(完整word版)圆锥曲线中的定点定值问题的四种模型.docx

合集下载

圆锥曲线中的四种经典模型

圆锥曲线中的四种经典模型

圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型Last revision on 21 December 2020圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

圆锥曲线中的定点、定值和定直线问题(解析)

圆锥曲线中的定点、定值和定直线问题(解析)

圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,由y =x -2x 2-4y 2=4解得x =2或x =103,因此点E ,F 的横坐标x E ,x F 有x E =x F =103,即直线EF 过定点M 103,0 ,综上得直线EF 过定点M 103,0 ,由于DG ⊥EF ,即点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.【点睛】思路点睛:与圆锥曲线相交的直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.【答案】(1)x 2-y 23=1;(2)证明见解析;(3)存在λ=2,理由见解析.【分析】(1)根据离心率,以及a ,结合b 2=c 2-a 2,即可求得曲线C 方程;(2)设出直线PQ 的方程,联立双曲线方程,得到关于点P ,Q 坐标的韦达定理;再分别求得AP ,AQ 的方程,以及点M ,N 的坐标,利用数量积的坐标运算,即可证明;(3)求得直线PQ 不存在斜率时满足的λ,当斜率存在时,将所求问题,转化为直线PA ,PF 2斜率之间的关系,结合点P 的坐标满足曲线C 方程,求解即可.【详解】(1)由题可得a =1,ca =2,故可得c =2,则b 2=c 2-a 2=4-1=3,故C 的标准方程为x 2-y23=1.(2)由(1)中所求可得点A ,F 2的坐标分别为-1,0 ,(2,0),又双曲线渐近线为y =±3x ,显然直线PQ 的斜率不为零,故设其方程为x =my +2,m ≠±33,联立双曲线方程x 2-y 23=1可得:3m 2-1 y 2+12my +9=0,设点P ,Q 的坐标分别为x 1,y 1 ,(x 2,y 2),则y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,x 1+x 2=m y 1+y 2 +4=-43m 2-1,x 1x 2=m 2y 1y 2+2m y 1+y 2 +4=-3m 2-43m 2-1;又直线AP 方程为:y =y 1x 1+1(x +1),令x =12,则y =32⋅y 1x 1+1,故点M 的坐标为12,32⋅y 1x 1+1;直线AQ 方程为:y =y 2x 2+1(x +1),令x =12,则y =32⋅y 2x 2+1,故点N 的坐标为12,32⋅y 2x 2+1;则MF 2 ⋅NF 2 =32,-32⋅y 1x 1+1 ⋅32,-32⋅y 2x 2+1=94+94⋅y 1y 2x 1x 2+x 1+x 2+1=94+94⋅93m 2-1-3m 2-43m 2-1-43m 2-1+1=94+94⋅9-9=0故MF 2 ⋅NF 2为定值0.(3)当直线PQ 斜率不存在时,对曲线C :x 2-y 23=1,令x =2,解得y =±3,故点P 的坐标为(2,3),此时∠PF 2A =90°,在三角形PF 2A 中,AF 2 =3,PF 2 =3,故可得∠PAF 2=45°,则存在常数λ=2,使得∠PF 2A =2∠PAF 2成立;当直线PQ 斜率存在时,不妨设点P 的坐标为(x ,y ),x ≠2,直线PF 2的倾斜角为α,直线PA 的倾斜角为β,则∠PF 2A =π-α,∠PAF 2=β,假设存在常数λ=2,使得∠PF 2A =2∠PAF 2成立,即π-α=2β,则一定有:tan π-α =-tan α=tan2β=2tan β1-tan 2β,也即-k PF2=2k PA 1-k 2PA;又-k PF 2=-yx -2;2k PA 1-k 2PA=2yx +11-y 2x +12=2y (x +1)x +1 2-y2;又点P 的坐标满足x 2-y 23=1,则y 2=3x 2-3,故2k PA1-k 2PA=2y x +1 x +1 2-y 2=2y x +1 x +1 2-3x 2+3=2y (x +1)-2x 2+2x +4=2y (x +1)-2(x -2)(x +1)=-y x -2=-k PF 2;故假设成立,存在实数常数λ=2,使得∠PF 2A =2∠PAF 2成立;综上所述,存在常数λ=2,使得∠PF 2A =2∠PAF 2恒成立.【点睛】关键点点睛:本题考察双曲线中定值以及存在常数满足条件的问题;其中第二问证明的关键是能够快速,准确的进行计算;第三问处理的关键是要投石问路,找到特殊情况下的参数值,再验证非特殊情况下依旧成立,同时还要注意本小题中把角度关系,转化为斜率关系;属综合困难题.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.【答案】(1)x 2=12y(2)证明见详解【分析】(1)设M x ,y ,由题意可得y +14=x 2+y -18 2+18,化简整理即可;(2)设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,结合导数的几何意义分析可得x 1,x 2为方程2x 2-4tx +t -1=0的两根,结合韦达定理求直线AB 的方程,即可得结果.【详解】(1)设M x ,y ,则MF =x 2+y -18 2,d =y +14 ,因为d =MF +18,即y +14 =x 2+y -18 2+18,当y +14≥0,即y ≥-14时,则y +14=x 2+y -18 2+18,整理得x 2=12y ;当y +14<0,即y <-14时,则-y -14=x 2+y -18 2+18,整理得x 2=y +18<0,不成立;综上所述:M 点的轨迹C 的方程x 2=12y .(2)由(1)可知:曲线C :x 2=12y ,即y =2x 2,则y =4x ,设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,可知切线QA 的斜率为4x 1,所以切线QA :y -2x 21=4x 1x -x 1 ,则t -1-2x 21=4x 1t -x 1 ,整理得2x 21-4tx 1+t -1=0,同理由切线QB 可得:2x 22-4tx 2+t -1=0,可知:x 1,x 2为方程2x 2-4tx +t -1=0的两根,则x 1+x 2=2t ,x 1x 2=t -12,可得直线AB 的斜率k AB =2x 21-2x 22x 1-x 2=2x 1+x 2 =4t ,设AB 的中点为N x 0,y 0 ,则x 0=x 1+x 22=t ,y 0=2x 21+2x 222=x 1+x 2 2-2x 1x 2=4t 2-t +1,即N t ,4t 2-t +1 ,所以直线AB :y -4t 2-t +1 =4t x -t ,整理得y -1=4t x -14,所以直线AB 恒过定点P 14,1 .【点睛】方法点睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk +n ,得y =k x +m +n ,故动直线过定点-m ,n ;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB,证明点N 在定直线上,并求该定直线的方程.【答案】(1)x 2=12y ;(2)证明见解析,y =3.【分析】(1)设直线l 1的方程为y =x +p2,再根据直线和圆相切求出p 的值得解;(2)依题意设M (m ,-3),求出切线l 2的方程和B 点坐标,求出MN =x 1-2m ,6 ,ON=x 1-m ,3 即可求解作答.【详解】(1)依题意得,物线C 1:x 2=2py 的焦点坐标为0,p 2 ,设直线l 1的方程为y =x +p2,而圆C 2:x +1 2+y 2=2的圆心C 2(-1,0),半径r =2,由直线l 1与圆C 2相切,得d =-1+p212+-12=2,又p >0,解得p =6,所以抛物线C 1的方程为x 2=12y .(2)由(1)知抛物线C 1:x 2=12y 的准线为y =-3,设M (m ,-3),由y =x 212,求导得y =x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,于是切线l 2的方程为y =16x 1x -x 1 +y 1,令x =0,得y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即l 2交y 轴于点B (0,-y 1),因此MA =(x 1-m ,y 1+3),MB =-m ,-y 1+3 ,MN =MA +MB =x 1-2m ,6 ,则ON =OM +MN=x 1-m ,3 ,设N 点坐标为(x ,y ),从而y =3,所以点N 在定直线y =3上.3已知直线l 1:x -y +1=0过椭圆C :x 24+y 2b2=1(b >0)的左焦点,且与抛物线M :y 2=2px (p >0)相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.【答案】(1)x 24+y 23=1,y 2=4x(2)存在,-2,0【分析】(1)由直线l 1过椭圆C 的左焦点,求出c 得出椭圆方程,利用直线l 1与抛物线M 相切,联立两个方程,通过判别式为零进行求解;(2)分成直线l 2斜率存在与不存在两种情况进行讨论,斜率存在时可设直线方程y =k x -1 ,与椭圆方程联立得出韦达定理,表示M ,N 两点坐标,利用PM ⋅PN=0进行求解.【详解】(1)由y 2=2px x -y +1=0 ,得x 2+2-2p x +1=0,因为直线x -y +1=0与抛物线M 只有1个公共点,所以Δ=2-2p 2-4=0,解得p =2,故抛物线C 的方程为y 2=4x .由直线x -y +1=0过椭圆C 的左焦点得得c =1,所以,4-b 2=1,b 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)如图1,设A x 1,y 1 ,B x 2,y 2 ,当直线l 2斜率存在时,可设直线方程:y =k x -1由y 2=4x y =k x -1 得k 2x 2-2k 2+4 x +k 2=0,所以Δ=2k 2+4 2-4k 4=16k 2+16>0,x 1+x 2=2k 2+4k2,x 1x 2=1. 所以y 1y 2=k 2x 1-1 x 2-1 =k 2x 1x 2-x 1+x 2 +1 =-4,x 2y 1+x 1y 2=kx 2x 1-1 +kx 1x 2-1 =k 2x 1x 2-x 1+x 2 =-4k,直线OA 的方程为y =y 1x 1x ,同理可得,直线OB 的方程为y =y 2x 2x ,令x =2得,M 2,2y 1x 1 ,N 2,2y 2x 2,假设椭圆C 上存在点P x 0,y 0 ,恒有PM ⊥PN .则PM ⋅PN =2-x 0,2y 1x 1-y 0 ⋅2-x 0,2y 2x 2-y 0=0即2-x 0 2+2y 1x 1-y 0 2y 2x 2-y 0=0,即2-x 0 2+y 20-2x 2y 1+2x 1y 2x 1x 2y 0+4y 1y 2x 1x 2=0,即2-x 0 2+y 20+8ky 0-16=0,令y 0=0,可得x 0=6或x 0=-2.由于点6,0 不在椭圆C 上,点-2,0 在椭圆D 上,所以椭圆C 上存在点P -2,0 ,使PM ⊥PN 恒成立如图2,当直线斜率不存在时,直线过抛物线的右焦点,则直线方程为x =1,与抛物线交于A 1,2 ,B 1,-2 ,则直线OA 方程为:y =2x ,直线OB 方程为:y =-2x ,椭圆的过右顶点的切线方程为x =2,切线方程x =2与直线OA 交于M 2,4 ,与直线OB 交于N 2,-4 ,由上面斜率存在可知恒过P -2,0 ,经验证满足PM ⋅PN=0,所以当斜率不存在时候也满足以MN 为直径的圆恒过定点-2,0 .4在平面直角坐标系中,已知圆心为点Q 的动圆恒过点F (0,1),且与直线y =-1相切,设动圆的圆心Q 的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P 为直线l :y =y 0y 0<0 上一个动点,过点P 作曲线Γ的切线,切点分别为A ,B ,过点P 作AB 的垂线,垂足为H ,是否存在实数y 0,使点P 在直线l 上移动时,垂足H 恒为定点?若不存在,说明理由;若存在,求出y 0的值,并求定点H 的坐标.【答案】(1)x 2=4y(2)存在这样的y 0,当y 0=-1时,H 坐标为(0,1).【分析】(1)依题意,由几何法即可得出圆心的轨迹Γ是以F (0,1)为焦点,l :y =-1为准线的抛物线.(2)设直线AP 的方程y -y 1=k x -x 1 ,对抛物线方程求导化简也可得直线AP 的方程,由恒等思想可得y 0+y 1=x 1x 02,y 0+y 2=x 2x 02,构造直线方程为y +y 0=x 0x2,故AB 两点代入化简可得恒过点0,-y 0 ,再由PH ⊥AB 得x =-x02y -y 0-2 ,PH 恒过点0,y 0+2 ,从而可得结论.。

圆锥曲线中的定点定值问题的四种模型(完整资料).doc

圆锥曲线中的定点定值问题的四种模型(完整资料).doc

【最新整理,下载后即可编辑】2017届高三第一轮复习专题训练之 圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型例题、(07山东)已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +->当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27km =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

圆锥曲线中的定点定值问题

圆锥曲线中的定点定值问题

圆锥曲线中的定点定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、(07山东)已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

专题01 圆锥曲线中的定点、定值问题

专题01 圆锥曲线中的定点、定值问题

高中数学 ︵ 圆锥曲线 ︶培优篇定点、定值问题曲线过定点某个量为定值用参数表示曲线方程 用参数表示该量令参数系数为0或某值,解出相应的x 、y 的值 令参数系数为0或某值化简使该量为定值选参、用参、消参,求出定点或定值高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学︵ 圆锥曲线 ︶培优篇 2|||1AF .高中数学 ︵ 圆锥曲线 ︶培优篇 方法联立,第一种,假设直线AB 的方程,第二种假设直线P 2A 和P 2B . 满分解答(1) 根据椭圆对称性可得,P 1(1,1),P 4(1,)不可能同时在椭圆上,P 3(–1,),P 4(1,)一定同时在椭圆上,因此可得椭圆经过P 2(0,1),P 3(–1,),P 4(1,). 把P 2,P 3坐标代入椭圆方程得2221=13141b a b,,解得224,1a b ,故椭圆C 的方程为2214x y ;(2)解1 ①当直线l 的斜率不存在时,设:l x m ,(,),(,)A A A m y B m y ,此时221121A A P A P B y y k k m m m,解得2m ,此时直线l 过椭圆右顶点,不存在两个交点,故不满足.②当直线l 的斜率存在时,设:(1)l y kx t t ,1122(,),(,)A x y B x y ,则2214y kx t x y ,,消去y 得 222(14)8440k x tkx t , 2216(41)k t ,2121222841,1414tk t x x x x k k,此时 22121211P A P B y y k k x x21212112()()x kx t x x kx t x x x21212(1)()(1)(8)224(1)t x x t kt k k x x t. 由于1t ,所以22222111P A P B kt kk k k t t ,即21t k ,此时32(1)t ,存在1t ,使得0 成立,22222高中数学 ︵ 圆锥曲线 ︶培优篇所以直线l 的方程为(2)1y k x ,直线l 必过定点(2,1) .解2 由题意可得直线2P A 与直线2P B 的斜率一定存在,不妨设直线2P A 为1y kx , 则直线2P B 为 11y k x .由22114y kx x y ,,得224180k x kx ,设 11,A x y , 22,B x y 此时可得:222814,4141k k A k k,同理可得 22281141,411411k k B k k.此时可求得直线l 的斜率为:2222212122141144141181841411ABk k k k y y k k x x k k k ,化简可得2112AB k k,此时满足12k .当12k 时,,A B 两点重合,不合题意.当12k 时,直线方程为: 22221814414112k k y x k k k, 即2244112k k x y k,当2x 时,1y ,因此直线恒过定点 2,1 .思路点拨第(1)题只需证明0AC BC.第(2)题要先求圆的方程,令y=0即可求出在y 轴上弦长.求圆方程可以用标准式方程,也可以用一般式方程.当然,本题还可以利用相交弦定理来解.高中数学 ︵ 圆锥曲线 ︶培优篇 满分解答(1)设 12,0,,0A x B x ,则12,x x 是方程220x mx 的根,所以1212,2x x m x x ,则 1212,1,112110AC BC x x x x.所以不会能否出现AC ⊥BC 的情况.(2)解1 由于过A ,B ,C 三点的圆的圆心必在线段AB 垂直平分线上,设圆心 00,E x y ,则12022x x mx. 由EA EC得 22221212100+122x x x x x y y,化简得 1201122x x y ,所以圆E 的方程为22221112222m m x y.令0x 得121,2y y ,所以过A ,B ,C 三点的圆在y 轴上截得的弦长为 123 .所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为定值解2 由于BC 的中点坐标为21(.22x ,可得BC 的中垂线方程为221()22xy x x . 由(1)可得12x x m ,所以AB 的中垂线方程为2mx .联立2221(22m x x y x x ,,又22220x mx , 可得212m x y ,,所以过,,A B C 三点的圆的圆心坐标为1(,)22m,半径2r ,故圆在y 轴上截得的弦长为3 ,即过A B C ,,三点的圆在y 轴上的截得的弦长为定值.解3 设圆的方程为220x y Dx Ey F , 令0y ,得20x Dx F ,由题意,2D m F ,把0,1x y 代入圆的方程,得10E F ,即1E .故圆的方程为:2220x y mx y .高中数学 ︵ 圆锥曲线 ︶培优篇 11令0x ,得220y y ,所以121,2y y ,故12|||1(2)|3y y .所以过,,A B C 三点的圆在y 轴上截得的弦长为定值3.解4设过A ,B ,C 三点的圆与y 轴的另一个交点为D ,由122x x 可知原点O 在圆内,由相交弦定理可得122OD OC OA OB x x ,又1OC ,所以2OD ,所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为3OC OD ,为定值.思路点拨第(1)题可以直接求出a、b;第(2)题用参数表示AN BM ,可以设 00,P x y ,用00x y 、做参数,也可以设 2cos ,sin P , 用做参数. 满分解答(1)由已知,1,122c ab a ,又222a b c ,解得2,1,a b c 所以椭圆的方程为2214x y .(2)解1 设椭圆上一点 00,P x y ,则220014x y .由于直线PA 的方程: 0022y y x x ,令0x ,得0022M y y x, 所以00212y BM x; 直线PB 的方程:0011y y x x ,令0y ,得001N x x y, 所以0021x AN y. 因为220014x y ,所以220044x y ,从而高中数学 ︵ 圆锥曲线 ︶培优篇 120000002200000000002222214448422x y x y x y x y x y x y x y x y2200000000004444484=422y y x y x y x y x y .故AN BM 为定值.解2 设椭圆 上一点 2cos ,sin P ,则直线P A 的方程: sin 22cos 2y x,令0x ,得sin 1cos M y, 所以sin cos 11cos BM;直线PB 的方程:sin 112cos y x,令 0y ,得2cos 1sin N x, 所以2sin 2cos 21sin AN.2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM。

圆锥曲线的经典模型

圆锥曲线的经典模型

圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。

(完整版)圆锥曲线中的定点和定值问题(毛玉峰)

(完整版)圆锥曲线中的定点和定值问题(毛玉峰)

圆锥曲线中的定点和定值问题泰兴市第二高级中学 毛玉峰圆锥曲线是解析几何的重要内容之一,是高考的重点考查内容.这部分知识综合性较强,对学生逻辑思维能力、计算能力等要求很高,特别是圆锥曲线中的定点与定值问题,此类问题主要涉及到直线、圆、圆锥曲线等方面的知识,渗透了函数、化归、数形结合等思想,是高考的热点题型之一. 【要点梳理】1.解析几何中,定点、定值问题是高考命题的一个热点,也是一个难点,解决这类问题基本思想是明确的,那就是定点、定值必然是在变化中所表现出来的不变量,所以可运用函数的思想方法,选定适当的参数,结合等式的恒成立求解,也就是说与题中的可变量无关。

2.椭圆中常见的定值结论:结论1:经过原点的直线l 与椭圆22221(0)x y a b a b+=>>相交于,M N 两点,P 是椭圆上的动点,直线,PM PN 的斜率都存在,则PM PN k k g为定值22b a-. 结论2:已知,M N 是椭圆22221(0)x y a b a b +=>>两点,P 是,M N 的中点,直线,MN OP 的斜率都存在,则MN OP k k g 为定值22b a-.结论3:设,,A B C 是椭圆22221(0)x y a b a b+=>>上的三个不同点,,B C 关于x 轴对称,直线,AB AC 分别与x 轴交于,M N 两点,则OM ON g 为定值2a . 结论4:过椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 上任意作两条斜率互为相反数的直线交椭圆于,M N 两点,则直线MN 的斜率为定值2020b x a y .结论5:分别过椭圆22221(0)x y a b a b+=>>上两点00(,)P x y ,''00(,)Q x y 作两条斜率互为相反数的直线交椭圆于,M N 两点,则直线MN 的斜率为定值2'002'00()()b x x a y y ++. 3. 定点问题:对圆锥曲线中定点的确定,通常设出适当的参数,求出相应曲线系(直线系)方程,利用定点对参变量方程恒成立的特点,列出方程(组),从而确定出定点或者也可以对参变量取特殊值确定出定点,再进行一般性证明.4. 定值问题:求证或判断某几何量是否为定值时,可引进适当的参变量,直接求出相应几何量的值,说明或证明其为定值(与参变量无关). 下面结合具体例子加以说明.例1.已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=.(1)过圆心1C 作倾斜角为θ的直线l 交圆2C 于,A B 两点,且A 为1C B 的中点,求sin θ; (2)过点(,1)P m 引圆2C 的两条割线1l 和2l ,直线1l 和2l 被圆2C 截得的弦的中点分别为,M N .试问过点2,,,P M N C 的圆是否过定点(异于点2C )?若过定点,求出该定点;若不过定点,说明理由; 【解析】(1)(解略)(2)依题意,过点2,,,P M N C 的圆即为以2PC 为直径的圆,所以(4)()(1)(0)0x x m y y --+--=,即22(4)40x m x m y y -+++-= 整理成关于实数m 的等式22(4)40x m x x y y -+-+-=恒成立 则224040x x x y y -=⎧⎨-+-=⎩,所以40x y =⎧⎨=⎩或41x y =⎧⎨=⎩ 即存在定点(4,1). 小结:本题列出了圆系方程,再整理成关于参变量的方程,列出方程组,得出定点。

高考圆锥曲线中的定点与定值问题(题型总结超全)完整版.doc

高考圆锥曲线中的定点与定值问题(题型总结超全)完整版.doc

专题08 解锁圆锥曲线中的定点与定值问题一、解答题1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】(1)(2)【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。

设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。

解得。

∴椭圆的标准方程为.(Ⅱ)证明:由题意设直线的方程为,由消去y整理得,设,,要使其为定值,需满足,解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当12k =时,弦MN 的长为15. (1)求抛物线C 的标准方程;(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4-【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()()2221122,2,,2,,2M t t N t t Q t t ,则12MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11t t ⇒=(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,即可得出直线NQ 过定点.(2)设()()()2221122,2,,2,,2M t t N t t Q t t ,则12211222=MN t t k t t t t -=-+, 则()212:2MN y t x t t t -=-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11tt ⇒=,即11t t =(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,易得直线NQ 过定点()1,4-3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2:0C y mx m =>过点()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ∆的重心的纵坐标为23-. (1)求抛物线C 的方程,并求其焦点坐标;(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值.【答案】(1)方程为24y x =;其焦点坐标为()1,0(2)120k k +=【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;(2)设直线l 的方程为y x b =-+,将它代入24y x =得22220x b x b -++=(),利用韦达定理,结合斜率公式以及PAB ∆的重心的纵坐标23-,化简可12k k + 的值;因为PAB ∆的重心的纵坐标为23-, 所以122p y y y ++=-,所以2p y =,所以1p x =,所以()()()()()()1221121212122121221111y x y x y y k k x x x x ------+=+=----, 又()()()()12212121y x y x --+--()()()()12212121x b x x b x ⎡⎤⎡⎤=-+--+-+--⎣⎦⎣⎦()()()12122122x x b x x b =-+-+--()()()22212220b b b b =-+-+--=.所以120k k +=.4.已知椭圆2222:1(0)x y C a b a b+=>>的短轴端点到右焦点()10F ,的距离为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,2PB BF λ=,求证: 12λλ-为定值.【答案】(1) 22143x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,由()221{ 143y k x x y =-+=,消元得()22223484120k x k x k +-+-=,设()11,A x y , ()22,B x y ,则0∆>且21222122834{ 41234k x x k k x x k +=+-⋅=+, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BFx λ-==-,且1141x x --与2241x x --异号,所以12121212443321111x x x x x x λλ⎛⎫---=+=--+ ⎪----⎝⎭()()1212123221x x x x x x +-=-+-++()2222238682412834k k k k k --=-+--++0=. 所以, 12λλ-为定值0.当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.同理2223PB my BFmy λ-==,且113my my -与223my my -异号,所以()12121212123332y y my my my my my y λλ+---=+=- ()()36209m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+()0m ≠,可减少讨论该直线是否存在斜率.5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ;(2)求证: OA OB ⋅u u u v u u u v是一个定值. 【答案】(1) 8AB =(2)见解析【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;(2)证明:设直线l 的方程为1x ky =+,由21{4x ky y x=+-得2440y ky --= ∴124y y k +=, 124y y =- ()()1122,,,OA x y OB x y ==u u u v u u u v, ∵()()1212121211OA OB x x y y kx ky y y ⋅=+=+++u u u v u u u v,()212121222144143k y y k y y y y k k =++++=-++-=-, ∴OA OB ⋅u u u v u u u v是一个定值.点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22221(0,0)x y a b a b+=>>的离心率为6,右焦点为(2,0).(1)求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为定值.【答案】(1) 2213x y += ,(2) O 到直线AB 3【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;有OA ⊥OB 知x 1x 2+y 1y 2=x 1x 2+(k x 1+m ) (k x 2+m )=(1+k 2) x 1x 2+k m (x 1+x 2)=0 代入,得4 m 2=3 k 2+3原点到直线AB 的距离231m d k ==+ , 当AB 的斜率不存在时, 11x y = ,可得, 13x d == 依然成立.所以点O 到直线的距离为定值32. 点睛: 本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()222210x y b a a b-=>>渐近线方程为3y x =, O 为坐标原点,点(3,3M 在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知,P Q 为双曲线上不同两点,点O 在以PQ 为直径的圆上,求2211OPOQ+的值.【答案】(Ⅰ)22126x y -=;(Ⅱ) 221113OP OQ+=. 【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M 的坐标求得参数即可;(2)由条件可得OP OQ ⊥,可设出直线,OP OQ 的方程,代入双曲线方程求得点,P Q 的坐标可求得221113OPOQ+=。

圆锥曲线专题(定点、定值问题)

圆锥曲线专题(定点、定值问题)

圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340km +->212122284(3),3434mkm x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+Q以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BDk k ⋅=-, 1212122y y x x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++,整理得:2271640mmk k ++=,解得:1222,7k m k m=-=-,且满足22340k m +->当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((22222222ba b a y b a b a x +-+-。

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。

圆锥曲线中的定点.定值问题docx

圆锥曲线中的定点.定值问题docx

圆锥曲线中的定点、定值问题解析几何是数形结合的典范,是高中数学的主要知识板块,是高考考查的重点知识之一,在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以大题出现。

解答题的热点题型有:(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)圆锥曲线中的判断(与证明)及探究问题。

典型解题技巧与方法】考点1圆锥曲线中的几何证明问题:(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明。

例1(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点, 证明:∠OMA =∠OMB .练习1设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .考点2圆锥曲线中的定值问题:(1)求解定值问题的解法1:首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关。

(2)求解定值问题的解法2:将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值。

例2(2019·福建五校第二次联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,上顶点M 到直线3x +y +4=0的距离为3.(1)求椭圆C 的方程;(2)设直线l 过点(4,-2),且与椭圆C 相交于A ,B 两点,l 不经过点M ,证明:直线MA 的斜率与直线MB 的斜率之和为定值。

4圆锥曲线中的定点定值问题[教师版]

4圆锥曲线中的定点定值问题[教师版]

第四讲 圆锥曲线中的定点定值问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a aAB y x a ∴-+=-直线的方程为,2()2a y x AB =+∴即过定点0,2.例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+即3200043200002(34)14288y x x x y x x x x --+=+++-- 从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3、已知椭圆两焦点1F 、2F 在y轴上,短轴长为,P 是椭圆在第一 象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭 圆于A 、B 两点。

20版数学理《高中考前》 word第三篇 热点3圆锥曲线中的定点与定值问题

20版数学理《高中考前》 word第三篇 热点3圆锥曲线中的定点与定值问题

热点3 圆锥曲线中的定点与定值问题【真题研磨·提升审题力】【考场技法】求解直线或圆锥曲线过定点问题的基本思路:(1)把直线或圆锥曲线方程中的变量x,y看成常数.(2)把方程的一端化为零,将方程转化为以参数为主变量的方程.(3)因为方程对任意参数都成立,这时参数的系数就要全部等于零.(4)得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或圆锥曲线所过的定点.【搏分技巧】1.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【阅卷警示】1.直线不存在的情况遗漏,而这种特殊情况往往是寻找定值或定点的突破口.2.注意代数恒等式成立的条件,这也是寻找定值问题的关键.【高考猜押·检验考试力】1.已知椭圆C:+=1(a>b>0)的离心率为,F1,F2分别为其左、右焦点,P为椭圆C上一点,且△F1PF2的周长为4+2.(1)求椭圆C的方程.(2)过点A(4,0)作关于x轴对称的两条不同的直线l1,l2,若直线l1交椭圆C于一点M(x1,y1),直线l2交椭圆C于一点N(x2,y2),x1≠x2,证明:直线MN过定点.2.已知A(-2,0),B(2,0),点C是动点,且直线AC和直线BC的斜率之积为-. (1)求动点C的轨迹方程.(2)设直线l与(1)中轨迹相切于点P,与直线x=4相交于点Q,判断以PQ为直径的圆是否过x轴上一定点.3.已知椭圆C:+=1(a>b>0)的右顶点为A,左焦点为F1,离心率e=,过点A的直线与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1,若=3+ .(1)求椭圆C的标准方程.(2)过圆E:x2+y2=4上任意一点P作圆E的切线l,l与椭圆交于M,N两点,以MN为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.4.已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C过点P.(1)求椭圆C的方程.(2)设椭圆C的右焦点为F,直线l与椭圆C相切于点A,与直线x=3相交于点B,求证:∠AFB的大小为定值.5.已知抛物线C:y2=ax(a>0)上一点P到焦点F的距离为2t.(1)求抛物线C的方程.(2)抛物线C上一点A的纵坐标为1,过点Q(3,-1)的直线与抛物线C交于M,N两个不同的点(均与点A不重合),设直线AM,AN的斜率分别为k1,k2,求证:k1k2为定值.6.已知椭圆C:+=1(a>b>0)经过(1,1)与两点.(1)求椭圆C的方程.(2)过原点的直线l与椭圆C交于A,B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.热点3 圆锥曲线中的定点与定值问题【考场练兵】【解析】(1)由题意,知k1·k2=-,得·=-,整理得x2+y(y-2)=0,故C的方程为+(y-1)2=1(x≠0).(也可以写作x2+2y2-4y=0).(2)显然两条过点K的直线斜率都存在,设过点K的直线方程y=kx+2, 联立解得x=,y=,设直线AB的方程为:Ax+By+C=0,将x=,y=,代入得++C=0,整理得:2Ck2-4Ak+2B+C=0,由于两直线垂直,斜率乘积为-1,根据根与系数的关系得=-1,即2B+3C=0, 故直线AB过定点.1.【解析】(1)根据椭圆的离心率为及△F1PF2的周长为4+2,可得解得所以椭圆C的方程为+y2=1.(2)设直线MN的方程为x=ny+m(n≠0).联立方程组整理得(n2+4)y2+2nmy+m2-4=0,所以y1+y2=,y1y2=.因为关于x轴对称的两条不同的直线l1,l2的斜率之和为0,所以+=0,即+=0,所以2ny1y2+m(y1+y2)-4(y1+y2)=0,所以-+=0,所以m=1,所以直线MN的方程为x=ny+1,所以直线MN过定点(1,0).2.【解析】(1)设C(x,y).由题意得k AC·k BC=·=-(y≠0).整理,得+=1(y≠0).故动点C的轨迹方程为+=1(y≠0).(2)易知直线l的斜率存在,设直线l:y=kx+m.联立得方程组消去y并整理,得(3+4k2)x2+8kmx+4m2-12=0.依题意得Δ=(8km)2-4(3+4k2)(4m2-12)=0,即3+4k2=m2. 设x1,x2为方程(3+4k2)x2+8kmx+4m2-12=0的两个根,则x1+x2=,所以x1=x2=.所以P,即P.又Q(4,4k+m),设R(t,0)为以PQ为直径的圆上一点,则由·=0, 得·(4-t,4k+m)=0.整理,得(t-1)+t2-4t+3=0.由的任意性,得t-1=0且t2-4t+3=0,解得t=1.综上可知,以PQ为直径的圆过x轴上一定点(1,0). 3.【解析】(1)因为e==,所以a=c,b=c,设B(-c,y0),代入椭圆方程得:|y0|=b,所以=|y0||F1A|=b2(1+),所以b2(1+)=3+,所以b2=6,所以a2=12,所以椭圆C的标准方程为+=1.(2)当直线l的斜率不存在时,以MN为直径的圆的圆心为(2,0)或(-2,0),半径为2,以MN为直径的圆的标准方程为:(x+2)2+y2=4或(x-2)2+y2=4,因为两圆都过坐标原点,所以以MN为直径的圆过坐标原点;当直线l的斜率存在时,设其方程为y=kx+m,M(x1,y1),N(x2,y2),因为直线与圆相切,所以圆心到直线l的距离,d==2,所以m2=4k2+4,由化简得:(2k2+1)x2+4kmx+2m2-12=0,所以x1+x2=-,x1x2=,所以·=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=-+m2===0,所以以MN为直径的圆过坐标原点,综上,以MN为直径的圆恒过坐标原点.4.【解析】(1)因为椭圆C过点,所以+=1①, 因为离心率为,所以=②,又因为a2=b2+c2③,由①②③得a2=3,b2=2,c2=1.所以椭圆C的方程为+=1.(2)显然直线l的斜率存在,设l:y=kx+m.由消y得(2+3k2)x2+6kmx+3m2-6=0,由Δ=24(3k2-m2+2)=0得m2=3k2+2.所以x A=-=-=-,所以y A=kx A+m=-+m==,所以切点A的坐标为,又点B的坐标为(3,3k+m),右焦点F的坐标为(1,0),所以=,=(2,3k+m),所以·=×2+×(3k+m)=0,所以∠AFB=90°,即∠AFB的大小为定值.5.【解析】(1)由抛物线的定义可知|PF|=t+=2t,则a=4t, 由点P在抛物线上,得at=,所以a×=,则a2=1,由a>0,得a=1,所以抛物线C的方程为y2=x.(2)因为点A在抛物线C上,且y A=1,所以x A=1.所以A(1,1),设过点Q(3,-1)的直线的方程为x-3=m(y+1), 即x=my+m+3,代入y2=x得y2-my-m-3=0.设M(x1,y1),N(x2,y2),则y1+y2=m,y1y2=-m-3,所以k1k2=·==-.所以k1k2为定值.6.【解析】(1)将(1,1)与两点代入椭圆C的方程,得解得所以椭圆C的方程为+=1.(2)由|MA|=|MB|,知M在线段AB的垂直平分线上,由椭圆的对称性知A,B关于原点对称.①若点A,B是椭圆的短轴顶点,则点M是椭圆的一个长轴顶点,此时++=++=2=2,同理,若点A,B是椭圆的长轴顶点,则点M是椭圆的一个短轴顶点,此时++=++=2=2.②若点A,B,M不是椭圆的顶点,设直线l的方程为y=kx(k≠0),则直线OM的方程为y=-x,设A(x1,y1),B(-x1,-y1),由解得=,=,所以|OA|2=|OB|2=+=,同理|OM|2=,所以++=2×+=2. 故++=2为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017 届高三第一轮复习专题训练之 圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出 k 和 m 的一次函数关系式, 代入直线方程即可。

技巧在于: 设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、( 07 山东) 已知椭圆 C :x 2y 2 1若直线 l : y kx m 与椭圆 C 相交于 A ,B 两点( A , B43l 过定点,并求出该定点的坐标。

不是左右顶点) ,且以 AB 为直径的圆过椭圆 C 的右顶点。

求证:直线解: 设 A( x 1 , y 1 ), B( x 2 , y 2 ) ,由y kx m 得 (34k2)x28mkx 4( m23)0 ,3x24y 2 1264m 2k 2 16(3 4k 2 )(m 2 3) 0 , 3 4k 2 m 2x 1 x 28mk , x 1 x 2 4( m 2 3)3 4k 2 3 4k 23(m 2 4k 2 )y 1 y 2( kx 1m) (kx 2m) k 2 x 1 x 2 mk (x 1 x 2 ) m 23 4k 2 以 AB 为直径的圆过椭圆的右顶点 D (2,0), 且 k AD k BD1 ,y 1y 21, y 1 y 2 x 1 x 2 2( x 1x 2 ) 4 0 ,x 12 x 2 23(m 24k 2 ) 4(m 2 3) 16mk40 ,34k234k23 4k22k整理得: 7m 2 16mk 4k 20 ,解得: m 12k ,m 2,且满足 3 4k 2 m 2当 m 2k 时, l : y7k( x2) ,直线过定点 (2,0), 与已知矛盾;当 m2k 时, l : y k (x 2) ,直线过定点 ( 2,0)777 综上可知,直线 l 过定点,定点坐标为( 2,0).7P 做相互垂直的直◆方法总结: 本题为 “弦对定点张直角” 的一个例子 :圆锥曲线如椭圆上任意一点线交圆锥曲线于AB ,则 AB 必过定点x 0 (a 2 b 2 ) y 0 ( a 2b 2 )(22,22) 。

(参考百度文库文章: “圆锥曲线的弦abab对定点张直角的一组性质”)◆模型拓展: 本题还可以拓展为 “手电筒” 模型: 只要任意一个限定AP 与 BP 条件(如 k AP k BP 定值, k AP k BP 定值),直线 AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。

(参考优酷视频资料尼尔森数学第一季第 13 节)此模型解题步骤:Step1:设 AB 直线 y kx m ,联立曲线方程得根与系数关系,求出参数范围;Step2:由 AP 与 BP 关系(如 k APkBP1 ),得一次函数 k f (m)或者 m f (k ) ;Step3:将 k f ( m)或者 mf (k ) 代入 y kx m ,得 y k (x x 定 ) y 定 。

◆迁移训练练习 1:过抛物线 M: y 22 px 上一点 P ( 1,2)作倾斜角互补的直线PA 与 PB ,交 M 于 A 、 B 两点,求证:直线 AB 过定点。

(注:本题结论也适用于抛物线与双曲线)练习 2:过抛物线 M: y 24x 的顶点任意作两条互相垂直的弦OA 、OB ,求证: 直线 AB 过定点。

(经典例题,多种解法)练习 3:过 2x2y21上的点作动弦 AB 、AC 且 k ABkAC 3,证明 BC 恒过定点。

(本题参考答案:1 1( ,) )55练习 :4:设 A 、B 是轨迹 C : y 22 px( P 0) 上异于原点 O 的两个不同点,直线 OA 和 OB 的倾斜角 分别为 和 ,当, 变化且 4 时,证明直线AB 恒过定点,并求出该定点的坐标。

(参考答案2 p,2 p )【答案】设 A x 1, y 1 , Bx 2 , y 2 ,由题意得 x 1, x 20 ,又直线 OA,OB 的倾斜角 , 满足,4故 0,,所以直线AB 的斜率存在,否则, OA,OB直线的倾斜角之和为从而设AB 方程为4ykx b ,显然 x 1 y 12 , x 2y 22 ,2 p2 p将 y kxb 与 y 2 2 px( P0) 联立消去 x ,得 ky 2 2 py 2 pb 0由韦达定理知 y 1y 2 2 p, y 1 y 2 2 pb ①k k由,得 1= tantan(tan tan2 p( y 1y 2 )) =tan tan=4 p 2441y 1 y 2将①式代入上式整理化简可得:2 p1,所以 b2 p 2 pk ,b 2 pk此时,直线 AB 的方程可表示为y kx2 p 2 pk 即 k (x 2 p)y 2p所以直线 AB 恒过定点2 p,2 p .( 2013 年高考陕西卷(理) )已知动圆过定点A (4,0),且在 y 轴上截得的弦 MN 的长为 8.练习 5:C 的方程 ;( Ⅰ) 求动圆圆心的轨迹( Ⅱ ) 已知点 B (-1,0),设不垂直于 x 轴的直线 l与轨迹 C 交于不同的两点 P ,Q , 若 x 轴是PBQ 的角平分线 , 证明直线 l 过定点 .【答案】 解:( Ⅰ) (4,0), 设圆心 CA( x, y), MN 线段的中点为 E ,由几何图像知 MEMN ,CA 2CM 2ME 2 EC 2(x 4)2 y 2 42 x 2y 2 8x 2( Ⅱ ) 点 B (-1,0),设 P( x , y 1 ), Q( x , y ),由题知 y1y2 0, y y2 0, y2 8x , y2 28x 2.122111y 1y 2y 1y 28( y 1 y 2 ) y 1 y 2 ( y 2y 1 ) 08 y 1 y 20 直线 PQx 1 1 x 21y 128 y 228方程为 : yy 1y 2 y1 (x x 1 ) y y 1 1 y 1 (8x y 12 )x 2 x 1 y 2y( y2y ) y ( y 2 y ) 8x y 2 y( y 2 y ) 8 8xy 0, x 111 111所以 , 直线 PQ 过定点 (1,0)练习 6:已知点 B1,0 , C 1,0 , P 是平面上一动点,且满足| PC | | BC |PB CB( 1)求点 P 的轨迹 C 对应的方程;( 2)已知点 A(m, 2) 在曲线 C 上,过点 A 作曲线 C 的两条弦 AD 和 AE ,且 AD AE ,判断:直线 DE 是否过定点?试证明你的结论.【解】( 1)设 P (x , y )代入 | PC | | BC |PB CB 得 (x 1) 2y21 x ,化简得 y24x .( 5 分)( 2) 将 A m 代入 y 24x 得m1, 点 A 的坐标为(1,2).( ,2)设直线 DE 的方程为 x my t 代入y 24x, 得 y 2 4mt 4t 0,设 ( x 1 , y 1 ), ( x 2 , y 2 )则 y 1 y 2 4 ,4 , ( 4 )2 16 t (0 * )D E m y 1 y 2 tmAD AE (x 1 1)( x 2 1) ( y 1 2)( y 2 2) x 1 x 2 ( x 1x 2 ) 1 y 1 y 2 2( y 1 y 2 ) 4y 12y 22(y 12 y 22)y 1 y 22( y 1 y 2 ) 54 4 44( y 1 y 2 )2( y 1 y 2 ) 2 2 y 1 y 2y 1 y 2 2( y 1y 2 ) 5164( 4t )2 (4m)2 2( 4t ) ( 4t) 2( 4m) 5 0化简得 t 2 6t 54m 2 8m16 4即 t 26t 9 4m 28m4即( t 21)2t 3 2( m 1)3) 4( m t 2m 5或 t 2m 1, 代入( * )式检验均满足 0直线 DE 的方程为 x m( y 2) 5或 x m( y 2) 1直线 DE 过定点 (5, 2). (定点( 1,2)不满足题意 ) 练习 :已知点 A (- , ), ( ,- )和抛物线 . C : y 2 4x, O 为坐标原点,过点 A 的动直线 l7 1 0 B 1 1交抛物线 C 于 M 、P ,直线 MB 交抛物线 C 于另一点 Q ,如图 .( I )证明 : OM OP 为定值 ;( II )若△ POM 的面积为 5,求向量 OM 与 OP 的夹角;2(Ⅲ)证明直线 PQ 恒过一个定点 .解:( I )设点 M (y 12, y 1 ), P( y 22, y 2 ),P 、M 、A 三点共线,44kAMk DM ,即y 1y 1 y 2 ,2 2 2y 1y 1y 24 144即y 11, y 1 y 2 4y 124 y 1y 2第 22 题OMy 12 y 22y 1 y 25.OP44(II) 设∠ POM=α,则 | OM || OP | cos5.SROM5 , | OM | | OP | sin 5. 由此可得 tan α =1.2又(0, ), 45 ,故向量 OM 与OP 的夹角为 45 .(Ⅲ )设点 Q (y 32, y 3 ), M 、 B 、 Q 三点共线,kBQk QM ,4即y 3y 1 y 3y 3 11,222,即 24 y 1y 3y 31 y 1y 3y 34 4 42( y 3 1)(y 1即y 1 y 3 4 0.分y 3 ) y 3 4, y 1 y 311y 1 y 2 4,即 y 14 ,4 y 34y 3 4 0,y2y2y2即 4( y 2y 3 ) y 2 y 3 4 0.(*)k PQy 2 y 34,y 22y 32y 2y 344y 22直线 PQ 的方程是 yy 24 (x )y 24y 3即 (y y2)(y2y3)42 ,( y 2y 3 )y 2 y 34 .x y 2即 yx由( * )式, y 2 y 3 4( y 2 y 3 ) 4, 代入上式,得 ( y4)( y 2 y 3 ) 4( x1).由此可知直线PQ 过定点 E ( 1,- 4) .模型二:切点弦恒过定点例题: 有如下结论: “圆 x 2 y 2 r 2 上一点 P(x 0 , y 0 ) 处的切线方程为 x 0 yy 0 yr 2 ”,类比也有结论: “椭圆 x2y 2 1(a b0)上一点 P( x 0 , y 0 ) 处的切线方程为x 0 x y 0 y 1 ”,过椭圆 C : x 2a 2b 2a 2b 2y 2 1的右准线 l 上任意一点 M 引椭圆 C 的两条切线,切点为A 、 B.4( 1)求证:直线 AB 恒过一定点;( 2)当点 M 在的纵坐标为 1 时,求 △ ABM 的面积。

相关文档
最新文档