人教版初一数学知识点总结
初中数学知识点总结人教版(精选7篇)
初中数学知识点总结人教版(精选7篇)初中数学知识点总结篇一1、一元一次方程根的情况△=b2-4ac当△0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
初中九年级数学知识点总结篇二第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a1;D.积为1.4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
人教七年级数学上知识点
人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
人教版初一数学主要知识点最新总结
人教版初一数学主要知识点最新总结初一是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合。
下面是小编为大家整理的关于最新人教版初一数学主要知识点,希望对您有所帮助!初一数学综合知识点总结实数1 平方根如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。
2 立方根如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。
3 实数无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
人教版初一数学重要知识点汇总
人教版初一数学重要知识点汇总初一数学知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.(3)列:根据等量关系列出方程.(4)解:解方程,求得未知数的值.(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.初一数学方法技巧1.请概括的说一下学习的方法曰:“像做其他事一样,学习数学要研究方法。
我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。
2.请谈谈超前学习的好处曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。
经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。
”其次,够消除对新知识的“隐患”。
超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。
相反地,若直接听别人说。
似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。
人教版初一数学知识点总结
千里之行,始于足下。
人教版初一数学知识点总结
人教版初一数学知识点主要包括以下内容:
一、数与式
1. 整数的概念及运算:正整数、零、负整数的概念、整数的加减法、整数的乘法、整数的除法、乘法消去律、除法和零的关系。
2. 小数的概念及运算:小数的定义、小数的加减法、小数的乘法、小数的除法、小数的大小比较、小数和整数进行运算。
3. 分数的概念及运算:分数的定义、分数的相等、分数的大小比较、分数的加减法、分数的乘法、分数的除法。
二、代数表达式
1. 代数表达式的概念及基本运算:代数表达式的定义、代数式的计算、同类项的合并、代数式的加减法、代数式的乘法。
2. 一元一次方程:方程的概念、解一元一次方程的方法、方程与解的关系、应用题。
三、图形与变换
1. 点、直线、线段的概念:点的位置、点的坐标、直线的定义、线段的定义。
第1页/共2页
锲而不舍,金石可镂。
2. 角的概念及度量:角的概念、角的度量、角的比较、角的运算。
3. 二维图形的概念及性质:三角形、四边形、五边形、六边形的概念和性质、正方形、长方形、平行四边形的性质。
4. 图形的位置与方向关系:平移、旋转、翻转的概念及性质。
四、数据与图表
1. 数据的收集与整理:数据的调查、数据的整理与分类、数据的图表表示。
2. 统计指标:平均数、中位数、众数等统计指标的概念及计算。
以上就是人教版初一数学知识点的主要内容总结,希望对你有所帮助。
2024年人教版七年级数学知识点总结(2篇)
2024年人教版七年级数学知识点总结一、有理数1. 有理数的概念:有理数是可以表示为两个整数的比值的数。
2. 有理数的分类:整数、分数、零。
3. 有理数的表示形式及比较大小:分数、小数、整数。
二、整数1. 整数的概念:由整数可以用整数1表示,包含正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法的运算法则。
3. 知识点:正负整数的加减法、乘法及除法的运算规则。
三、分数1. 分数的概念:分母为0的数除外,一个不能化为整数的数叫分数。
2. 分数的基本概念:分子、分母、真分数、假分数和带分数。
3. 分数的化简和等值分数:化简分数的方法,等分数的概念。
4. 分数的加减法:同分母的分数相加减,异分母的分数相加减。
5. 分数的乘法:分数与整数相乘,分数之间相乘。
6. 分数的除法:分数与整数相除,分数之间相除。
四、小数1. 小数的概念:有限小数和无限循环小数。
2. 小数的读法和写法:小数的读法,小数的书写规则。
3. 小数的四则运算:小数的加减法,小数的乘法,小数的除法。
4. 小数与分数的相互转换:小数转分数,分数转小数。
五、实数1. 实数的定义:有理数和无理数的统称。
2. 无理数的概念:不能表示为两个整数之比的数,如根号2,根号3等。
六、代数式与方程式1. 代数式的概念:用字母表示数的式子。
2. 方程式的概念:含有等号的代数式叫做方程式。
3. 一元一次方程的解:方程的根、方程的解集。
4. 一元一次方程的应用:利用一元一次方程解决实际问题。
七、比例与百分数1. 比例的概念:两个含有比的式子叫做比例。
2. 比例的性质:比例的基本性质、相等比例的性质。
3. 比例的计算:已知两个相等比例的三个量中的任意两个量,可以求出第三个量。
4. 百分数的概念:以百分号表示的数。
5. 百分数与分数、小数的相互转换。
6. 增长量和减少量的计算:已知原数和增长量(减少量)之比和增长率(减少率),可以求出增加量(减少量)。
八、平面图形的初步认识1. 二维图形的分类:几何图形、点、线段、直线、角、多边形、平行四边形、正方形、长方形、正三角形、等腰三角形。
人教版七年级数学知识点归纳
人教版初一数学知识点总结1(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.人教版初一数学知识点总结2一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。
它们都是比0小的数。
0既不是正数也不是负数。
我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。
有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。
人教版初一数学上册知识点总结
人教版初一数学上册知识点总结
一、数与代数
1. 有理数的加法和减法
- 有理数的定义
- 加法运算规则
- 减法运算规则
- 有理数的加减混合运算
2. 有理数的乘法和除法
- 乘法运算规则
- 除法运算规则
- 有理数的乘除混合运算
- 有理数的乘方
3. 代数表达式
- 字母表示数
- 单项式
- 多项式
- 代数式的简化和变形
4. 一元一次方程
- 方程的概念
- 解方程的基本方法
- 方程的应用问题
二、几何
1. 线段、射线、直线
- 线段的性质
- 射线的定义
- 直线的性质
2. 角
- 角的定义
- 角的分类
- 角的度量
3. 三角形
- 三角形的基本性质
- 等边三角形、等腰三角形的性质 - 三角形的内角和外角
4. 四边形
- 四边形的基本性质
- 平行四边形的性质
- 矩形、菱形、正方形的性质
三、统计与概率
1. 统计
- 数据的收集和整理
- 频数和频率
- 统计图表的绘制和解读
2. 概率
- 随机事件的概率
- 简单事件的概率计算
- 概率的直观理解
四、应用题
1. 利用数学知识解决实际问题
- 列方程解应用题
- 利用几何知识解决实际问题
- 统计与概率在实际问题中的应用
请注意,以上内容仅为人教版初一数学上册知识点的概要总结,具体每个知识点的详细解释和例题解析需要根据教材内容进行深入学习和理解。
教师和学生可以根据这个框架来组织教学和复习计划,确保对每个知识点都有充分的掌握。
知识点归纳总结人教版初一数学
知识点归纳总结人教版初一数学初一数学是中学数学的基础阶段,涵盖了许多重要的数学概念和运算技能。
以下是初一数学的主要知识点归纳总结:1. 有理数:包括正数、负数和零,以及它们的加减乘除运算。
理解有理数的运算规则是解决更复杂数学问题的基础。
2. 代数式:学习如何使用字母表示数,以及如何进行代数式的加减、合并同类项等运算。
3. 一元一次方程:掌握解一元一次方程的方法,包括移项、合并同类项、系数化为1等步骤。
4. 平面几何:包括线段、直线、射线、角的概念,以及平行线和垂线的性质。
5. 三角形:了解三角形的分类(如等边、等腰、直角三角形),以及三角形的内角和定理。
6. 四边形:学习四边形的分类,如平行四边形、矩形、菱形、正方形等,以及它们的性质和判定方法。
7. 多边形的内角和外角:掌握多边形内角和的计算公式,以及外角和的性质。
8. 图形的对称性:包括轴对称和中心对称的概念,以及如何判断一个图形是否具有对称性。
9. 图形的平移、旋转和轴对称:理解这些几何变换对图形形状和位置的影响。
10. 统计与概率:学习收集和整理数据的方法,以及如何使用图表(如条形图、折线图)来表示数据。
同时,了解概率的基本概念。
11. 实数:在有理数的基础上,引入无理数,形成实数的概念,并学习实数的运算。
12. 代数方程:除了一元一次方程,还会接触到一元二次方程的解法,如因式分解、配方法等。
13. 不等式:学习不等式的基本概念和解法,包括不等式的加减、乘除运算。
14. 函数的初步:了解函数的概念,以及如何用图形表示函数关系。
这些知识点构成了初一数学的核心内容,为后续的数学学习打下坚实的基础。
掌握这些概念和技能,不仅有助于提高数学成绩,还能培养逻辑思维和问题解决能力。
(完整版)人教版初一数学知识点总结
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版初一数学主要知识点
人教版初一数学主要知识点初中数学必考知识点篇一1、数轴(1)数轴的概念:定义原点、正方向、单位长度的直线称为数轴。
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有有理数都可以用数轴上的点来表示,但不是所有数轴上的点都表示有理数。
(一般右方向就是正方向,数轴上的点对应任意实数,包括无理数。
)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2、相反数(1)对跖的概念:只有两个符号不同的数叫做对跖。
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3、绝对值1.概念:数轴上的一个数到原点的距离称为这个数的绝对值。
①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。
③有理数的绝对值都是非负数。
2、如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零。
即|a|={a(a>0)0(a=0)﹣a(a<0)4、有理数大小比较1、有理数的大小比较数轴可以用来比较有理数的大小,它们的顺序是从左到右,即从大到小(数轴上表示的两个有理数右边的数总是大于左边的数);还可以利用数字的性质比较两个不同符号和0的数字的大小,利用绝对值比较两个负数的大小。
2、有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。
初一数学上册知识点总结人教版
初一数学上册知识点总结人教版数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。
以下是我整理的初一数学上册学问点总结人教版【三篇】,仅供参考,大家一起来看看吧。
【篇1】初一数学上册学问点总结人教版第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不行)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:假如a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、肯定值:在数轴上,一个数所对应的点与原点的距离,叫做该数的肯定值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的肯定值是它本身;负数的肯定值是它的相反数;0的肯定值是0。
互为相反数的两个数的肯定值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,肯定值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数确定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为零,积就为零。
有理数加法法则:同号两数相加,取相同的符号,并把肯定值相加。
异号两数相加,肯定值值相等时和为0;肯定值不相等时,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。
人教版数学初一知识点总结
人教版数学初一知识点总结人教版数学初一学问点总结在学习中,是不是听到学问点,就立即糊涂了?学问点是指某个模块学问的重点、核心内容、关键部分。
信任许多人都在为学问点发愁,下面是我为大家整理的人教版数学初一学问点总结,仅供参考,期望能够帮忙到大家。
数学初一学问点总结1相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数。
(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.假如给出的代数式可以化简,要先化简再求值。
题型简洁总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简。
由三视图推断几何体(1)由三视图想象几何体的外形,首先,应分别依据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的外形,然后综合起来考虑整体外形。
(2)由物体的三视图想象几何体的外形是有肯定难度的,可以从以下途径进行分析:①依据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的外形,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简洁的几何体的三视图对简单几何体的想象会有帮忙;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法数学初一学问点总结21.不等式:用符号"","≤","≥"表示大小关系的式子叫做不等式。
七年级上册数学知识点归纳人教版
七年级上册数学知识点归纳人教版初一上册数学重要知识点归纳总结正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
有理数1.定义:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
5.有理数的加减法同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
6.有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积为0.例:0×1=07.有理数的除法除以一个不为0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不为0的数,都得0。
8.有理数的乘方求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。
其中,a叫做底数,n 叫做指数。
当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
一元一次方程1.等式:用“=”号连接而成的式子叫等式。
2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
人教版七年级数学知识点总结梳理
人教版七年级数学知识点总结梳理初一下册数学复习资料概念知识1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
初一数学知识点归纳总结人教版(最全)
初一数学知识点归纳总结人教版(最全)七年级数学知识点总结1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.初中数学的学习方法一、抓住课堂理科学习重在平日功夫,不适于突击复习。
平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。
同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
二、高质量完成作业所谓高质量是指高正确率和高速度。
写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。
人教版初一数学上册知识点归纳总结
人教版初一数学上册知识点归纳总结人教版初一数学上册知识点归纳总结,让我们一起来了解一下吧!我们要学好加减法。
加减法是我们日常生活中最基本的计算方法,比如说买东西、做饭等等。
我们要熟练掌握加减法的口诀和技巧,这样才能在生活中游刃有余哦!我们要学会分数。
分数是数学中的一个很重要的概念,它可以用来表示一个整体被分成若干份后所占的比例。
比如说,如果你吃了一块蛋糕的一半,那么你就吃掉了蛋糕的二分之一。
这个概念在生活中也很常见,比如说你要把一块巧克力分成几块给小伙伴们分享。
我们要学习代数式。
代数式是数学中的一种表达式,它可以用来表示一些数量之间的关系。
比如说,如果你有三个苹果,再加上两个香蕉,那么你一共有多少个水果呢?这个问题可以用代数式来解决:3+2=5。
学好代数式对我们来说非常重要哦!我们要学习几何图形。
几何图形是数学中的一个很重要的概念,它可以用来描述一些空间中的形状和大小关系。
比如说,如果你要画一个正方形,那么你需要知道正方形的四条边都相等,四个角都是直角。
学好几何图形可以帮助我们更好地理解世界哦!我们要学习数据分析。
数据分析是现代社会中非常重要的一项技能,它可以用来分析和解决各种问题。
比如说,如果你要开一家餐厅,那么你需要了解顾客的口味偏好、消费习惯等等信息,才能做出更好的经营决策。
学好数据分析对我们的未来发展非常重要哦!人教版初一数学上册知识点归纳总结包括了加减法、分数、代数式、几何图形和数据分析等内容。
这些知识点在我们日常生活中都有广泛的应用,学好它们可以帮助我们更好地理解和应对各种问题。
大家一定要认真学习哦!。
人教版初一数学知识点
人教版初一数学知识点人教版初一数学知识点概述一、数与代数1. 有理数的混合运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法- 绝对值的概念和性质- 有理数的比较大小2. 整式的加减- 单项式和多项式的定义- 合并同类项- 去括号法则- 因式分解的初步概念3. 一元一次方程- 方程的建立和解法- 等式的基本性质- 解方程的应用题4. 线性不等式和不等式组- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组二、几何1. 平面图形的认识- 点、线、面的基本性质- 直线、射线、线段- 角的概念和分类(如:锐角、直角、钝角)2. 角的度量- 角的表示方法- 角的度量单位(度)- 角的和差计算3. 三角形的基本性质- 三角形的定义和分类- 三角形的内角和定理- 等腰三角形和等边三角形的性质4. 四边形的基本性质- 平行四边形的性质- 矩形、菱形、正方形的性质- 四边形的内角和定理5. 图形的变换- 平移、旋转、对称(轴对称和中心对称)的概念 - 图形变换的应用三、数据的收集、整理与描述1. 统计初步- 数据的收集方法- 频数和频率的概念- 简单统计图表的绘制(如:条形图、饼图)2. 概率初步- 随机事件的概念- 可能性的判断四、应用题的解题方法1. 列方程解应用题- 根据问题情境建立方程- 解方程得到答案2. 利用图形解应用题- 利用图形的性质解决实际问题- 绘制示意图帮助解题以上是人教版初一数学的主要知识点概述。
在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和计算方法,通过大量的练习题来巩固和深化理解。
同时,解题技巧和应用能力的培养也是非常重要的。
教师和家长应鼓励学生积极参与课堂讨论,提出问题,并尝试独立解决问题,以培养其数学思维和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成qp(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正有理数(2)有理数的分类:①有理数零正整数正分数正整数整数零②有理数负整数负有理数负整数负分数分数正分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a0)(2)绝对值可表示为:a0 (a0)或aa (a0)a(a0)a(a0);绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上 的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.16.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a ≠0,那么 a 的倒数是 ;a若 ab=1 a 、b 互为倒数;若 ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+ (b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a -b=a+(-b ). 9 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个 数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12 .有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a即 无意义 .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)=-a 或(a -b)=-(b-a) ,当 n 为正偶数时: (-a)=a 或 (a-b)=(b-a) . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于 10 的数记成 a×10 的形式,其中 a 是整数数位只有一位的数, 这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似 数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正 负数、相反数、绝对值的意义所在。
重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生n n n n n n n n n的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。
教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第二章一元一次方程一.知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间速度距离时间时间距离速度;(2)工程问题:工作量=工效·工时工效工作量工时工作量工时;工效(3)比率问题:部分=全体·比率比率部分全体全体部分比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·110,利润=售价-成本,售价 成本利润率100% ;成本(6)周长、面积、体积问题:C =2πR ,S =πR ,C圆圆=2(a+b),S长方形=ab , C长方形=4a ,正方形S =a 正方形2 ,S =π(R 环形 -r),V =abc ,V =a ,V =πR 长方体 正方体 圆柱 1 h ,V = πR 圆锥2 h.本章内容是代数学的核心,也是所有代数方程的基础。
丰富多彩的问题情境和解决问题 的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有 效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力, 体会数学思想方法。
第三章 图形的认识初步 知识框架本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认 识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认 识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线 段和角. 本章书涉及的数学思想:1.分类讨论思想。
在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形 时,应注意图形的各种可能性。
2.方程思想。
在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。
在研究角的概念时,要充分体会对射线旋转的认识。
在处理图形时应注 意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。
在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具 体运用上来。
七年级数学(下)知识点2 2 23 2 3人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。