航空发动机总体结构

合集下载

航空发动机结构实训报告

航空发动机结构实训报告

一、实训目的本次实训旨在通过实际操作,使学生深入了解航空发动机的结构特点、工作原理及维修方法,提高学生的动手能力、分析问题和解决问题的能力,为今后从事航空发动机维修工作打下坚实基础。

二、实训内容1. 航空发动机概述(1)航空发动机的定义及分类航空发动机是飞行器的心脏,其主要作用是为飞行器提供推进力。

根据工作原理,航空发动机可分为喷气式发动机、涡轮螺旋桨发动机和活塞发动机等。

(2)航空发动机的发展历程从早期的活塞发动机到现在的涡扇发动机,航空发动机在性能、可靠性、燃油效率等方面取得了巨大进步。

2. 航空发动机结构分析(1)发动机总体结构航空发动机由进气系统、燃烧室、涡轮、压气机、尾喷管等部分组成。

进气系统负责吸入空气,燃烧室负责将空气与燃料混合燃烧,涡轮和压气机负责压缩和膨胀空气,尾喷管负责将高速气流排出,产生推力。

(2)主要部件结构1)进气道:进气道负责引导空气进入发动机,减少气流对发动机内部的影响。

2)压气机:压气机将吸入的空气压缩,提高空气密度,为燃烧提供必要条件。

3)燃烧室:燃烧室是发动机的核心部分,负责将压缩后的空气与燃料混合燃烧,产生高温高压气体。

4)涡轮:涡轮将燃烧产生的高温高压气体膨胀,驱动压气机和发动机其他部件。

5)尾喷管:尾喷管将高速气流排出,产生推力。

3. 航空发动机维修实训(1)发动机拆装实训1)拆装工具的使用在拆装发动机过程中,正确使用拆装工具至关重要。

实训中,学生需掌握各种拆装工具的使用方法,如扳手、钳子、螺丝刀等。

2)发动机拆装步骤发动机拆装步骤包括:拆卸进气道、压气机、燃烧室、涡轮、尾喷管等部件,检查各部件磨损情况,进行维修或更换。

(2)发动机故障诊断与排除1)故障诊断方法故障诊断是发动机维修的关键环节。

实训中,学生需掌握以下诊断方法:观察法、听觉法、振动法、温度法等。

2)故障排除根据故障诊断结果,采取相应的维修措施,如更换磨损部件、调整间隙、润滑等。

三、实训心得1. 提高动手能力通过本次实训,我掌握了航空发动机的拆装、维修等基本技能,提高了自己的动手能力。

典型航空涡扇发动机结构分析

典型航空涡扇发动机结构分析

25
一、军用发动机——АЛ-31Ф
4) 低压联轴器结构
2013-7-31
26
一、军用发动机--- АЛ-31Ф
2013-7-31
27
一、军用发动机--- АЛ-31Ф
主动锥齿不直接定位于主轴
2013-7-31
28
一、军用发动机--- АЛ-31Ф
2013-7-31
29
一、军用发动机--- АЛ-31Ф
>10 ~10 26 26 1977 1803 0.2~0.3 0.4 F22 EF2000
一、军用发动机---PW公司
F100-PW-100
LP l-1-1,HP 1-1-0 3+10---2+2
2013-7-31
4
一、军用发动机----GE公司
F404(F110、M88类同)
LP 1-1-1, HP 1-0-1(中介支点) 3+7----1+1
2013-7-31 24
一、军用发动机——АЛ-31Ф
9 低压转子四个支点 10 低压联轴器 11 风扇为四级,带变弯度导向叶片 12 风扇四级后有处理机匣 13 风扇前三级带中间凸肩 支承
1 号支点弹性环式弹支和SFD 4 号鼠笼式弹支 6 号支点弹性环式弹支和SFD
2013-7-31
2013-7-31
34
中介轴承的使用
相应地减少一个承力框架 发动机轴的长度减少 高低压转子间的振动影响减少 相应地减少油腔和封严装置
GE公司:F101、F110、F404、CFM56 俄罗斯:AL-31F(苏27)、PD-33(米格29) PW公司:原不用 F100 后用 PW6000、F119
7
一、军用发动机----GE公司

航空发动机构成

航空发动机构成

航空发动机构成
航空发动机是由多个部分组成的。

主要部分包括以下几点:
1. 压缩机:将空气压缩并输送到燃烧室。

2. 燃烧室:将燃料和空气混合并燃烧,产生高温高压气体。

3. 高压涡轮:从燃烧室喷出来的气体转动高压涡轮,驱动压缩机。

4. 低压涡轮:高压涡轮后面是低压涡轮,它驱动飞机推进器(如风扇)。

5. 推进器:产生向后的推力,推动飞机前进。

还有其他一些重要的组成部分,例如燃油系统、点火系统、冷却系统等等。

这些部分共同协作,将燃料燃烧并产生推力,使飞机能够飞行。

航空发动机结构..

航空发动机结构..

典型军用涡扇发动机结构
EJ200涡扇发动机用于欧洲联合研制的90 年代战斗机EFA2000,为双转子加力式低涵 道比涡扇发动机,由三级风扇,五级高压压 气机、具有空气雾化喷嘴的环形蒸发燃烧室、 单级高低压涡轮、加力燃烧室和收敛-扩散式 可调喷口组成。整台发动机有5个支点,共用 两个滑油腔室,两个承力框架。
CFM56 发动机支承简图
两个转子支承于五个支点上,通过两个承 力框架将轴承负荷外传,是承力构件最少的 发动机。低压转子为0-2-1支承方案,高压转 子为1-0-1支承方案。高压转子后支点为中介 支点,支承在低压涡轮的后轴上,此种支承 方案的主要优点是结构简单,低压轴刚性好, 发动机性能保持好,重量轻,为许多军民用 发动机所采用 。
RB199发动机(装备狂风式战斗机)是军用 发动机中唯一采用三转子结构的发动机,由3 级风扇、3级中压压气机、6级高压压气机、 环形蒸发燃烧室、单级高、中压涡轮、2级低 压涡轮、加力燃烧室及可调收扩喷管等组成。 另外还装有反推力装置,以减小着陆时的滑 行距离。
RB199发动机结构图
RB199 三转子发动机支承方案简图
由于高压与中压转子长度相对较短,因此 均采用2支点支承方案,其中高压转子最短, 故采用1-0-1支承方案;在中压转子中,为缩 短2支点间距离,将3号支点置于中压压气机 之后,形成0-1-1支承方案。
Su-27的心脏А Л -31Ф 发动机
А Л -31Ф ,是由俄罗斯的“留里卡-土 星”航空航天发动机制造公司在1985年研制 的第四代单元体设计、推重比为8的涡轮风扇 发动机。该发动机有很高的可靠性及技术维 护性能。А Л -31Ф 发动机即使在今天,也是 世界上最好的航空发动机之一 。
EJ200 发动机结构图

航空发动机组成

航空发动机组成

航空发动机组成航空发动机是航空器的核心部件,它由许多不同的部件组成,本文将详细介绍航空发动机的组成部分。

1. 压气机(Compressor)压气机是发动机最重要的部分之一,它将大量的空气压缩,使其能够进入燃烧室进行燃烧,并提供发动机所需的能量。

压气机分为多级压缩机和单级压缩机两种,多级压缩机通常用于高涵道比发动机中。

2. 燃烧室(Combustion chamber)燃烧室是发动机的核心部分,燃烧室内的燃料和空气混合后进行燃烧,释放出能量,并将高温高压的燃气推向涡轮。

燃烧室的结构和设计非常重要,它必须能够承受高温高压的燃气冲击,并且不能泄漏燃气。

3. 涡轮(Turbine)涡轮是由燃烧室排放的高温高压燃气驱动的旋转部件,其主要作用是带动压气机和辅助系统。

涡轮组件由高温合金制成,以耐受高温高压燃气的腐蚀和热膨胀。

4. 喷嘴(Nozzle)喷嘴是将高温高压的燃气喷出并加速的部件,喷嘴的设计可以调节排出的燃气速度和方向,以提高发动机效率和推力。

5. 空气滤清器(Air filter)空气滤清器是防止杂质和颗粒进入发动机的部件,它非常重要,因为它可以减少发动机受损的可能性,同时保持发动机的效率。

6. 冷却系统(Cooling system)冷却系统主要是用于防止发动机过热,降温的部件。

发动机需要保持适当的温度,以防止过热和机件熔化。

冷却系统包括油冷却器、气冷器、水冷却器等不同类型的部件。

油系统主要是用于润滑发动机各个部件的部件,以减少磨损和摩擦,保持发动机运转顺畅。

油系统也可以帮助冷却发动机和清除发动机内的杂质和污垢。

燃油系统主要是提供发动机燃料,以支持燃烧室中的燃烧过程。

燃油系统包括供油系统、燃油过滤器、燃油控制阀等部件。

驱动系统是将发动机的动力传递给飞机的部件,这包括传动轴、耦合件、万向节等。

驱动系统必须能够承载发动机的高速旋转和飞机的复杂运动。

辅助系统是支持发动机正常运行的部件,这包括引气系统、启动系统、起飞和着陆制动系统等。

航空发动机结构-第七章-总体结构

航空发动机结构-第七章-总体结构

一、发动机部件所受作用力
1.2 力的传递
发动机内力
❖ 不传给飞机的力:气动力矩、部分轴向力 。
发动机外传力
❖ 推力,重量,机动飞行时的惯性力 力矩。
二、轴向力和发动机的推力
2.1各部件轴向力分布及推力的计算
推力等于所有部件轴向力之和
2.2转子轴向力及卸(减)荷措施
卸荷为什么不会影响推力
2.3涡轮与压气机轴向力不同
RB199
2.4 滚珠轴承位置
❖ 一般原则
1.尽可能不放在涡轮附近; 2.相对安装节轴向位移最小处; 3.在双支点中均放在压气机之前; 4.在三支点中大多数放在压气机之后。
2.4 滚珠轴承位置
❖ F404
2.4 滚珠轴承位置
❖ V2500
2.4 滚珠轴承位置
❖ RB199
作业
❖ 根据图册或补充讲义附图 ❖ 分析F404和V2500发动机转子支承方案形式
❖ 叶片,进气道,喷口,火燃筒。
一、发动机部件所受作用力
1.1 作用力的分类
2 惯性力、力矩
❖ 旋转或机动飞行时由于质量所产生的力 ❖ 叶片,盘等旋转件上的惯性力 ❖ 作用在转子上的惯性力矩或力偶
一、发动机部件所受作用力
1.1 作用力的分类
3 热应力
❖ 相邻的不同材料在相同温度下; ❖ 工作环境温度梯度不同时可产生;
机匣的安装边处 火燃筒 加力燃烧室
一、发动机部件所受作用力
风扇叶片
一、发动机部件所受作用力
高压压气机盘
一、发动机部件所受作用力
尾喷口
一、发动机部件所受作用力
燃烧室
一、发动机部件所受作用力
1.2 力的传递
零件内力
❖ 零件内部平衡不向外传。热应力、轮盘应力等。

航空发动机主要部件介绍

航空发动机主要部件介绍

航空发动机主要部件介绍航空发动机是飞行器的重要部件,其性能直接关系到飞行器的安全和效率。

航空发动机主要由以下几个主要部件组成:压气机、燃烧室、涡轮和喷管。

1. 压气机压气机是航空发动机的核心部件之一,其主要作用是将空气压缩,提高空气密度,从而增加燃烧时的氧气含量,提供更充分的燃烧条件。

压气机通常由多级离心式压气机和轴流式压气机组成。

离心式压气机通过旋转的离心叶片将空气向外甩出,使空气被压缩。

轴流式压气机则通过多级的气流导向叶片和压气叶片,将空气逐级压缩。

这两种压气机的结构不同,但都能有效地提高空气压缩比,增强发动机的推力。

2. 燃烧室燃烧室是航空发动机中的关键部件,其主要功能是将燃料和空气混合并燃烧,释放出巨大的能量。

燃烧室通常由燃烧室壁、喷嘴和火花塞组成。

燃烧室壁需要具备良好的散热性能和耐高温性能,以承受高温高压下的燃烧过程。

喷嘴则负责将燃料和空气混合,并喷入燃烧室中,形成可燃的混合气体。

火花塞则引燃混合气体,启动燃烧过程。

3. 涡轮涡轮是航空发动机中的另一个重要部件,其主要作用是利用高温高压气体的能量,驱动压气机和其他附件的工作。

涡轮通常由高压涡轮和低压涡轮组成。

高压涡轮负责驱动压气机,将空气压缩。

低压涡轮则负责驱动风扇,提供额外的推力。

涡轮的材料需要具备良好的耐高温性能和强度,以承受高温高速的气流冲击。

4. 喷管喷管是航空发动机的最后一个关键部件,其主要作用是将燃烧后的高温高压气体加速排出,产生巨大的推力。

喷管通常由喷管喉、喷管体和喷管尾等部分组成。

喷管喉是喷管的狭窄部分,通过喷管喉的收缩,加速气体的流速,增大喷射速度。

喷管体则负责将气体引导到喷管尾部,并产生向后的推力。

喷管尾部通常采用喷管扩张的设计,以提高喷射效果。

航空发动机的主要部件包括压气机、燃烧室、涡轮和喷管。

这些部件相互配合,共同完成空气压缩、燃烧和推力产生等工作,为飞行器提供强大的动力。

这些部件的结构和材料选择都需要经过严格的设计和测试,以确保发动机的安全可靠性和性能优越性。

航发原理总结

航发原理总结

航发原理总结一、引言航空发动机是飞机的核心动力装置,能够将燃料燃烧产生的热能转化为推力,推动飞机在空中飞行。

航发原理作为航空工程的基础,是飞行器安全可靠性的重要保障。

本文旨在对航发原理进行总结,介绍其基本构造和工作原理。

二、航发结构航空发动机由气源系统、燃油系统、点火系统、润滑系统和机体附件等部分构成。

1. 气源系统气源系统主要由进气道、压气机和燃烧室组成。

进气道负责将空气引入航发,经过压气机的压缩作用,提高气体压力和温度,使混合气更容易燃烧。

2. 燃油系统燃油系统负责将燃油输送到燃烧室,以供燃烧产生能量。

燃油系统由燃油泵、燃油喷嘴和燃油控制系统组成。

燃油泵负责将燃油从燃油箱抽取,并以一定的压力送入燃烧室。

燃油喷嘴将燃油雾化喷入燃烧室,与空气混合燃烧。

3. 点火系统点火系统负责在燃烧室中点燃燃油与空气的混合物。

点火系统包括点火塞、高压变压器和点火线圈等部件。

当点火塞接收到高压电流时,产生火花,引燃燃料,从而启动发动机。

4. 润滑系统润滑系统用于减少航发内部零部件之间的摩擦和磨损,提高发动机的运行效率和寿命。

润滑系统由润滑油泵、润滑油箱和润滑油滤清器等组成。

5. 机体附件机体附件包括空气起动器、发动机控制装置和辅助动力装置等,对航发的控制和运行起到重要作用。

三、航发工作原理航空发动机的工作原理可以总结为四个过程:进气、压缩、燃烧和喷气。

1. 进气过程进气过程是指空气通过进气道进入航发的过程。

进气道具有一定的导向和增压功能,将外界空气引导进入压气机。

由于航发运行时需要大量空气参与燃烧,进气道在设计时要保证足够的空间和气体流动性,以提供所需的气体供应。

2. 压缩过程压缩过程是指压气机将进气空气进行压缩,提高气体压力和温度的过程。

压气机通过在转子内迅速旋转的转子叶片,将进气气体进行反复压缩,提高气体的密度和温度。

3. 燃烧过程燃烧过程是指燃料在燃烧室中与压缩空气混合并燃烧的过程。

燃烧室内通过控制燃油的喷射速度和角度,使得燃油与空气充分混合,然后点火点燃。

航空发动机结构

航空发动机结构

燃烧过程
01
02
03
油气混合
燃油与压缩后的空气混合, 形成油气混合物。
燃烧反应
油气混合物在燃烧室内进 行燃烧反应,释放出大量 的热能和气体。
产生推力
燃烧产生的高温、高压气 体推动涡轮旋转,进而推 动飞机前进。
膨胀过程
燃气膨胀
01
燃烧后的高温、高压气体从燃烧室流出,进入涡轮后的扩压器。
降低压力
02
根据燃料类型,可分为燃油发动机和 燃气涡轮发动机。
根据用途,可分为民用发动机和军用 发动机。
根据工作原理,可分为活塞发动机和 喷气发动机。
02 发动机主要部件叶片对空气进 行压缩,为燃烧室提供高压空气。
压气机的效率直接影响到发动机的性 能和燃油消耗率,因此其设计和制造 要求非常高。
高强度材料
发动机中的转子、叶片等部 件需要承受高负荷,因此需 要使用高强度材料,如镍基 合金和钛合金等。
耐腐蚀材料
发动机在高温、高湿的环境 下工作,需要使用能够耐腐 蚀的材料,如不锈钢和镍基 合金等。
制造工艺流程
01
02
03
04
铸造工艺
用于制造发动机中的涡轮叶片 、导向叶片等部件,通过将熔 融金属倒入模具中冷却成型。
振动问题
如发动机振动过大,需要检查发动机的平衡性、轴承状况 、气动稳定性等,找出振动源并采取相应措施。
保养建议
严格按照制造商提供的维护手册进行保养
按照制造商提供的保养计划,定期进行保养和检查,不要错过任何重 要的维护项目。
使用高品质的油液和耗材
选择高品质的机油、燃油、滑油等油液和耗材,可以减少发动机的磨 损和故障风险。
压气机通常由多级转子组成,每一级 转子都有一定数量的叶片,通过旋转 将空气逐级压缩。

第十一讲-航空发动机总体结构(2)

第十一讲-航空发动机总体结构(2)

比较上面等式,有
( 压静 )
2018/7/24
24
第8章
航空发动机总体结构设计
三、发动机的惯性力和惯性力矩
静子机匣上的陀螺力矩:
M
G
J 0 sin
(25)
—发动机转子绕轴线的 转动惯量




的夹角
G
M


2018/7/24
25
第8章
航空发动机总体结构设计
W Pj R 2 n W g
2018/7/24 9
第8章
航空发动机总体结构设计
8.5 发动机的受力分析
气体力 惯性力(旋转件,机动飞行时) 热应力
按性质分为三类:
一、气体力的计算 由组件到整体的计算方法。 (一)进气装置上气体轴向力计算
2018/7/24
10
第8章
航空发动机总体结构设计
8.5 发动机的受力分析
2018/7/24


( 涡静 )
m gc 1um r 1m
(a )
同理,在涡轮转子叶片中,叶片给气流的扭 矩为: M'2 mg ( c2um r2m c1um r1m ) 因出口气流接近轴向,认为 c 2um 0
2018/7/24 22
第8章

航空发动机总体结构设计
M '2 mg c1um r1m M ( 涡 转 )= M '2 mg c1um r1m= M (涡静)
P3
4、盘后端面的气体力
2 4 D3P b
(c)
P4
2 4 D2P c
(d)
单级涡轮转子总的气体轴向力:

航空发动机总体结构和工作系统探析

航空发动机总体结构和工作系统探析

航空发动机总体结构和工作系统探析摘要:本文重点分析了发动机的转子结构,并对转子支承方案、支承结构和承力系统,以及相关的辅助系统和各部件之间的协调关系进行分析。

然后对其他工作系统进行简析,如滑油系统、燃油系统、除冰系统等进行简介。

关键词:发动机转子结构;转子支承方案涡喷和涡扇发动机的总体结构方案,要受到循环参数、气动参数和结构参数的影响。

例如发动机的推力与尺寸,涵道比及排气方式,总增压比与涡轮压气机转子的数目,涡轮前燃气温度及气冷式涡轮级数,燃烧室类型与排气污染限制,内外涵之间的气动联系和机械联系等。

1 转子1.1转子结构①转子系统航空发动机转子是指叶片、盘、轴及其连接结构组成的轴系,一般是由多个零部件组装而成。

转子系统是指转子及其支承结构组成的系统,其功能是承载高速旋转所产生的各种负荷。

②转子数目现代航空发动机的最大特征是采用双转子压气机和涡轮。

发动机轴的数目,在很大程度上取决于压气机的增压比。

对于军用飞机(如歼击机和强击机)所需的发动机迎面推力大,宜选用相对不高的增压比。

而对于远程运输机和民航客机上的发动机,则要求耗油率小,发动机的增压比就要提高。

所以,在一般倾向于采用高增压比发动机的情况下,所采用的增压比范围较宽。

单转子涡喷发动机结构简单,支承数目少,重量轻。

但是这种方案稳定工作范围较窄,只适用于增压比相对不高的发动机。

这种发动机的压气机须采用放气或可调静子叶片,以保证在不同使用状态下的稳定工作。

双转子和三转子方案适用于压气机增压比高的发动机,其中双转子方案用得最广。

这种方案由于每个转子的转速都可接近其的最佳值,压气机的级增压比和效率也可随之提高,因而级数有所减少。

双转子发动机方案很适合涡轮风扇发动机和加力式涡轮风扇发动机,因为外涵风扇的直径与内涵压气机的不同,它们需要不同的转速,而且取决于涵道比、风扇与压气机的直径差、以及不同组合的风扇级数与压气机级数。

在三转子方案的涡扇发动机中,其风扇、中压压气机和高压压气机分别由 3 个涡轮驱动,它们彼此独立,只有气动联系。

航空发动机结构-PPT课件

航空发动机结构-PPT课件
航空发动机结构
第二讲 几种典型的航空发动机
2.1几种典型的涡喷发动机
涡喷5发动机是典型的第一代涡轮喷气发动 机,主要结构特点是采用离心式压气机和分 管式燃烧室,是歼五,轰五型飞机的动力装 置。具体结构如下:

涡喷6发动机是歼六,强五飞机的动力装 置,涡喷六发动机是第二代涡轮喷气发动机。 主要结构特点是采用单转子轴流式压气机和 环管型燃烧室。

F119-PW-100 发动机
F119发动机支承方案简图
高压转子采用1-0-1支承方式,即转子的后 支点设在高压涡轮后,且采用了中介轴承, 即该轴承的外环固定在高压转子上,内环固 定在低压转子上。这种布局不仅减少一个承 力框架,而且高压涡轮轴轴径可做得很大, 增加了转子刚性。
三转子发动பைடு நூலகம்——RB199
由于高压与中压转子长度相对较短,因此 均采用2支点支承方案,其中高压转子最短, 故采用1-0-1支承方案;在中压转子中,为缩 短2支点间距离,将3号支点置于中压压气机 之后,形成0-1-1支承方案。
Su-27的心脏А Л -31Ф 发动机
А Л -31Ф ,是由俄罗斯的“留里卡-土 星”航空航天发动机制造公司在1985年研制 的第四代单元体设计、推重比为8的涡轮风扇 发动机。该发动机有很高的可靠性及技术维 护性能。А Л -31Ф 发动机即使在今天,也是 世界上最好的航空发动机之一 。
RB199发动机(装备狂风式战斗机)是军用 发动机中唯一采用三转子结构的发动机,由3 级风扇、3级中压压气机、6级高压压气机、 环形蒸发燃烧室、单级高、中压涡轮、2级低 压涡轮、加力燃烧室及可调收扩喷管等组成。 另外还装有反推力装置,以减小着陆时的滑 行距离。
RB199发动机结构图
RB199 三转子发动机支承方案简图

航空发动机结构_课件

航空发动机结构_课件

11:34
NPU--ZhaoMing
11
3、WS 主要部件:风扇、外涵道、内涵道(压气机、燃烧室、 涡轮),尾喷管 特点:发动机的推力是内外涵道气流反作用力的总和。 涵道比(流量比):外、内涵道空气流量之比。
11:34
NPU--ZhaoMing
12
4、WZ发动机 主要部件:进气道、压气机、燃烧室、动力涡 轮、自由涡轮、尾喷管 特点:通常带有自由涡轮,而其他形式的涡轮 喷气发动机一般没有自由涡轮。
11:34
NPU--ZhaoMing
6
航空发动机分类: 在过去的一个航空百年里,人类所使用的 主要的航空发动机,可分为两大类: 1、活塞式发动机 •冷却方式(液冷式、气冷式)。 •气缸排列方式(星形、V形、直列式、对列式、 X形) 2、空气喷气式发动机 •无压气机(冲压式发动机、脉动式发动机)。 •有压气机(涡轮喷气发动机、涡轮风扇发动机 、涡轮螺旋桨发动机、涡轮轴发动机、浆扇发 动机)。
11:34 NPU--ZhaoMing 7
11:34
NPU--ZhaoMing
8
航空燃气涡轮发动机的基本类型
按照做功方式分五种基本类型 •涡轮喷气发动机(涡喷)(WP) •涡轮螺浆发动机(涡浆)(WJ) •涡轮风扇发动机(涡扇)(WS) •涡轮轴发动机(涡轴)(WZ) •螺浆风扇发动机(浆扇)(JS)
11:34
NPU--ZhaoMing
9
1、WP 主要部件:进气装置、 压气机,燃烧室,燃气 涡轮,尾喷管,(加力燃 烧室) 特点: (1)涡轮只带动压气机 压缩空气。 (2)发动机的全部推力 来自高速喷出的燃气所 产生的反作用力。
11:34
NPU--ZhaoMing
10

常用航空发动机的结构与原理

常用航空发动机的结构与原理

常用航空发动机的结构与原理展开全文一、活塞式航空发动机为航空器提供飞行动力的往复式内燃机称为活塞式发动机。

发动机带动空气螺旋桨等推进器旋转产生推进力。

活塞式发动机由汽缸、活塞以及把活塞的往复运动转变为曲轴旋转运动的曲柄连杆机构等主要部分组成。

曲柄连接着螺旋桨,螺旋桨随着曲柄转动而转动,曲轴则支承在轴承上。

汽缸上装有进气门和排气门" 进气门是控制空气和汽油的混合气进入的零件,汽油燃烧完以后有排气门排出。

活塞式航空发动机是一种四冲程、电嘴点火的汽油发动机。

曲轴转动两圈,每个活塞在汽缸内往复运动4次,每次称1个冲程。

4个冲程依次为吸气、压缩、膨胀(作功)和排气,合起来形成1 个定容加热循环。

从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。

20 世纪40年代中期,在军用飞机和大型民用机上,燃气涡轮发动机逐步取代了活塞式航空发动机,但小功率活塞式航空发动机比燃气涡轮发动机经济,在轻型低速飞机上仍得到应用。

二、燃气涡轮发动机由压气机、燃烧室和燃气涡轮组成的发动机称为燃气涡轮发动机。

它的优点是重量轻、体积小和运行平稳,广泛用作飞机和直升机的动力装置。

核心机:在燃气涡轮发动机中,由压气机、燃烧室和驱动压气机的燃气涡轮组成发动机的核心机。

空气在压气机中被压缩后,在燃烧室中与喷入的燃油混合燃烧,生成高温高压燃气驱动燃气涡轮作高速旋转,将燃气的部分能量转变为涡轮功。

涡轮带动压气机不断吸进空气并进行压缩,使核心机连续工作。

从燃气涡轮排出的燃气仍具有很高的压力和温度,经膨胀后释放出能量(称为可用能量)用于推进。

核心机不断输出具有一定可用能量的燃气,因此又称燃气发生器。

现代燃气涡轮发动机压气机的增压比(压气机出口空气总压与进口总压之比)范围为4-28,消耗功率可高达数十兆瓦(几万马力)。

燃气涡轮前的温度可达1200-1700K。

压气机分为离心式和轴流式两类,前者增压比低、直径大,仅用于小功率发动机;后者流量大、增压比高,应用广泛。

航空燃气涡轮发动机结构

航空燃气涡轮发动机结构

航空燃气涡轮发动机结构航空燃气涡轮发动机是现代飞机所使用的主要动力装置之一。

它的结构复杂且精密,由多个部件组成,各个部件相互配合,协同工作,以提供强大的推力和高效的燃烧效率。

本文将对航空燃气涡轮发动机的结构进行详细介绍。

一、总体结构航空燃气涡轮发动机的总体结构可以分为压气机、燃烧室和涡轮三大部分。

其中,压气机负责将空气压缩,提高空气密度;燃烧室将压缩后的空气与燃料混合并燃烧;涡轮则利用燃烧产生的高温高压气体的动能驱动压气机和燃烧室,并产生推力。

二、压气机压气机是航空燃气涡轮发动机的核心部件之一,它负责将空气进行压缩,提高空气密度,为燃烧提供充足的氧气。

压气机通常由多级叶轮和定子组成,通过叶轮的旋转将空气进行逐级压缩。

叶轮上的叶片形状精确设计,使得空气在经过时能够受到最大限度的压缩和加速。

定子则起到引导空气流动的作用,使得空气能够顺利通过叶轮。

三、燃烧室燃烧室是航空燃气涡轮发动机中进行燃烧的部分,它负责将压缩后的空气与燃料混合并燃烧,产生高温高压气体。

燃烧室通常由燃烧室壁、喷油器和火花塞等组件组成。

燃烧室壁采用耐高温材料制成,能够承受高温高压气体的冲击和腐蚀。

喷油器负责将燃料喷入燃烧室,确保燃烧过程的稳定和充分。

火花塞则用于点火,引燃燃料和空气的混合物。

四、涡轮涡轮是航空燃气涡轮发动机中的另一个重要部分,它负责将燃烧室中产生的高温高压气体的动能转化为机械能,驱动压气机和燃烧室。

涡轮通常由高压涡轮和低压涡轮组成,它们分别与压气机和燃烧室相连。

高压涡轮叶片上的喷嘴将高温高压气体喷向叶片,使其旋转;低压涡轮则通过高压涡轮的轴传递动力,进一步提供推力。

五、其他部件航空燃气涡轮发动机还包括多个其他重要的部件,如燃油系统、冷却系统、起动系统和控制系统等。

燃油系统负责将燃料供给给燃烧室,确保燃烧过程的持续和稳定。

冷却系统则通过向关键部件供给冷却剂,降低其温度,保护部件不受高温的影响。

起动系统用于启动发动机,提供起动能量。

航空发动机结构

航空发动机结构

桨扇由涡轮驱动,无涵 道外壳,装有减速器, 从这些来看它有一点象 螺旋桨;但是它的直径 比普通螺旋桨小,叶片 数目也多(一般有6-8 叶),叶片又薄又宽, 而且前缘后掠,这些又 有些类似于风扇叶片。
22:49
NPU--ZhaoMing
15
使用最广泛的燃气涡轮发动机:
• 加力的涡喷发动机 • 加力的涡扇发动机 燃气涡轮发动机的共同特点:
22:49
NPU--ZhaoMing
12
4、WZ发动机
主要部件:进气道、压气机、燃烧室、动力涡 轮、自由涡轮、尾喷管
特点:通常带有自由涡轮,而其他形式的涡轮 喷气发动机一般没有自由涡轮。
22:49
NPU--ZhaoMing
13
5 桨扇发动机
螺桨风扇发动机是一种介于涡扇发动机和涡桨 发动机之间的一种发动机形式。它既可看作带除去 外涵道的大涵道比涡扇发动机,又可看作高速先进 螺桨的涡桨发动机,因而兼有前者飞行速度高和后 者耗油率低的优点。目前正处于研究和实验阶段。
桨扇发动机的概念研 究始于70年代中期。80年 代后半期已完成地面和飞 行验证试验,基本达到预 期目标。由于航空公司的 综合经济因素和公众接受 心理等种种原因,桨扇发 动机尚未进入实用阶段。
22:49
NPU--ZhaoMing
14
桨扇发动机的关键部件是先进高速螺桨,它带有多个宽 弦、薄叶型的后掠桨叶,能在飞行马赫数0.8下保持较高的效 率,见图1-6。
22:49
NPU--ZhaoMing
19
燃气涡轮发动机的工作循环
22:49
NPU--ZhaoMing
20
压气机作用:
•用来提高进入发动机内的空气压力,供给发动机工 作时所需要的压缩空气。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2.2节 转子支承方案
第2.2节 转子支承方案 2.2.1 转子支承方案 在燃气涡轮发动机中,发动机转子通过支承结 构支承 于发动 机机匣 上 。转 子上承 受的各 种负荷 (如气体轴向力、重力、惯性力及惯性力矩等)由 支承结构承受并传至发动机机匣上,最后由机匣通 过安装节传至飞机构件中。 在发动机中,转子采用几个支承结构(支点), 安排在何处,称为转子支承方案。
第2章 发动机总体结构
第2.1节 航空燃气涡轮发动机的组成 第2.2节 转子支承方案 第2.3节 联轴器 第2.4节 支承结构
第2.5节 静子承力系统
2.1 航空燃气涡轮发动机的组成
2.1 航空燃气涡轮发动机的组成
2.1 航空燃气涡轮发动机的组成
2.1 航空燃气涡轮发动机的组成 1. 进气道 用来引导足够数量的空气顺利进入压气机,在飞行速度大于压气机进口气流 速度时,还可起到提高空气压力的作用(冲压作用)。进气道在结构上往往 属于飞机机体的一部分,但在作用上属于发动机的组成部分。 2. 压气机
图2-7 0-2-0支承方案
图2-8 1-0-1支承方案
二、双转子和三转子支承方案
多转子发动机中,转子数多,支承数目多,而且低压转 子轴要从高压转子轴中心穿过,使结构复杂,但原则上仍以 每个转子分别进行处理。
与单转子发动机不同的是,有些支点不直接安装在承力 机匣上,而是装在另一个转子上,通过另一转子的支点将负 荷外传,由于这个支点是介于两个转子之间的,所以称为中 介支点。中介支点中的轴承,则称为中介轴承或轴间轴承。 在多数发动机中,采用中介支点,可使发动机长度缩短,承 力机匣数减少。但是轴间轴承的润滑较困难,轴承工作条件 较差,而且装拆也比较复杂。
2. 压气机
用来压缩空气,提高空气压力。有轴流式压气机和离心式压气机。
3. 燃烧室
由喷嘴喷出适量燃料,同压气机流来的空气混合,组织燃烧, 产生高温燃气。
4. 涡轮
在高压高温燃气推动下旋转,带动压气机工作。
5. 尾喷管
高温高压燃气充分膨胀,将部分热能转换为动能,高速向外喷出,产生反作 用推力。
低压转子:0-1-1 高压转子:1-1-0 图2-9 JT9D发动机的支承方案
低压转子:0-2-1 高压转子:1-1-0
图2-10 PW4000发动机的支承方案
低压转子:0-2-1 高压转子:1-0-1 图2-11 CFM56发动机转子支承方案简图
低压转子:0-2-1 中压转子:1-2-0 高压转子:1-0-1 图2-12 RB211三转子发动机的支承方案
பைடு நூலகம்
2.2.2 止推支点在转子中的位置 转子上的止推支点除承受转子的轴向负荷、径向 负荷外,还决定了转子相对于机匣的轴向位置,因此 每个转子只能有一个止推支点。由于此支点所承受的 负荷较大,一般应置于温度较低的地方。例如,在两 支点的转子上,止推支点应是转子的前支点;在三支 点的发动机中,止推支点最好置于压气机之后。这种 安排,不仅可以使轴承在较低的温度环境下工作,也 使转子相对机匣的轴向膨胀分配在压气机与涡轮两端, 使两端的轴向错移量较小。
图2-2 浮动套齿联轴器
J47单转子涡轮喷气发动机转子的1-3-0四支点 支承方案。
图2-3 1-3-0的四支点支承方案
2) 3支点方案
图2-4 1-2-0的三支点支承方案
3) 2支点方案
点图 支 承 方 案 的 两 支 点图 支 承 方 案 的 两 支 2-6 1-1-0 2-5 1-0-1
用来压缩空气,提高空气压力。有轴流式压气机和离心式压气机。
3. 燃烧室 由喷嘴喷出适量燃料,同压气机流来的空气混合,组织燃烧,产生高温燃气。
4. 涡轮
在高压高温燃气推动下旋转,带动压气机工作。 5. 尾喷管
高温高压燃气充分膨胀,将部分热能转换为动能,高速向外喷出,产生反作 用推力。
1. 进气道
用来引导足够数量的空气顺利进入压气机,在飞行速度大于压气机进口气流 速度时,还可起到提高空气压力的作用(冲压作用)。
1-3-0
表示:压气机转子前有一个支点,涡轮转子后无支点, 压气机与涡轮转子间有三个支点,整个转子共支承于 四个支点上。
一、单转子支承方案 1) 4支点方案
图2-1 1-3-0的四支点支承方案
在这种支承方案中,涡轮转子和压气机转子间的 联轴器仅传递扭矩,考虑到两个转子的四个支点很难 保证同心,因此采用了浮动套齿的联轴器结构。
转子支承方案的表示方法(简图和代号):
在研究转子支承方案时,均将复杂的转子简化成能表
征其特点的转子支承方案简图,在简图中小
圆圈表示滚珠轴承,小方块表示滚棒轴承。
转子支承方案的表示方法(简图和代号):
转子支点的数目与位置,常用 转子支承方案
代号来表示。两条前后排列的横线分别代表压气机
转子和涡轮转子,两条横线前后及中间的数字表示支 点的数目。 例如:
相关文档
最新文档