一次函数教案(教学设计)
一次函数的图像和性质教案
一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。
2. 让学生能够绘制一次函数的图像,理解图像的性质。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学重点1. 一次函数的概念及表示方法。
2. 一次函数图像的性质。
三、教学难点1. 一次函数图像的性质的理解和应用。
四、教学准备1. 教学课件或黑板。
2. 练习题。
五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。
2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。
3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。
4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。
5. 练习:让学生绘制一些一次函数的图像,并分析其性质。
7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。
六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。
2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。
七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。
八、课后作业1. 完成练习册上的一次函数相关习题。
2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。
九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。
2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。
十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。
2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。
3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。
八年级《一次函数》教学设计
课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。
教学难点一次函数的图象的性质。
教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。
如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。
(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。
5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。
一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。
一次函数概念教案
一次函数概念教案【篇一:《一次函数的定义》教学设计】《一次函数的定义》教学设计一、教材分析函数是近代数学最基本的概念之一,在数学发展过程中起着十分重要的作用,许多数学分支(如代数、三角、解析几何、微积分、实变函数、复变函数等)都是以函数为中心展开研究的。
一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数.一次函数的概念是本章的重点。
教材在前面首先安排了函数及正比例函数的内容,讨论了正比例函数的定义、图象、性质等,接着本节学习一次函数的定义、图象、性质和函数解析式,它既是对函数概念的进一步理解,又是特殊的一次函数——正比例函数到一般的一次函数的拓展,它还是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用.它也是将来学习二次函数,反比例函数的基础。
本节教学内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材。
二、教学目标(1)理解一次函数的概念(2)体会函数思想、特殊到一般的思想及类比思想(3)积累建立一次函数模型和类比学习的经验.三、学情分析本节课是以类比的思想方法为主线,研究什么是一次函数. 这是在学生学习了函数、正比例函数的定义、图象与性质,并初步了解了如何研究一个具体函数(从定义到图象与性质)的基础上学习的。
学生原有知识与学习经验对本节课的类比学习奠定扎实的学习基础,在前后知识的类比学习中,学生可以进一步理解函数的知识,体验研究函数的基本思路,促进学生的认知结构的不断的完善,进而发展学生的类比、抽象与概括能力.而这些目标的达成必须是在充分发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,让在学生在类比中学习、在类比中思考的前提下才能完成的。
四、教学重难点教学重点:一次函数的概念教学难点:理解一次函数的概念五、教学过程设计1、回顾提升,为类比学习做铺垫.引言:同学们,我们学过正比例函数,那么关于正比例函数你都学习了哪些知识呢?(学生发言:定义、图象、性质、思想方法、应用)师:这些内容之间有什么联系?(学生发言,教师补充)引例:某登山队大本营所在地的气温为5oc,海拔每升高1km气温下降6oc,登山队员由大本营向上登高xkm时,他们所在的位置的气温是yoc,试写出y与x之间的关系式。
《一次函数的图象和性质》教学设计优秀8篇
《一次函数的图象和性质》教学设计优秀8篇一次函数篇一11.2 一次函数§11.2.1正比例函数教学目标1.认识正比例函数的意义。
2.掌握正比例函数解析式特点。
3.理解正比例函数图象性质及特点。
4.能利用所学知识解决相关实际问题。
教学重点1.理解正比例函数意义及解析式特点。
2.掌握正比例函数图象的性质特点。
3.能根据要求完成转化,解决问题。
教学难点正比例函数图象性质特点的掌握。
教学过程ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环。
4个月零1周后人们在2.56万千米外的澳大利亚发现了它。
1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30某4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。
函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。
即y=200某45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。
尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。
类似于y=200x这种形式的函数在现实世界中还有很多。
它们都具备什么样的特征呢?我们这节课就来学习。
ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长l随半径r的大小变化而变化。
3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化。
.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化。
八年级数学下册《一次函数的概念》教案、教学设计
(三)学生小组讨论
1.教学活动设计:将学生分成小组,针对以下问题展开讨论:
(1)一次函数的图像特征及其在实际问题中的应用;
(2)如何求解一次函数的解析式;
(3)一次函数的增减性在解决实际问题中的应用。
2.教师指导:在学生讨论过程中,教师进行巡回指导,关注学生的讨论进展,解答学生的疑问。
1.请学生绘制以下一次函数的图像,并观察k、b的值对图像的影响:
(1)y=3x+2
(2)y=-2x+1
(3)y=x-4
通过绘制图像,让学生直观地感受一次函数的性质,并理解k、b的几何意义。
2.已知一次函数图像经过点(1,2)和(3,6),求该函数的解析式,并说明该函数在区间[0, 4]上的增减性。
此题旨在培养学生求解一次函数解析式的能力,并应用一次函数的增减性分析函数值的变化。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义、图像特征、性质及其在实际问题中的应用。
2.难点:
(1)理解一次函数图像的几何意义,尤其是k、b对图像的影响;
(2)运用一次函数的性质解决实际问题,尤其是求解一ห้องสมุดไป่ตู้函数解析式;
(3)培养学生从实际问题中抽象出一次函数模型的能力。
(二)教学设想
3.组织小组讨论和分享,让学生在交流与合作中提高解决问题的能力。
4.引导学生通过观察、分析、归纳等过程,发现一次函数的性质和图像特点,提高学生的观察能力和抽象思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们学习数学的热情,增强克服困难的信心。
2.培养学生的团队合作意识,使他们学会在合作中学习、成长。
苏科版数学八年级上册6.2《一次函数》教学设计1
苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。
本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。
教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。
但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。
因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。
三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。
2.能够运用一次函数解决实际问题,提高学生的数学应用能力。
3.培养学生的数学思维能力和团队合作精神。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点。
3.运用一次函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。
2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。
3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。
4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。
2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。
3.教学工具:准备黑板、粉笔、直尺等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。
通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。
初中一次函数教学设计范文(通用10篇)
初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。
《一次函数》数学教案
《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。
2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。
3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。
二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。
2. 重点:一次函数的概念、图象和性质。
3. 难点:一次函数的应用。
三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。
2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。
3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。
4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。
四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。
2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。
3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。
五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。
2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。
六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。
八年级《一次函数》教学设计(5篇)
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
《一次函数的图象和性质》教学设计(优秀7篇)
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
《一次函数的图象和性质》教学设计优秀5篇
《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。
第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
人教版数学八年级下册第十九章《一次函数》大单元教学设计
1.采用情境导入法,通过生活中的实例引出一次函数的概念,激发学生的学习兴趣,使学生感受到数学与生活的紧密联系。
2.利用多媒体辅助教学,以动态演示一次函数图像的绘制过程,帮助学生直观地理解一次函数的图像与性质。
3.设计丰富的课堂活动,如小组讨论、互助学习等,引导学生主动探究一次函数的性质,培养学生的合作意识和创新能力。
提示:可以从点到直线的距离公式入手,结合一次函数的图像和性质进行分析。
作业要求:
1.作业本需整洁、字迹清晰,解答过程要求简洁、逻辑性强。
2.对于难题和疑问,鼓励同学们主动与同学、老师交流,共同解决。
3.家长签字,监督学生按时完成作业,培养良好的学习习惯。
5.通过变式练习,使学生巩固所学知识,提高解决问题的灵活性和准确性。
(三)情感态度与价值观
在本章节的教学中,学生将形成以下情感态度与价值观:
1.培养学生对数学学科的兴趣,激发学生的学习积极性,使学生主动投入到一次函数的学习中。
2.培养学生面对数学问题时的耐心和毅力,使学生遇到困难时能够坚持不懈,勇于克服。
人教版数学八年级下册第十九章《一次函数》大单元教学设计
一、教学目标
(一)知识与技能
在本章节的教学中,学生将通过学习一次函数的概念、图像、性质及应用,达到以下知识与技能目标:
1.理解并掌握一次函数的定义,能够准确识别并写出一次函数的一般形式:y=kx+b(k≠0,k、b为常数)。
2.学会通过观察或解析式,分析一次函数的图像特征,如斜率k的正负与图像的走势,截距b与图像在y轴上的位置等。
3.通过一次函数的学习,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
4.引导学生在学习过程中,学会与他人合作、交流,培养学生的团队精神。
初中一次函数教案优秀5篇
初中一次函数教案优秀5篇一次函数的优秀教学设计篇一课题:14.2.2一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)当然,这个函数也可表示为:y=-6x+15(x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c 的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。
一次函数的优秀教学设计
一次函数的优秀教学设计一次函数的优秀教学设计作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
写教学设计需要注意哪些格式呢?下面是店铺为大家收集的一次函数的优秀教学设计,欢迎大家分享。
一次函数的优秀教学设计篇1教学目标:1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。
2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。
3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。
教学重点:1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。
2、通过函数的性质及定义域范围求函数的最值。
教学难点:从实际问题中抽象概括出运动变化的规律,建立函数关系式教学方法:讨论式教学法教学过程:例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?(1)几分钟让学生认真读题,理解题意(2)由题意可知,一种调配方案,对应一个费用。
不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。
它们之间存在着一定的关系。
究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。
解法(一)列表分析:设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。
B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。
根据题意:y = 40x+80(12- x)+ 30(10-x)+50(x-4)y = 40x+960-80x+300-30x+50x-200= -20x+1060(4≤x≤10,且x是正整数)y = -20x+1060是减函数。
∴当x = 10时,y有最小值ymin= 860∴调配方案为A校调到C校10台,调到D校2台,B校调到D 校2台。
一次函数 初中八年级下册数学教案教学设计课后反思
《一次函数》教学设计一、教学目标(一)理解一次函数的概念以及它和正比例函数之间的关系;(二)确定一次函数解析式;(三)会画一次函数图像,并根据一次函数图像解决实际问题。
重点:理解一次函数的概念以及一次函数图像的性质。
难点:根据一次函数图像解决实际问题。
二、教材内容分析本课主要通过类比正比例函数来探究一次函数的概念,引导学生画出一次函数的图像并根据图像解决实际问题。
一次函数是一种最基本的初等函数,在现实生活中有着广泛的应用,而熟练掌握一次函数的性质和应用,是渗透“数形结合”的思想方法的重要途径,对今后进一步学习反函数以及二次函数具有启示作用。
三、教学方法(一)由实际问题引出一次函数解析式的过程,充分体现数学与生活之间的联系;(二)在画一次函数图像过程中体会“数形结合”的思想方法。
四、活动准备:(一)学生准备:课前认真复习正比例函数相关知识;(二)物质材料准备:课件《一次函数》。
五、活动过程:(一)课堂回顾1、引导学生利用绘制表格的方式回顾正比例函数的相关知识。
正比例函数的函数解析式为,当时,它的图像为。
(出示课件)。
当时,正比例函数的图像经过一三象限,且y随x的增大而增大。
当时,它的图像为。
(出示课件)当时,正比例函数的图像经过二四象限,且y随x的增大而减小。
(二)新课导入1、某登山队大本营所在地气温为5℃,海拔每升高1km下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用函数解析式表示y 与x的关系。
2、以下变量之间的对应关系是函数关系吗?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的变化而变化.通过列一次函数解析式归纳出一次函数的概念。
一次函数的概念教学设计6篇
一次函数的概念教学设计6篇教学目标1、经受一般规律的探究过程,进展学生的抽象思维力量。
2、理解一次函数和正比例函数的概念,能依据所给条件写出简洁的一次函数表达式,进展学生的数学应用力量。
教学重点1、一次函数、正比例函数的概念及两者之间的关系。
2、会依据已知信息写出一次函数的表达式。
教学难点一次函数学问的运用教学方法教师引导学生自学法教具预备弹簧一根、课件教学过程一、创设问题情境,引入新课1、简洁复习函数的概念(设在某一变化过程中有两个变量X和Y,假如,那么我们称Y是X的函数,其中X是自变量,Y是因变量)2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习1、做一做。
让学生做书上157页上面两个题目,使学生在探究一般规律的过程中,进展抽象思维力量。
2、一次函数、正比例函数的概念学习争论:刚刚写出的两个关系式y=3+0.5x、y=100—0.18x在形式上有什么一样之处?让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比拟一次函数与正比例函数的关系(用集合的方法比拟):一次函包括正比例函数,正比例函数是一次函数的特别状况。
3、例题学习例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进展口答。
例题2是培育学生依据题意列出简洁一次函数关系式及利用一次函数解决实际问题的力量。
一次函数(第一课时)教学设计及反思
一次函数(第一课时)教学设计及反思设计目标本节课的教学目标为: 1. 让学生了解一次函数的定义和基本概念; 2. 掌握一次函数的图像特征和性质; 3. 能够利用一次函数解决实际问题。
教学内容概述本节课主要包括以下内容: 1. 一次函数的定义和表达式形式; 2. 一次函数的图像和特征; 3. 一次函数的性质及应用。
教学步骤步骤一:导入和概念解释(5分钟)•在课堂开始前,教师可以简单介绍一次函数的定义和基本概念,引起学生的兴趣和思考。
•教师可以提出以下问题进行讨论:–什么是一次函数?–一次函数有哪些典型的表达式形式?–一次函数的图像有什么特征?步骤二:一次函数的表达式形式(10分钟)•教师通过示例和图表等方式,向学生展示一次函数的不同表达式形式,如y=ax+b,y=kx,y=k等。
•教师可以让学生讨论和比较不同表达式形式的特点和应用场景,加深对一次函数的理解。
步骤三:一次函数的图像特征(20分钟)•教师带领学生观察和探究一次函数的图像特征。
•教师可以通过绘制坐标轴和一次函数的图像,让学生观察和分析图像的斜率、截距和变化趋势等特征。
•教师可以提出问题,让学生思考并回答:–斜率为正的一次函数的图像有什么特征?–斜率为负的一次函数的图像有什么特征?–斜率为零的一次函数的图像有什么特征?步骤四:一次函数的性质及应用(20分钟)•教师向学生介绍一次函数的性质,如随着斜率的增大或减小,函数图像的变化规律,以及函数图像和实际问题的联系等。
•教师可以通过实际问题的例子,让学生应用一次函数解决问题,如利润与销量、距离与时间的关系等。
步骤五:小结和反思(5分钟)•教师对本节课的内容进行小结和回顾,重点总结一次函数的定义、表达式形式、图像特征和性质等。
•教师可以提出一些问题,让学生思考本节课所学内容的应用和拓展。
反思和改进本节课教学设计中,可以进一步改进的地方有: 1. 增加学生参与度:在教学过程中,可以增加学生的参与和互动,通过小组讨论或问题解答等形式,提高学生的学习兴趣和主动性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数图象和性质》教学设计
教学目标
知识与技能目标
1.进一步巩固一次函数的概念和图象;
2.结合一次函数的图象,掌握一次函数y=kx+b(k≠0)的性质。
3.能利用一次函数的有关性质解决有关问题。
过程与方法目标
1.经历探索一次函数图象性质的过程,感受一次函数中k的正负值对函数性质的影响;培养学生合作交流探究意识。
2.观察图象,体会一次函数k的取值和直线位置的关系,提高学生数形结合能力.
情感与态度目标
1.通过探究,让学生仔细观察、对比、归纳、整理,得到实物的内在规律,体验教学活动充满着探索性和创造性.
教学重点与难点
教学重点:0
k<时,图象的变化情况,一次函数
k>或0
()0
=+≠图象性质的理解与应用.
y kx b k
教学难点:探索一次函数图象的性质,一次函数
()0
=+≠图象性质的应用。
y kx b k
学情分析
学生已经对一次函数的图象有了一定的认识,在此基础上,结合一次函数的图象,通过数形结合的办法,引导学生探究一次函数的简单性质,学生是较容易掌握的。
并在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容及练习题做适当设计。
教学方法:小组合作、实践探究、讲练结合、动手操作
教学手段:平板和平台信息技术与数学融合
教学过程
一、导入新课—明确目标
老师:上几节课我们学习了一次函数的解析式以及一次函数的图象,那么这一节课,我们就来一起探讨一次函数的有关性质!
(板书课题)
老师:在我们学习本节课之前,回去一下我们以前已经解决了的有关一次函数的知识
学生:老师提问学生一边回答,教师一边纠正。
老师:本节课我们需要解决的问题目标有一下几个,谁愿意给大家读一下?
学生:朗读问题目标
二、出示问题--自主学习
教师利用平台在平板上给学生发布任务,一个平面直角坐标系,让学生利用手中的平板,小组合作,两个人进行画图。
教师:用屏幕展示学生画的图象,并点评,演示作图步骤,巩固作图步骤。
师:引导学生观察图像与解析式中的k的关系。
老师:我们整体把握一下一次函数图象的特点
性质1:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。
(当b>0时,向上平移;当b<0时,向下平移)
三、尝试练习--互动探究
1.你能说出一次函数y=3x-4的图象是什么形状吗?它与直线y=3x有什么关系?
2.你能说出一次函数y=-3x+4与y=-3x的图象有什么关系?
四、交流展示--精讲点拨
性质2:
引导学生说出函数图像的性质
师:由学生自己讲,如果学生可以自己讲清楚,教师不再讲,如果学生讲不清楚,由教师补充。
练习4由教师引导学生收获盘点
五、再次尝试--当堂检测
(1)下列函数中,y的值随x值的增
大而增大的函数是________.
A.y=-2x
B.y=-2x+1
C.y=x-2
D.y=-x-2
(2)直线y=3x-2可由直线y=3x向平
移单位得到。
(3)直线y=2x+2可由直线y=2x-1向平移
单位得到。
(4)对于函数y=5x+6,y的值随x的值减小而______。
(5)函数y=2x-1经过象限
(6)函数y=2x - 4与y轴的交点为(),与x轴交于()
作业
1.必做:数学书P79第10,12题;
2.选做:数学书P79第9题
评价小组活动
教师:今天我们来看一下那个小组自我展示最棒?排名的积分。
课后反思:
本节课主要结合一次函数的图象对一次函数的简单性质进行了探讨,不同的学生能够利用平板画出不同的图象,有的用手画,有的用平板上的工具画,各具风采,多鼓励学生。
在教学中应关注学生在探索问题的过程中是否具备了数形结合的意识;是否能够抓住问题的核心;是否能够进行知识的迁移。
这些都是教学中应重点关注的地方。