离散数学习题与解析(檀凤琴,何自强编著)思维导图
离散数学关系-PPT
基本要求和重难点:
• 基本要求
了解序偶与笛卡尔积,掌握关系得性质和运算,重 点掌握关系闭包运算得求法和偏序关系及哈斯图 得正确画法。
• 重难点
关系5种性质得判断,关系得闭包运算和偏序关系 得性质及特殊元素得判断。
引言
日常生活中,大家熟知一些常见关系, 例:家庭集合,有父子关系、夫妻关系等。 全校同学作为一个集合,有同班关系,同组关系。 在计算机科学中,在计算机逻辑设计中,应用了等 价关系,相容关系。 在编译原理、关系数据库、数据结构、数学中也有 关系。
例题
返回第5、3节目录
五、传递性例题
例: A={1,2,3,4} R={<1,4>,<4,3>,<1,3>,<3,1>,<1,2>,<3,2>,<2,3>, <4,2>,<1,1>,<3,3>} R不就是传递得
返回传递性
返回第5、3节目录
六、举 例
自反性 反自反性 对称性 反对称性 传递性
任何集合上得
返回总目录
一、自反性
自反性
定义: 若xA,均有xRx,那么称R就是自反得。
A上关系R就是自反得x(xA xRx)
在关系矩阵中,反映为主对角线元素均为1 在关系图中,反映为每结点都有自回路 例1: A={1,2,3},R={<1,1>,<2,2>,<3,3>,<1,2>}
1 23
例2:“=”关系和“≤”关系就是自反得吗?
S={<4,2>,<2,5>,<3,1>,<1,3>}
离散数学(chapter10一些特殊的图)精品PPT课件
29.11.2020
离散数学
31
§10.4 平面图
一、平面图的基本概念及性质
平面图:图G若能够以除顶点外没有边交叉的方式 画在平面上,则称G为平面图。 画出的没有边交叉的图称为G的一个平面嵌入。
大臣要求男女各站一边,彼此愿意成婚的举手,结 果大臣认为无法配对成婚。
但国王不理解他的解释,他的命运?
29.11.2020
离散数学
3
用图表示卫士与宫女愿意成婚的关系: 卫士
宫女
29.11.2020
离散数学
4
1994年全国大学生数学建模竞赛B题:锁具装箱问题
某厂生产一种弹子锁具, 每个锁具的钥匙有 5 个槽, 每个槽的高度从 {1,2,3,4, 5,6} 6 个数 (单位略) 中任取一数. 由于工艺及其它原因, 制 造锁具时对 5 个槽的高度 还有两个限制: 至少有 3 个不同的数; 相邻两槽高度之差不能为 5. 满足 以上条件制造 出来的所有互不相同的锁具称为一 批. 出来的所有互不相同的锁具称为一 批.
K5
K3,3
29.11.2020
离散数学
32
面:设G是一个连通的平面图(G的某个平面嵌入), G的边将G所在的平面划分成若干个区域, 每个区域称为的一个面。
其中面积无限的区域称为无限面(或外部面),记R0, 面积有限的区域称为有限面(或内部面)。
29.11.2020
离散数学
33
包围每个面的所有边所构成的回路称为该面的边界。 边界的长度称为该面的次数,R的次数记为deg(R)。
第一章命题逻辑知识地图
《离散数学》知识地图第一章命题逻辑第一节命题与联结词命题的概念:能判断真假的陈述句称为命题。
命题的真值:一个命题的真或假称为命题的真值。
真用T或1表示,假用F或0表示。
原子命题:不能再分解为其他命题的命题称为原子命题。
复合命题:由原子命题与命题联结词构成的命题称为复合命题。
命题标识符:表示原子命题的符号称为命题标识符,常用大写字母、带下标的大写字母。
命题常元:一个表示确定命题的命题标识符。
命题变元:一个能指代任意命题的命题标识符。
五个命题联结词:否定⌝,合取∧,析取∨,条件→和双条件联结词↔。
命题符号化:目的在于用五个联结词将日常语言中的命题转化为数理逻辑中的形式命题,其关键在于对自然语言中语句之间的逻辑关系以及命题联结词的含义要有正确的理解,使用适当的联结词。
第二节命题公式、翻译与真值表命题公式:(1)一个命题变元是一个命题公式;(2)若A是一个命题公式,则⌝A也是一个命题公式;(3)若A、B是命题公式,则A∧B、A∨B、A→B和A↔B均为命题公式;(4)只有经过有限次地应用(1)、(2)、(3)所得的结果才是命题公式。
子公式:若命题公式B是命题公式A的一部分,则称B是A的子公式。
真值指派:设A是一个命题公式,P1,P2,…,P n是出现在A中的所有命题变元。
给P1,P2,…,P n指定一组真值,称为对公式A的一个真值指派(或解释或赋值)。
若指定的一组真值使A为真,则称这组值为成真指派,否则称之为成假指派。
真值表:一个命题公式A的真值表的左上角部分是A的所有命题变元,左下角部分是这些命题变元的所有可能的指派,右上角一般是公式A本身,右下角是A在对应指派下的真值。
五个常用联结词的真值表:第三节公式分类与等价式公式分类:永真式、永假式和可满足式。
永真式(重言式):一个命题公式A,若对A所有可能的真值指派(解释),(1)A都为真,则称A为永真式(重言式)。
(2)A都为假,则称A为永假式(矛盾式)。
(3)至少存在一个真值指派使A为真,则称A为可满足式。
离散数学课件14图的基本概念
标定图与非标定图、基图
• 将图的集合定义转化成图形表示之后,常 用ek表示无向边(vi,vj)(或有向边<vi,vj>) ,并称顶点或边用字母标定的图为标定图 ,否则称为非标定图。
• 将有向图各有向边均改成无向边后的无向 图称为原来图的基图。
• 易知标定图与非标定图是可以相互转化的 ,任何无向图G的各边均加上箭头就可以 得到以G为基图的有向图。
称NG(v)∪{v}为v的闭邻域,记做NG(v)。 称{e|e∈E∧e与v相关联}为v的关联集,记做IG(v) 。
• 设有向图D=<V,E>,v∈V, 称{u|u∈V∧<v,u>∈E∧u≠v}为v的后继元集,记做 Г+D(v)。 称{u|u∈V∧<u,v>∈E∧u≠v}为v的先驱元集,记做 Г (v)。 -2020/7/23
2020/7/23
无序积与多重集合
• 设A,B为任意的两个集合,称 {{a,b}|a∈A∧b∈B}为A与B的无序积,记作 A&B。
可将无序积中的无序对{a,b}记为(a,b),并且 允许a=b。
无论a,b是否相等,均有(a,b)=(b,a),因而 A&B=B&A。
• 元素可以重复出现的集合称为多重集合或者 多重集,某元素重复出现的次数称为该元素 的重复度。 2020/7/23
2020/7/23
举例
NG(v1) {v2,v5}
=
NG(v1)
=
{v1,v2,v5}
IG(v1) = {e1,e2,e3}
Г+D(d ) = {c} Г-D(d ) = {a,c} ND(d ) = {a,c} ND(d ) = {a,c,d}
简单图与多重图
离散数学-第11章
图 论
主讲:熊焕亮
图论简介
• 图论(graph theory)是研究节点和边组成的图 形的数学理论和方法,为离散数学的一个重要分 支。图论的基本元素是节点和边(也称线、弧、 枝),用节点表示所研究的对象,用边表示研究 对象之间的某种特定关系。因此,图论可用节点 和边组成的图形及其有关的理论和方法来描述、 分析和解决各种实际问题,已广泛地应用于物理、 化学、运筹学、计算机科学、电子学、信息论、 控制论、网络理论、管理科学、社会科学等几乎 所有学科领域的有关问题。图论与组合数学、线 性规划、群论、矩阵论、概率论、数值分析等数 学分支有密切的关系。
均为偶数,所以 d (v)为偶数,但因中顶点度数为奇数,
vV1
vV1
d (v ) d (v )
vV2
所以 | V1 |必为偶数。
14
11.1.2 简单图、多重图和同构图
V {v1 , v2 ,., vn } 设 G V , E 为一个阶无向图, 称 d (v1 ), d (v2 )d (vn ),为 G 的度数列。对于顶点标定的无向图,它的度数列是唯一的。反之, 对于给定的非负整数列d (d1 , d 2 ,d n ),若存在以 V (v1 , v2 ,, vn ) 为顶点 集的n阶无向图G,使得 d (vi ) d i ,则称d是可图化的。特别地,若所得 的图是简单图,则称d是可简单图化的。 例11.1.2 (1)(3,5,1,4),(1,2,3,4,5)能成为图的度 数列吗?为什么? (2)已知图G 中有15条边,2个度数为4的结点,4个度数为3的结点, 其余结点度数均小于等于2,问G 中至少有多少个结点?为什么? 解 (1)由于给定的两个度数列中奇度顶点个数均为奇数,由上述 推论可知,他们都不能成为图的度数列。 (2)图中边数为15,由握手定理可知,G 中所有结点度数和为30。 除去2个度数为4的结点和4个度数为3的结点,还剩下10度。其余结 点度数小于等于2,假设均为2,则至少要5个结点,所以总共至少要1 1个结点。
离散数学习题讲解
1、求公式(p→q)→r对应的主析取范式和主合取范式。
解:1、真值表法:p q r p→q (p→q)→r 极小项:m1,m3,m4,m5,m70 0 0 1 0 极大项:M0,M2,M60 0 1 1 1 公式主析取范式为:0 1 0 1 0 (p∨q)→r⇔ m1∨m3∨m4∨m5∨m70 1 1 1 1 ⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨( p∧⌝q∧⌝r)1 0 0 0 1 ∨(p∧⌝q∧r)∨(p∧q∧r)1 0 1 0 1 公式的主合取范式为:1 1 0 1 0 (p∨q)→r⇔ M0∧M2∧M61 1 1 1 1 ⇔(p∨q∨r)∧(p∨⌝q∨r)∧(⌝p∨⌝q∨r)(2、等值演算法也可,略)2、在自然推理系统P中构造下面推理的证明:(要求有符号化、前提、结论、推理及理由)如果乙不参加篮球赛,那么甲就不参加;如果乙参加篮球赛,那么甲和丙就参加。
因此,如果甲参加篮球赛,那么丙就参加。
解:设:p:乙队参加比赛;q:甲队参加比赛;r:丙队参加比赛。
前提:⌝p→⌝q, p→(q∧r),结论:q→r证明①q 附加前提引入②⌝p→⌝q 前提引入③p ①②拒取式规则④p→(q∧r) 前提引入⑤q∧r ③④假言推理⑥r化简推理成立。
3、自然推理系统F中,证明下面推理:(要求有符号化、前提、结论、推理及理由)所有的舞蹈者都很有风度;李霞是个学生并且是个舞蹈者。
因此,有些学生很有风度。
解:设F(x) :x是舞蹈者;G(x):x是学生;H(x):x很有风度;a:李霞。
前提:∀x(F(x)→H(x)), G(a)∧F(a)结论:∃x(G(x)∧H(x))证明:①G(a)∧F(a) 前提引入②G(a) ①化简③F(a) ①化简④∀x(F(x)→H(x)) 前提引入⑤F(a)→H(a) ④UI规则⑥H(a) ③⑤假言推理⑦G(a)∧H(a) ②⑥合取引入⑧∃x(G(x)∧H(x)) ⑦EG规则所以推理成立。
《离散数学概述》PPT课件
同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
《离散数学关系》课件
等价关系
表示元素之间具有相同性质的 关系,等价关系具有自反性、 对称性和传递性。
偏序关系
表示元素之间的部分顺序关系 ,偏序关系具有自反性、反对
称性和传递性。
02 关系的运算
关系的并
总结词
关系的并运算是将两个关系中的所有元素组合在一起形成一个新的关系。
性质
离散数学关系具有传递性、反对称性、自反性等性质。传递性是指如果关系R(x,y)和关系R(y,z)都成立,则关系 R(x,z)也成立;反对称性是指如果关系R(x,y)和关系R(y,x)同时成立,则x=y;自反性是指对于集合中的任意元素x ,都存在关系R(x,x)。
关系的表示方法
表格法
通过表格的形式表示关系,行表示关系的起点,列表示关系的终 点,表格中的元素表示起点和终点之间是否存在关系。
05 关系的应用
关系在数据库中的应用
关系数据库
关系代数
数据库规范化
关系数据库是建立在关系模型基础上 的数据库,使用二维表格来表示和存 储数据。关系数据库中的表通过行和 列来组织数据,每一列代表一个属性 ,每一行代表一个记录。关系数据库 中的关系是指表格之间的关系,通过 主键和外键来建立表格之间的联系。
基数性质
关系的基数具有一些性质,如非 负性(基数总是大于或等于0)、 传递性(如果关系R中存在元素a 和b,且a和b之间有关系,那么 在关系S中a和b也一定有关系)等 。
基数计算
计算关系的基数需要先确定关系 中所有元素的数量,然后进行计 数。例如,如果一个关系是由两 个集合的笛卡尔积形成的,那么 它的基数就是这两个集合的元素 数量的乘积。
VS
推荐系统
推荐系统是根据用户的历史行为和偏好, 为其推荐相关或感兴趣的物品或服务的过 程。在推荐系统中,关系是指用户和物品 之间的关系,通过分析用户和物品之间的 关联规则和协同过滤等技术来实现个性化 推荐。
离散数学第四版课后答案(第8章)
第8 章 习题解答8.1 图8.6 中,(1)所示的图为,3,1K (2) 所示的图为,3,2K (3)所示的图为,2,2K 它们分别各有不同的同构形式.8.2 若G 为零图,用一种颜色就够了,若G 是非零图的二部图,用两种颜色就够了.分析 根据二部图的定义可知,n 阶零图(无边的图)是三部图(含平凡图),对n 阶零图的每个顶点都用同一种颜色染色,因为无边,所以,不会出现相邻顶点染同色,因而一种颜色就够用了.8.3 完全二部图,,s r K 中的边数rs m =.分析 设完全二部图s r K ,的顶点集为V, 则∅==2121,V V V V V ,且,||,||21s V r V ==s r K ,是简单图,且1V 中每个顶点与2V 中所有顶点相邻,而且1V 中任何两个不同顶点关联的边互不相同,所以,边数rs m =.8.4 完全二部图s r K ,中匹配数},m in{1s r =β,即1β等于s r ,中的小者.分析 不妨设,s r ≤且二部图s r K ,中,,||,||21s V r V ==由Hall 定理可知,图中存在1V 到2V 的完备匹配,设M 为一个完备匹配,则1V 中顶点全为M 饱和点,所以,.1r =β8.5 能安排多种方案,使每个工人去完成一项他们各自能胜任的任务.分析 设},,{1丙乙甲=V ,则1V 为工人集合, },,{2c b a V =,则2V为任务集合.令}|),{(,21y x y x E V V V 能胜任== ,得无向图>=<E V G ,,则G 为二部图,见图8.7 所示.本题是求图中完美匹配问题. 给图中一个完美匹配就对应一个分配方案.图8.7 满足Hall 定理中的相异性条件,所以,存在完备匹配,又因为,3||||21==V V 所以,完备匹配也为完美匹配.其实,从图上,可以找到多个完美匹配. 取)},(),,(),,{(1c b a M 丙乙甲=此匹配对应的方案为甲完成a,乙完成b, 丙完成c,见图中粗边所示的匹配.)},(),,(),,{(2c a b M 丙乙甲=2M 对应的分配方案为甲完成b,乙完成a,丙完成c.请读者再找出其余的分配方案.8.6 本题的答案太多,如果不限定画出的图为简单图,非常容易地给出4族图分别满足要求.(1) n (n 为偶数,且2≥n )阶圈都是偶数个顶点,偶数条边的欧拉图.(2) n (n 为奇数,且1≥n )阶圈都是奇数个顶点,奇数条边的欧拉图.(3) 在(1) 中的圈上任选一个顶点,在此顶点处加一个环,所得图为偶数个顶点,奇数条边的欧拉图.(4)在(2) 中的圈上任选一个顶点,在此顶点处加一个环,所得图为奇数个顶点,偶数条边的欧拉图.分析 上面给出的4族图都是连通的,并且所有顶点的度数都是偶数,所以,都是欧拉图.并且(1),(2) 中的图都是简单图.而(3),(4)中的图都带环,因而都是非简单图. 于是,如果要求所给出的图必须是简单图,则(3),(4)中的图不满足要求.其实,欧拉图是若干个边不重的图的并,由这种性质,同样可以得到满足(3),(4)中要求的简单欧拉图.设k G G G ,,,21 是长度大于等于3的k 个奇圈(长度为奇数的圈称为奇圈),其中k 为偶数,将1G 中某个顶点与2G 中的某顶点重合,但边不重合, 2G 中某顶点与3G 中某顶点重合,但边不重合,继续地,最后将1-k G 中某顶点与k G 中某顶点重合,边不重合,设最后得连通图为G,则G 中有奇数个顶点,偶数条边,且所有顶点度数均为偶数,所以,这样的一族图满足(4)的要求,其中一个特例为图8.8中(1)所示.在以上各图中,若k G G G ,,,21 中有一个偶圈,其他条件不变,构造方法同上,则所得图G 为偶数个顶点,奇数条边的简单欧拉图,满足(3)的要求,图8.8中(2)所示为一个特殊的情况.8.7 本题的讨论类似于8.6题,只是将所有无向圈全变成有向圈即可,请读者自己画出满足要求的一些特殊有向欧拉图.8.8 本题的答案也是很多的,这里给出满足要求的最简单一些图案,而且全为简单图.(1) n (3≥n )阶圈,它们都是欧拉图,又都是哈密尔顿图.(2) 给定k (2≥k )个长度大于等于3的初级回路,即圈k G G G ,,,21 ,用8.6题方法构造的图G 均为欧拉图,但都不是哈密尔顿图,图8.8给出的两个图是这里的特例.(3)n (4≥n )阶圈中,找两个不相邻的顶点,在它们之间加一条边,所得图均为哈密尔顿图,但都不是欧拉图.(4) 在(2)中的图中,设存在长度大于等于4的圈,比如说1G ,在1G 中找两个不相邻的相邻顶点,在它们之间加一条新边,然后用8.6题方法构造图G,则G 既不是欧拉图,也不是哈密尔顿图,见图8.9所示的图.分析 (1) 中图满足要求是显然的.(2) 中构造的图G 是连通的,并且各顶点度数均为偶数,所以,都是欧拉图,但因为G 中存在割点,将割点从G 中删除,所得图至少有两个连通分支,这破坏了哈密尔顿图的必要条件,所以,G不是哈密尔顿图.(3) 中构造的图中,所有顶点都排在一个圈上,所以,图中存在哈密尔顿回路,因而为哈密尔顿图,但因图中有奇度顶点(度数为奇数的顶点),所以,不是欧拉图. 由以上讨论可知,(4) 中图既不是欧拉图,也不是哈密尔顿图.其实,读者可以找许多族图,分别满足题中的要求.8.9 请读者自己讨论.8.10 其逆命题不真.分析若D是强连通的有向图,则D中任何两个顶点都是相互可达的,但并没有要求D中每个顶点的入度都等于出度. 在图8.2 所示的3个强连通的有向图都不是欧拉图.8.11 除K不是哈密尔顿图之外, n K(3≥n)全是哈密尔2顿图.K(n为奇数)为欧拉图. 规定1K(平凡图)既是欧拉图, n又是哈密尔顿图.分析从哈密尔顿图的定义不难看出,n阶图G是否为哈密尔顿图,就看是否能将G中的所有顶点排在G中的一个长为n的初级回路,即圈上.K(3≥n)中存在多个这样的生成n圈(含所有顶点的图), 所以K(3≥n)都是哈密尔顿图.n在完全图K中,各顶点的度数均为n-1,若n K为欧拉图,n则必有1-n为偶数,即n为奇数,于是,当n为奇数时,K连通n且无度顶点,所以,K(n为奇数) 都是欧拉图.当n为偶数时,n各顶点的度数均为奇数,当然不是欧拉图.8.12 有割点的图也可以为欧拉图.分析 无向图G 为欧拉图当且仅当G 连通且没有奇度顶点.只要G 连通且无奇度顶点(割点的度数也为偶数),G 就是欧拉图.图8.8所示的两个图都有割点,但它们都是欧拉图.8.13 将7个人排座在圆桌周围,其排法为.abdfgeca 分析 做无向图>=<E V G ,,其中,},,,,,,{g f e d c b a V =},|),{(有共同语言与且v u V v u v u E ∈=图G 为图8.10所示.图G 是连通图,于是,能否将这7个人排座在圆桌周围,使得每个人能与两边的人交谈,就转化成了图G 中是否存在哈密尔顿回路(也就是G 是否为哈密尔顿图).通过观察发现G 中存在哈密尔顿回路, abdfgeca 就是其中的一条哈密尔顿回路.8.14 用i v 表示颜色.6,,2,1, =i i 做无向图>=<E V G ,,其中 },,,,,,{654321v v v v v v V =}.,,|),{(能搭配与并且且v u v u V v u v u E ≠∈=对于任意的)(,v d V v ∈表示顶点v 与别的能搭配的颜色个数,易知G 是简单图,且对于任意的V v u ∈,,均有633)()(=+≥+v d u d ,由定理8.9可知,G 为哈密尔顿图,因而G 中存在哈密尔顿回路,不妨设1654321i i i i i i i v v v v v v v 为其中的一条,在这种回路上,每个顶点工表的颜色都能与它相邻顶点代表的颜色相.于是,让1i v 与2i v ,3i v 与4i v ,5i v 与6i v 所代表的颜色相搭配就能织出3种双色布,包含了6种颜色.8.15∑=⨯======300321,10220)deg(.12)deg(,3)deg(,1)deg(,4)deg(i i R R R R R 而本图边数m=10.分析 平面图(平面嵌入)的面i R 的次数等于包围它的边界的回路的长度,这里所说回路,可能是初级的,可能是简单的,也可能是复杂的,还可能由若干个回路组成.图8.1所示图中,321,,R R R 的边界都是初级回路,而0R 的边界为复杂回路(有的边在回路中重复出现),即432110987654321e e e e e e e e e e e e e e ,长度为12,其中边65,e e 在其中各出现两次.8.16 图8.11中,实线边所示的图为图8.1中图G,虚线边,实心点图为它的对偶图的顶点数*n ,边数*m ,面数*r 分别为4,10和8,于是有分析 从图8.11还可以发现,G 的每个顶点位于的一个面中,且的每个面只含G 的一个顶点,所以,这是连通平面图G 是具有k 个连通分支的平面图2≥k ,则应有1*+-=k n r .读者自己给出一个非连通的平面图,求出它的对偶图来验证这个结论.另外,用图8.1还可以验证,对于任意的*v (*G 中的顶点),若它处于G 的面i R 中,则应有)deg()(*i R v d =.8.17 不能与G 同构.分析 任意平面图的对偶图都是连通的,因而与都是连通图,而G 是具有3个连通分支的非连通图,连通图与非连通图显然是不能同构的.图 8.12 中, 这线边图为图8.2中的图G,虚线边图为G 的对偶图,带小杠的边组成的图是*G 的对偶图,显然.~**G G ≠ 8.18 因为彼得森图中有长度为奇数的圈,根据定理8.1可知它不是二部图.图中每个顶点的度数均为3,由定8.5可知它不是欧拉图.又因为它可以收缩成5K ,由库拉图期基定理可知它也不是平面图.其实,彼得森图也不是哈密尔顿图图,这里就不给出证明了.8.19 将图8.4重画在图8.13中,并且将顶点标定.图中afbdcea 为图中哈密尔顿回路,见图中粗边所示,所以,该图为哈密尔顿图.将图中边),(),,(),,(d f f e e d 三条去掉,所得图为原来图的子图,它为3,3K ,可取},,{1c b a V =},,{2f e d V =,由库拉图期基定理可知,该图不是平面图.8.20 图8.14所示图为图8.25所示图的平面嵌入.分析 该图为极大平面图.此图G 中,顶点数9=n ,边数.12=m 若G 是不是极大平面图,则应该存在不相邻的顶点,,v u 在它们之间再加一条边所得'G 还应该是简单平面图, 'G 的顶点数131,6''=+===n m n n ,于是会有.126313''=->=n m这与定理8.16矛盾,所以,G 为极大平面图.其实,n ( 3≥n )阶简单平面图G 为极大平面图当且仅当G 的每个面的次数均为3.由图8.14可知,G 的每个面的次数均为3,所以,G 为极大平面图.8.21 答案 A,B,C,D 全为②分析 (1) 只有n 为奇数时命题为真,见8.11的解答与分析.(2) 2≠n 时,命题为真,见8.11的解答与分析.(3) 只有m n ,都是偶数时,m n K ,中才无奇度数顶点,因而m n K ,为欧拉图,其他情况下,即m n ,中至少有一个是奇数,这时m n K ,中必有奇度顶点,因而不是欧拉图.(4) 只有m n =时, m n K ,中存在哈密尔顿回路,因而为哈密尔顿图.当m n ≠时,不妨设m n <,并且在二部图m n K ,中,m V n V ==||,||21,则n V m V G p =>=-||)(11,这与定理8.8矛盾. 所以, m n ≠时, m n K ,不是哈密尔顿图.8.22 答案 A:②;B ②;C ②.分析图8.15中,两个实边图是同构的,但它们的对偶力(虚边图)是不同构的.(2) 任何平面图的对偶图都是连通图.设G 是非连通的平面图,显然有.**~G G ≠(3) 当G 是非连通的平面图时,,1*+-=k n r 其中k 为G 的连通分支数.8.23 答案 A:④;B ②;C ②.分析 根据库期基定理可知,所求的图必含有5K 或3,3K 同胚子图,或含可收缩成5K 或3,3K 的子图.由于顶点数和边数均已限定,因而由3,3K 加2条边的图可满足要求,由5K 增加一个顶点,一条边的图可满足要求,将所有的非同构的简单图画出来,共有4个,其中由K产生的有2个,由5K产生的有2个.3,3见图8.16所示.。
离散数学习题答案精选全文完整版
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
离散数学_第_4_章习题解答讲解
第四章归结法原理习题与解答1. 用归结法证明:(1)(2)(3)(4)(5)(6)解(1) 首先将p→q,p→r,¬(p→q∧r)化为合取范式。
p→q⇔¬p∨qp→r⇔¬p∨r¬(p→q∧r)⇔¬(¬p∨(q∧r))⇔p∧(¬q∨¬r) 给出子句集{¬p∨q,¬p∨r,p,¬q∨¬r}的反驳如下。
⑴ ¬p∨q⑵ ¬p∨r⑶ p⑷ ¬q∨¬r⑸ q 由⑴和⑶由⑵和⑶⑹ r⑺ ¬r 由⑷和⑸⑻ □ 由⑹和⑺因此,p→q,p→r|=p→q∧r(2) 首先将p→r,q→r,¬(p∨q→r)化为合取范式。
p→r⇔¬p∨rq→r⇔¬q∨r¬(p∨q→r)⇔(p∨q)∧¬r给出子句集{¬p∨r,¬q∨r,p∨q,¬r}的反驳如下。
⑴ ¬p∨r⑵ ¬q∨r⑶ p∨q⑷ ¬r⑸ q∨r 由⑴和⑶ p→q,p→r|=p→q∧r p→r,q→r|=p∨q→r p→q∨r|=(p→q)→(p→r)p∧q→r|=(p→r)∨(q→r) p∨q∨r,p→r|=q∨r (p→q)→(p→r)|=p→(q→r)由⑵和⑸⑹ r⑺ □由⑷和⑹因此,p→r,q→r|=p∨q→r(3) 首先将p→q∨r,¬((p→q)∨(p→r))化为合取范式。
p→q∨r⇔¬p∨q∨r¬((p→q)∨(p→r))⇔¬((¬p∨q)∨(¬p∨r))⇔p∧¬q∧¬r 给出子句集{¬p∨q∨r,p,¬q,¬r}的反驳如下。
⑴ ¬p∨q∨r⑵ p⑶ ¬q⑷ ¬r⑸ q∨r 由⑴和⑵⑹ r 由⑶和⑸⑺ □ 由⑷和⑹因此,p→q∨r|=(p→q)∨(p→r)(4) 首先将p∧q→r,¬((p→r)∨(q→r))化为合取范式。
第六章命题逻辑
P(附加前提) T(1)
P T(2),(3)
T(4) T(5)
P T(6),(7) CP规则
23
离散数学
CP规则例2 证明: A → (B → C), (C ∧ D) → E, ┓F → (D ∧ ┓E) ⇒A → (B → F) 证明 利用CP规则,即证:
A→(B→C), (C∧D)→E, ┓F→(D∧┓E), A, B ⇒ F
解:令 P:我的论文通过答辩。 Q:我拿到毕业证。 R:我很高兴。
由题意知,前提: (P → Q), (Q → R), ┐R 有效结论: ┐P
要证明: ┐R ∧ (P→ Q) ∧ (Q → R) ⇒ ┐P
25
离散数学
例1解
┐R ∧ (P→ Q) ∧ (Q → R) ⇒ ┐P
证明:
(1) ┐R (2) Q → R (3) ┐Q (4) P→ Q (6) ┐P
证明 (A∨B)→C,C→D∨E, E→F, ┓D∧ ┓F ⇒ ┓A
等价于证明: (A∨B)→C,C→D∨E, E→F, ┓D∧ ┓F, A ⇒0
(1) A
P(附加前提)
(2) A∨B
T(1)
(3) (A∨B)→C
P
(4) C
T(2),(3)
(5) C→D∨E
P
(6) D∨E
T(4),(5)
(7) ┓D ∧ ┓ F
T
而“如果天晴,我去看电影”
MS
P
所以“天不晴”
M
T
由于”或者天晴,或者下雨“
MQ
P
所以”天在下雨“
Q
T
17
离散数学
6.5 推理理论
6.5.1 前提与有效结论 6.5.2 证明方法
离散数学第四版课后标准答案
离散数学第四版课后标准答案离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析⾸先应注意到,命题是陈述句,因⽽不是陈述句的句⼦都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句⼦是陈述句,但它表⽰的判断结果是不确定。
⼜因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因⽽作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,⽽(13)是由联结词“且”联结起来的复合命题。
这⾥的“且”为“合取”联结词。
在⽇常⽣活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,⽽且……”、“⼀⾯……,⼀⾯……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,⽽不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是⽆理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三⾓形有三条边。
由于p与q都是真命题,因⽽p→q为假命题。
(7)p→q,其中,p:雪是⿊⾊的,q:太阳从东⽅升起。
由于p为假命题,q为真命题,因⽽p→q为假命题。
(8)p:2000年10⽉1⽇天⽓晴好,今⽇(1999年2⽉13⽇)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道⽽已。
(9)p:太阳系外的星球上的⽣物。
它的真值情况⽽定,是确定的。
1(10)p:⼩李在宿舍⾥. p的真值则具体情况⽽定,是确定的。
离散数学10图的基本概念解剖
例10.11 在右图中,
e d
1)通道:aebcaebd。
a
c
2)通道:beacbd(迹)。
3)通道:acbe(路)
b
4)通道:acbea(环)。
10.3 路径与图连通性
图论中的许多概念和应用都与对图的遍 历有关,即是从一个结点u出发,到达与之 相邻接的结点,在从该邻接结点出发到达其 邻接的结点,依次类推,最后可以到达图中 的某结点v,从而就得到一条从u到v的通路。 从
10.2 图与图模型:有向图
边e2(有向边<v1,v2> )关联结点v1、v2
结点 (顶点)
e1 v2 e2
孤立点
v3
v1 分离边
悬挂边 悬挂点
v3结点度为3, 出度为1,入度为2
10.2 图与图模型
e1 v2 e2
v1
e1 v2 e2
v1
无向图
有向图
10.2 图与图模型
练习1 设G=(V,E)是一无向图,V={v1,v2,…, v8}, E={(v1,v2),(v2,v3),(v3,v1),(v1,v5),(v5,v4), (v4,v3),(v7,v8)} (1)画出G的图解; (2)指出与V3邻接的结点,以及和V3关联的边; (3)指出与(v2,v3)邻接的边和与(v2,v3)关联的结点; (4)该图是否有孤立结点和孤立边? (5)求出各结点的度数,并判断是否是完全图和正 则图? (6)该(n,m)图中,n=?,m=?
则 G=(V,E)是一个图。
图(a).(b)分别给出了图G的图解方法。
10.2 图与图模型
节点集合V(G)的基数n表示图G的阶,边集合E(G)的 基数m表示图G的规模,有时也将图G记作(n,m)。
离散数学PPT【共34张PPT】
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
《离散数学(第三版)》期末复习知识点总结含例题(呕心沥血整理).doc
6、理解函数概念:函数、函 数相等、复介畅数和反畅数。
7、理解单射、满射、双射等 概念,学握其判别方法。 [木章重点习题]
P25,1;P32〜33, 4, 8, 10;P43,2, 3, 5;
2、考核试卷题量分配
试卷题量在各部分的分 配是:集合论约i'40% ,数理 逻辑约占40%,
设R是篥合A上的二元 关系,如果关系R同时 具有性.对称性
和性,则称R是
等价关系。
命题公式G=(PaQ)->R,则G共冇个
不同的解释;把G在其 所有解释下所取真值列 成一个表,称为G的;解
释(「P, Q, ->R)或(0,
(al9a2)e R. \a2,a3)e R,,则(R。如若(a,b)w R,R ,
则有,且(b,b)w R。
R=心)血2)伽)‘(3,4),(4,4啊織劇命题与联
念的基础上,主要掌握闭包的 求法。关键是熟记三个定理的 结论:定理2 ,
=R5a;定理3,s(R)=R o R ';定理4,
n
推论/(/?) =Ijx。
1 , 0)使G的真值 为,
设G二(P, L)是图.如 果G是连通的,并 口,则G
是树。如果根树T的每 个点V最多有两棵子树, 则称T
为O
[单项选择题](选择一个正确 答案的代号,填入括号中)
1.由集合运算定义,下列 各式正确的冇
()O
A.XcXuY
B.XoXuY
C.XcXnY
D.YcXnY
2.设Rp R?是集合A={a, b, c, d)±的两个关系,其中Ri={ (a. a) , (b, b) , (b, c) , (d, d)), R2={ (a, a) , (b, b),