含参变量正常积分
13-高等数学第十三讲 含参量的积分
387第十三讲 含参量积分§13.1 含参量正常积分一、知识结构 1、含参积分 定义含参积分 ⎰=dcdy y x f x I ),()(和⎰=)()(),()(x d x c dy y x f x F .含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分. (1)含参积分的连续性 定理1 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续.定理2 若函数),(y x f 在矩形域{}b x a x d y x c y x D ≤≤≤≤=),()( ),(上连续, 函数)(x c 和)(x d 在] , [b a 上连续,则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上连续.(2)含参积分的可微性定理3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导, 且⎰⎰=dcdcx dy y x f dy y x f dxd ),(),(.即积分和求导次序可换.定理4 设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [q p b a D ⨯=上连续, 函数)(x c 和)(x d 定义在] , [b a 上其值域含于] , [q p 上的可微函数, 则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上可微, 且 ()())()(,)()(,),()()()(x c x c x f x d x d x f dy y x f x F x d x c x '-'+='⎰.(3) 含参积分的可积性定理5 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数388⎰=dcdy y x f x I ),()(和⎰=badx y x f y J ),()(分别在] , [b a 上和] , [ d c 上可积.定理6 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则⎰⎰⎰⎰=badcdcbadx y x f dy dy y x f dx ),(),(.即在连续的情况下累次积分可交换求积分的次序. 二、解证题方法例1 求⎰+→++αααα122.1limx dx例2 计算积分 dx xx I ⎰++=121)1ln(.例3 设函数)(x f 在点0=x 的某邻域内连续. 验证当||x 充分小时, 函数⎰---=xn dt t f t x n x 01)()()!1(1)(φ的1-n 阶导数存在, 且 )()()(x f x n =φ.§13.2 含参量反常积分一、知识结构 1、含参无穷积分含参无穷积分: 函数),(y x f 定义在) , [] , [∞+⨯c b a 上 (] , [b a 可以是无穷区间) .以⎰+∞=cdy y x f x I ),()(为例介绍含参无穷积分表示的函数)(x I .2. 含参无穷积分的一致收敛性逐点收敛(或称点态收敛)的定义:∈∀x ] , [b a ,c M >∃>∀ , 0ε,使得ε<⎰+∞Mdy y x f ),(.定义 1 (一致收敛性)设函数),(y x f 在) , [] , [∞+⨯c b a 上有定义.若对389c N >∃>∀ , 0ε, 使得当N M >,∈∀x ] , [b a 都有ε<-⎰Mcx I dy y x f )(),(即ε<⎰+∞Mdy y x f ),( 成立, 则称含参无穷积分⎰+∞cdy y x f ),(在] , [b a 上(关于x )一致收敛.定理1(Cauchy 收敛准则) 积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛⇔,0>∀εM A A M >∀>∃21, , 0 , ∈∀x ] , [b a⇒ε<⎰21),(A A dy y x f 成立 .3、含参无穷积分与函数项级数的关系 定理2 积分⎰+∞=c dy y x f x I ),()(在] , [b a 上一致收敛⇔对任一数列}{n A )(1c A =,n A ↗∞+, 函数项级数∑⎰∑∞=∞=+=111)(),(n A A n nn nx udy y x f 在] , [b a 上一致收敛.4、含参无穷积分一致收敛判别法定理3(Weierstrass M 判别法)设有函数)(y g ,使得在) , [] , [∞+⨯c b a 上有)(|),(|y g y x f ≤.若积分∞+<⎰+∞)( cdy y g , 则积分⎰+∞cdy y x f ),(在] , [b a 一致收敛.定理4(Dirichlet 判别法) 设⑴对一切实数,c N >含参量积分⎰Ncdy y x f ),(对参量x在] , [b a 上一致有界; ⑵对每个x ∈] , [b a ,函数),(y x g 关于y 是单调递减且当+∞→y 时,对参量x ,),(y x g 一致地收敛于0,则含参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.定理5(Abel 判别法) 设⑴含参量积分⎰+∞cdy y x f ),(在] , [b a 上一致收敛; ⑵对每个x ∈] , [b a ,函数),(y x g 为y 的单调函数且对参量x ,),(y x g 在] , [b a 上一致有界,则含390参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.5、含参无穷积分的解析性质含参无穷积分的解析性质实指由其所表达的函数的解析性质. (1)连续性定理6 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上连续. (化为级数进行证明或直接证明)推论 在定理6的条件下, 对∈∀0x ] , [b a , 有 ⎰⎰⎰∞+∞+∞+→→⎪⎭⎫ ⎝⎛==cccx x x x dy y x f dy y x f dy y x f .),(lim ),(),(lim000 (2)可微性定理7 设函数f 和x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上收敛,积分⎰+∞cx dy y x f ),(在] , [b a 一致收敛.则函数)(x I 在] , [b a 上可微,且⎰+∞='cx dy y x f x I ),()(.(3)可积性定理8 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上可积, 且有⎰⎰⎰⎰+∞+∞=baccbady y x f dy dy y x f dx ),(),(.定理9 设函数),(y x f 在) , []) , [∞+⨯∞+c a 上连续.若⑴⎰+∞adx y x f ),(关于y 在任何闭区间] , [d c 上一致收敛,⎰+∞cdy y x f ),(在任何闭区间] , [b a 上一致收敛;⑵积分⎰⎰+∞+∞acdy y x f dx ),(与⎰⎰+∞+∞cadx y x f dy ),(中有一个收敛,则另一个也收敛,且391⎰⎰⎰⎰+∞+∞+∞+∞=accady y x f dy dy y x f dx ),(),(.6、含参瑕积分简介(略)二、解证题方法例1 证明含参量非正常积分⎰+∞sin dy yxy 在) , [∞+δ上一致收敛,其中0>δ.但在区间) , 0 (∞+内非一致收敛.例2 证明含参无穷积分⎰∞++021cos dx xxy 在+∞<<∞-y 内一致收敛.例3 证明含参量反常积分⎰+∞-0sin dx xx exy在] , 0 [d 上一致收敛.例4 证明:若函数),(y x f 在) , [] , [∞+⨯c b a 上连续,又⎰+∞cdy y x f ),(在) , [b a 上收敛,但在b x =处发散,则⎰+∞cdy y x f ),(在) , [b a 上不一致收敛.例5 计算积分⎰+∞->>-=) , 0 ( , sin sin a b p dx xaxbx eI px例6 计算积分.sin 0dx xax ⎰+∞例7 计算积分⎰+∞-=0.cos )(2rxdx er xϕ例8(北京理工大学2008年)请分别用两种不同方法求()dx xx xI cos 1cos 1lncos 12αααπ-+⋅=⎰,1<α。
参变量积分
由复合函数的连续性
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))
在[0,1][c,d]上连续,由定理1,
F ( y)
在[c,d]上连续.
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
定理4设f(x,y), fy(x,y)在矩形[a,b,c,d]上连续, a(y), b (y) 存在,且当y[c,d]时,
0
sin t dt 收敛,故对任意>0,存在M>0,使对任意 t
数学分析选讲
A >M>0,有
多媒体教学课件
sin t | dt | . A t 因此当Aa>M时,对任意x[a,+),有
Ax aA M ,
从而
|
Ax sin xy sin t dt || dy | . A t y
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
证明:作积分变换 x a( y ) t (b( y ) a( y )), 则
F ( y)
b( y )
a( y )
1
f ( x, y)dx
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))dt ,
多媒体教学课件
定理5设函数f(x,y)在矩形[a,b,c,d]上连续,,是
d
c
dy f ( x, y )dx dx f ( x, y )dy
b b d a a c
含参变量的正常积分
x
lim d f (x x, y) f (x, y) dy
x0 c
x
由拉格朗日中值定理
lim
x0
d
c fx (x x, y)dy
fx在=R上==连=续=,由 ==定理1
d
c
lim
x0
fx(x
x, y)dy
d
c fx (x, y)dy
固定x, 作积分
d
I (x) f (x, y)dy
c
(1)
此积分是x的函数, 其定义域为x [a,b],
则称此函数为定义在[a,b]上
y
含参量x的(正常)积分,
d
R
简称含参量积分.
c
oa
x bx
一般地,设有二元函数f (x, y),
如果可积
(x, y) G (x, y) a x b,c(x) y d (x)
形区域R [a,b][c,d]上连续,则函数
JI ((xy))
db ca
ff
((xx,,
yy))ddyx
在[ca, db]上连续。
注:(1). 设 f (x, y)在R [a,b][c,d]上连续,则
x0 [a,b],有 :
d
d
lim f (x, y)dy lim f (x, y)dy
d
d
f
(x, y)dy
d
f (x, y)dy
dx c
c x
证明分析 : x [a,b],设x充分小, x x [a,b],
要证, I (x)在[a,b]上可微,且
I(x)
第十九章含参量积分
0 a +t
2
2
∫ 从而当 a 2 + b2 ≠ 0 时,
π
2 ln(a2 sin2
x
+ b2
cos2
x)dx
=
π
ln
a
+
b
.
0
2
∫ (2) 令 I (a) = π ln(1− 2a cos x + a2)dx 0
(Ι) 当 a < 1 时, 1 − 2a cos x + a 2 ≥ 1 − 2 a + a 2 > 0 ,因而, ln(1 − 2a cos x + a 2 )
∫ ∫ I / (b) =
π 2 0
2 b cos2 x
a2
sin
2
x
+
b2
cos2
dx x
=
2 b
π 2
1
dx = π ,
0 1+ ( a tan x)2
a+b
b
∫ 由于 I (0) =
π
2 ln(a2 sin2
x)dx
=π
ln
a
,因此
0
2
∫ I (b) = b π dt + π ln a = π ln a + b
1
∫ Ⅰ) 当 y > 1时, F ( y) = (−1)dx = −1 0
当 y < 0 时, F ( y) = 1 .
∫ ∫ ∫ 1
y
1
Ⅱ) 当 0 ≤ y ≤ 1时, F ( y) = f (x, y)dx = f (x, y)dy + f (x, y)dy = 1− 2 y .
含参量积分的分析性质及其应用
含参量积分的分析性质及其应用班级:11数学与应用数学一班成绩:日期: 2012年11月5日含参量积分的分析性质及其应用1. 含参量正常积分的分析性质及应用1。
1含参量正常积分的连续性定理1 若二元函数),(y x f 在矩形区域],[],[d c b a R ⨯=上连续,则函数()x ϕ=⎰dcdy y x f ),(在[a,b]上连续.例1 设)sgn(),(y x y x f -=(这个函数在x=y 时不连续),试证由含量积分⎰=1),()(dx y x f y F 所确定的函数在),(-∞+∞ 上连续.解 因为10≤≤x ,所以当y<0时,x —y>0,则sgn (x —y )=1,即f (x ,y)=1.-1,x<y 则⎰==101)(dx y F .当10≤≤y 时, f (x ,y)= 0,x=y ,1,x 〉y则⎰⎰-=+-=yyy dx dx y F 01.21)1()(1, y 〈0当y 〉1时, f (x,y)=-1,则⎰-=-=101)1()(dx y F ,即F (x)= 1-2y ,0≤y<0—1 y>1又因).1(1)(lim ),0(1lim 1F y F F y y =-===→→F(y )在y=0与y=1处均连续,因而F(y )在),(+∞-∞上连续。
例2 求下列极限:(1)dx a x ⎰-→+11220limα; (2)⎰→220cos lim xdx x αα.解 (1)因为二元函数22α+x 在矩形域R=[-1,1]⨯[—1.1]上连续,则由连续性定理得dx a x ⎰-+1122在[-1,1]上连续.则⎰⎰⎰--→-→==+=+1122110112201lim lim dx x dx a x dx a x αα。
(2)因为二元函数ax x cos 2在矩形域]2,2[]2,0[ππ-⨯=R 上连续,由连续性定理得,函数⎰202cos axdx x 在]2,2[ππ-上连续.则.38cos lim 2020220==⎰⎰→dx x axdx x α例3 研究函数=)(x F dx y x x yf ⎰+122)(的连续性,其中f (x )在闭区间[0,1]上是正的连续函数。
含参变量的常义积分
f ( x, c( x) t(d( x) c( x)))(d( x) c( x))
在矩形区域 [ a ,b][0 ,1]上连续, 由定理1 得函数
F(x) 在[a, b]连续.
b
I( y) a f ( x, y)dx
在[ c , d ]上连续. 证 设 y [ c, d], 对充分小的 y , 有y y [c, d ](若 y 为区间的端点, 则仅考虑 y 0 或 y 0 ), 于是
*例3 计算积分
I
1 ln(1 x) 0 1 x2 dx
dy
y A dy B dy
b( y)
a( y) f y ( x, y)dx f (b( y), y)b( y)
f (a( y), y)a( y) .
例1 设 F ( y) y2 sin yx dx, 求 F( y). yx 解 由定理4,得
F( y)
y2
sin y3 sin y2
b f ( x, y)dx.
a y
证 对于 [c, d ] 内任意一点 y, 设 y y [c, d ] (若y 为
区间的端点, 则讨论单侧函数), 则
I( y y) I( y)
b
I( y) liym0afy( x, yy)dx
b
a
lim
y0
f y ( x,
y
y)dx
b
a f y ( x, y)dx
定理4 (F ( y) 的可微性) 设 f ( x, y), fx ( x, y) 在
一、含参量正常积分的定义
设 f ( x, y)是定义在矩形区域 R [ a, b][ c, d]上的
第9章 含参变量积分
∫N
f (x, y)dy ≤ M ;
c
(2)对每个 x ∈[a, b] ,函数 g(x, y) 关于 y 是单调递减的且当 y → ∞ 时,对参量 x ,
+∞
∫ g(x, y) 一致收敛于 0,则含参量反常积分 f (x, y)g(x, y)dy 在[a,b] 一致收敛。 c
定理 5(阿贝尔判别法)设
敛。
判别法则
定 理 1 ( 柯西 准 则 )含参 量 无 穷积分 (1 ) 在 [a,b] 上 一 致收 敛的 充 要条 件是 :
∀ε > 0, ∃M > c,当A1, A2 > M时,∀x ∈[a,b] ,有
∫| A2 f (x, y)dy |< ε A1
定理 2(魏尔斯特拉斯 M-判别法)设有函数 g( y) ,使得
∫ I '(x) =
+∞
c fx (x, y)dy
+∞
∫ 定理 3(可积性)设 f (x, y) 在[a,b]×[c, +∞) 上连续,若 I (x) = f (x, y)dy 在[a,b] 上 c
一致收敛,则 I (x) 在[a, b] 上可积,且
b
+∞
+∞
b
∫a dx∫c
∫ f (x, y)dy = c
∫ y(x) = 1
x
n−1
(x − t) f (t)dt, x ∈[a,b]
(n −1)! a
是微分方程 y(n) (x) = f (x) 的解,并且满足条件 y(a) = y' (a) = = y(n−1) (a) = 0 。
证明:设 F (x, t) = (x − t)n−1 f (t) ,则 f (x, t), fx (x,t) 在[a, b]×[a, b] 上连续,因此有
高等数学含参变量的正常积分
设 f ( x, y) 是定义在矩形域 R(a x b, c y d ) 上的二元 函数, 当
x 取 [a, b] 上某定值时,函数
f ( x, y) 则是定义在 [c, d ]
上以 y为自变量的一元函数.若此时 f ( x, y)在 [c, d ]上可积,
则其积分值是 x 在 [a, b]上取值的函数,表为
I(x) f ( x, y)dy 在 [a, b] 上可微, 且 c d d d f ( x, y )dy f ( x, y )dy c x dx c
运算与积分运算可交换顺序。
同理:对于 J(y) f ( x, y )dx,在[c, d ]上可微,且
b d b f ( x , y )dx f ( x , y )dx a y dy a
0
cos x 1 1 dx 1 dx 0 1 cos x 1 cos x
1 1 dx 0 1 cos x
1 2 1 2 2 1 2 1
1
x I ( y ) dx 0 (1 x 2 )( 1 xy)
1
x y y 0 1 x 2 1 x 2 1 xy dx 1 ln 2 y ln (1 y ) 2 1 y [a, b]
c
d
称为含参量 x 的正常积分,或简称含参量积分.
类似地称
J ( y) f ( x, y) dx
a
b
为含参变量
y 的积分。
I ( y ) 是一个由含参变量的积分所确定的函数,
2. 性质 (i)、 连续性 :
第17章含参变量的积分
2019年2月26日星期二
7
§17 含参变量的正常积分
0, 0,只要 x , 就有
f ( x x, y ) f ( x, y ) f x ( x, y ) x f x (x x,y)-f x (x,y) , 其中 (0,1).因此
第十七章 含参变量的积分
级数与积分是构造函数的两个重要分 析工具。我们已经介绍了一种利用定积分 构造的函数──积分上限的函数。 本章和 下章介绍另一种利用 Riemann 积分与广义 积分构造的函数──含参变量的正常积分与 含参变量的广义积分,并研究它们的分析 性质:连续性、可微性、可积性。
2019年2月26日星期二
J ( y ) 在 [c, d ] 上可积。记为
b
a
I ( x ) dx J ( y)
d
c
f ( x, y) dy dx dy f ( x, y ) dx dy
b d a c d b c a
b
a d
dx dy
d
c b
f ( x, y ) dy f ( x, y ) dx
x 取 [a, b] 上某定值时,函数
上以 y为自变量的一元函数.若此时 f ( x, y)在 [c, d ]上可积,
则其积分值是 x 在 [a, b]上取值的函数,表为
I(x) f ( x, y)dy, x [a, b (定义域) ]
c
d
称为含参量 x 的正常积分,或简称含参量积分.
2019年2月26日星期二 3
(证毕)
2019年2月26日星期二 8
§17 含参变量的正常积分
下面讨论可积性. 设 f ( x, y) 在矩形 [a, b; c, d ]上连续,那末由定理1 ,函数
第十讲含参变量的积分
第十讲含参变量的积分10 . 1 含参变量积分的基本概念含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义设()y x f ,定义在平面区域[][]d c b a D ,,⨯=上的二元函数,对任意取定的[]b a x ,∈.()y x f ,关于 y 在[]d c ,上都可积,则称函数()()[]b a x dy y x f x I dc,,,∈=⎰为含参量二的正常积分.一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称()()()()[]b a x dy y x f x I x d x c ,,,∈=⎰为含参量x 的正常积分.同样可定义含参量 y 的积分为()()[]d c y dx y x f y J ba,,,∈=⎰或()()()()[]d c y dx y x f y J y b y a ,,,∈=⎰2 .性质(以 I ( x )为例叙述)( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈∀,()()()()⎰=→000,lim 0x d x c x x dy y x f x I( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有()()()⎰⎰⎰⎰⎰==bab ad cbadcdx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()()()()()()()x c x c x f x d x d x f dy y x f x I x d xc x''',,,-+=⎰·以上性质的证明见参考文献[ 1 ] ,这里从略,例10. l 求积分⎰>>-⎪⎭⎫ ⎝⎛10,ln 1ln sin a b dx xxx x ab 解法 1 (用对参量的微分法):设()⎰>>-⎪⎭⎫ ⎝⎛=100,ln 1ln sin a b dx x xx x b I ab ,()()()()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dxx x b I b b b b b b b '221010121102101010111'11111ln sin |1ln cos 111ln cos 111ln cos 11|1ln sin 111ln sin 1ln sin +-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎰⎰⎰⎰⎰++++所以()()()()()⎰++=++=⇒++=C b db b b I b b I 1arctan11111122',令a b =,则 ()()()1arctan 1arctan0+-=⇒++==a C C a a I 所以原积分()()()1arctan 1arctan+-+==a b b I I 解法 2 : (交换积分顺序方法)因为xx x dy x ab bayln -=⎰,所以⎰⎰⎰⎰⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=10101ln sin 1ln sin b a y b a y dx x x dy dy x x dx I同解法()⎰++=⎪⎭⎫ ⎝⎛1021111ln sin y dx x x y,所以有 ()()()⎰+-+=++=baa b dy y I 1arctan 1arctan1112注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xyyx ⎰-=,,其中f 为可微函数,求()y x F xy,·解:()()()()()()()()()()()()()()()()()()()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xyyx xyyx xyy x x '2222'222222213213111-+⎪⎪⎭⎫ ⎝⎛+-=-+-+⎪⎭⎫⎝⎛+=-+=-+=⎪⎪⎭⎫⎝⎛---+=⎰⎰⎰二、含参量的广义积分含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分1 .定义:设 ()y x f ,定义在[][)+∞⨯=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,()()[]⎰+∞∈=cb a x dy y x f x I ,,,都收敛(也叫逐点收敛),它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]⎰+∞∈=ad c y dx y x f y J ,,,2 .一致收敛若对c M >∃>∀,0ε,当 A > M 时,对一切[]b a x ,∈,恒有()()()εε<<-⎰⎰+∞AA cdy y x f dy y x f x I ,,或则称含参量积分在[]b a ,上一致收敛.注:非一致收敛定义:若00>∃ε,使得c M >∀,总存在M A >0,及存在[]b a x ,0∈,,使得()()()000000,,εε<<-⎰⎰+∞A A cdy y x f dy y x f x I 或3 .一致收敛的柯西准则含参量积分( l )在[]b a ,上一致收敛⇔对 c M >∃>∀,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有()ε<⎰21,A A dy y x f注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >∀>∃⇔,00ε存在M A A >>12,及存在[]b a x ,0∈,使得()0021,ε<⎰A A dy y x f4.一致收敛判别法( I ) M 判别法:若()()()D y x y g y x f ∈∀≤,,,而()⎰+∞cdy y g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛(同时也绝对收敛) .( 2 )阿贝尔判别法: ①()⎰+∞cdy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,()y x g ,关于y 单调,月关于x 一致有界,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.( 3 )狄利克雷判别法: ①()[]()c A b a x M dyy x f Ac>∀∈∀≤⎰,,,(即一致有一界);② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛 ·例 10 . 3 讨沦下列积分的一致收敛性: (1)()⎰∞++-122222dx y xx y 在()+∞∞-,;(2)[)⎰+∞-+∞∈0,0,sin y dx xxe xy 解: ( 1 )因为()()()()+∞∞-∈∀≤+=++≤+-,112222222222222y xy x y xy x y xx y ,而积分 ⎰+∞121dx x 收敛,由M 发,()⎰∞++-122222dx yx x y 在()+∞∞-,一致收敛 ·( 2 )因为⎰+∞sin dx xx收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xye ,对()()()+∞⨯+∞∈∀,0,0,y x .由阿贝尔判别法知,积分⎰+∞-0sin dx xxe xy在()+∞∈,0y 上一致收敛. 5 .分析性质( l )连续性:若满足:① ()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上连续,即()()()dy y x f x I x I cx x ⎰+∞→==,lim 000·( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上可积,即()()()⎰⎰⎰⎰⎰+∞+∞==babaccb adx y x f dy dy y x f dx dx x I ,,参量[)+∞∈,a x ,若满足:① ()y x f ,在 [)[)+∞⨯+∞=,,c a D 上连续; ②()[]()c d d c y dy y x f a>∀∈⎰+∞,,,和()[]()a b b a x dy y x f c>∀∈⎰+∞,,,都一致收敛;③ 积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞cadx y x f dx ,收敛;则()x I 在[]b a ,上收敛,且()()dx y x f dy dy y x f dx acca⎰⎰⎰⎰+∞+∞+∞+∞=,,( 3 )可微性:若满足:①()y x f ,和()y x f x ,在 [][)+∞⨯=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c,,,∈=⎰+∞收敛;③()[]b a x dy y x f cx ,,,∈⎰+∞一致收敛;则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I cx ,,,'∈=⎰+∞注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理若()y x f ,在 [][)+∞⨯=,,c b a D 连续且非负,则()()dy y x f x I c⎰+∞=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c,,,∈=⎰+∞不一致收敛,由定义,00>∃ε,对cM >∀总存在[]b a x M A ,,00∈∃>,使得()()0000,ε≥-⎰A cdy y x f x I .特别地,取 M 大于c 的自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-⎰nA cn n dy y x f x I · 注意到f 非负,可写作()()0,ε≥-⎰nA cn n dy y x f x I .由于{}[]b a x n ,⊂有界,记为{}(),...2,1=k x n ,则[]b a x x nk k ,lim 0∈=∞→,不妨设......21<<<<nk n n A A A ,再注意到 f 非负,因此有()()()()⎰⎰≥-≥-10,,n nkA cA cnk nk nk nk dy y x f x I dy y x f x I ε (*)由已知条件,对固定的1n A ,函数()()()⎰-=1,n A cdy y x f x I x F 在[]b a ,上连续,对(*)令∞→k 取极限得()()()00001,ε≥-=⎰dy y x f x I x F n A c.此与()x I 的定义(即逐点收敛)矛盾,即()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛 ·(二)含参量的瑕积分 1 .定义设()y x f ,在区域[](]d c b a D ,,⨯=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分()()[]⎰∈=dcb a x dy y x f x I ,,,收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.2 一致收敛对c d -<<∃>∀δδε0:,0,当δη<<0时,恒有()εη<⎰+c cdy y x f ,,对一切[]b a x ,∈成立,称()()dy y x f x I dc⎰=,在[]b a ,上一致收敛.3.M 判别法设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈∀≤ ,而()dy y g d c⎰收敛,则()()[]b a x dy y x f x I dc,,,∈=⎰必一致收敛其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.。
数学分析第二册答案第十九章 含参变量的积分
第十九章 含参变量的积分§1 含参变量的正常积分1.求下列极限: (1)⎰-→+11220lim dx x αα; (2)⎰→220cos lim xdx x αα;(3)⎰+→++αααα122011limdx x .解(1)由于22),(αα+=x x f 在]1,1[]1,1[-⨯-上连续,故⎰-+=1122)(dx x I αα在]1,1[-连续,所以,12)0()(lim lim 1112011220=====+⎰⎰⎰-→-→xdx dx x I I dx x αααα.(2)由于x x x f ααcos ),(2=在]2,0[]2,0[⨯上连续,故⎰=22cos )(xdx x I αα在]2,0[连续,所以,38)0()(lim cos lim 2202020====⎰⎰→→dx x I I xdx x αααα. (3)⎰⎰⎰⎰+++++++-++=++αααααααα11222212212211111111dx x dx x dx x dx x ,由于2211),(αα++=x x f 在]1,0[]1,0[⨯上连续,故⎰++=102211)(dx xI αα在]1,0[连续,所以,411)0()(lim 11lim 10201220παααα=+===++⎰⎰→→dx x I I dx x .而对R ∈∀α,R x ∈有,ααα≤++⎰2211dx x ,ααα≤++⎰+112211dx x ,因此 011lim 0220=++⎰→αααdx x ,011lim 11220=++⎰+→αααdx x , 因而,⎰⎰⎰++-++=++→→+→ααααααααα2201220122011lim 11lim 11lim dx x dx x dx x411lim 11220πααα=++-⎰+→dx x2.求)(x F ',其中: (1)⎰-=22)(x xxy dy e x F ; (2)⎰-=xxy xdy e x F cos sin 12)(;(3)⎰++=xb x a dy y xy x F )sin()(;(4)⎰⎰=xx t dt ds s t f x F 0]),([)(22.解(1)35222222222)(2)(2x x x xxy xx x x x xxy e xe dy y e ex edy y ex F -------+-=-⋅+-='⎰⎰.(2))(sin )(cos 1)(222sin 1cos 1cos sin 21'-'+-='---⎰x e x e dy y e x F xxxx xxy xx e x edy y e xx xx xxy xcos sin 1cos sin cos sin 212---=⎰-.(3))())(sin()())(sin()cos()('+++-'++++='⎰++x a xz x a x x b x b x b x dy xy x F xb xa=)](sin[)11()](sin[)11(a x x x a xb x x x b x +++-+++. (4)⎰⎰⎰⎰=+∂∂='xx x x x t dt x t xf ds s x f dt ds s t f x x F 020),(2),()),(()(2222.3.设)(x f 为连续函数,⎰⎰++=xxd d x f h x F 02])([1)(ξηηξ,求)(x F ''.解 由于⎰⎰⎰⎰++=++=xx x x x du u f d h d x f d h x F 022002)(1)(1)(ξξξηηξξ,所以, ]))(()([1)(02322⎰⎰⎰++∂∂+='x x x xx d du u f x du u f hx F ξξξ})]()2(2[)({10322⎰⎰+-++=x xxd x f x f du u f h ξξξ,)]2(3)3(5[1)]2()3(2)2(2)3(3[1)(22x f x f hx f x f x f x f h x F -=-+-=''.注记 该题的函数应为⎰⎰++=h hd d x f hx F 002])([1)(ξηηξ(这从该教材第二版亦可得到印证),则⎰⎰⎰⎰+++=++=xhx x hhdu u f d h d x f d h x F 022)(1)(1)(ξξξηηξξ,所以,⎰⎰⎰+-++=∂∂='+++hx h x x d x f h x f hd du u f x h x F 0202)]()([1])([1)(ξξξξξξ ])()([122⎰⎰+++-=h x x hx hx du u f du u f h , )]()()2([1)]()()()2([1)(22x f h x f h x f hx f h x f h x f h x f h x F ++-+=++-+-+=''.4.研究函数⎰+=122)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数.解 当0≠y 时,被积函数在相应的闭矩形上是连续的,因此)(y F 在0≠y 连续.当0=y 时,0)0(=F .而0>y 时,设m 为)(x f 在]1,0[上的最小值,则0>m .由于y m dx yx y m y F 1arctan )(122=+≥⎰,而21arctan lim 0π=+→y y , 故有)(lim 0y F y +→若存在,必然)0(02)(lim 0F m y F y =>≥+→π或不存在,因而)(y F 在0=y 时间断. 5.应用积分号下求导法求下列积分:(1)⎰-222)sin ln(πdx x a (1>a );(2))1()cos 21ln(02<+-⎰a dx a x a π;(3))0,()cos sin ln(202222≠+⎰b a dx x b x a π;(4))1(tan )tan arctan(20<⎰a dx xx a π.解(1)设⎰-=2022)sin ln()(πdx x a a I ,则有⎰⎰-=-∂∂='20222022sin 2)]sin ln([)(ππdx x a a dx x a xa I)11arctan 11(arctan 12)sin 1sin 1(22220--+-+-=-++=⎰a a a a a dx x a x a π12-=a π,即c a a da a a I +-+=-=⎰)1ln(1)(22ππ.c 的确定较为困难,可如下进行.)1ln()sin ln()1ln()(220222-+--=-+-=⎰a a dx x a a a a I c πππ)1ln()]sin 1ln([ln 220222-+--+=⎰a a dx axa ππa a a dx ax 1ln)sin 1ln(22022-+--=⎰ππ, 令+∞→a ,2ln 1ln 2ππ→-+aa a ,又1sin 1110222≤-<-<a x a ,所以, 0)sin 1ln()11ln(222≤-≤-a xa ,)(0)11ln(2)11ln()sin 1ln()sin 1ln(22022022222+∞→→-=-≤-≤-⎰⎰⎰a adx a dx a x dx a x ππππ,2ln π=⇒c ,即21ln 2ln )1ln()(22-+=--+=a a a a a I πππ.(2)设⎰+-=π2)cos 21ln()(dx a x a a I ,则⎰⎰+--=+--='ππ02202cos 2111cos 21)cos (2)(dx ax a a a dx a x a x a a I ⎰⎰+-+--=-+--=ππππ0222022cos 1211)1(1cos 2)1(11dx x aa a a a a dx xa a aa a222022212)1(2)11arctan()1()1()1(2)1(1a a a a a x a a a a a a a a a +=+-=-++--+--=πππππ,所以,)1ln(21)0()()(202a da a a I a I a I a+=+=-=⎰ππ. (3)将a 看作参变量,b 认为是常数,记⎰+=202222)cos sin ln()(πdx x b x a a I .可先设0>a ,0>b ,则⎰⎰+=+∂∂='2020222222222cos sin sin 2)]cos sin ln([)(ππdx xb x a x a dx x b x a a a I . 若b a =,则bxdx b a I 2sin 2)(202ππ=='⎰,若b a ≠作代换x t tan =,得⎰⎰∞+∞+++=++='022222022222))(1(212)(a b t t dt t a t dt b t a at a Iba ))(111(2222202222222222+=---=+--+-=⎰∞+πππba bba adt a bt b a b t b a a a ,所以,c b a πda b a πa I ++=+=⎰)ln()(,而c b b b I +==)2ln(ln )(ππ2ln π-=⇒c ,于是2ln 2ln )ln()(ba b a πa I +=-+=ππ.若0<a 或0<b ,则可以a -或b -代替a 或b ,因而总有2ln)()(b a a I a I +==π.(4)记⎰=20tan )tan arctan()(πdx xx a a I ,令x x a a x f tan )tan arctan(),(=,当2,0π=x 时,f 无定义,但a a x f x =+→),(lim 0,0),(lim 2=-→a x f x π,故补充定义a a f =),0(,0),2(=a f π,则f 在],[]2,0[b b -⨯π连续(10<<b ),从而)(a I 在)1,1(-连续.⎪⎪⎩⎪⎪⎨⎧=∈+=,2,0 ,0,)2,0( ,tan 11),(22ππx x x a a x f a显然)0,(x f a 在2π=x 点不连续,但),(a x f a 分别在)0,1(]2,0[-⨯π和)1,0(]2,0[⨯π连续,故有⎰⎰+=='2222tan 11),()(ππdx xa dx a x f a I a ,)0,1(-∈a 或)1,0(∈a .令t x =tan ,⎰⎰∞+∞+++--+-=++='0222222222222)1)(1(111)1)(1(1)(dt t a t a t a t a a dt t a t a I)1(2])1()1(1[11022222a dt t a a t a +=+-+-=⎰∞+π,)0,1(-∈a 或)1,0(∈a . 积分之1)1ln(2)(c a a I ++=π,)1,0(∈a ;2)1l n (2)(c a a I +--=π,)0,1(-∈a .因为)(a I 在)1,1(-连续,故)(lim 0)(lim )0(0a I a I I a a -+→→===,得021==c c ,从而得|)|1ln(sgn 2)(a a a I +=π,1||<a .6.应用积分交换次序求下列积分: (1))0,0(ln 1>>-⎰b a dx xx x ab ; (2))0,0(ln )1sin(ln 10>>-⎰b a dx xx x x ab . 解(1)b a b a b a yb a y a b y dy y dx x dx dy x dx dx xx x |)1ln(11ln 10101+=+===-⎰⎰⎰⎰⎰⎰aba b ++=+-+=11ln)1ln()1ln(. (2)⎰⎰⎰⎰⎰==-b a y b a y a b dx xx dy dx dy x x dx x x x x 101010)1sin(ln ])1[sin(ln ln )1sin(ln . 记⎰=1)1sin(ln )(dx x xy I y,则 ])1()1cos(ln )1sin(ln [11)1sin(ln 11)(10111101⎰⎰--+=+=+++dx x x x x x y dx x y y I y y y ])1()1sin(ln ()1cos(ln [)1(1)1cos(ln 11101101210⎰⎰---+=+=++dx x x x x x y dx x x y y y y ))(1()1(1))1sin(ln 1()1(12102y I y dx x x y y -+=-+=⎰, 所以,1)1(1)(2++=y y I ,因此, )1)(1(1arctan 1)1(1)(ln )1sin(ln 210b a ab dy y dy y I dx x x x x b a b a a b +++-=++==-⎰⎰⎰. 7.设f 为可微函数,试求下列函数的二阶导数: (1)⎰+=xdy y f y x x F 0)()()(; (2))()()(b a dy y x y f x F ba<-=⎰.解(1))(2)()(0x xf dy y f x F x+='⎰,)(2)(3)(x f x x f x F '+=''.(2)⎰-=bady y x y f x F )()(⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤-=⎰⎰⎰⎰,,))((,,))(())((,,))((b x dy y x y f b x a dy x y y f dy y x y f a x dy x y y f ba b x xa b a⎪⎪⎩⎪⎪⎨⎧≥<<-≤-='⎰⎰⎰⎰,,)(,,)()(,,)()(b x dy y f b x a dy y f dy y f a x dy y f x F bab x xa b a⎩⎨⎧≥≤<<=⎪⎩⎪⎨⎧≥<<≤=''.b x or a x b x a x f b x b x a x f a x x F ,0,,)(2,0,,)(2,,0)(8.证明:⎰⎰⎰⎰+-≠+-101022222101022222)()(dx y x y x dy dy y x y x dx .证明 ⎰⎰⎰⎰⎰+-+=+-101022102222101022222]1)(12[)(dy y x dy y x x dx dy y x y x dx 4|arctan 11112π==+=⎰x dx x , ⎰⎰⎰⎰⎰+-+=+-10102221022101022222]121[)(dx y x y dx y x dy dx y x y x dy 4|arctan 11112π-=-=+-=⎰y dy y , 所以,⎰⎰⎰⎰+-≠+-101022222101022222)()(dx y x y x dy dy y x y x dx .9.设⎰+=122ln )(dx y x y F ,问是否成立⎰=+∂∂='10022ln )0(dx y x yF y .解 1ln ln )0(110-===⎰⎰xdx dx x F ,所以,]11[ln 1)1ln (1)0()(101022221022+-+++=++=-⎰⎰⎰dx dx yx y y y dy y x y y F y F)0(21arctan 2)1ln(]arctan 1[ln 12102+→→++=++=y y y y y x y y y π, 即2)0(π='+F ,同样2)0(π-='-F ,因此)0(F '不存在,而00ln 112210022==+=+∂∂⎰⎰⎰==dx dx y x y dx yx y y y ,因此,⎰=+∂∂='10022ln )0(dx y x yF y 不成立.10.设⎰=πθθθ20cos )sin cos()(d x e x F x ,求证π2)(≡x F .证明 R x ∈∀0,函数)sin cos(),(cos θθθx e x f x =在矩形域]2,0[]1,)1([00π⨯++-x x 连续,θθθθθθθsin )]sin sin([)sin cos(cos ),(cos cos x e x e x f x x x -+=亦在矩形域]2,0[]1,)1([00π⨯++-x x 连续,故由积分号下求导数可得⎰⎰==-=∂∂='πθθπθθθθθθθ20cos cos 20000]sin )sin sin()sin cos(cos [),()(d x e x e d x f x x F x x x x x x⎰⎰-=πθπθθθθθ200c o s 200c o ss i n )s i n s i n ()s i n s i n (100d x e x d ex x x (00≠x )⎰-⋅-=πθπθθθθθ200cos 00200cos 0)sin ()sin sin(1|)sin sin(100d x e x x x e x x x⎰-πθθθθ200cos sin )sin sin(0d x e x0=,当00=x 时,显然0sin cos )0(2020==='⎰ππθθθd F .由R x ∈0的任意性,0)(='x F ,因此,C x F ≡)(,而πθπ2)0(20===⎰d F C ,所以,π2)(≡x F .11.设)(x f 为两次可微函数,)(x ϕ为可微函数,证明函数⎰+-+++-=atx atx dz z a at x f at x f t x u )(21)]()([21),(ϕ满足弦振动方程22222xu a t u ∂∂=∂∂ 及初始条件)()0,(x f x u =,)()0,(x x u t ϕ=.证明)]()([21)]()([21at x at x aat x f at x f x u --+++'+-'=∂∂ϕϕ, )]()([21)]()([2122at x at x a at x f at x f xu -'-+'++''+-''=∂∂ϕϕ, )]()([21)]()([21at x a at x a aat x f a at x f a t u -++++'+-'-=∂∂ϕϕ )]()([21)]()([2at x at x at x f at x f a -++++'+-'-=ϕϕ,)]()([2)]()([2222at x at x aat x f at x f a tu -'-+'++''+-''=∂∂ϕϕ 所以,)]()([2)]()([2222at x at x aat x f at x f a tu -'-+'++''+-''=∂∂ϕϕ 2222)]}()([21)]()([21{x u a at x at x a at x f at x f a ∂∂=-'-+'++''+-''=ϕϕ, 即满足弦振动方程.又)()(21)]()([21)0,(x f dz z ax f x f x u xx =++=⎰ϕ, )()]()([21)]()([2)0,(x x x x f x f a x u t ϕϕϕ=++'+'-=,即满足初始条件.§2 含参变量的广义积分1.证明下列积分在指定的区间内一致收敛:(1)⎰+∞+022)cos(dy yx xy (0>≥a x ); (2))(1)cos(02+∞<<-∞+⎰+∞x dy y xy ;(3))(1b x a dy e y y x ≤≤⎰+∞-;(4)⎰+∞-1cos dy y ye pxy(0>p ,0≥x ); (5))0(1sin 02≥+⎰∞+p dx xx p. 证明(1)因为当0>≥a x 时,],0[+∞∈∀y ,有22222211)cos(ya y x y x xy +≤+≤+, 而dy ya ⎰+∞+0221收敛,由M 判别法,⎰+∞+022)cos(dy y x xy 在0>≥a x 是一致收敛的. (2)因为,),(+∞-∞∈∀x ,),0[+∞∈y 成立22111)cos(y y xy +≤+,而⎰+∞+0211dy y 收敛,由M 判别法,⎰+∞+021)cos(dy y xy 在+∞<<∞-x 一致收敛.(3)因为],[b a x ∈∀,),1[+∞∈y ,成立{}y M yb a y x e y eye y ---≤≤,max ,其中{}0,max ≥=b a M , 而⎰+∞-1dy e y yM 收敛,所以⎰+∞-1dy e y y x 在b x a ≤≤一致收敛.(4)用Abel 判别法.已知⎰+∞1cos dy yyp收敛(见第十一章§3习题3(3)),又对每一个),0[+∞∈x ,函数xye-关于y 是单调函数,且),0[+∞∈∀x ,),1[+∞∈y ,有1≤-xye,由Abel 判别法知 ⎰+∞-1cos dy y ye pxy在),0[+∞一致收敛.(5)由于⎰+∞2sin dx x 收敛(见p56-§11.1-例10),又对每一个),0[+∞∈p ,函数px +11是单调减函数,且),0[+∞∈∀x ,),0[+∞∈p ,有111≤+p x,由Abel 判别法,)0(1sin 02≥+⎰∞+p dx x x p 在),0[+∞一致收敛.2.讨论下列积分在指定区间上的一致收敛性: (1))0(2+∞<<-+∞⎰αααdx e x ;(2)⎰+∞-0dy xe xy ,(i ))0(],[>∈a b a x , (ii )],0[b x ∈; (3)⎰+∞∞---dx e x 2)(α,(i )b a <<α, (ii )+∞<<∞-α; (4))0(sin 0)1(22+∞<<⎰+∞+-x xdy e y x.解(1))0(2)(0)(0222>===⎰⎰⎰∞+-∞+--∞+απαααααdu e ux x d e dx e u x x ,当0=α时积分为0.0>∀A ,由于2lim lim 0222πααααα===⎰⎰⎰∞+-∞+-→∞+-→++du e du e dx e u Au o Ax o,故0ε∃:200πε<<,00>∃α,使得有0020εαα>⎰+∞-Ax dx e ,因此积分非一致收敛.(2)积分对于每一个定值0≥x 是收敛的.当0=x 时,00=⎰+∞-dy xe xy ;当0>x 时1|0=-=∞+-+∞-⎰xy xy e dy xe . (i ))0(],[>∈a b a x ,由于aA xA Axy e e dy xe --+∞-≤=<⎰0,故εε1ln 1,00a A =∃>∀,使当0A A >时,就有ε=<-+∞-⎰0aA Axy e dy xe ,于是,在区间)0(],[>∈a b a x 上积分一致收敛.(ii )由于+→0x 时,1→-Axe ,故10:00<<∃εε,对于足够小的0x 值,00ε>-Axe ,故在],0[b 上,积分⎰+∞-0dy xe xy 不一致收敛.(3)对任意固定的α,积分⎰+∞∞---dx ex 2)(α都收敛,且(作代换t x =-α)πα==⎰⎰+∞∞--+∞∞---dt e dx e t x 22)(.(i )取正数R 充分大,使得R b a R <<<-,显然,当R x ≥时,对一切b a <<α,有22)()(0R x x ee----<<α,而积分⎰⎰+∞--+∞∞---=0)()(222dx e dx eR x R x 收敛,由M 判别法,积分⎰+∞∞---dx e x 2)(α在b a <<α一致收敛.(ii )0>∀A ,有παααα===⎰⎰⎰+∞∞--+∞--+∞→+∞--+∞→dt e dt e dx e t A t Ax 222limlim)(,故当α充分大时,0)(22επα=>⎰∞+--Ax dx e ,由此可知⎰+∞--0)(2dx e x α在+∞<<∞-α非一致收敛,因而⎰+∞∞---dx e x 2)(α在+∞<<∞-α更非一致收敛.(4)0>∀A ,有)0(sin sin 0)1(22222++∞-+∞--+∞+-→→=⎰⎰⎰x dt e dt e e xx xdy e t Ax t x Ay x,因此,积分⎰+∞+-0)1(sin 22xdy e y x在+∞<<x 0非一致收敛.3.设)(t f 在0>t 连续,⎰+∞)(dt t f t λ当a =λ,b =λ时皆收敛,且b a <.求证:⎰+∞)(dtt f t λ关于λ在],[b a 一致收敛.证明 ⎰⎰⎰+∞--+∞+=110)()()(dt t f t t dt t f t t dt t f t b b a a λλλ.由于⎰1)(dt t f t a 收敛,因而,对],[b a ∈λ一致收敛,αλ-t 当λ固定时,对t 在]1,0[单调,且1≤-αλt ,因此,由Abel 判别法,积分⎰⎰=-11)()(dt t f t dt t f t t a a λλ在],[b a 一致收敛.又因为⎰+∞1)(dt t f t b 收敛,故对],[b a ∈λ亦一致收敛,b t -λ当λ固定时,对t 在],1[+∞单调递减,且1≤-btλ,由Abel 判别法,积分⎰⎰+∞+∞-=11)()(dt t f t dt t f t t b b λλ在],[b a 一致收敛.因此,⎰+∞0)(dt t f t λ在],[b a 上一致收敛.4.讨论下列函数在指定区间上的连续性: (1)⎰+∞+=22)(dy yx xx F ,),(+∞-∞∈x ; (2)⎰∞++=21)(dy yy x F x,3>x ; (3)⎰--=ππ02)(sin )(dy y y yx F xx ,)2,0(∈x .解(1)当0≠x 时,⎪⎪⎩⎪⎪⎨⎧><-==+=+=∞+∞+∞+⎰⎰,0,2,0,2arctan )()(11)(0222x x x yx y d xy dy y x xx F ππ而0)0(=F ,因此,)(x F 在0≠x 连续,在0=x 间断(第一类间断点).(2)因为)1(,1112222≥<+=+---y yy y y y x x x , 而当3>x 时,无穷积分⎰+∞-121dx y x 收敛,⎰+=1021)(dy y y x F x在3>x 是常义积分,因而)(x F 在3>x 有意义.30>∀x ,03x b <<∃,当1≥y 时, ),[+∞∈∀b x ,有222221111----≤<+=+b x x x y y y y y y , 而⎰+∞-121dy yb 收敛,因而⎰∞++021dy yy x 在),[+∞b 一致收敛,因此,⎰∞++=021)(dx y y x F x 在),[0+∞∈b x 连续,由),3(0+∞∈x 的任意性可知,)(x F 在3>x 连续.(3)⎰⎰----+-=ππππππ2222)()sin()(sin )(dy y y y dy y y yx F x x x x , 所以,)2,0(0∈∀x ,0>∃δ,使得δδ-<<<200x ,当]2,[δδ-∈x 时,有δδδδπππππ)2(1)2(1)(1)(sin 11212-----=-≤-≤-y y y y y y y xx x x ,]1,0(∈y ,δδπππππ-----≤-≤--1212)()2(1)(1)()sin(y y y y y y xx x x ,),1[ππ-∈y ,⎰-11)2(1dy y δδ及⎰----ππδδπ112)()2(1dy y 均收敛,所以⎰--22)(sin ππdx y y yxx 及⎰--πππ22)(sin dx y y y x x 均在]2,[δδ-∈x 一致收敛,因而⎰--ππ02)(sin dy y y yxx 在]2,[δδ-∈x 一致收敛. 因此,)(x F 在]2,[δδ-∈x 连续,因而在δδ-<<<200x 连续,由)2,0(0∈x 的任意性,知)(x F 在)2,0(连续.5.若),(y x f 在),[],[+∞⨯c b a 上连续,含参变量广义积分⎰+∞=cdy y x f x Ι),()(在),[b a 收敛,在b x =时发散,证明)(x I 在),[b a 不一致收敛.证明 目的在于证明:00>∃ε,c A >∀0,0'''A A A >>∃及],[b a x ∈,使得0'''),(ε≥⎰A A dy y x f . (1)因为⎰⎰⎰+-='''''''''),()],(),([),(A AA A A A dy y b f dy y b f y x f dy y x f⎰⎰--≥'''''')],(),([),(A A A A dy y b f y x f dy y b f ,因此,若能证明00>∃ε,c A >∀0,0'''A A A >>∃及],[b a x ∈,02),('''ε≥⎰A A dy y b f ,0'''),(),([ε<-⎰A A dy y b f y x f , (2)则(1)式即可得到.剩下的问题在于证明(2).01 因⎰+∞cdy y b f ),(发散,故00>∃ε,c A >∀0,0'''A A A >>∃,使得02),('''ε≥⎰A A dy y b f .02 但),(y x f 在),[],[+∞⨯c b a 连续,从而在有界闭区域b x a ≤≤,A y A ''≤≤'上一致连续,于是对上述01中00>ε,0>∃δ,当 δ<''-'x x ,δ<''-'y y 且],[,b a x x ∈''',],[,A A y y '''∈'''时,有A A y x f y x f '-''<''''-''0),(),(ε,从而δ<-b x 时,有A A y b f y x f '-''<-0),(),(ε,由此推得0'''),(),([ε<-⎰A A dy y b f y x f .6.含参变量的广义积分⎰+∞=cdy y x f x Ι),()(在],[b a 一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 上一致收敛.证明 必要性.⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛,故0>∀ε,c A >∃0,当0A A >时,有ε<⎰+∞Ady y x f ),(,对],[b a x ∈一致地成立.对任意递增数列{}n A :)(1c A A n =∞→,首先,∑⎰∑⎰∑=∞→∞=∞=++==nk A A n n A A n n k kn ndy y x f dy y x f x u 11111),(lim ),()()(),(),(lim 1x I dy y x f dy y x f cA cn n ===⎰⎰+∞∞→+,],[b a x ∈∀成立.其次,由于{}n A 单调递减趋于∞+,故对上述c A >0,N ∃满足0A A N ≥,因此当N n >时,0A A A N n ≥>,因此,有ε<==⎰∑⎰∑∞+∞=∞=+nk kA n k A A nk kdy y x f dy y x f x u),(),()(1,],[b a x ∈∀一致地成立,因此级数∑∞=1)(n n x u 在],[b a 上一致收敛于)(x I .充分性.采用反证法.若不然,设对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数∑⎰∑∞=∞=+=111),()(n A A n nn ndy y x f x u在],[b a 上一致收敛,但广义积分⎰+∞=cdy y x f x Ι),()(在],[b a 不一致收敛,因此00>∃ε,c A >∀0,0A A >∃,],[0b a x ∈∃,使得00),(ε≥⎰+∞Ady y x f .取01][)1(0>+=c A ,)1(02A A >∃,],[1b a x ∈∃,使得012),(ε≥⎰+∞A dy y x f ;取11)2(0+=A A,)2(03AA >∃,],[2b a x ∈∃,使得023),(ε≥⎰+∞A dy y x f ; 取12)3(0+=A A ,)3(04A A >∃,],[3b a x ∈∃,使得034),(ε≥⎰+∞A dy y x f ;如此一直下去.得到一列单调递增序列{}n A (令C A =1),且)(∞→+∞→n A n 和一列{}],[b a x n ⊂,使得01),(ε≥⎰+∞+n A n dy y x f ,即函数项级数∑⎰∑∞=∞=+=111),()(n A A n nn ndy y x f x u在],[b a 非一致收敛,矛盾!因此,⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛.7.用上题的结论证明含参变量广义积分⎰+∞=cdy y x f x I ),()(在],[b a 的积分交换次序定理(定理19.12)和积分号下求导数定理(定理19.13).证明 积分交换次序定理 设),(y x f 在),[],[+∞⨯c b a 上连续,且含参变量的广义积分⎰+∞=cdy y x f x I ),()(在],[b a 上一致收敛,则⎰⎰⎰+∞=cbabadx y x f dy dx x I ),()(,即⎰⎰⎰⎰+∞+∞=cbab a cdx y x f dy dy y x f dx ),(),(.由于⎰+∞=cdy y x f x I ),()(在],[b a 一致收敛⇒对任意递增趋于∞+的数列{}n A (c A =1),函数项级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 一致收敛于)(x I ,由已知条件,),(y x f 在),[],[+∞⨯c b a 上连续,因而亦在],[],[1+⨯n n A A b a 上连续,故⎰+=1),()(n nA A n dy y x f x u 在],[b a 连续,因此利用函数项级数和函数的逐项积分定理,有∑⎰⎰∑⎰⎰∑⎰⎰∞=∞=∞=++===11111),(),()()(n A A ban baA A n ban ban nn ndx y x f dy dy y x f dx dx x u dx x I⎰⎰⎰⎰∑⎰⎰+∞∞→=∞→===++cbaA cban nk A A ban dx y x f dy dx y x f dy dx y x f dy n k k),(),(lim ),(lim111.积分号下求导数定理 设),(y x f 和),(y x f x 都在),[],[+∞⨯c b a 上连续,若⎰+∞cdy y x f ),(在],[b a 上收敛,⎰+∞cx dy y x f ),(在],[b a 上一致收敛,则⎰+∞=cdy y x f x I ),()(在],[b a 可导,且⎰+∞='cx dy y x f x I ),()(,即⎰⎰+∞+∞∂∂=c c x dy y x f xdy y x f dx d ),(),(. 由于⎰+∞cdy y x f ),(在],[b a 上收敛,故对任意趋于∞+的递增函数列{}n A (C A =1),级数∑∑⎰∞=∞==+11)(),(1n n n A A x u dy y x f n n在],[b a 上收敛于)(x I ,又⎰+∞cx dy y x f ),(在],[b a 上一致收敛,故函数项级数∑∑⎰∞=∞='=+11)(),(1n nn A A x x u dy y x f n n在],[b a 上一致收敛,用函数项级数和函数的逐项求导定理,知 ⎰∑⎰∑+∞∞=∞==='='+cx n A A x n ndy y x f dy y x f x u x I n n),(),()()(111.8.利用微分交换次序计算下列积分: (1)⎰+∞++=12)()(n n a x dxa I (n 为正整数,0>a ); (2)⎰∞+---0sin mxdx xe e bxax (0>a ,0>b ); (3)⎰+∞-0sin 2bxdx xe ax (0>a ).解(1)由于积分⎰+∞+02ax dx对一切00>a 在0a a ≥上一致收敛,得)()()1(10220202a I a x dx dx ax a a x dx da d -=+-=+∂∂=+⎰⎰⎰+∞+∞+∞, 由00>a 的任意性,知上式对一切0>a 成立.同理对积分⎰+∞+02ax dx逐次求导,得)(!)1()(!)1(01202a I n a x dx n a x dx da d n nn n nn -=+-=+⎰⎰∞++∞+, 但320212)2(aa da d a x dx da d ππ-==+⎰+∞,5323202221231)1()12(aada d ax dx da d ππ⋅-=-=+⎰∞+,用数学归纳法,可得121212!)!12()1(++∞+--=+⎰n n n nn an a x dx da d π,所以,)21()21(1!)!2(!)!12(2!2!)!12()(+-+-+-⋅=⋅⋅-=n n n n a n n a n n a I ππ.(2)当0=m 时,0sin 0=-⎰∞+--mxdx xe e bxax ,下设0≠m . 由于0sin lim0=---→+mx xe e bxax x ,因此0=x 不是瑕点,从而当0>a ,0>b 时,被积函数在+∞<≤x 0内连续(0=x 的函数值理解为极限值0),又由于)0(sin >-≤-----x xe e mx x e e bxax bx ax , 而积分⎰∞+---1dx x e e bx ax 收敛,由比较判别法,积分⎰∞+---0sin mxdx xe e bxax收敛.当00>≥a a 时,积分⎰⎰∞+-∞+---=-∂∂00sin )sin (mxdx e dx mx xe e a ax bxax 是一致收敛的.事实上,由)0(sin 0≥≤--x emx exa ax立即得到此结论.于是⎰∞+---=0sin )(mxdx xe e a I bxax 在00>≥a a 时可以在积分号下求导数,得220sin )(ma mmxdx e a I ax +-=-='⎰+∞-, 由00>a 的任意性知,上式对一切0>a 均成立,从而c m ada m a m a I +-=+-=⎰arctan )(22,其中c 为待定常数,令b a =,则得c m b b I +-==arctan 0)(mbc arctan =⇒.所以, )0()(arctan arctan arctan sin 20≠+-=-=-⎰∞+--m abm a b m m a m b mxdx x e e bx ax . (3)⎰⎰⎰+∞-+∞-+∞-+∞-+-=-=0000cos 2sin 21)(sin 21sin 2222bxdx e a b bx e a e bxd a bxdx xeax ax ax ax ⎰+∞-=0cos 22bxdx e ab ax 设⎰+∞-=0cos )(2bxdx eb I ax ,由于bx e ax cos 2-与bx xe bx e bax ax sin )cos (22---=∂∂都是0≥x ,+∞<<∞-b 上的连续函数,且此时22cos ax ax e bx e --≤,22sin ax ax xe bx xe --≤,而积分⎰+∞-02dx e ax 与⎰+∞-02dx xe ax 都收敛,因此积分⎰+∞-0cos 2bxdx e ax 与⎰+∞-0sin 2bxdx xe ax 均在),(+∞-∞上一致收敛,从而可以在积分号下求导数.所以,)(2sin )(02b I abbxdx xe b I ax -=-='⎰+∞-, 解得,ab ceb I 42)(-=,其中c 是待定常数.但21)0(02πa dx e I ax ==⎰∞+-,得ab a b axe aa b e a a b b I a b bxdx xe 42402224212)(2sin --∞+-===⎰ππ. 9.利用对参数的积分法计算下列积分:(1)⎰∞+---022dx xeebx ax (0>a ,0>b ); (2)⎰∞+---0sin mxdx xe e bxax (0>a ,0>b ). 解(1)⎰⎰⎰⎰⎰∞+-∞+-∞+--=-=-b atx abtx bx ax dx xedt dt exdx dx xe e2222⎰⎰⎰+∞-+∞--=--=b a tx ba tx dt e t tx d e dt t 0022221)(21ab a b t dt t b a b a ln 21)ln (ln 21ln 2121=-===⎰. (2)⎰⎰⎰⎰⎰∞+-∞+-∞+--==-b a tx b a tx bxax mxdx e dt dt e mxdx mxdx xe e 000sin sin sinabm a b m m a m b m t dt m t m ba ba+-=-==+=⎰222)(arctanarctan arctan arctan ()0≠m , 而0=m 时,0sin 0=-⎰∞+--mxdx xe e bxax ,这也可以归结到前面最终答案中0=m 的情形,所以, abm a b m mxdx x e e bx ax +-=-⎰∞+--20)(arctan sin . 10.利用⎰+∞+-=+0)1(2211dy e xx y 计算Laplace 积分 ⎰+∞+=021cos dx x x L α和 ⎰+∞+=0211sin dx xx x L α. 解 先计算⎰+∞+=021cos dx xxL α. 若0=α,则2arctan 111cos 00202πα==+=+=∞++∞+∞⎰⎰x dx x dx x x L ,故下设0≠α.⎰⎰⎰⎰⎰+∞+∞--+∞+∞+-+∞==+=0000)1(02cos cos )(1cos 22xdx e dy e xdx dy e dx xx L yx y x y ααα ⎰⎰⎰∞++-∞++-∞+--==⋅=0)2(0)4(04222221dt eedt ety dy e yett tt yyααααπππ,其中第四个等号应用了8(3)中)(b I 的结果.下面计算⎰∞++-=0)2(2dt eI tt α.设u tt =-2α,则+∞<<t 0时,+∞<<∞-u ,αα222+=+u tt )2(212α++=⇒u u t , 从而有du u u u du u u dt ααα2221)2221(21222+++=++=,代入得⎰⎰∞+∞-+-∞++-+++==du u u u e dt eI u tt αααα222122)2(0)2(22)2222(21022)2(022)2(22⎰⎰∞++-∞-+-+++++++=du u u u e du u u u e u u αααααα)2222(21022)2(022)2(22⎰⎰∞++-∞++-+++++-+=du u u u e du u uu e u u αααααα(前者作负代换)ααααπ2020)2(0)2(2221222-∞+--∞++-∞++-====⎰⎰⎰edu e e du e du e u u u ,所以,αααααππππ--∞++-=⋅=⋅=⎰eeedt eeL tt 2220)2(2.再计算⎰+∞+=0211sin dx x xx L α.显然 ⎰⎰⎰⎰⎰⎰--+∞+∞==+=+=ααααππ000020021221cos 1cos du e du e dx x ux du du x ux dx L uu απαπαπααπαααααsgn )1(20,)1(2,0,)1(20,,0,200----=⎪⎪⎩⎪⎪⎨⎧<-≥-=⎪⎩⎪⎨⎧<≥=⎰⎰e e e du e du e u u . 11.利用)0(2102>=⎰+∞-x dy e xxy π计算Fresnel 积分⎰⎰+∞+∞==002sin 21sin dx xxdx x F ,和 ⎰⎰+∞+∞==0021cos 21cos dx xxdx x F . 解 在积分⎰+∞-=221dy e xxy π的两端乘以x sin ,再在100x x x ≤≤<上积分,则得⎰⎰⎰+∞-=121sin 2sin x x xy x x dy xe dx dx xx π.由于202sin y x xy e ex --≤⋅,而⎰+∞-020dy e y x 收敛,故积分⎰+∞-02sin dy xe xy 对10x x x ≤≤一致收敛,从而可以进行积分顺序的交换,得⎰⎰⎰⎰∞+-∞+-++-=⋅=420102121]1)cos sin ([2sin 2sin dy yx x y e dx e x dy dx xx x x xy x x xy x x ππ⎰⎰∞+-∞+-+++=04004201cos 21sin 22020dy y e x dy y y e x y x y x ππ⎰⎰∞+-∞+-+-+-04104211cos 21sin 22121dy y e x dy y y e x y x y x ππ, 上述等式右端的诸积分分别对+∞<≤00x ,+∞<≤10x 都是一致收敛的(120≤-y x e,121≤-y x e ,且⎰∞++0421dy yy 及⎰+∞+041y dy 均收敛).于是,它们分别是10,x x (+∞<≤00x ,+∞<≤10x )的连续函数,从而令+→00x ,可在积分号下取极限,得⎰⎰⎰⎰∞+-∞+-∞++-+-+=04104210401cos 21sin 212sin 21211dy y e x dy y y e x y dy dx xx y x y x x πππ, 且由于上式右端后两个积分均不超过积分)(0211121+∞→→=⎰∞+-x x dy e y x π.故0104221→+⎰∞+-dy y y e y x ,)(0110421+∞→→+⎰∞+-x dy y e y x ,令+∞→1x 取极限,222212sin 04ππππ=⋅=+=⎰⎰∞+∞+y dy dx xx ,。
1含参变量的常义积分
同理可定义含参变量 x 的积分:
J ( x)
f ( x, y)dy ,
c
d
x [a , b]
一般就称为含参变量积分。 它们统称为含参变量常义积分,
x2 y2 例如: 计算 椭圆 1 (b a 0)的周 长。 2 2 a b
椭圆的参数方程: x a cos t , y b sin t ,
dI ( y ) dy
b
a
f y ( x , y )dx 。
定理3 的结论也可写成
d dy
b
a
f ( x , y )dx f ( x , y )dx 。 a y
b
说明求导运算和积分运算可以交换。
机动 目录 上页 下页 返回 结束
定理4 设f ( x, y ), f y ( x, y )都在闭矩形 [a, b] [c, d ]上连续 ,
例3 解
设F ( y )
y
0
ln(1 xy) dx, y 0, 求F ( y )。 x
y
F ( y )
0
1 ln(1 y 2 ) dx 1 xy y
ln(1 xy) y ln(1 y 2 ) 0 y y 2 ln(1 y 2 ) y
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
1 I ( )
0
1 dx 1 cos x
x 对 最 后 一 个 积 分 作 万代 能 换 t tan , 2
0
1 dx 1 cos x
2dt 1 t 2 (1 t 2 )
含参变量的积分
§12.3 .含参变量的积分教学目的 掌握含参变量积分的连续性,可微性和可积性定理,掌握含参变量正常积分的求导法则. 教学要求(1)了解含参变量积分的连续性,可微性和可积性定理的证明,熟练掌握含参变量正常积分的导数的计算公式.(2)掌握含参变量正常积分的连续性,可微性和可积性定理的证明.一、含参变量的有限积分设二元函数(,)f x u 在矩形域(,)R a x b u αβ≤≤≤≤有定义,[,],u αβ∀∈一元函数(,)f x u 在[,]a b 可积,即积分(,)baf x u dx ⎰存在.[,]u αβ∀∈都对应唯一一个确定的积分(值)(,)baf x u dx ⎰.于是,积分(,)baf x u dx ⎰是定义在区间[,]αβ的函数,表为()(,),[,]bau f x u dx u ϕαβ=∈⎰称为含参变量的有限积分,u 称为参变量.定理1.若函数(,)f x u 在矩形域(,)R a x b u αβ≤≤≤≤连续,则函数()(,)bau f x u dx ϕ=⎰在区间[,]αβ也连续.★说明:若函数(,)f x u 满足定理1的条件,积分与极限可以交换次序. 定理2 .若函数(,)f x u 与fu∂∂在矩形域(,)R a x b u αβ≤≤≤≤连续,则函数()(,)b a u f x u dx ϕ=⎰在区间[,]αβ可导,且[,]u αβ∀∈,有(,)()b a df x u u dx du uϕ∂=∂⎰, 或 (,)(,)bb a a d f x u f x u dx dx du u∂=∂⎰⎰. 简称积分号下可微分.★说明:若函数(,)f x u 满足定理2的条件,导数与积分可以交换次序.定理 3 .若函数(,)f x u 在矩形域(,)R a x b u αβ≤≤≤≤连续,则函数()(,)ba u f x u dx ϕ=⎰在区间[,]αβ可积,且{}{}(,)(,)bbaaf x u dx du f x u du dx ββαα=⎰⎰⎰⎰.简称积分号下可积分.★说明:若函数(,)f x u 满足定理3的条件,关于不同变数的积分可以交换次序.一般情况,含参变量的有限积分,除被积函数含有参变量外,积分上、下限也含有参变量,即(),()a a u b b u ==.但[,]u αβ∀∈,对应唯一一个积分(值)()()(,)b u a u f x u dx ⎰,它仍是区间[,]αβ的函数,设 ()()()(,),[,]b u a u u f x u dx u ψαβ=∈⎰.下面给出函数()u ψ在区间[,]αβ的可微性.定理4.若函数(,)f x u 与fu∂∂在矩形域(,)R a x b u αβ≤≤≤≤连续,而函数()a u 与()b u 在区间[,]αβ可导,[,]u αβ∀∈,有(),()a a u b a b u b ≤≤≤≤,则函数()()()(,),[,]b u a u u f x u dx u ψαβ=∈⎰在区间[,]u αβ∈可导,且()''()(,)()[(),]()[(),]()b u a u df x u u dx f b u u b u f a u u a u du uψ∂=+-∂⎰二、例(I )例1. 求函数1220()ln()F y x y dx =+⎰的导数(0)y >解:0y ∀>,暂时固定,0ε∃>,使1y εε≤≤,显然,被积函数22ln()x y +与22222ln()y x y y x y∂+=∂+ 在矩形域1(01,)R x y εε≤≤≤≤都连续,根据定理2,有11'2222002()ln()y F y x y dx dx y x y ∂=+=∂+⎰⎰11200122arctan 2tan 1x d y x atrc y y x y ⎛⎫ ⎪⎝⎭===⎛⎫+ ⎪⎝⎭⎰. 因为0,0,y ε∀>∃>使1y εε≤≤,所以0y ∀>,有'1()2tanF y atrc y=. 例2 .求0()ln(1cos ),1I r r x dx r π=+<⎰.解::1r r ∀<,暂时固定,0k ∃>,使1r k ≤<,显然,被积函数及其关于r 的偏导数,即(,)ln(1cos )f x r r x =+ 与cos 1cos f x r r x∂=∂+ 在矩形区域(0,)R x k r k π≤≤-≤≤连续,根据定理2 ,有'00cos ()ln(1cos )1cos xI r r x dx dx r r x ππ∂=+=∂+⎰⎰=0011cos 111(1)1cos 1cos r x dx dx r r x r r x ππ+-=-++⎰⎰ 01.(0)1cos dx r r r r x ππ=-≠+⎰设tan 2xt =(万能换元),有222222111cos (1)(1)11dx t dt dt t r x r r t rt +==-+++-++⎰⎰⎰=221121dt x C r r t r⎫=+⎪⎪+-⎭+-⎰ 从而,1cos 2dx x r x ππ⎫==⎪⎪+⎭⎰. 于是,'()0)I r r rπ=≠ (3)又有'00lim ()lim 0r r I r r π→→⎛⎫=-= ⎝. 将'()I r 在0r =做连续开拓.令'(0)0.I =函数'()I r 在区间[,]k k -连续,对等式(3)等号两端求不定积分,有1()((ln ln I r dr r C r rππ+==++⎰ln(1C π=+.已知'(0)0.I =,有 1ln 2ln 2C ππ=-=.于是 ,11()ln(1ln ln 22I r πππ+=++=.例3 .证明:若函数()f x 在区间[,]a b 连续,则函数11()()(),[,](1)!x n a y x x t f t dt x a b n -=-∈-⎰是微分方程()()()n y x f x =的解,并满足条件'(1)()0,()0,()0n y a y a y a -=== .证明: 逐次应用定理4,求函数()y x 的n 阶导数,有'22'11()(1)()()()().()(1)!(1)!x n n a y x n x t f t dt x t f x x n n --=--+---⎰ =21()()(2)!x n a x t f t dt n ---⎰, ''31()()(),(3)!x n a y x x t f t dt n -=--⎰(1)()(),xn ay x f t dt -=⎰()()()n y x f x =,即函数()y x 是微分方程()()()n y x f x =的解,显然,当x a =时,'()()0,()0,()0n y a y a y a === .例4. 证明:若函数()f x 存在二阶导数,函数()F x 存在连续导数,则函数11(,)[()()]()22x atz atu x t f x at f x at F z dz a +-=-+++⎰是弦振动方程22222u u a t x ∂∂=∂∂的解. 证明:根据定理4,有''11[()()()][()()()]22u f x at a f x at a F x at a F x at a t a∂=--++++---∂ ''1[()()]['()()]22a f x at f x at F x at F x at =+--+++- 22"'''2[()()][()()]22u a a f x at f x at F x at F x at t ∂=+++++--∂ ''11[()()][()()]22u f x at f x at F x at F x at x a∂=++-++--∂ 2""''211[()()][()()]22u f x at f x at F x at F x at x a∂=++-++--∂于是,22""''211[()()][()()]22u a f x at f x at F x at F x at x a ∂⎧⎫=++-++--⎨⎬∂⎩⎭222u a x ∂=∂即(,)u x t 是弦振动方程22222u u a t x∂∂=∂∂的解 例5 .求积分1,0ln b ax x dx a b x-<<⎰.解法一 应用积分号下积分法.解: 函数()ln b ax x y x x -=的原函数不是初等函数,函数()y x 在0与1没定义,却有极限0lim0ln b ax x x x+→-=. 11111lim lim lim()1ln b a b a b ax x x x x bx ax bx ax b a xx-----→→→--==-=-. 将函数()y x 在0与1作连续开拓,即0,0,(),01,ln ,1.bax x x y x x x b a x =⎧⎪-⎪=<<⎨⎪-=⎪⎩从而,函数()y x 在区间[0,1]连续.已知()ln ln bb a yb y a ax x x y x x dy x x -===⎰而函数(,)y f x y x =在闭矩形域(01,)R x a y b ≤≤≤≤连续,根据定理3,有{}{}11100ln b abbyyaax x dx x dy dx x dx dy x-==⎰⎰⎰⎰⎰1101ln 111y bb aa x dy bdy y y a++===+++⎰⎰.解法二 应用积分号下微分法. 解: 设 1(),ln y ax x y dx a y b x-Φ=≤≤⎰根据定理2,有'11110001()ln 11y a y yyx x x y dx x dx x y y +⎛⎫-Φ==== ⎪++⎝⎭⎰⎰. 两端求不定积分,有()ln(1).1dyy y C y Φ==+++⎰ 令 y a =,有()0ln(1)a a C Φ==++,即 ln(1).C a =-+ 于是, 1()ln(1)ln(1)ln.1y y y a a +Φ=+-+=+ 令 y b =,有 11()ln .ln 1b a x x b b dx x a -+Φ==+⎰三、含参变量的无穷积分设二元函数(,)f x u 在区域(,)D a x u αβ≤<+∞≤≤有定义。
数学分析(下)19-1含参量正常积分
§1含参量正常积分对多元函数其中的一个自变量进行积分形成的函数称为含参量积分, 它可用来构造新的非初等函数. 含参量积分包含正常积分和非正常积分两种形式.一、含参量正常积分的定义二、含参量正常积分的连续性三、含参量正常积分的可微性四、含参量正常积分的可积性五、例题返回一、含参量正常积分的定义(,)f x y [,][,]R a b c d =´设是定义在矩形区域上的定义在[,]c d 上以y 为自变量的一元函数. 倘若这时(,)f x y [,]c d 在上可积, 则其积分值()(,)d ,[,](1)d c I x f x y y x a b =Îò是定义在[,]a b 上的函数.一般地, 设(,)f x y 为定义在区域二元函数.当x 取[,]a b 上的定值时,函数是(,)f x yG数在闭区间[(),()]c x d x 上可积, 则其积分值()()()(,)d ,[,] (2)d x c x F x f x y y x a b =Îò是定义在[,]a b 上的函数.()I x ()F x 用积分形式(1) 和(2) 所定义的这函数与通称为定义在[,]a b 上的含参量x 的(正常)积分, 或简称为含参量积分.二、含参量正常积分的连续性()I x 的连续性(,)f x y 定理19.1() 若二元函数在矩形区域[,][,]R a b c d =´上连续, 则函数=ò()(,)d dc I x f x y y 在[ a , b ]上连续.证设对充分小的[,],x a b Î,[,]x x x a b +Î有D D (若x 为区间的端点,则仅考虑00x x D D ><或), 于是()()[(,)(,)]d ,(3)dc I x x I x f x x y f x y y +-=+-òD D 由于(,)f x y 在有界闭区域R 上连续, 从而一致连续,0,e >0,d >即对任意总存在对R 内任意两点1122(,)(,)x y x y 与,只要1212||,||,x x y y d d -<-<就有-<1122|(,)(,)|. (4)f x y f x y e 所以由(3), (4)可得, ||,x d D 当时<+-£+-ò|()()||(,)(,)|d dc I x x I x f x x y f x y yD D d ().d c x d c e e <=-ò即I (x ) 在[,]a b 上连续.同理可证:若(,)f x y 在矩形区域R 上连续,则含参量y 的积分=ò()(,)d (5)b a J y f x y x 在[c ,d ]上连续.注1对于定理19.1的结论也可以写成如下的形式:若(,)f x y 在矩形区域R 上连续,则对任何Î0[,],x a b 都有®®=òò00lim (,)d lim (,)d .d d c c x x x x f x y y f x y y 这个结论表明,定义在矩形区域上的连续函数,其极限运算与积分运算的顺序是可以交换的.[,][,][,],a b c d c d ´Á´上连续可改为在上连续其中Á为任意区间.注2 由于连续性是局部性质,定理19.1中条件f 在()F x 的连续性(,)f x y 定理19.2() 若二元函数在区域=££££{(,)|()(),}G x y c x y d x a x b 上连续, 其中c (x ), d (x )为[,]a b 上的连续函数, 则函数=ò()()()(,)d (6)d x c x F x f x y y在[,]a b 上连续.证对积分(6)用换元积分法, 令()(()()).y c x t d x c x =+-当y 在c (x )与d (x )之间取值时, t 在[0, 1] 上取值,且d (()())d .y d x c x t =-所以从(6)式可得=ò()()()(,)d d x c x F x f x y y 10(,()(()()))(()())d .f x c x t d x c x d x c x t =+--ò由于被积函数+--(,()(()()))(()())f x c x t d x c x d x c x 在矩形区域[,][0,1]a b ´上连续,由定理19.1得积分(6)所确定的函数F (x ) 在[a , b ]连续.Dx x a b +Î[,](,)(,),f x x y f x y q e D =+-<d d注由于可微性也是局部性质, 定理19.3 中条件f 与[,][,][,],x f a b c d c d ´Á´在上连续可改为在上连续其中Á为任意区间.四、含参量正常积分的可积性由定理19.1与定理19.2推得:()I x 的可积性(,)f x y 定理19.5() 若在矩形区域[,][,]R a b c d =´[,]a b 上连续,则I (x )与J (x )分别在和[,]c d 上可积.这就是说: 在(,)f x y 连续性假设下, 同时存在两个求积顺序不同的积分:éùêúëûòò(,)d d bda c f x y y x éùêúëûòò(,)d d .dbca f x y x y 与为书写简便起见, 今后将上述两个积分写作òòd (,)d bdacx f x y yòòd (,)d .dbcay f x y x 与前者表示(,)f x y 先对y 求积然后对x 求积, 后者则表示求积顺序相反. 它们统称为累次积分.在(,)f x y 连续性假设下,累次积分与求积顺序无关.(,)f x y =´[,][,]R a b c d 定理19.6若在矩形区域上连续, 则d (,)d d (,)d .(8)bddbaccax f x y y y f x y x =òòòò证记定理19.3,五、例题ln(1)xy +例3计算积分x x1a a+æö另一方面解由于(9)中被积函数1(,)()()n F x t x t f t -=-以及同理()()().n x f x j =()x j 于是附带说明:当x = 0 时,及复习思考题()(,)d ,dc I x f x y x =ò()I x [,)a +¥能否推得在上一致连续?。
含参量正常积分
( x1 , y1 ) 与 ( x2 , y2 ) ,只要
| x1 x2 | , | y1 y2 | ,
就有
| f ( x1, y1 ) f ( x2 , y2 ) | .
(4)
所以由(3), (4)可得,
当 | x | 时,
则函数
d
I( x) c f ( x, y)dy
在 [ a, b]上可微, 且
d
dx
d
d
c f ( x, y)dy c fx ( x, y)dy .
证 对于 [a, b]内任意一点x, 设
区间的端点, 则讨论单侧函数), 则
x x [a, b] (若 x为
I( x x) I( x) d f ( x x, y) f ( x, y)dy .
证 设 x [ a, b], 对充分小的
x 为区间的端点, 则仅考虑
x , 有x x [a, b](若 xx) c [ f ( x x, y) f ( x, y)]dy, (3)
由于 f ( x, y)在有界闭区域 R上连续, 从而一致连续,
一、含参量正常积分的定义
设 f ( x, y)是定义在矩形区域
R [ a, b][ c, d ]上的
二元函数.当 x取
[ a, b]上的定值时,函数
是 f (x, y)
定义在 [ c, d ]上以 y 为自变量的一元函数. 倘若这时
f ( x, y)在 [ c, d ]上可积, 则其积分值
d
I( x) c f ( x, y)dy , x [a, b]
在矩形区域
[ a , b][0 ,1]上连续, 由定理19.1得积分
数学分析19.1含参量积分之含参量正常积分(含练习及答案)
第十九章 含参量积分 1含参量正常积分概念:1、设f(x,y)是定义在矩形区域R=[a,b]×[c,d]上的二元函数. 当x 取[a,b]上某定值时,函数f(x,y)则是定义在[c,d]上以y 为自变量的一元函数. 若这时f(x,y)在[c,d]上可积,则其积分值是x 在[a,b]上取值的函数,记作φ(x)=⎰dc dy y x f ),(, x ∈[a,b].2、设f(x,y)是定义在区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}上的二元函数, 其中c(x),d(x)为定义在[a,b]上的连续函数,若对于[a,b]上每一固定的x 值,f(x,y)作为y 的函数在闭区间[c(x),d(x)]上可积,则其积分值是x 在[a,b]上取值的函数,记为F(x)=⎰)()(),(x d x c dy y x f , x ∈[a,b].3、上面两个函数通称为定义在[a,b]上含参量x 的(正常)积分,或简称含参量积分.定理19.1:(连续性)若二元函数f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则函数φ(x)=⎰dc dy y x f ),(在[a,b]上连续.证:设x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 于是 φ(x+△x)-φ(x)=⎰-∆+d c dy y x f y x x f )],(),([.∵f(x,y)在有界闭域R 上连续,从而一致连续,即∀ε>0, ∃δ>0, 对R 内任意两点(x 1,y 1)与(x 2,y 2),只要|x 1-x 2|<δ, |y 1-y 2|<δ, 就有|f(x 1,y 1)-f(x 2,y 2)|<ε. ∴当|△x |<δ时, |φ(x+△x)-φ(x)|≤⎰-∆+d c dy y x f y x x f |),(),(|<⎰dc dy ε=ε(d-c). 得证!注:1、同理:若f(x,y)在R 上连续,则含参量y 的积分ψ(y)=⎰ba dx y x f ),(在[c,d]上连续.2、若f(x,y)在R 上连续,则对任何x 0∈[a,b], 有⎰→dcx x dy y x f ),(lim0=⎰→dc x x dy y x f ),(lim 0.定理19.2:(连续性)设区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}, 其中c(x),d(x)为定义在[a,b]上的连续函数. 若二元函数f(x,y)在G 上连续,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上连续.证:令y=c(x)+t(d(x)-c(x)),∵y ∈[c(x),d(x)],∴t ∈[0,1],且dy=(d(x)-c(x))dt, ∴F(x)=⎰)()(),(x d x c dy y x f =⎰--+10))()()))(()(()(,(dt x c x d x c x d t x c x f . 由 被积函数f(x,c(x)+t(d(x)-c(x)))(d(x)-c(x))在矩形区域[a,b]×[0,1]上连续知, F(x)在[a,b]上连续.定理19.3:(可微性)若函数f(x,y)与其偏导数x∂∂f(x,y)都在矩形区域 R=[a,b]×[c,d]上连续,则φ(x)=⎰dc dy y x f ),(在[a,b]上可微, 且⎰dcdy y x f dx d ),(=⎰∂∂d c dy y x f x ),(. 证:设任一x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 则xx x x ∆-∆+)()(ϕϕ=⎰∆-∆+dcdy xy x f y x x f ),(),(. 由拉格朗日中值定理及f x (x,y)在有界闭域R 上连续(从而一致连续), ∀ε>0, ∃δ>0, 只要|△x|<δ,就有),(),(),(y x f xy x f y x x f x -∆-∆+=|f x (x+θ△x,y)-f x (x,y)|<ε, θ∈(0,1).∴⎰-∆∆d cx dy y x f x ),(ϕ≤⎰-∆-∆+d c x dy y x f x y x f y x x f ),(),(),(<ε(d-c). 即 对一切x ∈[a,b], 有⎰dc dy y x f dxd ),(=⎰∂∂d c dy y x f x),(.定理19.4:(可微性)设f(x,y), f x (x,y)在R=[a,b]×[p,q]上连续,c(x), d(x)为定义在[a,b]上其值含于[p,q]内的可微函数,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上可微,且F ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x). 证:作复合函数F(x)=H(x,c,d)=⎰dc dy y x f ),(, c=c(x), d=d(x). 由复合函数求导法则及变上限积分的求导法则有:F ’(x)=H x +H c c ’(x)+H d d ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x).定理19.5:(可积性)若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则 φ(x)=⎰dc dy y x f ),(和ψ(y)=⎰ba dx y x f ),(分别在[a,b]和[c,d]上可积.注:即在f(x,y)连续性假设下,同时存在两个求积顺序不同的积分:⎰⎰⎥⎦⎤⎢⎣⎡ba d c dx dy y x f ),(与⎰⎰⎥⎦⎤⎢⎣⎡d c b a dy dx y x f ),(,或⎰⎰b a d c dy y x f dx ),(与⎰⎰d c b a dx y x f dy ),(.它们统称为累次积分,或二次积分.定理19.6:若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则⎰⎰bad cdy y x f dx ),(=⎰⎰d cbadx y x f dy ),(.证:记φ1(u) =⎰⎰ua dc dy y x f dx ),(, φ2(u) =⎰⎰dc ua dx y x f dy ),(, u ∈[a,b], 则φ1’(u)=⎰uc dx x dud )(ϕ=φ(u). 令H(u,y)=⎰u a dx y x f ),(, 则φ2(u) =⎰d c dy y u H ),(,∵H(u,y)与H u (u,y)=f(u,y)都在R 上连续, ∴φ2’(u)=⎰dc dy y u H dud ),(=⎰d c u dy y u H ),(=⎰d c dy y u f ),(=φ(u). ∴φ1’(u)=φ2’(u), ∴对一切u ∈[a,b], 有φ1(u)=φ2(u)+k (k 为常数). 当u=a 时,φ1(a)=φ2(a)=0, ∴k=0, 即得φ1(u)=φ2(u), u ∈[a,b]. 取u=b, 证得:⎰⎰ba dc dy y x f dx ),(=⎰⎰dc ba dx y x f dy ),(.例1:求⎰+→++aaa a x dx12201lim .解:记φ(a)=⎰+++a a a x dx 1221, ∵a, 1+a, 2211ax ++都是a 和x 的连续函数, 由定理19.2知φ(a)在a=0处连续, ∴)(lim 0a a ϕ→=φ(0)=⎰+1021xdx =4π.例2:设f(x)在x=0的某个邻域U 上连续, 验证当x ∈U 时, 函数φ(x)=⎰---x n dt t f t x n 01)()()!1(1的各阶导数存在, 且φ(n)(x)=f(x). 证:∵F(x,t)=(x-t)n-1f(t)及其偏导数F x (x,t)在U 上连续,由定理19.4可得:φ’(x)=⎰----x n dt t f t x n n 02)())(1()!1(1+)()()!1(11x f x x n n --- =⎰---x n dt t f t x n 02)()()!2(1. 同理φ”(x)=⎰---x n dt t f t x n 03)()()!3(1. 如此继续下去,求得k 阶导数为φ(k)(x)=⎰-----x k n dt t f t x k n 01)()()!1(1.当k=n-1时,有φ(n-1)(x)=⎰xdt t f 0)(. ∴φ(n)(x)=f(x).例3:求I=⎰-1ln dx xx x ab . (b>a>0)解:∵⎰baydy x =x x x ab ln -, ∴I=⎰⎰b a y dy x dx 10. 又x y 在[0,1]×[a,b]上满足定理19.6的条件, ∴I=⎰⎰10dx x dy y ab =⎰+ab dy y 11=ln ab ++11.例4:计算积分I=⎰++121)1ln(dx xx . 证:记φ(a)=⎰++1021)1ln(dx x ax , 则有φ(0)=0, φ(1)=I, 且函数21)1ln(x ax ++在R=[0,1]×[0,1]上满足定理19.3的条件,于是φ’(a)=⎰++102)1)(1(dx ax x x =⎰⎪⎭⎫ ⎝⎛+-+++10221111dx ax a x xa a =⎪⎭⎫ ⎝⎛+-++++⎰⎰⎰10101022211111dx ax a dx x x dx x a a =⎥⎦⎤⎢⎣⎡+++++10102102)1ln()1ln(21arctan 11ax x x a a =⎥⎦⎤⎢⎣⎡+-++)1ln(2ln 214112a a aπ. ∴⎰'1)(da a ϕ=⎰⎥⎦⎤⎢⎣⎡+-++102)1ln(2ln 21411da a a a π=102)1ln(8a +π+10arctan 2ln 21a -I =2ln 4π-I. 又⎰'10)(da a ϕ=φ(1)-φ(0)=I, ∴I=2ln 4π-I, 解得I=2ln 8π.习题1、设f(x,y)=sgn(x-y), 试证由含参量积分F(y)=⎰10),(dx y x f 所确定的函数在(-∞,+∞)上连续,并作函数F(y)的图像.证:∵x ∈[0,1], ∴当y<0时, f(x,y)=1; 当y>1时, f(x,y)=-1; 当0≤y ≤1时, F(y)=⎰ydx y x f 0),(+⎰1),(y dx y x f =⎰-y dx 0)1(+⎰1y dx =1-2y.∴F(y)=⎪⎩⎪⎨⎧>-≤≤-<11102101y ,y y ,y ,在(-∞,+∞)上连续,图像如图:2、求下列极限:(1)⎰-→+11220lim dx a x a ;(2)⎰→220cos lim axdx x a . 解:(1)∵函数f(x,a)=22a x +在矩形区域R=[-1,1]×[-1,1]上连续,∴⎰-→+11220lim dx a x a =⎰-→+11220lim dx a x a =⎰-11||dx x =1. (2)∵函数f(x,a)=x 2cosax 在矩形区域R=[0,2]×[-1,1]上连续,∴⎰→2020cos lim axdx x a =⎰→2020cos lim axdx x a =⎰202dx x =38.3、设F(x)=⎰-22x x xy dy e , 求F ’(x). 解:F ’(x)=-⎰-222x x y x dy e y +2x 5x e --3x e -.4、应用对参量的微分法,求下列积分:(1)⎰+202222)cos sin ln(πdx x b x a (a 2+b 2≠0);(2)⎰+-π02)cos 21ln(dx a x a .解:(1)若a=0, 则b ≠0,原式=⎰2022)cos ln(πdx x b =πln|b|+2⎰20)ln(cos πdx x =πln|b|-πln2=πln 2||b ; 同理,若b=0, 则a ≠0, 原式=πln 2||a ; 若a ≠0,b ≠0, 可设 I(b)=⎰+202222)cos sin ln(πdx x b x a , 则 I ’(b)=⎰+2022222cos sin cos ||2πdx x b x a x b =⎰⎪⎪⎭⎫⎝⎛+22tan 1||2πx b a dx b . 记u=ba, t=utanx, 则 I ’(b)=⎰∞+⋅+022211||2dt t u u t b =⎰∞⎪⎭⎫ ⎝⎛+-+-022222111)1(2dt t u t u b u =||||b a +π.又I(0)=⎰2022)sin ln(πdx x a =πln2||a , I(x)=⎰+x dt t a 0||π+πln 2||a =πln(|a|+x)-πln2. ∴⎰+202222)cos sin ln(πdx x b x a =πln(|a|+|b|)-πln2=πln 2||||b a +. (2)设I(a)=⎰+-π02)cos 21ln(dx a x a .当|a|<1时,1-2acosx+a 2≥1-2|a|+a 2=(1-|a|)2>0,∴ln(1-2acosx+a 2)为连续函数,且具有连续导数, ∴I ’(a)=⎰+--π2cos 21cos 22dx ax a x a =⎰⎪⎪⎭⎫ ⎝⎛+--+π022cos 21111dx a x a a a =a π-⎰⎪⎭⎫ ⎝⎛+-++-π222cos 121)1(1x a a dx a a a =a π-π02tan 11arctan 2⎪⎭⎫⎝⎛-+x aa a =0. ∴当|a|<1时,I(a)=c(常数),又I(0)=0, ∴I(a)=0. 当|a|<1时,令b=a1, 则|b|<1,有I(b)=0, 于是 I(a)=⎰⎪⎪⎭⎫⎝⎛+-π221cos 2ln dx b x b b =I(b)-2πln|b|=2πln|a|. 当|a|=1时,I(1)=⎰-π0)2cos ln 22ln 2(dx x=0; 同理I(-1)=0, ∴I(a)=⎩⎨⎧>≤1||||ln 21||0a ,a a ,π .注:由(2)或推出(1), 即⎰+202222)cos sin ln(πdx x b x a =⎰-++202222)2cos 22ln(πdx x b a b a=⎰-++π02222)cos 22ln(21dt t b a b a=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-++--π02||||||||cos ||||||||21ln 21dt b a b a t b a b a +πln 2||||b a +=πln 2||||b a +.5、应用积分号下的积分法,求下列积分:(1)⎰-⎪⎭⎫ ⎝⎛10ln 1ln sin dx x x x x a b (b>a>0);(2)⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x xx x ab (b>a>0). 解:(1)记g(x)=xxx x ab ln 1ln sin -⎪⎭⎫ ⎝⎛, ∵+→0lim x g(x)=0,∴令g(0)=0时,g(x)在[0,1]连续,于是有I=⎰10)(dx x g =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y .记f(x,y)=x y sin ⎪⎭⎫⎝⎛x 1ln (x>0), f(0,y)=0, 则f(x,y)在[0,1]×[a,b]上连续,∴I=⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a y dy dx x x 101ln sin =⎰⎰⎥⎦⎤⎢⎣⎡∞+-b a t y dydt t e 0)1(sin=⎰⎰⎥⎦⎤⎢⎣⎡∞+-ba t y dy dt t e 0)1(sin =⎰++b a y dy 2)1(1=arctan(1+b)-arctan(1+a). (2)类似于(1)题可得:⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x x x x ab =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a ydy dx x x 101ln cos =dy y y b a ⎰+++2)1(11=2222ln 2122++++a a b b .6、试求累次积分:⎰⎰+-102222210)(dy y x y x dx 与⎰⎰+-102222210)(dx y x y x dy ,并指出,它们为什么与定理19.6的结果不符.解:∵22222)(y x y x +-=-⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x ,22222)(y x y x +-=-⎪⎪⎭⎫⎝⎛+∂∂22y x y y , ∴⎰⎰+-102222210)(dy y x y x dx =⎰⎪⎪⎭⎫⎝⎛+-101022dy y x x=-⎰+1021y dy =-4π.∵22222)(y x y x +-在点(0,0)不连续,∴与定理19.6的结果不符.7、研究函数F(y)=⎰+1022)(dx y x x yf 的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:∵f(x)在[0,1]上是正的连续函数, ∴存在正数m, 使得f(x)≥m>0, x ∈[0,1]. 当y>0时, F(y)=⎰+1022)(dx y x x yf ≥m ⎰+1022dx y x y=marctan y 1; 当y<0时, F(y)=⎰+122)(dx y x x yf ≤m ⎰+1022dx y x y =marctan y 1; ∴+→0lim y F(y)≥+→0lim y marctan y 1=2πm >0, -→0lim y F(y)≤-→0lim y marctan y 1=-2πm <0.∵+→0lim y F(y)≠-→0lim y F(y), ∴F(y)在y=0处不连续. 又当0∉[c,d]时,22)(y x x yf +在[0,1]×[c,d]上连续,∴当y ≠0时,F(y)连续.8、设函数f(x)在闭区间[a,A]上连续,证明:⎰-+→xah dt t f h t f h )]()([1lim0=f(x)-f(a) (a<x<A). 证:⎰-+xa dt t f h t f )]()([=⎰++hx h a dt t f )(-⎰xa dt t f )(=⎰++hx h a dt t f )(-⎰+xh a dt t f )(-⎰+ha a dt t f )(=⎰+hx xdt t f )(-⎰+ha adt t f )(=hf(ξ1)-hf(ξ2), x ≤ξ1≤x+h, a ≤ξ2≤a+h. 当h →0时,ξ1→x, ξ2→a, ∴⎰-+→xa h dt t f h t f h )]()([1lim 0=0lim →h [f(ξ1)-f(ξ2)]=f(x)-f(a).9、设F(x,y)=⎰-xyyx dz z f yz x )()(, 其中f(z)为可微函数, 求F xy (x,y).解:F x (x,y)=⎰xyyxdz z f )(+(x-xy 2)f(xy)y-(x-y·y x )f(y x )·y 1=⎰xy yx dz z f )(+xy(1-y 2)f(xy).F xy (x,y)=xf(xy)+f(y x )·2yx +x(1-y 2)f(xy)-2xy 2f(xy)+x 2y(1-y 2)f ’(xy).10、设E(k)=⎰-2022sin 1πϕϕd k , F(k)=⎰-2022sin 1πϕϕk d . 其中0<k<1.(这两个积分称为完全椭圆积分)(1)试求E(k)与F(k)的导数,并以E(k)与F(k)来表示它们; (2)证明E(k)满足方程:E ”(k)+k1E ’(k)+211k -E(k)=0. (1)解:E ’(k)=-⎰-20222sin 1sin πϕϕϕd k k =-⎰⎪⎪⎭⎫ ⎝⎛----20222222sin 1sin 1sin 111πϕϕϕϕd k k k k =- ⎝⎛-⎰2022sin 111πϕϕd k k +⎪⎪⎭⎫-⎰2022sin 1πϕϕd k =k 1E(k)-k 1F(k). F ’(k)=ϕϕϕπd k k ⎰-203222)sin 1(sin =⎰-20322)sin 1(1πϕϕk d k -⎰-2022sin 11πϕϕk d k . 又322)sin 1(1ϕk -=ϕ222sin 111k k ---ϕϕϕϕ2222sin 1cos sin 1k d d k k --. ∴⎰-20322)sin 1(πϕϕk d =⎰--2222sin 111πϕϕd k k =211k-E(k). 从而有F ’(k)=)1(12k k -E(k)-k1F(k).(2)证:∵E ”(k)=[k 1E(k)-k 1F(k)]’=-21k E(k)+21k F(k)+k 1E ’(k)-k 1F ’(k),k 1E ’(k)=21k E(k)-21kF(k), ∴E ”(k)=-k 1F ’(k). 又F ’(k)=)1(12k k -E(k)-k 1F(k)=)1(12k k -E(k)+E ’(x)-k 1E(k)=E ’(x)+21k k -E(k).∴E ”(k)=-k 1E ’(x)-211k -E(k), 即E ”(k)+k 1E ’(k)+211k -E(k)=0.。
19含参变量的积分
最后讨论 I ( x) =
∫
d
c
f ( x, y )dy 的可积性(积分问题) 的可积性(积分问题)
通常记
记号: 若 I ( x ) 在[a, b] 可积 .
∫
b
a
I ( x)dx = ∫ dx ∫ f ( x, y )dy
a c
b
d
称为先对y后对x的累次积分
定理19.6
(积分交换次序)
设 f (x, y) 在 [a, b]×[c, d] 连续 ,则
ln(1 + α x) I (α ) = ∫ dx, α ∈ [0,1] 2 0 1+ x
1
f ( x, α ) =
1 + x2
x 1 α+x α 则 fα ( x,α ) = = ( − ), 2 2 2 (1+ x )(1+ α x) 1+ α 1+ x 1+ α x
它们都在 [0,1]×[0,1] 上连续,根据定理19.2,有
I ( x ) 在[a, b] 可积,且
∫
即
b
a
I ( x)dx = ∫ dy ∫ f ( x, y )dx
a c
b
d
∫
b
a
dx ∫ f ( x, y )dy = ∫ dy ∫ f ( x, y )dx
c c a
d
d
b
证明: 令 I1 (u ) = ∫ dx ∫ f ( x, y )dy
a c u d
定义19.1
设f (x, y) 定义在[a, b] × [c, +∞ ],且对任意x ∈ [a, b], 无穷积分 I (x)=
∫
11-2 含参变量的正常积分
所以
0
ln (1 + x) π dx = ln 2 2 1+ x 8
解法 2 所以
因为 ln (1 + x) = ∫0
1
x dy 1 + xy
I =∫
1
0 1
1 ln (1 + x) 1 dx = ∫ 2 0 1 + x2 1+ x 1
∫
1
0
x dy dx 1 + xy
x = ∫ dx ∫ dy 0 0 (1 + x 2 )(1 + xy ) 1 1 x = ∫ dy ∫ dx 2 0 0 (1 + x )(1 + xy ) =
x→x0 c
b
lim ∫ f (x, y)dy = ∫ lim f (x, y)dy
c x→x0
d
d
. 即定义在矩形域上连续,其 限运算与积分运算的顺序是可交换的 其极
( ii ), 可微性 :
d
R (a ≤ x ≤ b, c ≤ y ≤ d) 上连续 则 上连续,则
若函数 f (x, y) 与其偏导数 f (x, y) 都在矩形域 x
a ( y ), b ( y )
] 都在 [ c , d 上连续,并且 (c ≤ y ≤ d )
则
F ( y) = ∫
a( y)
f ( x, y ) dx
在 [c, d ] 上连续.
例:
解:
求 lim ∫
1+α
α→0 α
dx 记I (α) = ∫ . ε 1+ x2 +α 2 1 由于α,1+α, 都是α和x的连续函数, 2 2 1+ x +α 所 I (α)在 = 0处 续 从 以 α 连 , 而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I( x x) I( x) c | f ( x x, y) f ( x, y) | d y
这说明 I( x)在[a,b] 连续
同理可证, 若 f ( x, y)在矩形域 R [a,b][c,d]上连 续, 则含参变量的积分
b
J ( y) a f ( x, y)d x
a
I2 (u)
d du
d
H(u, y)d y
c
d
c Hu (u, y)d y
d
c f (u, y)d y I(u)
所以 I1(u) I2 (u), 从而 I1(u) I2(u) k ( k 为常数 )
当 u = a 时,I1(a) I2(a) 0, 于是,k = 0
d
I( x) c f x ( x, y)d y
由 x 的任意性,及定理 19.1知I ( x ) 在 [a, b]
有连续的导函数.
在定理的条件下,求导和求积分可交换次序,
也说可在积分号下求导数
定理19.4(可微性) 如果函数 f ( x, y), f x ( x, y)
在矩形 R [a,b][ p,q] 上连续,
2
[
1 2
ln(1
x2
)
t
arctan
x
ln(1 t x) 1 0
1 1 t2
1 2
ln 2
4
t
ln(1 t)
故
I I(1) I(0)
1
I(t)d t
1 0
1 1 t2
1 2
ln
0
2
4
t
ln(1
t)
d t
1 ln 2arctan 2
4
例2. 求 I
1 ln(1 x) 0 1 x2 d x.
解: 考虑含参变量 t 的积分所确定的函数
I(t)
1 ln(1 tx) 0 1 x2 d x.
显然, I(0) 0, I 的偏导数
(1 x2
(1) x )(1
I, tx
)
ln(1 t x 1 x2
例1
求
1
lim
dx
0 1 x2 2
解: 记
I( )
1
dx
1 x2 2
因为
,
1
,
1
1 x2
2
都是 , x 的连续函数
所以 I( ) 在 0 连续,从而
lim I() I(0)
0
1 dx 01 x2
arctan x |10
lim
x x0
I(x)
I( x0 )
d
d
c f ( x0, y)d y
lim f ( x, y)d y
c x x0
即在定理的条件下,极限运算与积分运算的顺序
是可交换的,或说可在积分号下取极限 .
定理19.2(连续性) 如果函数 f ( x, y) 在区域
G {( x, y) | c( x) y d( x), a x b}
f ( x x, y) f ( x, y) fx ( x x, y)x
所以
I( x x) I( x)
d f ( x x, y) f ( x, y) dy
x
c
x
d
c f x ( x x, y)d y
因此
| I( x x) I( x) d x
由于 f ( x, y) 在闭区域 R 上连续, 所以一致连续,即
0, 0 , ( x1, y1), ( x2, y2 ) R, 只要 x1 x2 , y1 y2 就有 f ( x1, y1 ) f ( x2 , y2 ) 所以, 0, 0, 当 x 时, 就有
的 n 阶导数存在, 且 (n)( x) f ( x).
下面讨论含参量积分的连续性、
可微性和可积性.
y d(x) G
y c(x)
O
x
连续性定理
定理19.1 (连续性)(积分号下取极限) 若 f ( x, y) 在矩形区域 R [a,b][c,d] 上连续, 则函数
d
I( x) c f ( x, y)d y, x [a, b]
在[a, b]上连续.
上连续,又函数 c( x) 与 d(x) 在区间 [a,b]上连续,
d(x)
则函数 F ( x) f ( x, y)d y, x [a, b] c( x)
在[ a, b ]上连续.
证 对积分用换元积分法,令
y c( x) t(d( x) c( x)), 于是 dy (d( x) c( x))dt
| I( x x) I( x) d f ( x, y)d y |
x
c x
证: 对任意的 x, x x [a,b]
I( x x) I( x) d f ( x x, y) f ( x, y)
x
c
dy x
由拉格朗日中值定理,存在 (0,1) 使得
分析 对任何 x ∈ [a, b], 要证:lim I( x x) I( x) x0 即 0, 0, 当 x 时, 就有
I( x x) I( x)
证 设 x, x+Δx ∈ [a, b], d I( x x) I( x) c [ f ( x x, y) f ( x, y)]d y
d(x)
F ( x) f ( x, y)d y c( x)
在 [ a, b ] 上连续
可微性定理
定理19.3 (可微性) (积分号下求导数)
若 f ( x, y)及其偏导数 f ( x, y) 都在
x
矩形域 R [a,b][c,d]上连续, 则 I( x)
d
f (x, y)d y
证: 把 F ( x )看作复合函数:
d
F ( x) H( x, c, d ) c f ( x, y)d y
c c( x), d d( x)
由复合函数求导法则及变上限定积分的求导法则,有
d F ( x) H dx H dc H dd
dx
x dx c dx d dx
也在[c, d ]上连续.
定理19.1 表明,若 f ( x, y) 在矩形区域
R [a,b][c,d] 上连续, 则 d I( x) c f ( x, y)d y, x [a, b]
在[a, b]上连续. 于是对任意 x0 [a,b], 有
d
lim
x x0
c
f (x, y)d y
c( x), d( x)为定义在[a, b]上其值含于[ p, q]内的可微函数, 则函数
d(x)
F ( x) f ( x, y)d y c( x)
在 [ a, b ]上可微,且
d(x)
F ( x) c( x) f x ( x, y)d y
f ( x,d( x))d( x) f ( x,c( x))c( x)
d
c fx(x, y)d y |
| c [ f x ( x x, y) f x ( x, y)]d y |
d
c | f x ( x x, y) f x ( x, y) | d y
由 fx ( x, y) 在 [a,b][c,d]上连续, 从而一致连续,即
0, 0, 只要 | x | ,有
ln 2 I
4
t
1 ln(1 t 2 )
08
因此得 I
8
1
0
ln 2
1 0
ln(1 t) 1 t2
d
t
例3. 设 f (x) 在 x 0 的某邻域内连续,
验证当 | x | 充分小时, 函数
( x) 1
x ( x t)n1 f (t)d t
(n 1)! 0
c
⑴
x 称为参变量, 上式称为含参变量的积分.
一般地,设 f (x, y ) 为区域
G {( x, y) | c( x) y d( x), a x b}
上的二元函数, c ( x ), d ( x ) 在 [ a, b ] 连续,定义 含参量的积分
d(x)
y
F( x) f ( x, y)d y, x [a, b] c( x)
统称为累次积分或二次积分.
问:累次积分与积分顺序有关吗?即是否有
b
d
d
b
a d xc f ( x, y)d y c d ya f ( x, y)d x
定理19.6 (积分交换顺序)
若 f ( x, y)在矩形区域 R [a,b][c,d] 上连续, 则
b
d
d
b
a d xc f ( x, y)d y c d ya f ( x, y)d x
从而 F( x)
d(x)
f (x, y)d y
1
c( x)
0 f ( x,c( x) t(d( x) c( x))) (d( x) c( x))d t
因为
f ( x,c( x) t(d( x) c( x))) (d( x) c( x))
在矩形 [ a, b ]×[ 0, 1 ] 上连续,由定理 19.1得