鸡兔同笼评课稿讲课稿
鸡兔同笼评课稿
鸡兔同笼评课稿一、引言鸡兔同笼是一种经典的数学问题,其背后包含了许多有趣的数学思维和解题方法。
在数学教学中,通过引入这样的问题,可以培养学生的数学思维能力和解决问题的能力。
本评课稿将以鸡兔同笼为主题,探讨如何在课堂中引导学生解决这个问题。
二、问题描述鸡兔同笼问题是一个经典的数学问题,其描述为在一个笼子里有若干只鸡和兔,总共有35个头和94只脚。
要求学生推算出鸡和兔的数量。
三、解题思路1. 定义变量:假设鸡的数量为x,兔的数量为y。
2. 建立方程:根据题目描述,可以得到两个方程式:x + y = 35 (鸡兔总数量为35)2x + 4y = 94 (鸡的脚数为2,兔的脚数为4)四、解题过程通过解二元一次方程组,可以得到鸡和兔的具体数量。
1. 解方程组:可以将其中一个方程式转化,得到x的表达式:x = 35 - y。
将该表达式代入第二个方程式中,得到:2(35 - y) + 4y = 94。
化简后得到:70 - 2y + 4y = 94。
继续化简,得到:2y = 24。
因此,可以得到:y = 12。
2. 根据y的值,代入x的表达式中,得到x的值:x = 35 - 12 = 23。
五、答案验证将得到的x和y的值代入原问题中,可以验证答案是否正确。
鸡的数量为23只,兔的数量为12只。
鸡的脚数为46,兔的脚数为48。
总共有23 + 12 = 35个头和46 + 48 = 94只脚,与题目描述相符。
六、教学设计1. 导入环节:通过提出一个引人入胜的问题,如“在一个笼子里鸡腿和兔腿一共有94只,鸡的数量是兔的数量的两倍,那么鸡和兔的数量各是多少?”引发学生的思考。
2. 提出问题:介绍鸡兔同笼问题,描述问题的背景和要求,引导学生提出解决问题的思路。
3. 解题过程:引导学生利用代数的思想解决这个问题,通过建立方程和求解方程组的方法,得到答案。
4. 答案验证:引导学生将得到的答案代入原问题中进行验证,培养学生的数学严谨性和解题的技巧。
鸡兔同笼问题评课发言稿
鸡兔同笼问题评课发言稿尊敬的评委老师、观众朋友们:大家好!我是今天的评课人员,很荣幸能够在这里给大家分享我对鸡兔同笼问题的评课。
本次评课主题是“鸡兔同笼问题的启发式解法”,我会从问题引入、解题步骤以及教学反思三个方面来向大家展示我的评课内容。
首先,我想先给大家介绍一下鸡兔同笼问题。
这个问题是一个经典的数学问题,也是一个让很多学生头疼的问题。
问题的描述是这样的:在一个笼子里有鸡和兔子,一共有35个头和94只脚。
问笼中分别有多少只鸡和兔子?这个问题看似简单,实际上却需要我们巧妙地应用数学知识和逻辑思维来解决。
在引入问题之后,我通过引导学生观察、分析和思考的方式,激发学生的兴趣,并引导他们思考如何解决这个问题。
在这个过程中,我会提出一些启发性的问题,如:鸡和兔子的总数是固定的吗?鸡和兔子的脚数和头数有什么关系?学生通过思考这些问题,逐渐意识到解决问题的关键在于建立鸡和兔子数量之间的数学关系。
接下来,我会向学生介绍一种启发式解法——代数解法。
通过设定变量,建立鸡和兔子数量之间的关系式。
然后,利用头和脚的总数限制条件,解方程组,求出鸡和兔子的数量。
这种解法相对简单明了,能够帮助学生快速解决问题。
当然,我也会引导学生思考是否存在其他解法,并探讨各种解法之间的优缺点。
在解题步骤方面,我会引导学生思考如何表达鸡和兔子的数量关系。
通过绘制表格,列出鸡和兔子的数量,并填写头数和脚数两栏。
学生通过分析表格数据,逐渐发现鸡和兔子的数量是满足一定规律的,从而引发他们对数学规律的思考和探索。
我还会向学生介绍一些常见的数学表达方式,如等式、方程、未知数等,帮助他们学会如何用数学语言来描述问题和解决问题。
在评课的最后一个部分,我将进行教学反思。
在这个环节中,我会总结一下本节课的亮点和不足,并提出改进建议。
首先,本节课的亮点是通过引导学生观察、分析和思考的方式,激发了他们的学习兴趣。
同时,采用启发式解法,让学生在解决问题的过程中能够主动思考和探索,培养了他们的创新意识和解决问题的能力。
《鸡兔同笼》评课稿
《“鸡兔同笼”》评课稿——陈小京老师《鸡兔同笼》一课张中凤鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。
问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23)。
鸡兔同笼问题,其中蕴含了怎样的数学思想呢?今天,有幸听了陈老师对鸡兔同笼问题的教学组织和各位老师对本课的点评,不仅让我对鸡兔同笼问题有了进一步的了解和思索,更让我对陈老师细致的课堂中体现的教学智慧赞叹不已。
一、细致的课堂关注每位孩子的成长鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为五年级数学附加的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。
从陈老师的课堂上可以看出,陈小京老师关注了每个孩子的成长和体验。
从列表的枚举法到跳跃的尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验。
二、细致的课堂关注数学思想的传承解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。
然而,一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。
陈老师选取了适合孩子们认知的方式的,以列表的一一对应思想和算术解决的假设模型为本课数学思想的重点渗透,让孩子们从两个层次,深入探讨学习内容,并在学习解决问题的过程中,体会数学思想,正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。
三、细致的课堂体现教师智慧的设计教学的组织展开,体现了教师的教学设计是可操作的,具备良好互动的课堂学习的开展,更是教师智慧的设计体现。
小学数学《鸡兔同笼》评课稿
小学数学《鸡兔同笼》评课稿评课稿:小学数学《鸡兔同笼》一、引言:《鸡兔同笼》是小学数学中一个常见的解决问题的应用题,它既能培养学生数学思维能力,又能拓展学生的解决问题的能力。
本文主要分析了《鸡兔同笼》这个应用题在小学数学课堂中的教学设计和实施过程,以及对学生的启发和帮助。
二、教学目标:1. 认识问题中的已知与未知,并学会将问题转化为代数式;2. 培养学生运用代数表达式解决实际问题的能力;3. 激发学生思考问题的乐趣,培养学习数学的兴趣。
三、教学准备:1. 教师准备:(1)了解学生对《鸡兔同笼》这个问题的理解程度;(2)准备合适的教学资源,如实物模型、图片等;(3)了解学生已经掌握的数学知识,为后续教学提供指导。
2. 学生准备:(1)回顾已学的有关代数表达式的知识;(2)做好课前预习,熟悉《鸡兔同笼》这个问题的提问方式及解决方法。
四、教学过程:1. 导入:通过引入一个类似《鸡兔同笼》的问题,引起学生的思考和兴趣。
比如:小明家有一堆圆球,其中既有蓝球,又有红球,有的学生说有20个球,有的说有30个球,请你们选一种球,用变量表示球的个数,列出可能的解,并用代数表达式表示。
2. 提问和解决问题:教师出示题目:“小明家里有鸡和兔子共25只,脚一共有70只,请问鸡和兔子各几只?”学生通过思考可以得出任意一种可能的答案,如25只兔子和没有鸡;16只兔子和9只鸡等等,并用变量表示解答方法。
教师对学生的答案进行指导,并引导学生将其写成代数式,如兔子的数量用x表示,鸡的数量用y表示,则可以写出方程:x + y = 25,2x + 4y = 70。
进一步引导学生解答这个代数方程组。
3. 拓展与引申:教师引导学生思考一下问题:如果鸡和兔子的总数是100,脚的总数是320,鸡和兔子各几只?让学生运用代数表达式解决这个问题,并计算出鸡和兔子的数量。
4. 综合练习:教师出示另一个类似的问题:“在一家养鸡场里,养着鸡和兔子。
总共有70只头,脚共有194只,问养了多少只鸡和兔子?”学生根据已学的知识,运用代数表达式解决这个问题,并计算出鸡和兔子的数量。
“鸡兔同笼”评课稿
《鸡兔同笼》评课稿
本节课教学思路清晰,教学目标明确,教学重、难点突出,教师能够从教材出发,不受教材的影响进行知识的重新构架。
从知识量来看,本节课的知识丰富殷实,学生学得比较广、比较实,使不同层次的学生都有所收获。
下面提几点建议:
第一:课题揭示,略显拖拉,教师从开始上课直至揭示课题大概用了7分钟左右。
教师可以创设古代情境,引出“鸡兔同笼”的情节,然后直接揭示课题,这样简洁明了,开门见山,而且学生可能更感兴趣。
第二:本课教学的重点是向学生介绍解决“鸡兔同笼”问题的四种方法,也就是列表法、画图法、假设法、抬腿法,教师的出发点是:介绍了四种方法之后,让学生选择自己喜欢、自己可以理解的方法掌握好。
这样安排,教师在讲这四种方法时完全在唱独角戏,学生只是做一个听众,教师可以尝试着将每一种方法的讲授分为两个层次,如假设法,教师讲解,假设全是鸡如何解题,学生尝试假设全是兔如何解题。
第三:为了帮助更好地理解“鸡兔同笼”问题,教师可以尝试着运用一些实物道具进行演示,也可以让学生运用实物道具演示,这样可能更好理解。
第四:课堂的氛围略显得有些沉闷、枯燥,教师可以尝试着改变这种现状,如:在“抬腿法”中,完全可以让学生动一动,做一做。
以上想法,如有不当,请多海涵!。
鸡兔同笼评课稿
《鸡兔同笼》评课稿
郑梦阳
听了余老师执教的“鸡兔同笼”这节课,我认为这节课成功之处有以下几点:
1、这节课充分体现出解决问题策略的多样化。
由于余教师在课堂上适时引导学生从多角度思考问题,呈现出列表、假设、方程等多种解题方法。
通过学生的独立思考、自主探究、合作交流,将多种解题方法进行观察和对比,使学生充分体验到解题策略的多样性。
另外,李老师在这个体验解决问题多样化的过程中,突出了学生的主体地位,同时尊重了学生的个体差异,允许不同的学生在解题方法上有不同的想法。
2、整节课,李老师教态自然,驾驭课堂能力较强,充分地发挥了教师的主导作用,教师扮演了引导者、组织者和合作者的角色;在探索的过程中,充分地发挥了学生的主体作用,真正体现了学生是课堂的主人,实现了师生角色真正意义上的转换,构建了精彩的、充满生机与活力的课堂。
另外,我认为这节课还有不足的地方是:
1、李老师引导学生运用猜测、列表、假设、方程等多种方法,但这些方法并不是孤立存在的,相互之间是有本质和必然的联系。
教学中,余老师应让学生观察表格,通过表格规律的发现,去理解假设法,也就是将列表法和假设法的有机结合。
将多种方法有机结合,使整个教学过程衔接紧密,过渡自然流畅。
2、用方程解的时候我两个等量关系,余老师只强调了其中一个。
3、题目类型过于单一,都是关于动物的题目,可以涉及到生活中的鸡兔同笼问题。
小学数学《鸡兔同笼》评课稿(2篇)
小学数学《鸡兔同笼》评课稿本课的重点是尝试用不同的方法解决问题,体会代数法的优越性。
难点是在解决问题的同时,培养学生的逻辑推理能力。
老师用谈话的方式导入,使学生了解古代数学名着中的数学问题上,感受古代数学文化。
新授课用的是讲授法,讲授了假设法的解题方法,使学生明白了:把1只鸡换成1只兔就会多2条腿,10里有5个2,所以多余10休腿就可以给5只鸡每只添上2条腿换成5只兔。
大多数学生掌握了此方法,效果很好。
接着学生又尝试假设都是兔,自己解决了问题。
建议:在此教师应该让学生比较一下两种方法的相同点和不同点。
不同点:一种是假设都是鸡,一种假设都是兔。
相同点:都是把两种动物化成一种动物来研究,把繁琐的尝试过程化成了简便的算式。
接着教师又讲授了列方程的方法,这个内容的数量关系比较简单,建议让学生自己找出数量关系列出方程,教师可把讲解的重点放在如何解这个方程上,以帮助学生解决难点。
解出答案后可让学生不尝试验证:4×5+2×3=26(只)。
到此建议教师作一个小结,比较假设法和列方程,来体现列方程的优越性。
使学生初步体会代数的方法特点是:数量关系明确,便于理解。
假设法需要进行调整、替换;列方程不用考虑怎样调整比较简捷。
练习的设计注意了拓宽学生的视野,使学生体会到“鸡兔同笼”问题在生活中的广泛应用,感受数学的价值。
总之,教师老态亲切、自然,讲授条理清晰,能抓住重点,突破难点,完成教学任务。
小学数学《鸡兔同笼》评课稿(2)评课稿:小学数学《鸡兔同笼》尊敬的评委老师们、亲爱的同事们:大家好!我今天要为大家评课的内容是小学数学课程中的《鸡兔同笼》这个教学单元。
通过本次评课,我试图从设计、教学过程和教学效果三个方面进行全面的分析和评价。
一、设计评价:在设计方面,针对《鸡兔同笼》这个教学内容,我认为教师有以下的设计亮点。
首先,教师通过引入“鸡兔同笼”的场景,将数学问题与日常生活相结合,使学生易于理解。
通过实际生活中的例子,学生能够更好地发现问题,增强学习的兴趣。
六年级数学上册《鸡兔同笼》评课稿(精选11篇)
六年级数学上册《鸡兔同笼》评课稿六年级数学上册《鸡兔同笼》评课稿(精选11篇)鸡兔同笼,是中国古代著名典型趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题,小编带来六年级数学上册《鸡兔同笼》评课稿。
六年级数学上册《鸡兔同笼》评课稿篇1史老师一向是个踏实上进的好老师,今天她又给我们上了一堂成功的而且有实效性的数学课。
教师教态自然,思路明确,语言规范,教学节奏把握准确,有着很好的教学素质。
教师不仅出色的完成了知识目标,而且在完成知识目标的同时,非常注意对学生实践操作能力,合作探究能力的培养,情感的渗透,体现了三维目标的落实。
下面我谈一下,我对这堂课的感受:首先,课前准备充足,尤其是课件的演示,让学生一目了然。
其次,教学安排详略得当,注重培养学生的逻辑推理能力。
再者,鸡兔同笼问题教学比较困难,它的思维含量很高,然而鸡兔同笼问题又作为六年级的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。
从史老师的课堂上可以看出,史老师关注了每个孩子的成长和体验。
从列表的枚举法到假设的算术法再到方程法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验。
纵观整节课,我有点个人的建议:本节课的解题方法比较多,刚才也说了,有列表法、假设法还有方程法,我想可以在列表法之后再加入跳跃的尝试法,比如可以直接尝试如果是6只鸡,2只鸭,那么就是20条腿,小于26条,所以鸭少了,那么再猜,是4只鸡,4只鸭,24条腿,还少,3只鸡,5只鸭,猜到。
这就像算X2=676时,你可以猜测性的找,14*14,26*26等,有助于对学生渗入猜测思想,质疑思想。
六年级数学上册《鸡兔同笼》评课稿篇2《鸡兔同笼》是六年级上册“数学广角”中的内容。
教材主要让学生尝试用不同的方法解决“鸡兔同笼”问题,这样一方面可以培养学生的逻辑推理能力,另一方面使学生体会代数方法的一般性,以此来让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染。
小学六年级数学上册《数学广角(鸡兔同笼)》评课稿
小学六年级数学上册《数学广角(鸡兔同笼)》评课稿
小学六年级数学上册《数学广角(鸡兔同笼)》评课稿
鸡兔同笼问题我觉得对小学生来说应该是一个难点,学生比较难以了解,难以掌握。
卢老师在课堂上由易到难,由浅到深慢慢的引导学生进行解决问题。
在本节课里教师主要是让学生通过学习,了解鸡兔同笼问题,激发学生学习数学的兴趣,让学生尝试用不同的方法去解决鸡兔同笼问题。
卢老师这节课先课件展示原题:"今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?"问生这四句话是什么意思呢?生回答,课件展示:笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。
鸡和兔各有几只?)引出课题:鸡兔同笼。
接下来卢老师让孩子看着课件提出数学问题,归纳数学信息,让孩子体验、经历自己独立思考的'过程,教师就是课堂的引导者,真正做到了学生就是课堂的主人。
教师在课堂上很好的体现了引导者的地位,在学生猜测验证之后,卢老师又引导学生对这个问题运用另外的方法来解决问题,像列表和列方程来解决。
对同一个问题我们可以运用不同的方法进行解决问题。
注重了解决问题策略的多样化。
教师通过引导让学生经历"猜测--列表--假设或方程解"的过程,培养学生的逻辑推理能力和解决问题的能力。
三年级数学《鸡兔同笼》评课稿(通用3篇)
三年级数学《鸡兔同笼》评课稿(通用3篇) 三年级数学《鸡兔同笼》评课稿(篇1)1. 课程目标解读《鸡兔同笼》作为三年级数学的一个重要教学内容,旨在通过经典数学问题培养学生的逻辑思维和问题解决能力。
课程的主要目标包括:让学生掌握鸡兔同笼问题的基本解法,能够灵活运用所学的数学知识解决实际问题,并培养学生的团队合作精神和创新思维。
2. 教学内容分析《鸡兔同笼》这一课程内容涵盖了方程的建立与求解、逻辑推理等知识点。
教学内容注重从实际问题出发,引导学生通过观察和思考来发现数学规律,从而培养学生的数学素养和解决问题的能力。
同时,课程还注重培养学生的数学应用意识,让学生明白数学在日常生活中的应用价值。
3. 教学方法应用在教学过程中,教师采用了多种教学方法相结合的策略,如情景导入、小组合作、师生互动等。
这些方法的应用有效地激发了学生的学习兴趣,提高了学生的课堂参与度。
同时,教师还注重培养学生的自主学习能力,鼓励学生在课后进行拓展学习。
4. 学生互动评价在课堂互动方面,学生表现积极,能够主动参与到小组讨论和课堂互动中。
学生对问题的理解深入,能够提出有见地的观点。
同时,学生之间的合作也很默契,能够相互帮助共同解决问题。
5. 教学效果反思通过本次课程的学习,大部分学生能够掌握鸡兔同笼问题的基本解法,并能够运用所学知识解决实际问题。
然而,也有部分学生在解题过程中存在困难,需要教师在课后进行进一步的辅导。
此外,教师在课堂管理和时间分配方面还有待提高。
6. 教学特色与创新本次教学过程中,教师注重培养学生的创新思维和团队合作精神。
通过小组合作和情景导入等教学方法,让学生在轻松愉快的氛围中学习数学知识。
同时,教师还鼓励学生提出自己的见解和想法,培养了学生的个性化和创新思维能力。
7. 难点与突破策略在教学过程中,部分学生在建立方程和逻辑推理方面存在困难。
为了突破这些难点,教师可以采用以下策略:一是加强基础知识的训练,让学生掌握方程的基本概念和求解方法;二是通过具体的例子和练习题进行有针对性的指导,帮助学生理解和掌握鸡兔同笼问题的解题技巧;三是鼓励学生在小组讨论中相互交流和讨论,共同解决问题。
六年级上数学评课稿鸡兔同笼_人教新课标-教育文档
《鸡兔同笼》评课稿鸡兔同笼问题是六年级的数学广角的内容,是一个很难处理好的教学内容,刘老师的这节课有以下几个亮点:1.导入课堂,趣味提问上课伊始,老师问学生们是否知道鸡与兔的特点,勾起了学生的兴趣,课堂气氛立刻活跃起来。
2、教学中渗透数学思想---化繁为简数学广角的教学内容,不仅要教给学生知识,也要关注学生掌握数学思想—化繁为简。
刘老师在这点上做得很好,先出示课本中的古题,说明数据较大,不便于进行探究,解决时有一定的困难,我们可以把数据放小一点。
然后出示例1,让学生从简单的问题着手,等学生探究出解决的一般方法时,再解决开始时那些比较复杂的问题。
化繁为简,学生感同身受。
3、选择合适的方法入手刘老师在问题开始之初,先让学生猜测鸡兔的数量,并选取了适合孩子们认知的方式,以一一对应的思想采用列表法,让学生找到问题的答案,给学生带来了灵感。
4、大敢放手,把课堂交给学生课堂上学生是学习的主人,教师是组织者,引导者,合作者。
刘老师在学生了解列表法后,提出疑问,是否有更方便的解决方法呢?然后让学生小组讨论,自主探索问题的答案。
果不其然,大胆的放手,让学生把握住主体地位,有的学生想到了假设的方法,有的学生还想到了利用方程来解决问题。
5、细致的课堂体现了教师的睿智的评价课堂是师生互动的天地,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感、思维都有积极的作用。
刘老师特别关注学生的发展,评价语更是体现了这一点。
学生回答精彩时,刘老师及时有效地正面评价,并让全班鼓掌来鼓励他。
这样能让学生得到更大的自信让他更有兴趣去学习数学。
6、适当的示弱,激起学生的表现欲在课堂上,刘老师采取示弱的方式:“你懂了?老师还没懂呢,你能具体的讲解给老师听吗?”这样的语言,更能激起学生的表现欲,学生们会更想把自己的想法来“讲解”给老师听,这样大大提高了学生们表现的欲望。
7、首尾呼应在学生们掌握了假设法和方程法的时候,刘老师再次把前面提出的数据较大的鸡兔同笼问题,让学生们来解决,让整个课堂的衔接更加合理,当学生们能轻松地解决数据较大的问题时,获得了强烈的满足感。
四年级数学下册《鸡兔同笼》评课稿
四年级数学下册《鸡兔同笼》评课稿“鸡兔同笼”问题是最难处理好的教学内容,首先我佩服李老师的自信,能大胆的尝试这节课。
本节课中,李老师在课堂上着重渗透了数学的思想方法,具体表现在以下几个方面:1.化繁为简的思想。
《算经》中“鸡兔同笼”问题的数据比较大一些,为了便于学生进行研究,根据化繁为简的思想,李老师大胆的将原题中的数据直接修改为较小的数据(出示课件对比)。
直奔新课的教学,这样在学生掌握了解决“鸡兔同笼”问题的一般思想方法和策略后,再应用于解决《算经》中数据比较大的原题时,更来得简单容易。
2.列表枚举思想。
在数据较小的例题教学中,一些可能的答案学生很容易凭直觉得到,李老师老师课堂上引导学生大胆地猜测、提供表格让学生验证到底答案是多少的教学方法,实际上就是用列举法来解决问题。
有的学生用顺序列举法,从小到大或从大到小依次列举,发现了“如果总脚数多了,就是兔子的只数猜多了,就要减少兔的只数而增加鸡的只数;反之,则应减少鸡的只数增加兔的只数。
”有的学生根据数字的特点,从中间数鸡兔各4只开始猜,发现如果脚多了就多猜鸡,脚少就多猜兔。
甚至有的孩子看到脚的只数相差太远,会跳跃式的猜想。
孩子在不断的猜测、验证的过程中,能更加快捷地找到问题的准确答案。
这样的学习过程既符合小学生的认知规律和解决问题的习惯,同时又渗透了枚举思想,并不断地优化枚举策略,进一步提升学生思维的灵活性。
3.数形结合思想的渗透本节课中,当李老师放手让孩子们自主探究解题方法时,根据改编后题目数据较小的特点,引导孩子们可以用列举法、画图法或列算式的方法。
多数孩子知道,先画8个○,把这些○假设全部都是鸡,发现脚的数量变少了,再两根两根补画上少算的脚。
像这样借助形象的图形来解题,一目了然的知道了鸡兔各几只。
同时李老师在课堂中将图、列举法的表、及算式做了巧妙的沟通,运用了数形结合,对学生来说,不仅学得简单、有趣,而且又向学生渗透了用假设法的研究和解决问题的策略,这样的教学符合小学生的思维特点,发展学生的思维能力。
五年级《鸡兔同笼》评课稿
五年级《鸡兔同笼》评课稿石老师今天所执教的《鸡兔同笼》一课总的特点是课堂容量大,解决问题策略多,学生主体地位突出,处处彰显高效课堂的魅力。
教育专家李炳亭说过高效课堂的灵魂是:“相信学生、解放学生、利用学生、发展学生”。
纵观本课,以上特点贯穿了课堂始终。
首先我要说的是解放学生解放学生是教育的使命,本节课通过新课程所畅导的独立思考,自主探索、合作交流的学习方式,得出了用列表法,假设法和方程来解决这一问题的基本方法,这三种方法是相对独立的,任何一种方法都可以用一节课来学习,但石老师这节课能抓住三种方法的特点,进行教学,将三种方法相互融合,互为检验,大大提高了学生的学习效率,打破了以往一种方法一练习的教学模式,把学生从重复训练解放出来,转向思维方法的训练,使学生学习知识的同时学习思想方法。
本节课学习的方法多,课堂容量很大,是高效课堂的最好体现,而教师让学生自主探索,找出适合自己的方法,关注学生差异,不给学生束缚,不给学生简单重复训练,真正做到了解放学生。
第二,利用学生,这是教育智慧的源头,兴趣是最好的老师,本节课由生动有趣的数学经典题型引入,激发了学生的学习兴趣和探索欲望,为本节课的自主学习打下了坚实的基础了。
习题“龟鹤问题”“坐船问题”也都是生动有趣的、富有挑战性的内容,整节课学生都在这样的积极探索气氛中自主完成,有效的保证了学习效果。
猜硬币游戏更是让学生的探索欲望达到了高潮,这种向老师提问来获取信息,根据需要找已知条件的教学方式,让学生在积极主动的参与始终,有效的帮助学生建立了鸡兔同笼问题的模型。
同时习题设计紧密联系生活实际通过乘船等活动让学生应用所学模型去解决现实问题,发现数学就在身边,感受数学的价值。
从而主动探索解决问题的方法与策略。
第三,相信学生,给学生足够的探索空间学生是学习的主人,本课用“鸡兔同笼”这一情境向学生提供了现实、有趣、富有挑战性的学习素材,借助我国古代趣题,引导学生进行讨论交流、自主探究,让学生采用列表法、画图法、假设法、列方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流中学习,积累解决问题的经验,掌握解决问题的方法。
鸡兔同笼评课稿(共五则范文)
鸡兔同笼评课稿(共五则范文)第一篇:鸡兔同笼评课稿鸡兔同笼评课稿有幸听了郑老师上的《鸡兔同笼》的一课,本想认真听,好好做做笔记,吸取些经验。
可是听得入了迷,坐在那里,屏息静气地听,在那儿算,鸡几只,兔几只,三轮车几辆,自行车几辆。
完全被讲课吸引住了,就跟自己也变成了学生一样,忘记了做听课笔记。
我想想这就是一节好课。
现回想郑老师的这节课,我觉得有以下亮点:一、思维能力的培养数学是思维的体操。
课初郑老师提了一个问题“牛顿是一个什么人?”“数学是用来干什么?”看似与本课无关的问题,可通过这问题他让学生明白分类越多,想法也就越多。
培养学生发散的思维。
为了取得牢固的知识,还必须进行思考,在读完《孙子算经》原题,让学生说题目是什么意思?解决问题后,看着算式,说一说每一步什么意思。
用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。
学生在学完“8头、26足”后,回到《孙子算经》原题“35头、94足”这个问题,学生能快速想到几种不同的解决方法,做到有始有终。
教师还努力达到学生思考的积极性,使知识地运用中得到发展。
二、数学思想的渗透“数学的价值不在模仿,而在创新,数学的本质不是技能而是思想”。
本节课郑老师有意识得对学生进行数学思想的渗透;用“列表法”解决问题,渗透了函数的.思想和方法;用“画图法”解决问题,渗透了数与形结合思想;用“假设法”解决问题,渗透了假设的思想和方法;用容易探究的小数量转化《孙子算经》原题中的大数量的“转化”解决问题,渗透了转化的思想和方法;这些对于学生而言,无疑奠定了可持续发展的坚实基础。
把《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,郑老师用表演、编口令形式再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。
三、解题策略的多样鼓励解决问题策略的多样化,是因材施教、促进每一个学生充分发展的有效途径。
教学中,郑老师组织学生先后运用列表法、画图法、假设法、等分析和解决问题,从而获得了分析问题和解决问题的基本方法和一般方法:化繁为简、化多为少、化乱为序、化杂为纯四种解决问题策略。
《鸡兔同笼》评课稿章晓红
《鸡兔同笼》评课稿
听了傅老师的《鸡兔同笼》的课,深有感触,下面说说我个人的一下看法。
1、学习《鸡兔同笼》有一定的难度。
本节课属于综合应用课,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的能力。
《鸡兔同笼》向学生提供了现实、有趣、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列举法、假设法、方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法这方面完成的较好。
初步获得一些数学活动的经验,在活动中引导学生自主探索,积极思考,从中体会出解决问题的一般策略。
2、课堂上,多数学生的积极性还是比较高的。
先让学生独立思考,在和谐的氛围中开拓了思维,达到了运用多种方法解决问题的目的。
体现了学生是学习的主人。
但部分学生会做却不会表达、不敢表达。
口语表达能力欠佳。
课堂上,通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题——鸡兔同笼问题,还能解答我们身边的问题。
体会到数学就在我们身边。
3、充分调动学生的积极性,当新的问题提出后,刘老师并没有急于讲解如何做的方法,而是先让学生独立思考,开拓了思维,实现了运用多种方法解决问题的目的。
关于《鸡兔同笼》优秀人教版小学数学六年级上册评课稿
关于《鸡兔同笼》优秀人教版小学数学六年级上册评课稿
关于《鸡兔同笼》优秀人教版小学数学六年级上
册评课稿
鸡兔同笼问题是人教版六年级上册的数学广角的内容,以前是属于课外奥赛典型题,对学生尤其是基础不好的学生来说有一定的难度,对教师的课堂把握也是一个极大地考验。
江老师朴实而扎实的为我们呈现了一节层层深入,师生共同探讨的数学课。
我感到受益匪浅,下面就这节课谈谈我们几方面的感受:
1. 课堂结构安培合理,注重了学生的思维的特点。
江老师从猜测到验证再到调整,用表格的形式让学生了解枚举法解决问题的方法,体会枚举法调整时“头不变而腿的变化规律”。
照顾到可能有部分学生思维不能直接跳跃到假设法的局限,为后面教授假设法奠定基础。
并在体会枚举法的基础上优化并学习假设法的解题思路。
课堂安培符合学生的思维发展特点,面向全体学生。
2. 设计巧妙,准确的寻找课堂难点的切入点。
从让兔子站起来开始,学生被这一独特的问题思考方法,深深吸引住了,脑海中也能很形象的构建出问题需要的场景,接下来一系列的追问,让学生体会了数学中“变与不变”的思维巧妙性,什么少了?是谁的?为什么?等学生很快就能解决这个问题。
将原本生硬的假设法形象的展现在学生面。
鸡兔同笼问题评课发言稿
鸡兔同笼问题评课发言稿尊敬的评委老师、亲爱的同学们:大家好!今天我演讲的题目是《鸡兔同笼问题》。
鸡兔同笼问题,是一道经典的数学问题。
它提出了一个有趣的挑战:“在一个笼子里,头数和脚数一共有64个,问这个笼子里有多少只鸡,多少只兔子?”这个问题以其简单而富有启发性的思路,一直深受数学爱好者的喜爱。
首先,我们来解答这个问题。
假设鸡的数量为x,兔子的数量为y。
根据问题描述,我们可以列出两个方程式来求解此题。
第一个方程式是:x + y = 64;第二个方程式是:2x + 4y = 192。
通过求解这两个方程,我们可以得到x=48,y=16。
所以,这个笼子里有48只鸡和16只兔子。
鸡兔同笼问题看似简单,实际上隐藏着一道巧妙的数学推理。
通过这个问题,我们可以锻炼自己的逻辑思维和解决问题的能力。
我们可以使用代数方程的方法来解答,也可以运用图形的方法来理解问题。
无论哪种方法,都需要我们在思考过程中保持清晰的逻辑思路和正确的分析能力。
在解答问题的同时,我们还可以延伸思考。
比如,如果增加了鸡或兔子的条件,问题的解答又会有怎样的变化?我们可以通过数学模型来探索这个问题的更多变化。
除了数学上的思考,鸡兔同笼问题还给我们带来了其他的启示。
这个问题告诉我们,在解决问题时,我们要善于运用逻辑和推理,不要被问题的表面迷惑住。
通过分析问题的本质,选择合适的方法,我们能够找到问题的答案。
同时,这也提醒我们在日常生活中,要保持清晰的头脑,勇于面对挑战和困难,寻找解决问题的方法。
总结一下,鸡兔同笼问题是一道充满趣味和思考的数学问题。
通过这个问题,我们可以锻炼自己的逻辑思维和解决问题的能力。
同时,这个问题还告诉我们,通过分析问题的本质和运用合适的方法,我们能够找到问题的答案。
希望大家在解决问题的过程中,能够追求思考的乐趣和智慧的收获。
谢谢大家!。
鸡兔同笼问题评课发言稿
鸡兔同笼问题评课发言稿各位老师,大家好!我今天要给大家介绍的是一道经典的数学问题——鸡兔同笼问题。
这个问题不仅是数学教学中的经典案例,更是培养学生逻辑思维和数学解决问题能力的绝佳素材。
首先,让我们来看一下这个问题的具体描述:一个笼子里关着鸡和兔子,一共有35个头,94条腿。
问鸡和兔子各有多少只?这个问题看似简单,其实包含了很多数学知识和解题技巧。
通过这个问题,我们可以引导学生从不同角度去思考,培养他们观察问题的能力,并进行逻辑推理和数学运算。
首先,让我们从问题本身出发,尝试用代数的方式来解决这个问题。
假设鸡的数量为x只,兔子的数量为y只。
根据题意,我们可以列出方程:x + y = 35(头的数量)2x + 4y = 94(腿的数量)通过这两个方程,我们就可以通过代数的方式求解出鸡和兔子的具体数量。
这是一个传统的解题方式,可以帮助学生巩固对代数方程的理解和运用。
除了代数的方式,我们还可以引导学生通过图形的方式来解决这个问题。
可以画出一个表示鸡和兔子数量的坐标系,根据头和腿的数量要求,找到其在图形上的交点,从而求得鸡和兔子的具体数量。
这种解法可以帮助学生理解图形的应用,以及如何通过图形来解决问题。
除了代数和图形的方式,我们还可以引导学生使用其他方法来解决这个问题。
比如通过列出鸡和兔子的具体数量,然后逐一验证是否符合头和腿的数量要求。
这种方法虽然比较繁琐,但可以锻炼学生的逻辑思维和细致观察能力。
通过以上的讲解,相信大家对鸡兔同笼问题有了更深入的理解。
这个问题不仅可以帮助学生巩固数学知识,更可以培养他们的逻辑思维和问题解决能力。
在教学中,我们可以结合实际生活中的问题,引导学生主动提出解决方案,并通过多种方式解决问题,从而提高他们的数学素养和解决实际问题的能力。
在进行课堂教学时,我们可以通过启发式的提问,引导学生思考问题、提出解决方案,培养他们的主动学习和问题解决能力。
同时,我们可以设计一些寓教于乐的活动,通过团队合作和竞赛形式,让学生在互动中学习,更好地掌握数学知识和解决问题的方法。
三年级数学《鸡兔同笼》评课稿两篇
三年级数学《鸡兔同笼》评课稿两篇三年级数学《鸡兔同笼》评课稿(篇1)1. 教学内容分析《鸡兔同笼》是三年级数学教学中的经典问题,它考查了孩子们的逻辑推理能力和基本的数学运算技巧。
本课通过该问题,让学生体验到了数学问题的趣味性和实用性,进一步激发了他们对数学的兴趣。
2. 教学方法和手段在教学过程中,教师采用了启发式的教学方法,通过引导学生观察、思考、讨论,逐步揭示了问题的本质。
同时,教师还利用了多媒体等现代化教学手段,为学生呈现了丰富的学习材料,使得课堂教学更加生动有趣。
3. 学生互动与参与本节课中,学生的互动与参与程度非常高。
教师设计了多个小组活动,让学生在合作中探索解决问题的方法。
学生们积极参与,热情高涨,充分展现了他们的团队合作精神和创新能力。
4. 教学效果评估从课堂表现和课后作业来看,本节课的教学效果非常显著。
学生们不仅掌握了《鸡兔同笼》问题的解决方法,还学会了如何运用数学知识解决实际问题。
同时,他们的逻辑思维能力和数学运算能力也得到了很好的锻炼和提高。
5. 课堂管理与组织本节课的课堂管理与组织井然有序。
教师通过明确的课堂指令和有效的课堂管理技巧,确保了教学过程的顺利进行。
同时,教师还注重营造轻松愉快的课堂氛围,使得学生们能够在愉悦的环境中学习数学知识。
6. 教师专业素养本节课的教师展现出了较高的专业素养。
他/她不仅教学经验丰富,还能够灵活运用各种教学方法和手段来激发学生的学习兴趣。
同时,他/她还能够根据学生的实际情况调整教学节奏和内容难度,使得每一个学生都能够在本节课中获得成长和进步。
7. 评课意见与建议总的来说,本节课的教学效果显著,教师的教学方法和手段也值得肯定。
建议教师在未来的教学中继续保持这种启发式的教学方式,并多设计一些富有挑战性的问题和活动,以进一步激发学生的学习兴趣和潜能。
同时,也希望教师能够继续关注学生的个体差异和需求,为每一个学生提供更加个性化和精准的教学服务。
三年级数学《鸡兔同笼》评课稿(篇2) 《鸡兔同笼》是一节富有挑战性和趣味性的数学课,旨在通过古老的数学问题来锻炼学生的逻辑思维和数学应用能力。
鸡兔同笼评课稿
鸡兔同笼评课稿一、教案设计与实施情况教案设计环节是课堂教学中至关重要的一环,也是教师专业素养的体现。
本次课堂教学内容是“鸡兔同笼”问题,通过该问题的讨论,旨在培养学生的逻辑思维和解决问题的能力。
在教案设计中,我注重培养学生的学习兴趣和能动性,充分利用课堂资源,采用多种教学手段,让学生在愉悦的氛围中主动参与学习。
在实施过程中,我积极引导学生思考,提问引导,鼓励学生发表自己的观点,培养他们的合作精神和团队意识。
二、学生表现与课堂互动在本次课堂中,学生表现活跃,积极参与讨论和思考。
针对鸡兔同笼问题,我引入了一些实际生活中的例子,并与学生进行互动,给予他们时间思考和回答问题。
学生们积极发言,提出了不同的解决方法和思路。
在小组合作活动中,学生们相互协作,共同探讨问题,让合理的解决方案得以产生。
三、教学反思与改进在课堂教学中,我发现了一些需要改进的地方。
首先,我在教学过程中过多地进行了教师讲解,没有充分发挥学生的主体性。
下次课堂教学中,我将更多地采用探究式学习的方法,让学生自主思考和发现问题。
其次,在小组合作中,部分学生表现较被动,对合作活动缺乏主动性。
为了激发学生的合作热情,我将在下次课堂中运用一些游戏化的教学活动形式,提高学生参与度。
最后,我还需进一步明确学生的学习目标和评价标准,加强对学生学习过程的指导和反馈,使学生清晰地知道自己的学习方向和如何提升。
四、教师自我提升与规划作为一名教师,我意识到教育是一项不断发展的事业。
为了提高自身的教学水平,我将继续学习和研究教育教学理论。
我计划参加相关教育培训,提升自己的学科知识和教学能力。
同时,我也会积极参与学校组织的教研活动,与同事们进行交流和分享,不断提升教学质量。
与此同时,我还会提升自己的技术应用能力,学习并灵活运用现代教学技术,将其融入到课堂教学中,提升教学效果。
五、总结通过本次鸡兔同笼问题的课堂教学,我深入了解了学生的学习情况和需求。
在今后的教学中,我将更加关注学生的学习主体地位,提供更多的机会让学生进行自主探究和思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼评课稿
《鸡兔同笼》评课稿
刘喆这节课,吕英姿老师教态大方,肢体语言丰富,学生配合密切,学习兴趣浓,
吕老师所作的《鸡兔同笼》具有趣味性和挑战性,这节课重点是想“通过简单的事例渗透一些重要的数学思想方法,让学生主动尝试从数学的角度运用所学知识和方法寻找解决问题的策略,培养学生解决实际问题的实践经验和能力。
X老师对教材的把握准确到位。
能够让学生通过小组合作自学探究鸡兔同笼问题,让学生经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。
”这节课体现了《课程标准》指出的学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
这一基本理念。
本节课的亮点是吕老师首先着力营造民主氛围,让学生利用已有知识经验进行猜测“今有鸡兔同笼,上有8头,下有26只脚,求兔有几只,鸡有几只?提出自学要求让学生在共同交流中解决问题,提高了解决问题的技能,培养了学生的探究精神。
体现了学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
这一基本的课程理念。
另外本教材中的“鸡兔同笼”在五年级上册也出现过一道类似的问题,解决本课的问题学生有一定的基础。
吕老师能够把教学活动建立在学生的认知发展水平和已有的知识经验基础之上,
解题方法的优化,培养学生择优意识。
在检测课前出示的鸡兔同笼问题自学效果时,学生能从多角度思考,运用假设法、代数方法、列表法等来解决问题。
他们根据自己的经验,找到了解决问题的策略,在此基础上基础上出示“今有雉)兔同笼,上有三十五头,下有九十四足。
问雉兔各有几何?”此题数据比较大,学生就很容易采取用方程和假设法去既解决此题,而不采用列表法,优化了解题方法。
注重民族文化的传承。
在了解古人的解题方法——抬足法上,吕教师抓住这一内容弘扬我国悠久的古代文化,加强了对学生思想品德教育。
另一亮点习题设计多样性,丰富了课堂的文化氛围。
配合“鸡兔同笼”问题,拓展了古今中外习题。
如“龟鹤”问题、猎人与狗、租船问题,三轮车与自行车问题铺设管道问题等生活中的一些实际问题,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题的策略。
建议一对本课的建议是培优补差方面要兼顾不同学生的差异做好辅导工作,提问题要面对全体。
在小组交流时教师巡视同时应对本班差生进行辅导。
对于每种思路还可以附以形象的解释,如让所有的兔子都抬起两只前脚,实际上就是把笼子里的动物都看成是鸡。
当然,还可以
假设鸡两只翅膀着地也有4只脚,把笼子里的动物都看成兔子。
一只鸡多了几只脚,多少只鸡会多出这么多脚,学生很容易用包含除解决鸡兔同笼问题。
假设法中的两个差的解释要生动具体。
在课堂上,可能相当一部分学生会选择用列方程的方法来解决该类问题,设鸡或兔任何一个量为x,然后根据鸡、兔的只数与脚的总只数的关系列出方程并进行解答。
这种方法思路清晰,易于理解,教学中老师注意让学生体会方程解法的一般性。
照顾好学困生。
鸡兔同笼问题毕竟思维含量高。
班级里不能都是尖子生。
本节课学生缺少互动,说明老师在课堂调控方面仍需要进一步提高能力。