2017高考数学函数真题汇编
02分段函数-2017年高考数学(文)母题题源系列(天津专版)含解析
母题二 分段函数【母题原题1】【2017天津】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于的不等式()||2x f x a ≥+在R 上恒成立,则的取值范围是(A )[2,2]- (B )[23,2]- (C )[2,23]-(D )[23,23]-【答案】A【考点】1.分段函数;2.函数图形的应用;3。
不等式恒成立.【名师点睛】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题; 2。
也可以画出两边的函数图象,根据临界值求参数取值范围;3。
也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【母题原题2】【2016天津】已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R 上单调递减,且关于x 的方程|()|23x f x =-恰有两个不相等的实数解,则a 的取值范围是_________。
【答案】12[,)33【解析】由函数()f x 在R 上单调递减得43130,01,31234a a a a --≥<<≥⇒≤≤,又方程|()|23x f x =-恰有两个不相等的实数解,所以12132,1637a a a <-≤⇒>≥,因此的取值范围是12[,)33【母题原题3】【2015天津】已知函数22||,2()(2),2x x f x x x ,函数()3(2)g x f x ,则函数y ()()f x g x 的零点的个数为( )(A ) 2 (B ) 3 (C )4 (D )5【答案】A【考点定位】本题主要考查分段函数、函数零点及学生分析问题解决问题的能力。
【名师点睛】本题解法采用了直接解方程求零点的方法,这种方法对运算能力要求较高。
含有绝对值的分段函数问题,一直是天津高考数学试卷中的热点,这类问题大多要用到数形结合思想与分类讨论思想,注意在分类时要做到:互斥、无漏、最简.【命题意图】高考对本部分内容重点考查函数性质的运用。
17年高考数学真题高考题(3套)
2017年普通高等学校招生全国统一考试全国Ⅰ(文数)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017·全国Ⅰ卷,文1)已知集合A={x|x<2},B={x|3-2x>0},则( A )(A)A∩B=(x|x<错误!未找到引用源。
)(B)A∩B=(C)A∪B=(x|x<错误!未找到引用源。
)(D)A∪B=R解析:B={x|3-2x>0}=(x|x<错误!未找到引用源。
),A∩B=(x|x<错误!未找到引用源。
),故选A.2.(2017·全国Ⅰ卷,文2)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( B )(A)x1,x2,…,xn的平均数(B)x1,x2,…,xn的标准差(C)x1,x2,…,xn的最大值(D)x1,x2,…,xn的中位数解析:标准差衡量样本的稳定程度,故选B.3.(2017·全国Ⅰ卷,文3)下列各式的运算结果为纯虚数的是( C )(A)i(1+i)2(B)i2(1-i)(C)(1+i)2(D)i(1+i)解析:(1+i)2=2i,故选C.4.(2017·全国Ⅰ卷,文4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:不妨设正方形的边长为2,则正方形的面积为4,圆的半径为1,圆的面积为πr2=π.黑色部分的面积为圆面积的错误!未找到引用源。
,即为错误!未找到引用源。
,所以点取自黑色部分的概率是错误!未找到引用源。
2017年普通高等学校招生全国统一考试 数学 函数
2017年普通高等学校招生全国统一考试数学函数部分目录2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅰ) (1)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅰ) (3)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅱ) (3)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅱ) (5)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅲ) (8)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅲ) (10)2017年普通高等学校招生全国统一考试数学(上海卷) (13)2017年普通高等学校招生全国统一考试数学(江苏卷) (15)2017年普通高等学校招生全国统一考试数学(浙江卷) (17)2017年普通高等学校招生全国统一考试数学(理)(山东卷) (19)2017年普通高等学校招生全国统一考试数学(文)(山东卷) (22)2017年普通高等学校招生全国统一考试数学(理)(天津卷) (24)2017年普通高等学校招生全国统一考试数学(文)(天津卷) (26)2017年普通高等学校招生全国统一考试数学(理)(北京卷) (28)2017年普通高等学校招生全国统一考试数学(文)(北京卷) (29)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅰ)1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 211.设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为23sin aA(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.21.(12分)已知函数)f x(a e2x+(a﹣2) e x﹣x.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.23.[选修4—5:不等式选讲](10分)已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅰ)1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R8..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
2017年高考全国名校试题数学分项汇编 专题04 三角函数与解三角形(原卷版) Word版无答案
一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知()23tantan 1,sin 3sin 222ααβαβ+==+,则()tan αβ+=2. 【2016高考冲刺卷(7)【江苏卷】】直线3=y 与曲线)0(sin 2>=ωωx y 相距最近的两个交点间距离为6π,则x y ωsin 2=的最小正周期为 . 3. 【2016高考冲刺卷(6)【江苏卷】】已知θ是第三象限角,且52cos 2sin -=-θθ,则=+θθcos sin4. 【2016高考冲刺卷(5)【江苏卷】】已知312sin =α,则⎪⎭⎫ ⎝⎛-4cos 2πα=_____▲____.5. 【2016高考冲刺卷(3)【江苏卷】】将函数()sin(),(0,)22f x x ππωϕωϕ=+>-<<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移4π个单位长度得到sin y x =的图象,则()6f π= .6. 【2016高考冲刺卷(1)【江苏卷】】若α、β均为锐角,且1cos 17α=,47cos()51αβ+=-,则cos β= .7. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】若将函数)4sin(πω+=x y 的图象向左平移6π个单位长度后,与函数)4cos(πω+=x y 的图象重合,则正数ω的最小值为_____________.8. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】将函数f (x )=sin(2x +θ)()22ππθ-<<的图象向右平移φ(0<φ<π)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ,则φ的值为 ▲ .9. 【2016高考冲刺卷(2)【江苏卷】】已知函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为0x ,则200(1)sin 2x x x += ▲ . 10. 【2016高考押题卷(3)【江苏卷】】已知函数b a x b x a x f ,(cos sin )(+=为常数,且R x a ∈≠,0),若函数)4(π+=x f y 是偶函数,则)4(π-f 的值为 .11. 【2016高考押题卷(3)【江苏卷】】设α为锐角,若31)6sin(=-πα,则αcos 的值为 . 12. 【2016高考押题卷(3)【江苏卷】】如图,在平面四边形ABCD 中,若090,2,2,1=∠===ACD DC AD BC AB ,则对角线BD 的最大值为 .13. 【2016高考押题卷(1)【江苏卷】】将函数3cos sin y x x x的图像向左平移0m m个单位长度后,所得的图像关于y 轴对称,则m 的最小值是_______.14. 【2016年第四次全国大联考【江苏卷】】已知sin 2cos αα+=,那么tan2α的值为_______.15. 【2016年第三次全国大联考【江苏卷】】已知]4,4[ππθ-∈,且314cos -=θ,则=--+)4(sin )4(sin 44πθπθ .16. 【 2016年第二次全国大联考(江苏卷)】已知1sin tan(),(,)72ααβαπ=+=∈π,那么tan β的值为_______.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)在ABC △中,角CB A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若 60=B ,求C sin 的值; (Ⅱ)若2cos 3C=,求sin()A B -的值. 2. 【 2016年第二次全国大联考(江苏卷)】(本小题满分16分)如图,290,,3OC km AOB OCD πθ=∠=∠=,点O 处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r 随时间t 变化函数为3r =,且半径增大到81km 时不再变化.一架无人侦察机从C 点处开始沿CD 方向飞行,其飞行速度为15/min km .(Ⅰ) 当无人侦察机在CD 上飞行t 分钟至点E 时,试用t 和θ表示无人侦察机到O 点的距离OE ;(Ⅱ)若无人侦察机在C 点处雷达就开始开机,且4πθ=,则雷达是否能测控到无人侦察机?请说明理由.3. 【2016年第三次全国大联考【江苏卷】】(本小题满分14分)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+.(Ⅰ)求函数()f α的值域;(Ⅱ)设ABC ∆的角,,A B C 所对的边分别为,,a b c,若()f C =a =1c =,求b的值.4. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且(cos ,sin ),(cos ,sin ),cos2,sin sin 3sin sin A A B B C A B A B =-=⋅=+=m n m n ,(Ⅰ)求角C 的值;(Ⅱ)若3c =,求ABC ∆的面积.5. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)如图,等边三角形OAB 的边O C DEAB长为4km.现在线段OB 上取一点D (不含线段OB 端点)建发电站向,A B 两点供电.如果线段DB 上每公里建设费用为a 万元(a 为正常数),线段AD 上每公里建设费用为3a 万元,设ADO θ∠=,建设总费用为S 万元.(Ⅰ) 写出S 关于θ的函数关系式,并指出θ的取值范围; (Ⅱ)AD 等于多少时,可使建设总费用S 最少?6. 【2016年第一次全国大联考【江苏卷】】(本小题满分14分)已知角α终边逆时针旋转6π与单位圆交于点 且2tan()5αβ+=. (1)求sin(2)6πα+的值,(2)求tan(2)3πβ-的值.7. 【2016高考押题卷(1)【江苏卷】】(本小题满分14分)如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角45CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?8. 【2016高考押题卷(3)【江苏卷】】(本小题满分14分)已知ABC ∆的面积是30,内角C B A ,,所对边长分别是c b a ,,,且144-=⋅AC AB . (1)求A cos 的值;(2)若4=-b c ,求a 的值.9. 【2016高考押题卷(2)【江苏卷】】(本小题满分14分) 已知函数2()sin(2)cos 6f x x x π=+-.(1)求()f x 的最小正周期及2[,]123x ππ∈时()f x 的值域;(2)在△ABC 中,角A 、B 、C 所对的边为c b a ,,,其中角C 满足423)4(-=+πC f ,若ABC S ∆,2=c ,,求)(,b a b a >的值.10. 【江苏省扬州中学2015—2016学年第二学期质量检测】(本小题满分14分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =,且B 为钝角.(1)证明:2B A π-=; (2)求sin sin A C +的取值范围.11. 【2016高考冲刺卷(4)【江苏卷】】(本小题满分14分)已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求()f x 在区间[,]62ππ-上的最大值和最小值.12. 【南京市2016届高三年级第三次模拟考试】(本小题满分14分)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B . (1)求cos B 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值. 13. 【2016高考冲刺卷(1)【江苏卷】】(本小题满分14分)已知ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin b a B Cc B A--=+. ⑴求角A 的值;⑵若a ,c ,b 成等差数列,试判断ABC ∆的形状.14. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分14分)若A B C 、、为ABC ∆的三内角,且其对边分别为a b c 、、.若向量2(cos ,cos 1)22A A m =-,向量(1,cos 1)2An =+,且21m n ⋅=-.(1)求A 的值;(2)若a =S =b c +的值.15. 【2016高考冲刺卷(5)【江苏卷】】(本题满分14分)已知函数2()2sin cos f x x x x =+.(1)求函数()f x 的最小正周期和单调减区间;(2)已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,若锐角A 满足()26A f π-=sin sin B C +=,求bc 的值. 16. 【2016高考冲刺卷(6)【江苏卷】】在△ABC 中,角A 、B 、C 的对边分别为c b a ,,,已知A C B cos 1)cos(-=-,且c a b ,,成等比数列.(1)求C B sin sin ⋅之值; (2)求角A 的大小; (3)求C B tan tan +的值。
函数的概念和性质高考真题
函数的概念和性质高考真题1.函数的概念和性质1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。
1.2 函数的性质函数有很多性质,其中一些比较重要的包括:1)定义域和值域:函数的定义域是所有可能输入的集合,值域是所有可能输出的集合。
2)奇偶性:如果对于函数f(x),有f(-x)=-f(x),则称f(x)是奇函数;如果有f(-x)=f(x),则称f(x)是偶函数。
3)单调性:如果对于函数f(x),当x1f(x2),则称f(x)在区间(x1,x2)上单调递减。
4)零点和极值:函数的零点是函数图像与x轴的交点,极值是函数在某一区间内的最大值或最小值。
2.例题解答2.1(2019江苏4)函数y=7+6x-x^2的定义域是所有实数。
函数f(x)是奇函数,且当x<0时,f(x)=-eax。
若f(ln2)=8,则a=ln(1/4)。
2.2(2019全国Ⅱ理14)已知。
2.3(2019全国Ⅲ理11)设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则正确的不等式是B。
2.4(2019北京理13)设函数f(x)=ex+ae-x(a为常数),若f(x)为奇函数,则a=0;若f(x)是R上的增函数,则a的取值范围是(-∞,0)。
2.5(2019全国Ⅰ理11)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π/2,π)单调递增;③f(x)在[-π,π]有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是B。
2.6(2019全国Ⅰ理5)函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为D。
2.7(2019全国Ⅲ理7)函数y=2x+2-x在[-6,6]的图像大致为A。
2.8(2019浙江6)在同一直角坐标系中,函数y=11/x^2,y=loga(x+2)(a>0且a≠1)的图像可能是B。
2017高考十年高考数学(理科)分项版 专题02 函数(浙江专版)(解析版) 含解析
一.基础题组1。
【2014年。
浙江卷.理6】已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ()A.3≤c B 。
63≤<c C 。
96≤<c D 。
9>c2。
【2013年。
浙江卷.理3】已知x ,y 为正实数,则( ). A .2lg x +lg y =2lg x +2lg y B .2lg (x +y )=2lg x ·2lg y C .2lg x ·lg y =2lg x +2lg y D .2lg (xy )=2lg x ·2lg y 【答案】:D【解析】:根据指数与对数的运算法则可知,2lg x +lg y =2lg x ·2lg y ,故A 错,B 错,C 错;D 中,2lg (xy )=2lg x +lg y =2lg x ·2lg y ,故选D .3. 【2012年。
浙江卷.理9】设a >0,b >0,( ) A .若2a +2a =2b +3b ,则a >b B .若2a +2a =2b +3b ,则a <b C .若2a -2a =2b -3b ,则a >bD .若2a -2a =2b-3b ,则a <b 【答案】A【解析】考查函数y =2x +2x 为单调递增函数,若2a +2a =2b +2b ,则a =b ,若2a +2a =2b +3b ,则a >b . 4。
【2011年.浙江卷。
理1】设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A)—4或—2 (B )—4或2 (C )—2或4 (D )—2或2【答案】 B【解析】:当2042,a aa >=⇒=时,044a a a ≤=⇒=-当时,-,故选B5。
【2011年。
浙江卷.理11】若函数2()f x xx a =-+为偶函数,则实数a =。
2017年高考真题分类汇编(理数)专题1集合与函数 Word版含解析
2017年高考真题分类汇编(理数):专题1 集合与函数一、单选题(共15题;共30分)1、(2017•新课标Ⅰ卷)已知集合A={x|x<1},B={x|3x<1},则()A、A∩B={x|x<0}B、A∪B=RC、A∪B={x|x>1}D、A∩B=∅2、(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A、{1,﹣3}B、{1,0}C、{1,3}D、{1,5}3、(2017•新课标Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A、3B、2C、1D、04、(2017•山东)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A、p∧qB、p∧¬qC、¬p∧qD、¬p∧¬q5、(2017•山东)设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A、(1,2)B、(1,2]C、(﹣2,1)D、[﹣2,1)6、(2017·天津)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A、{2}B、{1,2,4}C、{1,2,4,5}D、{x∈R|﹣1≤x≤5}7、(2017•浙江)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A、(﹣1,2)B、(0,1)C、(﹣1,0)D、(1,2)8、(2017•北京卷)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A、{x|﹣2<x<﹣1}B、{x|﹣2<x<3}C、{x|﹣1<x<1}D、{x|1<x<3}9、(2017·天津)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A、a<b<cB、c<b<aC、b<a<cD、b<c<a10、(2017·天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件11、(2017•北京卷)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A、1033B、1053C、1073D、109312、(2017•北京卷)已知函数f(x)=3x﹣()x,则f(x)()A、是奇函数,且在R上是增函数B、是偶函数,且在R上是增函数C、是奇函数,且在R上是减函数D、是偶函数,且在R上是减函数13、(2017•新课标Ⅰ卷)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A、[﹣2,2]B、[﹣1,1]C、[0,4]D、[1,3]14、(2017•山东)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y= +m的图象有且只有一个交点,则正实数m的取值范围是()A、(0,1]∪[2 ,+∞)B、(0,1]∪[3,+∞)C、(0,)∪[2 ,+∞)D、(0,]∪[3,+∞)15、(2017•新课标Ⅰ卷)设x、y、z为正数,且2x=3y=5z,则()A、2x<3y<5zB、5z<2x<3yC、3y<5z<2xD、3y<2x<5z二、填空题(共7题;共8分)16、(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.17、(2017•北京卷)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.18、(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是________.19、(2017•山东)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为________.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.20、(2017•浙江)已知a∈R,函数f(x)=|x+ ﹣a|+a在区间[1,4]上的最大值是5,则a 的取值范围是________.21、(2017•北京卷)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是________.②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是________.22、(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是________.答案解析部分一、单选题1、【答案】A【考点】并集及其运算,交集及其运算,指数函数的图像与性质【解析】【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.2、【答案】C【考点】交集及其运算【解析】【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.3、【答案】B【考点】交集及其运算【解析】【解答】解:由,解得:或,∴A∩B的元素的个数是2个,故选:B.【分析】解方程组求出元素的个数即可.4、【答案】B【考点】复合命题的真假,对数函数的单调性与特殊点,不等式比较大小【解析】【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,由不等式的性质可知,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.5、【答案】D【考点】交集及其运算,函数的定义域及其求法,一元二次不等式的解法【解析】【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y= 的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选D.【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.6、【答案】B【考点】交、并、补集的混合运算【解析】【解答】解:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6},又C={x∈R|﹣1≤x≤5},∴(A∪B)∩C={1,2,4}.故选:B.【分析】由并集概念求得A∪B,再由交集概念得答案.7、【答案】A【考点】并集及其运算【解析】【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【分析】直接利用并集的运算法则化简求解即可.8、【答案】A【考点】交集及其运算【解析】【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.9、【答案】C【考点】函数单调性的判断与证明,函数单调性的性质,函数奇偶性的判断,对数值大小的比较,对数函数的图像与性质【解析】【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选C.【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,即可求得b<a<c 10、【答案】A【考点】必要条件、充分条件与充要条件的判断,正弦函数的图象,正弦函数的单调性,绝对值不等式的解法【解析】【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊂[﹣+2kπ,+2kπ],k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.11、【答案】D【考点】指数式与对数式的互化【解析】【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈ =1093,故本题选:D.【分析】根据对数的性质:T= ,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.12、【答案】A【考点】函数单调性的性质,函数奇偶性的性质,奇偶性与单调性的综合【解析】【解答】解:显然,函数的定义域为全体实数,f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.13、【答案】D【考点】函数的单调性及单调区间,函数奇偶性的性质,奇偶性与单调性的综合,抽象函数及其应用【解析】【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.14、【答案】B【考点】函数的值域,函数单调性的性质,函数的图象【解析】【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y= +m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y= +m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y= +m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.15、【答案】D【考点】指数式与对数式的互化,对数的运算性质,对数值大小的比较,不等式比较大小【解析】【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x= ,y= ,z= .∴3y= ,2x= ,5z= .∵= = ,>= .∴>lg >>0.∴3y<2x<5z.故选:D.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x= ,y= ,z= .可得3y= ,2x= ,5z= .根据= = ,>=.即可得出大小关系.二、填空题16、【答案】1【考点】交集及其运算【解析】【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【分析】利用交集定义直接求解.17、【答案】﹣1,﹣2,﹣3【考点】命题的否定,命题的真假判断与应用【解析】【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一18、【答案】[-1,]【考点】函数奇偶性的性质,利用导数研究函数的单调性,一元二次不等式的解法,基本不等式【解析】【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+ ≥﹣2+2 =0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤ ,故答案为:[﹣1,].【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.19、【答案】①④【考点】函数单调性的性质,指数函数的图像与性质,利用导数研究函数的单调性【解析】【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)= 为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)= 为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.20、【答案】(﹣∞,)【考点】函数的最值及其几何意义,绝对值不等式的解法【解析】【解答】解:由题可知|x+ ﹣a|+a≤5,即|x+ ﹣a|≤5﹣a,所以a≤5,又因为|x+ ﹣a|≤5﹣a,所以a﹣5≤x+ ﹣a≤5﹣a,所以2a﹣5≤x+ ≤5,又因为1≤x≤4,4≤x+ ≤5,所以2a﹣5≤4,解得a≤ ,故答案为:(﹣∞,).【分析】通过转化可知|x+ ﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+ ≤5,进而计算可得结论.21、【答案】Q1;p2【考点】函数的图象与图象变化【解析】【解答】解:①若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的综坐标+B1的综坐标;Q2=A2的综坐标+B2的综坐标,Q3=A3的综坐标+B3的综坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,②若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p2【分析】①若Q i为第i名工人在这一天中加工的零件总数,则Q i=A i的综坐标+B i的综坐标;进而得到答案.②若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率;进而得到答案.22、【答案】8【考点】分段函数的解析式求法及其图象的作法,函数的周期性,对数函数的图像与性质,根的存在性及根的个数判断【解析】【解答】解:∵在区间[0,1)上,f(x)= ,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)= ,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.。
2017年高考数学真题(含答案)
2017年高考数学真题(含答案)本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.函数()21x f x =-的定义域为 A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 A .33 B .32 C .233 D .2635.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |= A .1 B .2 C .3 D . 2 7.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα=; (Ⅱ)若,,1962AB ππαβ===,求BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x -1,1()ln x g x x-= (Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。
2017年高考数学理试题分类汇编:函数
(2017年新课标Ⅰ) 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】由已知,使1()1f x -≤≤成立的x 满足11x -≤≤,所以由121x -≤-≤得13x ≤≤,即使1(2)1f x -≤-≤成立的x 满足13x ≤≤,选D.(2017年新课标Ⅰ) 11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D( 2017年新课标Ⅱ文). 8函数2()ln(28)f x x x =-- 的单调递增区间是 (D) A.(-∞,-2) B. (-∞,-1) C.(1, +∞) D. (4, +∞)( 2017年新课标Ⅱ文) 14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f 12(2017年北京卷理(5))已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.(2017年北京卷理) (8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D. 1.(2017年新课标Ⅰ)已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅【答案】A(2017年浙江卷) 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B.(2017年浙江卷) 17.已知α∈R ,函数a a xx x f +-+=|4|)(在区间[1,4]上的最大值是5,则a 的取值范围是___________. 【答案】9(,]2-∞【解析】[][]41,4,4,5x x x∈+∈,分类讨论: ①.当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值9245,2a a -=∴=,舍去;②.当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立;③.当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩, 解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.15.(2017年新课标Ⅲ卷理)设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________。
高考数学真题导数专题及答案
高考数学真题导数专题及答案2017年高考真题:导数专题一、解答题(共12小题)1.已知函数f(x) = ae^(2x) + (a-2)e^x - x。
1) 讨论f(x)的单调性;2) 若f(x)有两个零点,求a的取值范围。
2.已知函数f(x) = ax^2 - ax - xlnx,且f(x) ≥ 0.1) 求a;2) 证明:f(x)存在唯一的极大值点x,且e^-2 < f(x) < 2^-2.3.已知函数f(x) = x^-1 - alnx。
1) 若f(x) ≥ 0,求a的值;2) 设m为整数,且对于任意正整数n,(1+1/n)^m 的最小值。
4.已知函数f(x) = x^3 + ax^2 + bx + 1 (a。
0,b∈R)有极值,且导函数f'(x)的极值点是f(x)的零点。
1) 求b关于a的函数关系式,并写出定义域;2) 证明:b^2.3a;3) 若f(x)和f'(x)这两个函数的所有极值之和不小于 -1,求a的取值范围。
5.设函数f(x) = (1-x^2)e^x。
1) 讨论f(x)的单调性;2) 当x≥1时,f(x) ≤ ax+1,求a的取值范围。
6.已知函数f(x) = (x-1)/(x+1)。
1) 求f(x)的导函数;2) 求f(x)在区间(-1.+∞)上的取值范围。
7.已知函数f(x) = x^2 + 2cosx,g(x) = e^x(cosx-sinx+2x^-2),其中e≈2.…是自然对数的底数。
I) 求曲线y=f(x)在点(π。
f(π))处的切线方程;II) 令h(x) = g(x) - af(x) (a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值。
8.已知函数f(x) = e^x*cosx - x。
1) 求曲线y=f(x)在点(0.f(0))处的切线方程;2) 求函数f(x)在区间[0.π]上的最大值和最小值。
9.设a∈Z,已知定义在R上的函数f(x) = 2x^4 + 3x^3 -3x^2 - 6x + a在区间(1.2)内有一个零点x,g(x)为f(x)的导函数。
2017高考数学一轮复习第三章三角函数、三角恒等变换、解三角形第2讲同角三角函数的基本关系及诱导公式习题
2017高考数学一轮复习 第三章 三角函数、三角恒等变换、解三角形第2讲 同角三角函数的基本关系及诱导公式习题A 组 基础巩固一、选择题1.sin210°cos120°的值为导学号 25400726( ) A .14 B .-34C .-32D .34[答案] A[解析] sin210°cos120°=-sin30°(-cos60°)=12³12=14.故选A .2.已知sin(5π2+α)=15,那么cos α=导学号 25400727( )A .-25B .-15C .15D .25 [答案] C[解析] sin(5π2+α)=sin[2π+(π2+α)]=sin(π2+α)cos α=15.3.若sin(π6-α)=13,则cos(2π3+2α)等于导学号 25400728( )A .-79B .-13C .13D .79 [答案] A[解析] ∵(π3+α)+(π6-α)=π2,∴sin(π6-α)=sin[π2-(π3+α)]=cos(π3+α)=13.则cos(2π3+2α)=2cos 2(π3+α)-1=-79.4.已知sin(π-α)=-2sin(π2+α),则sin α²cos α等于导学号 25400729( )A .25B .-25C .25或-25D .-15[答案] B[解析] 由sin(π-α)=-2sin(π2+α)得sin α=-2cos α,所以tan α=-2,∴sin α²cos α=sin α²cos αsin 2α+cos 2α=tan α1+tan 2α=-25,故选B . 5.已知f (α)=sin π-α ²cos 2π-α cos -π-α ²tan π-α ,则f (-25π3)的值为导学号 25400730( )A .12B .-12C .32D .-32[答案] A [解析] ∵f (α)=sin αcos α-cos α² -tan α=cos α,∴f (-25π3)=cos(-25π3)=cos 25π3=cos(8π+π3)=cos π3=12.6.若sin θ,cos θ是方程4x 2+2mx +m =0的两个根,则m 的值为导学号 25400731( )A .1+ 5B .1- 5C .1± 5D .-1- 5[答案] B[解析] 由题意得sin θ+cos θ=-m 2,sin θ²cos θ=m4,又(sin θ+cos θ)2=1+2sin θ²cos θ,所以m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0,解得m ≤0或m ≥4,所以m =1-5,故选B .二、填空题7.已知α∈(π2,π),sin α=45,则tan α=________.导学号 25400732[答案] -43[解析] ∵α∈(π2,π),∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43.8.化简:sin π2+α ²cos π2-α cos π+α +sin π-α ²cos π2+αsin π+α =________.导学号 25400733[答案] 0[解析] 原式=cos α²sin α-cos α+sin α -sin α-sin α=-sin α+sin α=0.9.(2015²绍兴二模)若f (cos x )=cos2x ,则f (sin15°)=________.导学号 25400734 [答案] -32[解析] f (sin15°)=f (cos75°)=cos150°=cos(180°-30°)=-cos30°=-32. 10.(2015²浙江嘉兴联考)已知α为钝角,sin(π4+α)=34,则sin(π4-α)=________,cos(α-π4)=________.导学号 25400735[答案] -74,34[解析] sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α),∵α为钝角,∴34π<π4+α<54π.∴cos(π4+α)<0.∴cos(π4+α)=-1- 34 2=-74.cos(α-π4)=sin[π2+(α-π4)]=sin(π4+α)=34.三、解答题11.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:导学号 25400736(1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin2α. [答案] (1)-16 (2)85[解析] 由已知得sin α=2cos α. (1)原式=2cos α-4cos α5³2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85. 12.已知0<α<π2,若cos α-sin α=-55,试求2sin αcos α-cos α+11-tan α的值.导学号 25400737[答案]55-95[解析] ∵cos α-sin α=-55,∴1-2sin αcos α=15. ∴2sin αcos α=45.∴(sin α+cos α)2=1+2sin αcos α=1+45=95.∵0<α<π2,∴sin α+cos α=35 5.与cos α-sin α=-55联立,解得 cos α=55,sin α=255.∴tan α=2. ∴2sin αcos α-cos α+11-tan α=45-55+11-2=55-95.B 组 能力提升1.(2015²福建福州一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=导学号 25400738( )A .43B .34C .-34D .-43[答案] D[解析] 因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =xx 2+16.解得x =-3,所以tan α=4x =-43,故选D .2.(2015²河南郑州一模)已知θ为第二象限角,sin θ,cos θ是关于x 的方程2x 2+(3-1)x +m =0(m ∈R )的两根,则sin θ-cos θ等于导学号 25400739( )A .1-32B .1+32C . 3D .- 3[答案] B[解析] ∵sin θ,cos θ是方程2x 2+(3-1)x +m =0(m ∈R )的两根, ∴sin θ+cos θ=1-32,sin θcos θ=m2.可得(sin θ+cos θ)2=1+2sin θcos θ,即2-32=1+m ,∴m =-32. ∵θ为第二象限角,∴sin θ>0,cos θ<0,即sin θ-cos θ>0. ∵(sin θ-cos θ)2=(sin θ+cos θ)2-4sin θ²cos θ=4-234-2m =1-32+3=2+32, ∴sin θ-cos θ=2+32=1+32. [点拨] 利用根与系数的关系表示出sin θ+cos θ=1-32,sin θcos θ=m2,利用完全平方公式及同角三角函数间基本关系整理求出m 的值,再利用完全平方公式求出sin θ-cos θ的值即可.3.(2015²河北石家庄一模)已知α为第二象限角,则cos α²1+tan 2α+sin α1+1tan 2α=________.导学号 25400740 [答案] 0[解析] 原式=cos αsin 2α+cos 2αcos 2α+sin α²sin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|,因为α是第二象限,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=cos α-cos α+sin αsin α=-1+1=0.4.已知:f (α)=sin -α cos π+α cos π2-αcos π-α sin 2π+α tan π+α .导学号 25400741(1)化简f (α);(2)若角α的终边在第二象限,且sin α=35,求f (α).[答案] (1)f (x )=-cos α (2)45[解析] (1)f (α)=sin -α cos π+α cos π2-αcos π-α sin 2π+α tan π+α=-sin α -cos α sin α-cos αsin αtan α=-cos α.(2)由题意,知cos α=-1-sin 2α=-45,所以f (α)=-cos α=45.5.已知-π2<α<0,且函数f (α)=cos(3π2+α)-sin α²1+cos α1-cos α-1.导学号 25400742(1)化简f (α);(2)若f (α)=15,求sin α²c os α和sin α-cos α的值.[答案] (1)f (α)=sin α+cos α (2)-1225,-75[解析] (1)f (α)=sin α-sin α² 1+cos α 21-cos 2α-1=sin α+sin α²1+cos αsin α-1=sin α+cos α.(2)方法一:由f (α)=sin α+cos α=15,平方可得sin 2α+2sin α²cos α+cos 2α=125,即2sin α²cos α=-2425. ∴sin α²cos α=-1225.∵(sin α-cos α)2=1-2sin α²cos α=4925,又-π2<α<0,∴sin α<0,cos α>0,∴sin α-cos α<0,∴sin α-cos α=-75.方法二:联立方程⎩⎪⎨⎪⎧sin α+cos α=15,sin 2α+cos 2α=1,解得⎩⎪⎨⎪⎧sin α=-35,cos α=45或⎩⎪⎨⎪⎧sin α=45,cos α=-35.∵-π2<α<0,∴⎩⎪⎨⎪⎧sin α=-35,cos α=45.∴sin α²cos α=-1225,sin α-cos α=-75.。
2017高考试题解析分类汇编-函数导数
函数导数1(2017北京文)已知函数,则(A )是偶函数,且在R 上是增函数 (B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数 (D )是奇函数,且在R 上是增函数 【答案】B2(2017北京文)(本小题13分)已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数在区间上的最大值和最小值.【答案】(Ⅰ);(Ⅱ)最大值1;最小值.(Ⅱ)设,则.1()3()3x xf x =-()fx ()e cos xf x x x =-()y f x =(0,(0))f ()f x π[0,]21y =2π-()e (cos sin )1x h x x x =--()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-当时,,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为. 3(2017新课标Ⅱ理)(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e()2f x --<<.π(0,)2x ∈()0h x '<()h x π[0,]2π(0,]2x ∈()(0)0h x h <=()0f x '<()f x π[0,]2()f x π[0,]2(0)1f =ππ()22f =-所以()220e2f x --<<.4(2017天津理)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈U ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈U 满足041||p x q Aq-≥. 【答案】(1)增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-.(2)(3)证明见解析 【解析】(Ⅰ)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--, 进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以,()g x 的单调递增区间是(,1)-∞-,(,)4+∞,单调递减区间是(1,)4-. (Ⅰ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.(III )证明:对于任意的正整数 p ,q ,且00[1)(,],2px x q∈U ,令pm q=,函数0()()()()h g m x x x m f =--. 由(II )知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点; 当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点.所以041|2|()p x q g q -≥.所以,只要取()2A g =,就有041||p x q Aq-≥. 5(2017新课标Ⅲ理数)(12分)已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222n K ()(1)(﹤m ,求m 的最小值.解:(1)()f x 的定义域为()0,+∞.2211111111++1+++1+<+++=1-<12222222n n n ln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 6(2017山东理)(本小题满分13分)已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中 2.71828e =L 是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f x π处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)222y x ππ=--.(Ⅱ)综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【解析】解:(Ⅰ)由题意()22f ππ=-又()22sin f x x x '=-,所以()2f ππ'=,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-,即 222y x ππ=--.(Ⅱ)由题意得 ()()()22cos sin 222cos h x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增.所以 当0x >时,()m x 单调递减,当0x >时,()0m x <(2)当0a >时,()()()ln 2sin x ah x e e x x '=--由 ()0h x '=得 1ln x a =,2=0x①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增;当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.7(2017天津文)(本小题满分14分)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 【答案】(1)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -.(2)(ⅰ)()f x 在0x x =处的导数等于0.(ⅱ)b 的取值范围是[7],1-.【解析】(I )由324()63()f x x a x x a b =--+-,可得(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤. 又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(I )知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(I )知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减,故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤。
(完整word)(完整word版)2017年高考数学理试题分类汇编:三角函数,推荐文档
2017年高考数学理试题分类汇编:三角函数一.填空选择题1. (2017年天津卷文)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则(A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由||πϕ<得12ϕπ=,故选A .2. (2017年天津卷理)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .3. ( 2017年全国Ⅲ卷文)ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A ________15【解析】 根据正弦定理有:Bsin 660sin 30=22sin =∴B 又b c >Θ045=∴B 075=∴A4. (2017年新课标Ⅰ) 9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D5. ( 2017年新课标Ⅱ卷理) 14.函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【答案】1【解析】()22311cos cos 44f x x x x x =-+-=-++ 2cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,那么[]cos 0,1x ∈,当cos x =时,函数取得最大值1. 6. (2017年浙江卷) 14.已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,△ABE 中,1cos 4BE ABC AB ∠==,1cos ,sin 44DBC DBC ∴∠=-∠==,BC 1sin 22D S BD BC DBC ∴=⨯⨯⨯∠=△又21cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,cos sin BDC DBF ∴∠=∠=,综上可得,△BCD cos BDC ∠=.7. ( 2017年新课标Ⅱ文). 13函数()cos sin =2+fx x x.8. ( 2017年新课标Ⅱ文) 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=3π9. ( 2017年新课标Ⅱ文) 3.函数()fx =πsin (2x+)3的最小正周期为 (C)A.4πB.2πC. πD.2π10. (2017年浙江卷) 11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位学.科.网,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,=6S .【解析】将正六边形分割为6个等边三角形,则233)60sin 1121(66=⨯⨯⨯⨯=οS11. (2017年北京卷理) (12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,cos()αβ-=___________. 【答案】79- 【解析】2227sin sin ,cos cos cos()cos cos sin sin cos sin 2sin 19βαβααβαβαβααα==-∴-=+=-+=-=-Q12. (2017年新课标Ⅰ文)已知π(0)2a ∈,,tan α=2,则πcos ()4α-____。
近五年(2017-2021)高考数学真题分类汇编试卷含答案(不等式)
2
2
故 sin cos sin cos sin cos 3 , 2
故 sin cos ,sin cos ,sin cos 不可能均大于 1 .
2
取 , , ,
6
3
4
则 sin cos 1 1 ,sin cos 6 1 ,sin cos 6 1 ,
42
42
,
上下平移直线 y 3x z ,数形结合可得当直线过点 A 时, z 取最小值,
此时 zmin 31 3 6 .
故选:C.
3.B
x 1 0
【解析】画出满足约束条件
x
y
0
的可行域,如下图所示:
2x 3y 1 0
目标函数 z x 1 y 化为 y 2x 2z , 2
x 1
x 1
_________.
20.(2020·江苏)已知 5x2 y2 y4 1(x, y R) ,则 x2 y2 的最小值是_______.
x y 0, 21.(2020·全国(文))若 x,y 满足约束条件 2x y 0,,则 z=3x+2y 的最大值为
x 1,
_________.
2x y 2 0, 22.(2020·全国(理))若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
__________.
34.(2017·山东(文))若直线 x y 1(a>0,b>0) 过点(1,2),则 2a+b 的最小值为 ab
______.
四、双空题
x 2,
35.(2019·北京(文))若
x,y
满足
y
1,
则 y x 的最小值为__________,
2017年高考真题(全国Ⅰ卷)数学理科含答解析
2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。
2017年高考数学试题(全国卷3套)
(A) (B) (C) (D) 解析:不妨设正方形的边长为 2,则正方形的面积为 4,圆的半径为 1,圆的面积为 πr2=π.黑色部分的面积为圆面积的 ,即为 ,所以点取自黑色部分的概率是 = . 故选 B. 5.(2017·全国Ⅰ卷,文 5)已知 F 是双曲线 C:x2- =1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是(1,3).则△APF 的面积为( D ) (A) (B) (C) (D)
解析:a=1,b= ,c= 所以 F(2,0).
= =2,
设 P(2,y0),则 - =1.
=9,y0=±3. 则|PF|=3,因为 A(1,3),A 到直线 PF 的距离 d=1.
所以 S = △APF |PF|·d= .故选 D.
6.(2017·全国Ⅰ卷,文 6)如图,在下列四个正方体中,A,B 为正方体的两个顶 点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线 AB 与平面 MNQ 不平行的 是( A )
(B)A∩B=
(C)A∪B=(x|x< )
(D)A∪B=R
解析:B={x|3-2x>0}=(x|x< ),A∩B=(x|x< ),故选 A.
2.(2017·全国Ⅰ卷,文 2)为评估一种农作物的种植效果,选了 n 块地作试验田. 这 n 块地的亩产量(单位:kg)分别为 x1,x2,…,xn,下面给出的指标中可以用来评 估这种农作物亩产量稳定程度的是( B ) (A)x1,x2,…,xn 的平均数 (B)x1,x2,…,xn 的标准差 (C)x1,x2,…,xn 的最大值 (D)x1,x2,…,xn 的中位数 解析:标准差衡量样本的稳定程度,故选 B. 3.(2017·全国Ⅰ卷,文 3)下列各式的运算结果为纯虚数的是( C ) (A)i(1+i)2 (B)i2(1-i) (C)(1+i)2 (D)i(1+i) 解析:(1+i)2=2i,故选 C. 4.(2017·全国Ⅰ卷,文 4)如图,正方形 ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形 内随机取一点,则此点取自黑色部分的概率是( B )
高考数学《函数》专题复习
函数一、17届 一模一、填空、选择题1、(宝山区2017届高三上学期期末) 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为2、(崇明县2017届高三第一次模拟)设函数2log ,0()4,0x x x f x x >⎧⎪=⎨⎪⎩≤,则((1))f f -= .3、(虹口区2017届高三一模)定义{}()f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{}2.13=,{}44=.以下关于“取上整函数”性质的描述,正确的是( ).①(2)2()f x f x =; ②若12()()f x f x =,则121x x -<; ③任意12,x x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=..A ①② .B ①③ .C ②③ .D ②④4、(黄浦区2017届高三上学期期终调研)已知函数()y f x =是奇函数,且当0x ≥时,2()log (1)f x x =+.若函数()y g x =是()y f x =的反函数,则(3)g -= .5、(静安区2017届向三上学期期质量检测)已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.6、(闵行区2017届高三上学期质量调研)函数()1f x =的反函数是_____________.7、(浦东新区2017届高三上学期教学质量检测)已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有()*f n N ∈,且()()3f f n n =恒成立,则()()20171999f f -=____________.8、(普陀区2017届高三上学期质量调研)函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f .9、(青浦区2017届高三上学期期末质量调研)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和(012)am a <<,不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD .设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位2m )的图像大致是……………………( ).A .B .C .D .10、(松江区2017届高三上学期期末质量监控)已知函数()1xf x a =-的图像经过(1,1)点,则1(3)f -=▲ .11、(徐汇区2017届高三上学期学习能力诊断)若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________12、(杨浦区2017届高三上学期期末等级考质量调研)若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________.13、(长宁、嘉定区2017届高三上学期期末质量调研)若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.14、(崇明县2017届高三第一次模拟)下列函数在其定义域内既是奇函数又是增函数的是A .tan y x =B .3xy =C .13y x =D .lg y x =15、(浦东新区2017届高三上学期教学质量检测)已知函数()y f x =的反函数为()1y f x -=,则函数()y f x =-与()1y f x -=-的图像( ). A .关于y 轴对称 B .关于原点对称C .关于直线0x y +=对称D .关于直线0x y -=对称16、(普陀区2017届高三上学期质量调研)设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .17、(普陀区2017届高三上学期质量调研)方程()()23log 259log 22-+=-x x 的解=x .18、(普陀区2017届高三上学期质量调研)已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .19、(奉贤区2017届高三上学期期末)方程1lg )3lg(=+-x x 的解=x ____________ 20、(金山区2017届高三上学期期末)函数()2xf x m =+的反函数为1()y fx -=,且1()y f x -=的图像过点(5,2)Q ,那么m =二、解答题1、(崇明县2017届高三第一次模拟)设12()2x x af x b+-+=+(,a b 为实常数).(1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有2()33f x c c <-+成立?若存在试找出所有这样的D ;若不存在,请说明理由.2、(虹口区2017届高三一模)已知二次函数2()4f x ax x c =-+的值域为[)0,+∞.(1)判断此函数的奇偶性,并说明理由; (2)判断此函数在2,a⎡⎫+∞⎪⎢⎣⎭的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域.3、(黄浦区2017届高三上学期期终调研)已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)f t +()(2)f t f =+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围;(3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.4、(静安区2017届向三上学期期质量检测)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x-=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.5、(普陀区2017届高三上学期质量调研)已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于x 的方程02)(=-x x f 在区间[]1,2--上有解,求实数a 的取值范围.6、(青浦区2017届高三上学期期末质量调研)已知函数2()2(0)f x x ax a =->. (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值.7、(松江区2017届高三上学期期末质量监控)已知函数21()(21x xa f x a ⋅-=+为实数) . (1)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由; (2)若对任意的1x ≥ ,都有1()3f x ≤≤,求a 的取值范围.8、(徐汇区2017届高三上学期学习能力诊断)某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?参考答案:一、填空、选择题1、解析:1+log 8a =4,log 8a =3,化为指数:3a =8,所以,a =221log y x =+,即:12y x -=,所以反函数为12x y -=2、-23、C4、-75、C6、()()211(1)fx x x -=-≥ 7、548、【解析】∵x ≥1,∴y=1+2log x ≥1,由y=1+2log x ,解得x=2y ﹣1,故f ﹣1(x )=2x ﹣1(x ≥1).故答案为:2x ﹣1(x ≥1). 9、B 10、211、01m <≤ 12、2a =13、【解析】函数a x x f ++=)1(log )(2的反函数的图象经过点(4,1), 即函数a x x f ++=)1(log )(2的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3.故答案为:3. 14、C 15、D16、【解析】由题意:函数()11)(32+++=mx x m x f 是偶函数,则mx=0,故得m=0, 那么:f (x )=23x +1,根据幂函数的性质可知:函数f (x )的单点增区间为(0,+∞). 故答案为:(0,+∞). 17、【解析】由题意可知:方程log 2(9x ﹣5)=2+log 2(3x ﹣2)化为:log 2(9x ﹣5)=log 24(3x ﹣2) 即9x ﹣5=4×3x ﹣8 解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1. 故答案为1. 18、【解析】定义域为R 的函数y=f (x )满足f (x +2)=f (x ), 可得f (x )的周期为2, F (x )=f (x )﹣g (x ),则令F (x )=0,即f (x )=g (x ), 分别作出y=f (x )和y=g (x )的图象, 观察图象在[﹣5,10]的交点个数为14.x =0时,函数值均为1,则函数F (x )零点的个数是15. 故答案为:15.19、5 20、1二、解答题1、解:(1)证明:511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,所以)(x f 不是奇函数............................3分(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x 都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数x 都成立...........................................5分所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意........................................8分(2)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x, 所以21)(21<<-x f .......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立........12分当⎩⎨⎧-=-=21b a 时,)0211212212)(1≠-+-=---=+x x f xx x (, 所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f .............14分1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x 得:75log 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.....16分2、解:(1)由二次函数2()4f x ax x c =-+的值域为[)0,+∞,得0a >且41604ac a-=,解得4ac =.……………………2分(1)4f a c =+-,(1)4f a c -=++,0a >且0c >,从而(1)(1)f f -≠,(1)(1)f f -≠-,∴此函数是非奇非偶函数.……………………6分(2)函数的单调递增区间是2,a ⎡⎫+∞⎪⎢⎣⎭.设1x 、2x 是满足212x x a >≥的任意两个数,从而有21220x x a a->-≥,∴222122()()x x a a ->-.又0a >,∴222122()()a x a x a a ->-,从而22212424()()a x c a x c a a a a-+->-+-,即22221144ax x c ax x c -+>-+,从而21()()f x f x >,∴函数在2,a ⎡⎫+∞⎪⎢⎣⎭上是单调递增.……………………10分(3)2()4f x ax x c =-+,又0a >,02x a=,[)1,x ∈+∞ 当021x a =≥,即02a <≤时,最小值0()()0g a f x == 当021x a =<,即2a >时,最小值4()(1)44g a f a c a a==+-=+-综上,最小值002()442a g a a a a <≤⎧⎪=⎨+->⎪⎩……………………14分 当02a <≤时,最小值()0g a = 当2a >时,最小值4()4(0,)g a a a=+-∈+∞ 综上()y g a =的值域为[0,)+∞……………………16分3、解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ ……2分 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+不属于集合M . ……………………………4分(2)由2()lg2af x x =+属于集合M ,可得 方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔-++-=有实解,………7分若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤+故所求a的取值范围是[1212-+. ……………………………10分 (3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ⨯+-=, ………………12分令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点;当0b <时,(0)10g =-<,11()320bg b =⨯>,故()g x 在1(,0)b内至少有一个零点;故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. ………………………16分 4、解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xkx x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33min k k k k x h ……………………………1分5、【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学《不等式》真题汇编1.(2017北京)已知函数1()3()3x xf x =-,则()f x (A )(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数2.(2017北京)已知函数()cos xf x e x x =- (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.解:(Ⅰ)()cos xf x e x x =- ∴()(cos sin )1xf x e x x '=--∴曲线()y f x =在点(0,(0))f 处的切线斜率为0(cos0sin 0)10k e =--= 切点为(0,1),∴曲线()y f x =在点(0,(0))f 处的切线方程为1y = (Ⅱ)()(cos sin )1xf x e x x '=--,令()()g x f x '=,则()(cos sin sin cos )2sin xxg x e x x x x e x '=---=- 当[0,]2x π∈,可得()2sin 0x g x e x '=-≤,即有()g x 在[0,]2π上单调递减,可得()(0)0g x g ≤=, 所以()f x 在[0,]2π上单调递减,所以函数()f x 在区间[0,]2π上的最大值为0(0)cos 001f e =-=; 最小值为2()cos2222f e πππππ=-=-3.(2017全国卷Ⅰ)函数在单调递减,且为奇函数.若,则满足的的取值范围是(D )A .B .C .D .()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]4.(2017全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。
D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。
沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。
当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______35.(2017全国卷Ⅰ)已知函数2()(2)x xf x ae a e x =+-- (1)讨论的单调性;(2)若()f x 有两个零点,求a 的取值范围. 解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+(i )若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减 (ii )若0a >,则由()0f x '=的ln x a =- 当(,ln )x a ∈-∞-时,()0f x '<; 当(ln ,)x a ∈-+∞时,()0f x '>所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增。
(2)(i )若0a ≤,由(1)知,()f x 至多有一个零点(ii )若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+ 当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; 当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; 当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<又()f x又422(2)(2)2220f aea e e ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点。
设正整数0n 满足03ln(1)n a>-,则00000000()(2)20nnnnf n e ae a n e n n =+-->->-> 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点 综上,a 的取值范围为(0,1)6.(2017全国卷Ⅰ)函数sin21cos xy x =-的部分图像大致为(C )7.(2017全国卷Ⅰ)已知函数()ln ln(2)f x x x =+-,则(C ) A.()f x 在(0,2)单调递增B.()f x 在(0,2)单调递减C.y =()f x 的图像关于直线x =1对称D.y =()f x 的图像关于点(1,0)对称8.(2017全国卷Ⅰ)已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.解:(1)函数()f x 的定义域为22(,),()2(2)()x x x xf x e ae a e a e a '-∞+∞=--=+-①若0a =,则2()xf x e =,在(,)-∞+∞单调递增 ②若0a >,则由()0f x '=得ln x a =9.(2017全国卷Ⅱ)若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( C )A.1-B.32e -- C.35e - D.110.(2017全国卷Ⅱ)已知函数()2ln f x ax ax x x =--,且()0f x ≥。
(1)求a 的值;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.解:(1)()f x 的定义域为(0,)+∞设()ln g x ax a x =--,则()(),()0f x xg x f x =≥等价于()0g x ≥ 因为(1)0,()0g g x =≥,故(1)0g '=,而1(),(1)1g x a g a x''=-=-,得1a = 若1a =,则1()1g x x'=-当01x <<时,()0,()g x g x '<单调递减; 当1x >时,()0,()g x g x '>单调递增所以1x =是()g x 的极小值点,故()(1)0g x g ≥=,综上,1a = (2)由(1)知2()ln ,()22ln f x x x x x f x x x '=--=-- 设()22ln h x x x =--,则1()2h x x'=-当1(0,)2x ∈时,()0h x '<;当1(,)2x ∈+∞时,()0h x '>.所以()h x 在1(0,)2单调递减,在1(,)2+∞单调递增.又21()0,()0,(1)02h e h h -><=,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <;当(1,)x ∈+∞时,()0h x >. 因为()()f x h x '=,所以0x x =是()f x 的唯一极大值点. 由0()0f x '=得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由11(0,1),()0e f e --'∈≠得120()()f x f e e -->=.所以220()2e f x --<<11.(2017全国卷Ⅱ)函数2()ln(28)f x x x =-- 的单调递增区间是(D ) A.(-∞,-2) B. (-∞,-1) C.(1, +∞) D. (4, +∞)12.(2017全国卷Ⅱ)设函数2()(1)xf x x e =-. (1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围. 解:(1)2()(12)xf x x x e '=--令()0f x '=得11x x =-=-+当(,1x ∈-∞-时,()0f x '<;当(11x ∈---+时,()0f x '>;当(1)x ∈-++∞时,()0f x '<.所以()f x 在(,11)-∞---++∞单调递减,在(11---+单调递增. (2)()(1)(1)x f x x x e =+-,当1a ≥时, 设函数()(1),()0(0)xxh x x e h x xe x '=-=-<<, 因此()h x 在[0,)+∞单调递减,而(0)1h =,故()1h x ≤, 所以()(1)()11f x x h x x ax =+≤+≤+ 当01a <<时,设函数()1,()10(0)xxg x e x g x e x '=--=->>,所以()g x 在[0,)+∞单调递增, 而(0)0g =,故1xe x ≥+当01x <<时,2()(1)(1)f x x x >-+,22(1)(1)1(1x x ax x a x x -+--=---),取0x =,则20000(0,1),(1)(1)10x x x ax ∈-+--=,故00()1f x ax >+当0a ≤时,取0x =,则200000(0,1),()(1)(1)11x f x x x ax ∈>-+=≥+综上,a 的取值范围是[1,)+∞.13.(2017全国卷Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .114.(2017全国卷Ⅲ)设函数1,0,()2,0xx x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是________1(,)4-+∞15.(2017全国卷Ⅲ)函数2sin 1xy x x =++的部分图像大致为(D ) A . B .C .D .16.(2017全国卷Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .117.(2017全国卷Ⅲ)已知函数()2(1)ln 2x ax a x f x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a≤--. 解:(1)f(x)的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减。