理学:5-3 导体、绝缘体和半导体的能带论解释
B]}
电子加速度
16
近满带电流变化
—— 正电荷q在电磁场中受到的力 电磁场中近满带电流的变化等同于 一个带正电q具 有正有效质量m*的粒子
17
结 论:
当满带顶附近有空状态 时,满带产生的电流
以及电流在外电磁场中的变化,相当于一个带正电
量为q,正质量m*、速度
的粒子,这样一个
假想的粒子称为空穴。
以上分析说明,一个晶体是否为导体,取决于电子在能带中的 分布情况,关键在于它是否具有不满的能带。 原子结合成晶体后,原子的能级转化为相应的能带。原子内层 电子能级是充满的,相应的内层能带也是满带,是不导电的。 所以,晶体是否导电取决于与价电子能级对应的价带是否被电 子充满。由于每个能带可容纳2N个电子,N是晶体原胞数目, 因此价带是否被电子填满取决于每个原胞(固体物理学原胞)所 含的价电子数目,以及能带是否有交叠。 例如: Li、Na、K等碱金属元素,是半满带导体。 二价元素Ba、Mg、Zn等是重叠带导体。 金刚石,每个原胞有两个原子共8个电子,能带又不重叠,所 以是典型的绝缘体。
—— 状态和
状态中电子的速度大小相等、方向相反
3
1) 在无外场时 和 状态电子的速度大小相等、方向相反
每个电子产生的电流
对电流的贡献相互抵消
热平衡状态下,电子占据 波矢为 的状态和占据波矢 为 的状态的几率相等
结论:无外场时晶体中的满 带不产生电流(不能 形成宏 观电流)
4
2) 在有外场 作用时
固体中导带底部少量电子引起的导电,称为电子导电
性。固体中满带顶部缺少一些电子引起的导电,称为
空穴导电性。满带中的少量电子激发到导带中,产生
的本征导电是由相同数目的电子和空穴构成的,称为
用能带理论解释导体、半导体和
材料化学1301班 冯燕萍
汇报人姓名
单/击/此/处/添/加/副/标/题/内/容
当温度接近 0 K时,电子由低能级到高能级逐个填充能带。
电子填充能带的情况 金属导体、绝缘体和本征半导体
一般,原子的内层能级都被电子填满,成为满带。价电子引起的能带(价带)可能是满带,也可能不是满带。 有些能带相互交叠形成混合能带,交叠后的能带还可能再分裂为上下两个能带。
二. 金属导体、绝缘体和半导体
1. 导体 较低的能带都被电子填满,上面的能带只是部分地被电子填充。
当无外电场时,晶体中的电子速度分布对称,不引起宏观电流。
当有外电场时,晶体中的运动着电子有些被加速,有些被减速,即有些动能增加有些动能减小。只有当电子所在的能带内有未被占据的空能级,即为非满带时,这样的跃迁才有可能实现。
本征半导体的禁带比绝缘体的窄很多,在常温下,少数电子经热激发可越过禁带跃迁到空带中,这时,半导体就具有一定的导电性。
3s
3p
Eg 禁带
空带
填满的能带
有些电子可能跃入空带
谢谢聆听
单击此处添加文本具体内容
绝缘体在外电场的作用下, 共有化电子很难接受外电场的能量,所以形不成电流。
当外电场足够强时,共有化电子还是能越过 禁带跃迁到上面的空带中,使绝缘体的击穿 。
共有化电子很难从低能级(满带)跃迁到高能级(空带)上去。
(Eg:3~6 eV)
3. 本征半导体不含杂质的纯净半导体。
当温度接近 0 K时,价带都被电子填满,价带以上的能带都是空带。因此和绝缘体一样都没有导电性。
01
03
02
一.电子填充能带的情况
满带:填满电子的能带 不满带:未填满电子的能带 空带:没有电子占据的能带 禁带:不能填充电子的能区 价带:在0k时能被电子占满的最高能 带,对半导体价带通常是慢带 导带:半导体最外面(能量最高)的 一个能带。
导体绝缘体半导体
导体绝缘体半导体介绍
导体、绝缘体和半导体是固体材料的三种基本分类,它们在电学和电子学中扮演不同的角色。
以下是它们的介绍:
1. 导体(Conductor):
-导体是那些能够轻松传导电流的物质。
它们通常具有大量自由电子,这些自由电子可以在材料内自由移动,携带电流。
-常见的导体包括金属,如铜、铝、铁等。
金属中的自由电子可以在电场的作用下形成电流。
-导体的电阻很低,电流可以在其内部自由流动,因此用于制造导线、电缆等。
2. 绝缘体(Insulator):
-绝缘体是那些电流很难通过的材料,它们具有非常高的电阻。
-绝缘体的电子几乎不会自由移动,因此电流难以在其内部流通。
-一些常见的绝缘体包括塑料、橡胶、玻璃等。
它们通常用于电线绝缘、电子设备的外壳等,以防止电流泄漏和电击。
3. 半导体(Semiconductor):
-半导体是介于导体和绝缘体之间的材料。
它们的电阻介于导体和绝缘体之间,电子运动的自由度比绝缘体高,但不如导体。
-半导体的电导率可以通过控制温度或添加杂质(掺杂)来调节。
这使得半导体在不同应用中非常有用。
-常见的半导体材料包括硅(Silicon)和锗(Germanium)。
它们在电子器件中广泛应用,如晶体管、集成电路(IC)和太阳能电池。
总结,导体、绝缘体和半导体是根据它们的电导率特性而分类的材料。
导体能够轻松传导电流,绝缘体电阻很高,电流难以通过,而半导体介于两者之间,并具有可调节电导率的特性。
这些材料在电子工程、电子设备和能源产业中发挥着不同的作用。
半导体的基本知识
+ P
- - -
_
N
外电场
内电场
R
E
(1-23)
二、PN 结反向偏置 变厚
- + + + + 内电场被被加强,多子 的扩散受抑制。少子漂 移加强,但少子数量有 限,只能形成较小的反 向电流。 +
_ P
- - -
N
内电场 外电场
R
E
(1-24)
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
(1-14)
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼 (或铟),晶体点阵中的某些半导体原子被杂质 取代,硼原子的最外层有三个价电子,与相邻的 半导体原子形成共价键时, 空穴 产生一个空穴。这个空穴 +4 可能吸引束缚电子来填补, 使得硼原子成为不能移动 的带负电的离子。由于硼 +3 原子接受电子,所以称为 硼原子 受主原子。
(1-2)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如: • 当受外界热和光的作用时,它的导电能
力明显变化。
• 往纯净的半导体中掺入某些杂质,会使
它的导电能力明显改变。
(1-3)
1.1.2 本征半导体
一、本征半导体的结构特点
现代电子学中,用的最多的半导体是硅和锗,它们 的最外层电子(价电子)都是四个。
2. 反向击穿电压UBR
二极管反向击穿时的电压值。击穿时反向电 流剧增,二极管的单向导电性被破坏,甚至 过热而烧坏。手册上给出的最高反向工作电 压UWRM一般是UBR的一半。
(1-27)
3. 反向电流 IR
指二极管加反向峰值工作电压时的反向电 流。反向电流大,说明管子的单向导电性 差,因此反向电流越小越好。反向电流受 温度的影响,温度越高反向电流越大。硅 管的反向电流较小,锗管的反向电流要比 硅管大几十到几百倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 [ E ( k e )] 1 [ E ( k e )] 2 [ k e ] [k e ] 2 k h [ k e ]
1 [ E ( k e )] 1 2 [k ] [k ] * m e e e
* me
3m 8
价带顶
1 1 d2 E 2 2 6 m * dk k e v m
* mh
* me
m 6
* me
m 6
3 π (3) p kc kv 4a
(4)
F m* a
* e m e a e
带),而在该处产生一个空穴,试求出此空穴的有效质量,波矢,
准动量,共有化运动速度和能量。
解: (1) 波矢: k h ke
(2)准动量: kh
(4) (5)
E h (k h ) E e (k e )
* m h m e*
(3) v ( k h ) v ( k e )
1 dE v ( k h ) v ( ke ) dk
2 2 6 2 6 2
ns电子填满了ns能带,但 ns能带与上面能带形成能 带交叠,故仍为导体。
6.2.3 近满带和空穴
满带中少数电子受激发而跃迁到空带中去,使原来的满带 变成近满带,近满带中这些空的状态,称为空穴。 空穴在外场中的行为犹如它带有正电荷+e。 设能带中有一个
ke
态没有电子,即能带中出现一个空穴,
来,保持整个能带处于均匀填满的状况,并不产生电流。
导带: 在外场作用下,电子分布将向一方移,
A 破坏了原来的对称分布,而有一个小的偏移,
E A
a
这时电子电流将只是部分抵消,而产生一定
的电流。
a
k
0
时
满带 导带
I=0
I 0
空带
6.2.2 导体、半导体和绝缘体的能带
导带 禁带
(2)导带:能带中只有部分电子状态被电子占据,其余为空态。
(3)近满带:能带中大部分电子状态被电子占据,只有少数 空态。
(4)空带:能带中所有电子状态均未被电子占据。
2.满带和导带中电子的导电情况 (1)无外电场 E 据右图可看出
E ( k ) E (k )
A
不论是否满带,电子填充 k 和- k 的 几率相等。
π a
A π
k
a
E
又
v( k ) v(k )
A
满带
导带
I=0
π a
A π
k
a
(2)有外电场
d k F dt
dk 1 1 F e dt
A
a
E A
k
满带:
a
k 轴上各点均以完全相同的速度移动,因此并不改变均 匀填充各 k 态的情况。从A´移出去的电子同时又从A移进
1 1 1 v (k h ) k E (k h ) k E (k e ) k e E (k e ) v (k e ) e h
(4)
* * mh me
1
* m h
1 2 E (k h ) 2 k h k h
1 E ( k h ) 2 k h k h
第 二 节 导体、半导体和绝缘体的能带论解释
本节主要内容: 6.2.1 满带电子不导电 6.2.2 导体、半导体和绝缘体的能带
6.2.3 近满带和空穴
6.2.4 金属和绝缘体的转变
§6.2 导体、半导体和绝缘 体的能带论解释
6.2.1 满带电子不导电
1.满带、导带、近满带和空带 (1)满带:能带中所有电子状态都被电子占据。
2.结构变化引起的金属--绝缘体转变(Peierls转变)
设某金属,每个原胞有1个价电子,有一个半满的导带。
使原胞的晶格常量增大, 费密半径
k F 3nπ
2 13
a n k F
半满的导带 金属 满带 绝缘体
例1:半导体材料的价带基本上填满了电子(近满带),价 带中电子能量表示式E(k)=-1.01610-34k2(J),其中能量顶点取 在价带顶,这时若k=1 106/cm处电子被激发到更高的能带(导
价带顶
2 2 2 k 0 3 2 k EV ( k ) 6m m
导带底 2 k 2 2 (k k 0 ) 2 E c (k ) 3m m
π k0 a
π 4m a
2 2 2
(1)导带底
ቤተ መጻሕፍቲ ባይዱ
dE c 0 dk
3 3π kc k0 4 4a
1 1 d2 E 2 2 * m e dk
例2:晶格常量为a的一维晶格,其价带顶附近的色散关系
k π 其中 k0 ,在导带底附近的色散 a 6m m 2 k 2 2 ( k k0 ) 2 关系为 Ec ( k ) 求: 3m m
为
kh
k k k e k e
k k e
(2) E h ( k h ) E e ( k e )
Ee ( k e ) Ee ( k e ) E h ( k e ) E h ( k h )
(3)
v(k h ) v(k e )
k h k e E h (k h ) E e (k e )
EV ( k )
2
2 0
3 2 k 2
(1)禁带宽度;
(2)导带底电子的有效质量和价带顶空穴的有效质量;
(3)电子由价带顶激发到导带底时,准动量的变化;
(4)在外电场作用下,导带底的电子和价带顶空穴的加速度;
(5)设a=0.25nm,=100v/m,请求出空穴自价带顶漂移到k0处 所需的时间。
E c min
E vmax
dE v 0 价带顶 dk
kv 0
π 12m a
2 2
2 π 6m a
E g E cmin Evmax
(2)导带底
8 1 1 d2 E 2 2 * 3m m e dk k c
8e e ae * 3m me
e
* mhah
e ah * mh
6e m
(5)
dk h e dt
t
π a 0
dt dk h e
π dkh e e a
6.2.4 金属和绝缘体的转变
1.Wilson转变: 任何非导体材料在足够大的压强下可以实现价带和导带的 重叠,从而呈现金属导电性。 典型例子:低温下固化的隋性气体在足够高的压强下可 以发生金属化的转变。 Xe在高压下5d能带和6s能带发生交叠,呈现金属化转变。 这种与能带是否交叠相对应的金属--绝缘体的转变称为 Wilson转变。从非金属态变成金属态所需的压强称为金属化压强。
空穴的波矢用 k 表示。 h
可以证明:
(1) k h k e (3) v ( k h ) v ( k e ) (2) E h ( k h ) E e ( k e )
(4)
* m h m e*
(1)
k h k e
满带中
k 0
如果满带中有一个电子逸失,系统的总波矢为空穴的波矢。
空带 禁带
导体
绝缘体
半导体
有导带
绝缘体禁带宽
半导体禁带窄
几个实例
1.碱金属 Li Na
1s 2s
2
2
1
2 6 1
1s 2s 2p 3s
ns电子只占一半能带, 为导体。
K
1s2 2s2 2p6 3s2 3p6 4s1
2.碱土金属 Be Mg Ca
1s2 2s2
1s2 2s2 2p6 3s2 1s 2s 2p 3s 3p 4s