妙用二元均值不等式证明不等式

合集下载

(完整版)均值不等式及其证明

(完整版)均值不等式及其证明

1平均值不等式及其证明平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。

平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。

1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为12...,nn a a a A n+++=几何平均值记为112(...)nn n G a a a == 算术平均值与几何平均值之间有如下的关系。

12...n a a a n+++≥即 n n A G ≥,当且仅当12...n a a a ===时,等号成立。

上述不等式称为平均值不等式,或简称为均值不等式。

平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。

为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。

供大家参考学习。

1.2 平均值不等式的证明证法一(归纳法)(1) 当2n =时,已知结论成立。

(2) 假设对n k =(正整数2k ≥)时命题成立,即对0,1,2,...,,i a i k >=有11212...(...)kk n a a a a a a k+++≥。

那么,当1n k =+时,由于1211 (1)k k a a a A k +++++=+,1k G +=,关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥.所以 11112111(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-===2111...()k k k a a a a A k++++++-=≥即12111...()kk k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。

几个常用不等式证明不等式方法辛

几个常用不等式证明不等式方法辛

不等式是高等数学中的一个重要工具。

运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。

这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。

几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。

2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。

3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。

4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。

均值不等式应用(技巧)

均值不等式应用(技巧)

均值不等式应用(技巧)一.均值不等式1.(1)若,则 (2)若,则(当且仅当时取R b a ∈,ab b a 222≥+R b a ∈,222b a ab +≤b a =“=”)2. (1)若,则(2)若,则(当且仅当时取“=”)*,R b a ∈ab b a ≥+2*,R b a ∈ab b a 2≥+b a =(3)若,则 (当且仅当时取“=”)*,R b a ∈22⎪⎭⎫⎝⎛+≤b a ab b a =3.若,则 (当且仅当时取“=”);若,则 (当且仅当时取0x >12x x +≥1x =0x <12x x+≤-1x =-“=”)若,则 (当且仅当时取“=”)0x ≠11122-2x x x x x x +≥+≥+≤即或b a =3.若,则 (当且仅当时取“=”)0>ab 2≥+a b b a b a =若,则(当且仅当时取“=”)0ab ≠22-2a b a b a bb a b a b a+≥+≥+≤即或b a =4.若,则(当且仅当时取“=”)R b a ∈,2)2(222b a b a +≤+b a =注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+ (2)y =x +12x 21x解:(1)y =3x 2+≥2= ∴值域为[,+∞)12x 266 (2)当x >0时,y =x +≥2=2;1x 当x <0时, y =x += -(- x -)≤-2=-21x 1x ∴值域为(-∞,-2]∪[2,+∞)解题技巧:技巧一:凑项例1:已知,求函数的最大值。

54x <14245y x x =-+-解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑450x -<1(42)45x x --A 42x -项,,5,5404x x <∴-> 11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当,即时,上式等号成立,故当时,。

均值不等式的证明方法及应用

均值不等式的证明方法及应用

均值不等式的证明方法及应用摘要均值不等式在不等式理论中处于核心地位,是现代分析数学中应用最广泛的不等式之一。

应用均值不等式,可以使一些较难的问题得到简化处理。

本文首先系统全面地总结了均值不等式的十种证明方法,其中包括柯西法、数学归纳法、詹森不等式法、不等式法、几何法、排序法、均值变量替换法、构造概率模型法、逐次调整法、泰勒公式法;其次, 结合相关例题给出均值不等式在证明不等式、比较大小、求最值、证明极限的存在性、判断级数敛散性、证明积分不等式方面的应用。

关键词:均值不等式;数学归纳法;最值;极限;积分不等式PROOFS AND APPLICATIONS ON AVERAGE VALUEINEQUALIT YABSTRACTAverage value inequality occupies a core position in inequality theory and is one of the most widely used inequalities in modern mathematics. Using average inequality can make some difficult problems simple. In this paper, ten proof methods of average value inequality are first systematically summarized, including Cauchy method, mathematical induction, Jensen inequality, inequality method, geometry method, sorting method, variable substitution method of average value, constructing probability model method, successive adjustment method, Taylor formula method, respectively. Secondly, we give applications of average value inequality combining the corresponding examples on comparing the size, solving maximum and minimum, proving the existence of the limit, judging convergence of series and proving integral inequality.Key words: average value inequality; mathematical induction; maximum and minimum; limit; integral inequality目录前言 --------------------------------------------------------------------- 4 1 均值不等式的证明方法 --------------------------------------------------- 51.1 柯西法 ----------------------------------------------------------- 51.2 数学归纳法 ------------------------------------------------------- 61.3 詹森不等式法 ----------------------------------------------------- 71.4 不等式法 --------------------------------------------------------- 71.5 几何法 ----------------------------------------------------------- 81.6 排序法 ----------------------------------------------------------- 91.7 均值变量替换法 --------------------------------------------------- 91.8 构造概率模型法 --------------------------------------------------- 91.9 逐次调整法 ------------------------------------------------------ 101.10 泰勒公式法 ----------------------------------------------------- 102 均值不等式的应用 ------------------------------------------------------ 122.1 均值不等式在证明不等式中的应用 ---------------------------------- 122.2均值不等式在比较大小问题中的应用--------------------------------- 132.3 均值不等式在求最值问题中的应用 ---------------------------------- 132.3.1 均值不等式求最值时常见错误 -------------------------------- 142.3.2 均值不等式求最值“失效”时的对策 -------------------------- 162.4 均值不等式在证明极限的存在性时的应用 ---------------------------- 172.5 均值不等式在判断级数敛散性中的应用 ------------------------------ 192.6 均值不等式在证明积分不等式中的应用 ------------------------------ 193 结论 ------------------------------------------------------------------ 21 参考文献: --------------------------------------------------------------- 22 致谢 -------------------------------------------------------------------- 23前言不等式在数学的各个领域和科学技术中都是不可缺少的基本工具, 而均值不等式是重中之重. 通过学习均值不等式,不仅可以帮助我们解决一些实际问题,还可以培养逻辑推理论证能力和抽象思维能力,以及养成勤于思考、善于思考的良好学习习惯. 因此,研究均值不等式的证明方法及应用,是一个既有理论意义又有广泛现实意义的问题.均值不等式的证明及运用均值不等式来解决数学中的某些问题,在数学研究中历历可见. 如,比较大小、求函数的最值、证明不等式常利用均值不等式的方法进行解答. 均值不等式还是高等数学中最基本的运算之一,作为最基本不等式,在解决高等数学问题中也发挥着重要的作用. 运用均值不等式可以使复杂的问题简单化,繁琐的问题清晰化.著名数学家阿基米德[]1最先运用了均值不等式,证明了球和圆柱的相关问题.此后科学家们对均值不等式的证明方法进行了深入的研究,并在此基础上把均值不等式应用到了其他领域. 当前, 我国许多学者对均值不等式的证明方法及应用进行了大量的研究[]214-. 如,陈益琳在学生利用均值不等式解题时遇到的常见问题作了总结性的工作[]8.冉凯[]9对均值不等式在数学分析中的应用做了探讨. 均值不等式在解决许多问题中发挥着重要的作用.本文将对均值不等式的证明方法及应用进行归纳和总结.1 均值不等式的证明方法首先,我们给出均值不等式. 定理1 设12,,...,n a a a 是n 个正数,则 1212nn n a a a a a a n+++≥⋅, ()11-上式当且仅当12n a a a ===时等号成立.上述不等式我们称之为算术—几何平均不等式,以后简称均值不等式. 我们把12na a a n+++和12n n a a a ⋅分别叫做这n 个数的算术平均数和几何平均数,分别记做()n A a 和()n G a ,(1-1)式即为()()n n a G A a ≥.下面给出均值不等式的几种证明方法.1.1 柯西法当2n =时,由于120,0a a >>.有212()0a a -≥,得12122a a a a +≥. 当4n =时,12341234()()a a a a a a a a +++=+++41234123412342244a a a a a a a a a a a a ≥+≥=.当8n =时,12345678()()a a a a a a a a +++++++441234567844a a a a a a a a ≥+8123456788a a a a a a a a ≥. 这样的步骤重复n 次之后将会得到, 令1211122,,;n nn n n n a a a a a a a a a a A n+++++======= ()12-有1122221212(2)()2n nnnn n nn n n nA n A A a a a Aa a a A--+-=≥⋅=⋅即1212nn n a a a a a a n+++≥⋅.这个归纳法的证明是柯西首次提出的,我们将它称之为柯西法.1.2 数学归纳法证法一当2n =时,不等式显然成立. 假设当n k =时,命题成立. 则当1n k =+时,12111k k K a a a a A k ++++++=+,11121k K k G a a a +++=⋅.因为i a 具有全对称性,所以不妨设1min 1,2,,|,1{}i a a i k k ==+,1{|,,1}1,2,k i a ma a x i k k +==+.显然 111K k a A a ++≤≤,以及()()11110K k K a A a A +++--≤.于是,111111()K k K k A a a A a a +++++-≥. 所以12111111()(1)k K K K K K a a a A kA k A A A k k k +++++++++-+-====211121111()()k k K kk k K a a a a A a a a a A k+++++++++-≥⋅+-.即12111()k k k k K A a a a a A +++≥+-两边乘以1K A +,得111211112111()()k K k k K k K k k K A a a A a a A a a a a G ++++++++≥+-≥=.从而,有11K K A G ++≥.所以,由数学归纳法,均值不等式对一切n 成立,即 ()()n n A a G a ≥. 证法二当2n =时,不等式显然成立; 假设当n k =时成立.则当1n k =+时,有1111(1)k k k k k a k G k G -++++-≥⋅,于是11111122111(1)()()k k k k k k k k k k a k G G G a GG k-++++++-=≤⋅11(1)1()2k k k a k G G k +++-≤+ 11(1)1()2k k k a k G A k+++-≤+.所以 1112(1)(1)k k k k G k A k G +++⋅≤++-,所以 11k k G A ++≤. 当且仅当11k k a G ++=且1(1)k k k k G a k G +⋅=+-时等号成立. 由数学归纳法知,均值不等式对一切n 成立,即 ()()n n A a G a ≥.1.3 詹森不等式法引理1(Jensen 不等式)若()f x 为区间I 上的凸函数,对任意i x I ∈,0(1,2,,)i i n λ>=,且11ni i λ==∑,则11()()i nni i i i i f x f x λλ==≤∑∑ (1-3)成立.下面利用詹森不等式证明均值不等式.令 ()ln f x x =-,(0)x >,易知()f x 在(0,)+∞是凸函数.由于0(1,2,,)i a i n >=,令1i nλ=,则由引理1有下式,12121)(ln ln ln )ln(nn a a a a a a nn +++≤-+++-.则12121211)(ln ln ln )ln()ln(nn n a a a a a a a a n n na +++≥+++=,因此11212)ln()ln(nnn a a a a a na +++≥,即1212nn n a a a a a a n+++≥⋅,当且仅当12n a a a ===时等号成立.1.4 不等式法在均值不等式的证明中,可以运用一个特殊的不等式1x e x ≥+进行推导. 设()x f x e =,对()x f x e =应用迈克劳林展开式并取拉格朗日余项得:2112x x e x x e θ=++, 其中, 0x ≠, 01θ<<. 因此, 1x e x >+,0x ≠.当0x =时,等号成立.下面给出均值不等式的证明过程. 取一组数k x ,1,2,,k n =,使10nk k x ==∑.令 (1)k k n a x A =+.则由(1)k x k x e +≤(k x 全为零时,取等号)可得,111111()(1)k nnn nx nn n k k n n n k k k G a x A A e A ===⎡⎤==+≤=⎢⎥⎣⎦∏∏∏,所以 ()()n n A a G a ≥.1.5 几何法作函数nx G y e =的图像,它是凸曲线,并在点(),n G e 处作切线 ny exG =,可见这条切线在函数的下面(见图11-),因此,可以得到0i na G inea eG ≥>1,2,3,,i n =().所以12()12()()()n na a a G n nn nnea ea ea e e G G G +++≥⋅=,于是n n nA n G ≥,即n n A G ≥,且从上述证明中可知,当且仅当12n n a a a G ====时,等号成立.图1-11.6 排序法做序列: 11n a x G =,1222n a ax G =,…,12111n n n n a a a x G ---=,121n n n na a a x G ==,取其中的一个排列:11nb x ==,21b x =,…,1n n b x -=,则111n x a b G =,222n x a b G =,…,n n n nx a b G =. 不妨设120n x x x ≥≥≥>.则121110n x x x <≤≤≤.由排序原理可知3121212312111n n n nx x x x x x x n b b b b x x x ++++≥⋅+⋅++⋅=, 即12n nn n a a a n G G G +++≥,1212nn n a a a a a a n+++≥⋅,所以 ()()n n A a G a ≥.1.7 均值变量替换法本节运用数学归纳和变量替换相结合的方法证明均值不等式. 易证2n =时,不等式显然成立. 假设当n k =时,不等式成立. 则当1n k =+时,设1(1,2,,)i i k x a A i n +=-=,则110k i i x +==∑.设i x 不全为零,必有一个ix 为正,另一个为负,不妨设10i x x <<,由于 1211121112()()()k k k k a a A x A x A A x x ++++=++++<, 从而112311123411()()k k k k k k A x x a a A x x a a a kA ++++++++++>++=111234111k k kkk k k G a a a a a A A +++++>=.所以 1111k k k k A G ++++>,即11k k A G ++>.易证,当且仅当0i x =时(即12n a a a ===时)取等号,故原不等式()()n n A a G a ≥成立.1.8 构造概率模型法首先给出证明过程中要用到的一个引理.引理 2 设X 是一个随机变量,并且数学期望EX 存在,则有22()EX EX ≥,ln (ln )EX E X ≥. ()14-建立概率模型,设随机变量X 的概率分布为1()i P X a n==,其中0i a ≥,1,2,,i n =.由引理2可知,1111ln ln nni i i i a nn a ==≥∑∑,112ln ln 1ni i n n a a a a n =≥∑,即1212nn n a a a a a a n+++≥⋅成立.1.9 逐次调整法12,,...,n a a a 中必存在最值数,不妨设1min{}i a a =,2max{}i a a =. 易见21212()[]2a a a a +≥.于是,用122a a+取代12,a a .n A 不变,但是n G 增大,即 121231()()11()22nn i i a a a a a a a n n =++++++=∑,1212123()()22n nn n a a a a a a a a a ++≤⋅⋅.对于各个n ,这种代换至多进行1n -次(有限次).因此,212123()2n n n n n n n nn n a a G a a a a a A A A A +=≤⋅≤≤=.即 n n G A ≤,当且仅当12n a a a ===时,取等号.1.10 泰勒公式法设()log (01,0)xaf x a x =<<>,则21''()0ln f x x a=->,将()f x 在0x 处展开,有 '''200000()()()()()()2f x f x f x f x x x x x =+-+-.因此有'000()()()()f x f x f x x x ≥+-,取011,(,),(1,2,,)ni i i x a a a b i n n ==∈=∑,从而'111111()()()()(1,2,,)n nn i i i i i i i i f a f a f a a a i n n n n ===≥+-=∑∑∑.故'111111111()()()()()nn n n nn i i i i i i i i i i i i f a nf a f a a a nf a n n n ======≥+⋅-=∑∑∑∑∑∑, 即 1111()()n ni i i i f a f a n n ==≤∑∑.因此有 12121()1log (log log log )n na a a a a a naa a a n+++≤+++,即 12121()()1log log n n a a a a a a n a an+++⋅≥,亦即112121()()loglog (01)nn n a a a a a a n aaa +++⋅≥<<,故有1212nn n a a a a a a n+++≥⋅,(0,1,2,,)i a i n >=.2 均值不等式的应用2.1 均值不等式在证明不等式中的应用一般不等式的证明,常常考虑比较法,综合法,分析法,这是高中比较常用的方法,但有些不等式运用上述方法不好入手,故考虑均值不等式或者均值不等式与综合法相结合,这样处理,常常使复杂问题简单化,从而达到证明的目的.下面举几个例子予以说明.例1 已知,,a b c 为互不相等的正数,且1abc =.求证111a b c a b c++<++. 证明1111/1/1/1/1/1/111222b c a c a b a b c bc ac ab a b c+++++=++<++=++. 故原不等式得证.例2 证明 221a b ab a b ++≥++.证明 由均值不等式得,212a a +≥,212b b +≥,222a b ab +≥.以上三式相加得,()()22212a b ab a b ++≥++,即有,221a b ab a b ++≥++. 原不等式得证.例3 设圆o 的半径为12,两弦CD 和EF 均与直径AB 交45︒,记AB 与CD 和EF 的交点分别为P 和Q,求证 221PC QE PD QF ⋅+⋅<.图21-证明 如图21-,设M 为弦CD 的中点,连接CO ,MO ,则△POM 为等腰直角三角形,且MP MO =.222222222()()2()2()2PC PD MC MP MC MP MC MP MC MO CO +=-++=+=+=211222⎛⎫== ⎪⎝⎭.同理,2212QE QF +=. 由均值不等式得,222222PC QE PD QF PC QE PD QF ++⋅+⋅≤+ 2222()()2PC PD QE QF +++=1112222+==.即 221PC QE PD QF ⋅+⋅<,原不等式得证.2.2均值不等式在比较大小问题中的应用比较大小问题是高中数学中常见的问题,准确巧妙地运用均值不等式是快速解决这类问题的关键.例4 若1a b >>,lg lg p a b =⋅,1(lg lg )2Q a b =+,lg 2a bR +=,试判断,,P Q R 之间的大小关系.解 由均值不等式,得1(lg lg )lg lg 2Q a b a b P =+≥⋅=.1lg lg (lg lg )22a b R ab a b Q +=≥=+=.由于,a b a b >≠,所以不能取等号,即R Q P >>.2.3 均值不等式在求最值问题中的应用均值不等式在求函数最值,解决一些取值范围问题时运用非常广泛,是重要知识点之一.在实际应用问题中,我们应因题而宜地进行变换,并注意等号成立的条件,达到解题的目的,变换题目所给函数的形式,利用熟悉知识求解是常用的解题技巧,熟练运用该技巧,对于提高思维的灵活性和严密性大有益处.例5 求下列函数的值域:(1)22132y x x =+; (2)1y x x=+. 解 (1)因为,222211323x =622y x x x =+≥⋅. 所以,值域为[6,+)∞. (2)当0x >时,112 2y x x x x=+≥⋅=. 当0x <时,111()2 -2y x x x x x x=+=---≤-⋅=故,值域为[.],22∞⋃+∞(--,) 例6 若02x <<,求函数()3(83)f x x x =-的最大值. 解 因为, 02x <<.所以,()3(83)3(83)24x x x f x x =≤+-=-,故()f x 的最大值是4.例7 制作容积一定的有盖圆柱形罐头, 当圆柱高h 和底面半径r 的比为何值时,使用的材料最省? (不计加工损耗)解 设圆322222222232V V V S rh r r r V r r rπππππ=+=+=++≥,当且仅当22Vr r π=,即32V r π= 时, 材料最省. 此时有322r r h ππ= ,故 :2:1h r =,即圆柱形的高与底面半径之比为2:1时,使用的材料最省.2.3.1 均值不等式求最值时常见错误运用均值不等式解题是一项重要内容,运用这种方法有三个条件:(1)正;(2)定;(3)相等.在此运用过程中,往往需要对相关对象进行适当地放大、缩小, 或不等式之间进行传递等变形,在此过程中,学生常常因为忽视条件成立而导致错误,而且错误不易察觉.因此,就这一问题列举几个例子进行说明.例8 求()111y x x x =+≠-的值域. 分析 在解题时,我们常常写成()111112113111y x x x x x x =+=-++≥-+=---, 故[)3,y ∈+∞.虽然111x x --与的积是常数,但1x -不一定是正数,忽视均值不等式中的各项为“正”致错, 因此解法是错误的.下面给出正确解法.解 当 1x >时,()111112113111y x x x x x x =+=-++≥-+=---,当且仅当111x x -=-,即 2x =时等号成立; 当1x <时,()111112111111y x x x x x x-=-+=-+-≥--=---,所以 1y ≤-,当且仅当0x =时取等号,所以原函数的值域为(][),13,-∞-⋃+∞.例9 求2254x y x +=+的最小值.分析 在解题时,我们常常写成 222222225411142424444x x y x x x x x x +++===++≥+=++++,所以y 的最小值是 2.可是在2y ≥ 中,当且仅当22144x x +=+,即23x =-,这是不可能的,所以等号不成立,这个问题忽视均值不等式中等号成立条件.故原式的最小值不是2.下面给出正确解法.解 在22144y x x =+++中,令24t x =+, 则1y t t =+(2t ≥),易证1y t t =+在[2,)+∞上递增,所以y 的最小值是15222+=,当且仅当2t =时,即242x +=,0x =,取“”=号.例10 若正数,x y 满足26x y +=,求xy 的最大值.分析 在解题时,我们常常写成22x y xy +⎛⎫≤ ⎪⎝⎭,当且仅当x y =且26x y +=,即2x y ==时取“”=号, 将其代入上式,可得xy 的最大值为4.初看起来,很有道理, 其实在用均值不等式求最值时,在各项为正的前提下,应先考虑定值,再考虑等号是否成立.但在22x y xy +⎛⎫≤ ⎪⎝⎭中,x y +不是定值,所以xy 的最大值不是4.这个问题忽视了均值不等式中积或和是定值的条件.下面给出正确解.解 因2112922222x y xy x y +⎛⎫=⨯≤⨯= ⎪⎝⎭, 当且仅当2x y =时(此时33,2x y ==)取“”=号, 所以()max 92xy =. 2.3.2 均值不等式求最值“失效”时的对策.运用均值不等式是求最值的一种常用方法, 但由于其约束条件苛刻,在使用时往往顾此失彼,从而导致均值不等式“失效”. 下面例说几种常用的处理策略.例11 已知0 1x <<,求4lg lg y x x=+的最大值. 解 因为0 1x <<,所以lg 0x <,lg 0x ->,从而有()4lg 244lg y x x ⎛⎫-=-+-≥= ⎪⎝⎭,即 4y ≤-,当且仅当4lg lg x x -=-即1100x =时等号成立,故max 4y =-. 本题满足4lg 4lg x x⋅= 为定值,但因为0 1x <<,lg 0x <,所以此时不能直接应用均值不等式,需将负数化正后再使用均值不等式.例12 求 1 () 2y x x =- 102x ⎛⎫<< ⎪⎝⎭ 的最大值.解 ()()2112121122122228x x y x x x x +-⎛⎫=-=⋅⋅-≤⋅= ⎪⎝⎭,当且仅当212x x =-,即14x =时等号成立.故max 18y =. 本题)2(1x x +-不是定值,但可通过平衡系数来满足和为定值.例13 已知0a b >>,求()64y a a b b=+-的最小值.解 ()()()3646436412y a a b b a b b a b b =+=-++≥=--,当且仅当()64a b b a b b-==-,即 8a =, 4b =时等号成立.故min 12y =.本题 ()64a ab b⋅-不是定值,但可通过添项、减项来满足积为定值.例14 已知0 x π<<,求4sin sin y x x=+的最小值. 解 41313sin sin 2sin 5sin sin sin sin 1y x x x x x x x ⎛⎫=+=++≥⋅+= ⎪⎝⎭. 当且仅当1sin sin x x =且33sin x=,即sin 1x = 时等号成立. 故min 5y =. 本题虽有4sin sin x x ⋅为定值,但4sin sin x x=不可能成立. 故可通过拆项来满足等号成立的条件.例15 已知52x ≥,则()24524x x f x x -+=- 有______.()A 最大值54 ()B 最小值54()C 最大值1. ()D 最小值1. 解 ()()()()2221451121242222x x x f x x x x x -+-+⎡⎤===-+≥⎢⎥---⎣⎦,当且仅当()122x x -=-,即3x =时等号成立.故选()D .本题看似无法使用均值不等式,但对函数式进行分离,便可创造出使用均值不等式的条件.2.4 均值不等式在证明极限的存在性时的应用极限概念是高等数学中的重要概念,在证明数列极限的存在性时,需证明数列单调及数列有界.而在此过程中便运用了均值不等式的相关内容.下面举例说明.例16 证明重要极限1lim(1)n n e n →∞+=的存在性.证明 先证数列{1(1)n n +}单调递增.令1211n a a a n===+=,11n a +=,则由均值不等式()11-得,111111(1)(1).1[(1)(1)1]1n n n nn n nn++++++<+++个个.即 111(1)11n n n n ++<++,所以 111(1)(1)1n n n n ++++<.所以 数列{1(1)n n +}单调递增.再证数列{1(1)n n+}有上界.下面的证明可以看到一个更强的命题:数列{1(1)n n +}以11(1)k k M ++=(k 为正整数)为上界.先证不等式, 当n k >时, 1111(1)(1)n k n k++<++.设 1211k ka a a k +====+,21k n a a +===.由均值不等式111()1[(1)()]1111k n k n k k n k n k k n k n +-+⋅+⋅+-=++<++, 所以 11()()11k n k n k n ++<++,因此,1111(1)(1)n k n k ++<++. 其次由111n +>,有111(1)(1)n n n n +<++,所以111(1)(1)n k n k+<++.当n k >时,任取一个正整数k ,11(1)k k M ++=均是数列{1(1)n n+}的上界.又数列{1(1)n n +}单调递增,所以,当n k ≤时,不等式111(1)(1)n k n k+<++仍然成立.因此,对于数列 {1(1)n n +}1,2n =(), 恒有111(1)(1)n k n k +<++(k 为正整数). 任意选定一个k 值,11(1)k k M ++= 均是数列{1(1)n n+}的上界.所以数列{1(1)n n +} 单调有界,由单调有界定理,数列{1(1)n n +} 极限存在.极限值为e ,即1lim(1)n x e n→∞+=.例17 证明数列{11(1)n n ++}极限存在且其极限是e .证明 令 11{(1)}n n x n+=+.11221(1)11111()()[]()1122n n n n n n nn n n n n x n n n n x ++++++⋅+++==≤==++++. 所以,数列{}n x 单调减少.又0n x >,则数列{}n x 有下界.1111lim(1)lim (1)(1)n n n n nn n +→∞→∞⎡⎤+=+⋅+⎢⎥⎣⎦. 因为 1(1)n n +和1(1)n+的极限都存在, 所以1111lim(1)lim (1)(1)n n n n e n n n +→∞→∞⎡⎤+=+⋅+=⎢⎥⎣⎦. 因此, 数列{11(1)n n++}极限存在且其极限是e .例18 证明lim 1n n n →∞=.证明 由均值不等式(1-1)有:121111nnn n n n n n n -⎛⎫++++=⋅⋅≤⎪⎝⎭个2221n n n n+-=<+, 从而有201n n n≤-<,故 lim 1n n n →∞=.2.5 均值不等式在判断级数敛散性中的应用均值不等式的应用很广泛,在证明级数的敛散性时也有很重要的应用. 例19 已知正项级数1n n a ∞=∑收敛,证明级数11n n n a a ∞+=∑也收敛.证明 因为,0n a >(1,2,)n =,由均值不等式,有111()2n n n n a a a a ++≤+,已知级数1n n a ∞=∑收敛,所以级数112n n a ∞=∑与1112n n a ∞+=∑都收敛,从而级数111()2n n n a a ∞+=+∑也收敛,再由比较判别法,知级数11n n n a a ∞+=∑收敛.2.6 均值不等式在证明积分不等式中的应用积分不等式是一种特殊的不等式,而均值不等式又是证明不等式的重要方法.因此,在积分不等式的证明中我们自然会想到运用均值不等式来进行证明.例20 证明函数f x ()在[],a b 上是正值可积的, 1,2,k n =,且0a b <<,则[]11111212()()()()()()bbbbnnnnn n aa a a f x f x f x dx f x dx f x dx f x dx ⎡⎤⎡⎤⎡⎤⋅≤⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰. 证明 利用1212nn n a a a a a a n+++≥⋅.有,1212()()()()()()n bbbnn aaaf x f x f x f x dxf x dxf x dx⋅⎰⎰⎰1212()()()1()()()n b bbn a a af x f x f x n f x dx f x dx f x dx ⎡⎤⎢⎥≤+++⎢⎥⎢⎥⎣⎦⎰⎰⎰.于是 1111212()()()()()()n n nb n b bba n a a a f x f x f x dx f x dx f x dx f x dx ⎧⎫⎡⎤⎡⎤⎡⎤⎪⎪⎪⎪⎢⎥⎢⎥⎢⎥⋅⎨⎬⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭⎰⎰⎰⎰ 1212()()()11()()()b bbn a a a b b b n a a af x dx f x dx f x dx n f x dxf x dx f x dx ⎡⎤⎢⎥≤+++=⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰,即 []11111212()()()()()()bbbbnnnnn n aa a a f x f x f x dx f x dx f x dx f x dx ⎡⎤⎡⎤⎡⎤⋅≤⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰. 例21 设f x ()在[0,1]上非负连续,证明101ln ()0()f x dxe f x dx ⎰≤⎰.证明 由题设知f x ()在[0,1]上可积,将[0,1]n 等分,作积分和111()lim()n n i i f x dx f n n →∞==∑⎰,110111ln ()lim ln ()limln ()nn nn n i i i i f x dx f f n n n →∞→∞==⎡⎤==⎢⎥⎣⎦∑∏⎰. 所以 01111li ln (n )m l ()1lim ()n nn i i f nnn f x n dxi i e f n e →∞=⎡⎤⎢⎥⎢⎥⎣⎦→∞=∏⎡⎤=⎢⎣⎰⎥⎦=∏. 由均值不等式1212...n nn a a a a a a n+++≥⋅得,110111lim ()lim ()()nn nn n i i i i f f f x dx n n n →∞→∞==⎡⎤≤=⎢⎥⎣⎦∑∏⎰.故 11ln ()0()f x dx e f x dx ⎰≤⎰.3 结论均值不等式是数学中的重要内容,对培养数学思维发展有很大帮助.本文重在梳理均值不等式的相关证明方法和应用.如,运用均值不等式时,一定时刻谨记一正、二定、三相等原则,具体问题具体分析,有时可以通过转化达到运用均值不等式解题的目的.本文系统地归纳总结均值不等式的各种证明方法及其在具体解题分析和论证推理过程中的应用.通过本论文的撰写,更深刻地理解均值不等式在证明问题和解题中的重要作用.参考文献:[1]中译本(朱恩宽、李文铭等译):《阿基米德全集》[M]. 西安:陕西科学技术出版社,1998.[2]陈侃.算术-几何平均值不等式的证明[J].巢湖学院学报,2008,6(3):129-130.[3]熊桂武 .概率方法在不等式证明中的应用[J].重庆师范大学学报,2003,12:89-91.[4]敦茂.算术平均值与几何平均值不等式的各种证法[J].云梦学刊,1980,1(3):65-80.[5]Norman schaumberger.A coordinate approach to the AM-GM inequality[J].MathematicsMagazine,1991,64:273.[6]刘鸿雁.由Jensen不等式导出某些重要不等式[J].成都大学学报,2003,22(3):32-35.[7]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004.[8]陈益琳.高中教学导练(高二)[M].北京:冶金工业出版社,2004.[9]冉凯.均值不等式在数学分析中的应用[J].青海师专学报,1997,4(2):35-38.[10]赵建勋.浅谈均值不等式的应用[J].高中数学教与学,2011,5(3):7-10.[11]蓝兴苹.均值不等式的推广与应用[J].云南民族大学学报,2006,15(4):22-24.[12]高飞、朱传桥《高中数学教与学》[M]. 济南:山东科学技术出版社,2007.[13]章国凤.均值不等式在高等数学中的应用[J].广西教育学院学报,2008,05(1):151-152.[14]陈复华.均值不等式在微积分中的应用及其它[J].湖北民族学院学报(自然科学版),1994,2(3):88-89.致谢毕业论文暂告收尾,这也意味着我在鞍山师范学院四年的学习生活既将结束。

巧用均值不等式及其条件求最值

巧用均值不等式及其条件求最值

巧用均值不等式及其条件求最值(南京师范大学数学与计算机科学学院 张逸洁)均值不等式是高中阶段初等数学中最重要的基本不等式之一,在许多问题的解决中往往能发挥出它的独特功能,对于它及它各种变式的掌握和熟练运用也是求解很多与不等式有关的最值问题的重要方法。

本文将归纳介绍均值不等式在最值问题中的一些巧妙运用,希望能够开拓学生的思维,对高中生不等式的学习有所帮助。

一、均值不等式1.22,2,a b R ab ab ∈+≥、(当且仅当a=b 时取“=”)。

推论:,a b R a b +∈+≥、,(当且仅当a=b 时取“=”)。

2.变形,对a b R ∈、积向平方和转化:222a b a b +⋅≤。

对a b R ∈、积向和转化:2()2a b a b +⋅≤。

注:这里有“最值定理”: 若,,,x y R x y s xy p +⋅∈+==2()2x y xy +≥⇔≤则x+y 运用此定理求最值时必须具备“一正,二定,三相等”这三个条件。

3.333,3a b c Ra b c abc +∈++≥、、,(当且仅当a=b=c 时取“=”)推论:,a b c R a b c +∈++≥、、,(当且仅当a=b=c 时取“=”)4.变形:对3,()3a b c a b c R abc +++∈≤、、 方法小结:在运用均值不等式求正数和的最小值时,凑积为定值;求正数积的最大值时,凑和为定值。

二、巧用均值不等式求解最值问题在求解函数最值问题的过程中,我们通常运用不等式,函数单调性,数形结合等方法分析解答。

本文着重介绍均值不等式在求解此类问题中的妙用,旨在帮助读者系统归纳,拓展思维,灵活解题。

1. 连用例1:已知3222160,a b a b a b ab b-+>>-求的最小值。

解:32222222222161616166416()2a b a b a a a a b a b ab b ab b b a b a -+=+=+≥+=+≥+----()216.64a b a ⎧⎧=⎪⎪∴⎨⎨==⎪⎪⎩⎩2b=a-b 当且仅当即a分析:有时利用均值不等式求最值时只用一次并不能解决问题,通常需要连用来巧求最值。

柯西不等式在不等式证明中的应用

柯西不等式在不等式证明中的应用

柯西不等式在不等式证明中的应用[摘要]利用柯西不等式及其灵活变形能简化诸多不等式的证明,拓宽思维视角。

笔者利用柯西不等式的向量形式及积分形式证明了基本不等式、均值不等式、三角不等式、嵌入不等式和积分不等式。

[关键词]柯西不等式、三角不等式、嵌入不等式、积分不等式1.引言柯西不等式是是由大数学家柯西在研究数学分析中的“流数”问题时得到的,同时由德国数学家Schwarz与乌克兰数学家Bunyakovsky各自于1885年与1861年独立发现并在积分学中推广应用,使其逐步完善。

柯西不等式是一个具有重要应用价值的经典不等式,在数学中有着广泛应用,它是推证许多其他不等式的基础。

因此,在大学数学的提升与研究中非常之重要,是高等数学研究的主要内容之一。

也由此,柯西不等式对于本科生而言并不陌生,在数学分析的无穷级数和积分乘积,线性代数中的矢量,以及概率论的方差和协方差中都有相应的柯西不等式。

设V为数域P上的线性空间,任给两个,记其内积为,则有著名的柯西不等式成立,等号成立当且仅当存在不全为零的常数使得。

特别地,当V为n维实向量空间时,对于任给的两个向量,定义内积,此时柯西不等式的具体表示形式为,等号成立当且仅当 (为常数, )。

当V为闭区间上的所有实连续函数构成的线性空间时,对于其上的函数定义内积,则有积分形式的柯西不等式,等号成立时当且仅当存在不全为零的常数,使得。

柯西不等式在各个领域中都有广泛使用,在不同的领域有不同的表现形式,但其本质是一样的。

下面笔者总结了柯西不等式在证明基本不等式、均值不等式、三角不等式、嵌入不等式和积分不等式中柯西不等式的重要应用。

1.柯西不等式在不等式证明中的具体应用1.证明基本不等式:。

众所周知,基本不等式十分重要,并且初等易懂,现在从柯西不等式出发来证明。

由,可得。

证明中巧妙利用两个平方项的和乘“一”,并把一拆分成两个二分之一,构造了柯西不等式的基本模型。

另外,我们也可以用柯西不等式的向量形式来证明。

均值不等式的妙用

均值不等式的妙用

b2
>
( a + b) (1 1 - 2 ab +
- ab) a2 b2
=
a+ 1-
b ab
.
例 2 若 a , b ∈R + ,求证
a
a +2b
+
b 2a+
b
≥2 3
.
证 原不等式等价于
3 a (2 a + b) + 3 b ( a + 2 b) ≥2 ( a + 2 b) (2 a + b) Ζ 6 a2 + 6 b2 + 6 ab ≥4 a2 + 4 b2 + 10 ab Ζ a2 + b2 ≥2 ab.
2
1 +
x
+
2
1 +
y
≤2 3
.

2
1 +
x
+
2
1 +
y
=
4
+
4+ 2( x
x +
+y y) +
xy
=
5
4 +
+ 2
x (x
+ +
y y)
=
1 2
[1
+
5
+
2
3 (x
+
y)
]
≤1 2
[1
+
5
+
3 4
]= xy
2 3
.
例 6 设 a , b , c ∈R + ,求证
1 a(1 +

第60讲 不等式的证明、柯西不等式与均值不等式

第60讲 不等式的证明、柯西不等式与均值不等式

3x+ 2y
2y+ 3z
1
z
2=( 3+2+ 3)2=16+8 3.
当且仅当3x=22y=31z,即 x∶y∶z=3∶ 3∶1 时,等号成立. xy z
∴3x+2y+1z的最小值为 16+8 3.
课堂考点探究
[总结反思] 对于若干个单项式的平方和,因为其符合柯西不等式(a2+b2+…+c2)(m2+n2+…+ p2)≥(am+bn+…+cp)2,所以只要补足另一个平方和多项式,便可利用柯西不等式来求 最值.
课堂考点探究
探究点二 利用综合法、分析法证明不等式
例 2 [2016·湖南邵阳三联] 设函数 f(x)=|x-a|. (1)当 a=2 时,解不等式 f(x)≥7-|x-1|; (2)若 f(x)≤1 的解集为0,2,m1 +21n=a(m>0,n>0),求
证:m+4n≥2 2+3.
[思路点拨] (1)采用零点分 段法去绝对值符号,再求 解;(2)根据 f(x)≤1 的解集 是[0,2],解得 a=1,所以
课堂考点探究
探究点三 利用放缩法证明不等式
例 3 [2017·湖南师大附中摸底考试] 设 α,β,γ 均为实 数.
(1)证明:|cos(α+β)|≤|cos α|+|sin β|; |sin(α+β)|≤|cos α|+|cos β|. (2)若 α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥
可,这种方法称为求差比较法.
②求商比较法:a>b>0⇔ab>1 且 a>0,b>0,因此当 a>0,b>0 时要证明 a>b,只要证明
a b>1
即可,这种方法称为求商比较法.
(2)分析法

不等式选讲(用基本不等式证明不等式)

不等式选讲(用基本不等式证明不等式)

不等式选讲(用基本不等式证明不等式)一、用基本不等式证明不等式1.(2014年1卷)若0,0a b >>,且11a b +=.证明: (1) 求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I11a b =+≥,得2ab ≥,且当a b == 故33a b+≥≥,且当a b ==时取等号.所以33a b +的最小值为(II )由(I)知,23a b +≥≥6>,从而不存在,a b , 使得236a b +=.2.(2013年2卷)设均为正数,且,证明:(1) (2) 【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得 222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=. 所以()31ab bc ca ++≤,即13ab bc ca ++≤ (Ⅱ)∵2222,2,2a b c b a c b a c b c a+≥+≥+≥ ,,a b c 1a b c ++=13ab bc ca ++≤2221a b c b c a++≥∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a++≥++ ∴2221a b c b c a++≥3.(2019年1卷)已知a ,b ,c正数,且满足abc=1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.【解析】(1)1abc = 111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭ ()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++当且仅当a b c ==时取等号, ()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥ (1) ()()()()()()3333a b b c c a a b b c c a +++++≥+++,当且仅当a b c ==时取等号又a b +≥b c +≥a c +≥(当且仅当a b c ==时等号同时成立)()()()3333a b b c c a ∴+++++≥⨯=又1abc()()()33324a b b c c a ∴+++++≥4.已知正数x 、y 、z ,且1xyz =.(1)证明:222x y z y z x y++≥+; (2)证明:()()()22212x y y z z x +++++≥.【详解】(1)因为x 、y 、z 为正数,且1xyz =,所以222x y y z +≥==, 当且仅当32y zx =时等号成立,即4y x =时,等号成立;同理22y z z x +≥,22x z y x +≥22222x y z y z x z y ⎛⎛⎫++≥++ ⎪ ⎝⎭⎝⎭,即222x y z y z x z y++≥+,当且仅当1x y z ===时等号成立;(2)因为()()()222x y y z z x +++++≥由二元均值不等式得x y +≥y z +≥,z x +≥,当且仅当x y z ==时,等号同时成立,所以()24x y xy +≥,()24y z yz +≥,()24z x xz +≥, ()()()()22226464x y y z z x xyz ∴+++≥=,因此,()()()22212x y y z z x +++≥=++,当且仅当1x y z ===时,等号同时成立.【点睛】本题考查利用三元和二元均值不等式证明不等式,考查推理能力,属于中等题.5.(2020年3卷)设a ,b ,c ∈R ,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a ,b ,c}表示a ,b ,c 中的最大值,证明:max{a ,b ,c}.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .。

第三讲 二元均值不等式及其应用

第三讲  二元均值不等式及其应用

二元均值不等式及其应用引例:如图,在半径为1的⊙O 内,弦CD ∥弦EF ,并且与直径AB 成45角,,C D A B P E F⋂=⋂=,求证:2PC QE PD QF ⋅+⋅<。

本专题意在提升同学们基于二元均值不等式求解最大值、最小值以及证明简单不等式的灵活性。

一、基础知识定理:(1)任取0,0a b >>,则2a b+≥,“=”当且仅当a b =时成立; (2)任取,a b R ∈,则222a b ab +≥,“=”成立的条件是a b =;(3)不等式链:任取0a b ≥>,则2112a b b a a b+≤≤≤≤+,“=”成立的条件是a b =。

二、典型例题1.应用二元均值不等式求最值:一正、二定、三相等。

例1求()()111f x x x x =+>-的最小值。

例2当0>>b a 时,求()bb a a -+27的最小值是 ,()216a b a b +-的最小值是 。

例3设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值 。

2.逢失败恰当调整,重建结构 例4求下列函数的最小值:(1)()sin 202sin 2x f x x x π⎛⎫=+<≤ ⎪⎝⎭; (2)ax a x y +++=221的最小值,其中常数R a ∈。

3.应用二元均值不等式求多元极值 例5设x y z >>,求()11f x z x y y z ⎛⎫=+⋅-⎪--⎝⎭的最小值。

例6设,,0x y z >,求()()()()15435618xyzf x x y y z z =++++的最大值。

4.应用二元均值不等式探究二次分式函数极值例7求函数2251x x y x -+=-在区间()1,+∞上的最小值。

5.应用二元均值不等式探求高次“对勾函数”与高次“单勾函数”极值(1)形如()m n bf x ax x=+的函数图像形状。

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇)常用均值不等式及证明证明这四种平均数满足hn?gn?an?qn?、ana1、a2、?r?,当且仅当a1?a2???an时取“=”号仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用均值不等式的变形:(1)对实数a,b,有a222?b2?2ab (当且仅当a=b时取“=”号), a,b?0?2ab(4)对实数a,b,有a?a-b??b?a-b?a2?b2?2ab?0(5)对非负实数a,b,有(8)对实数a,b,c,有a2?b2?c2?ab?bc?aca?b?c?abc(10)对实数a,b,c,有均值不等式的证明:方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等用数学归纳法证明,需要一个辅助结论。

引理:设a≥0,b≥0,则?a?b??an?na?n-1?bn注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。

当n=2时易证;假设当n=k时命题成立,即那么当n=k+1时,不妨设ak?1是则设a1,a2,?,ak?1中最大者,kak?1?a1?a2???ak?1 s?a1?a2???ak用归纳假设下面介绍个好理解的方法琴生不等式法琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点,设f?x??lnx,f?x?为上凸增函数所以,在圆中用射影定理证明(半径不小于半弦)均值不等式证明一、已知x,y为正实数,且x+y=1求证xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2当且仅当xy=1/xy时取等也就是xy=1时画出xy+1/xy图像得01时,单调增而xy≤1/4∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4得证继续追问:拜托,用单调性谁不会,让你用均值定理来证补充回答:我真不明白我上面的方法为什么不是用均值不等式证的法二:证xy+1/xy≥17/4即证4(xy)?-17xy+4≥0即证(4xy-1)(xy-4)≥0即证xy≥4,xy≤1/4而x,y∈r+,x+y=1显然xy≥4不可能成立∵1=x+y≥2√(xy)∴xy≤1/4,得证法三:∵同理0xy+1/xy-17/4=(4x?y?-4-17xy)/4xy=(1-4xy)(4-xy)/4xy≥0∴xy+1/xy≥17/4试问怎样叫“利用均值不等式证明”,是说只能用均值不等式不能穿插别的途径?!二、已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)于是c-a≤-2√(a-b)*(b-c)<0即:1/(c-a)≥-1/【2√(a-b)*(b-c)】那么1/(a-b)+1/(b-c)+1/(c-a)≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0三、1、调和平均数:hn=n/(1/a1+1/a2+...+1/an)2、几何平均数:gn=(a1a2...an)^(1/n)3、算术平均数:an=(a1+a2+...+an)/n4、平方平均数:qn=√(a1^2+a2^2+...+an^2)/n这四种平均数满足hn≤gn ≤an≤qn的式子即为均值不等式。

妙用均值不等式求多元函数的最值

妙用均值不等式求多元函数的最值

妙用均值不等式求多元函数的最值
均值不等式是数学家们发现的一种更加神奇的等式,它是非常重要的数学课题,它可以用来求解多元函数的最值。

均值不等式可以表述为一个总和不大于等于一个乘积的等式,即,有f(x1,x2,...,xn),的n个变量,满足下面的等式:
f(x1,x2,...xn) ≤ f(x1,y1) + f(x2,y2)...+ f(xn,yn)
其中,其中y1,y2,...,yn分别是x1,x2,...,xn的函数值。

当把f(x1,y1)+…+f(xn,yn)扩大到一个大小为n的数组时,可以用均值不等式求多元函数的最值。

一般地,当多元函数满足一定的条件时,可以用均值不等式求解多元函数的最小值。

一般地,均值不等式是研究多元函数最值这一组问题时很有用的。

它可以用来求解最小值或最大值,取决于具体函数。

例如,要在给定范围内求多元函数的最大值,可以考虑其中2个变量,x1与x2。

令y1=f(x1),y2=f(x2),用均值不等式来求解:
f(x1,x2)≤f(x1,y1) +f(x2,y2),取两边的最大值并求出 f(x1,x2) 的最大值。

总之,均值不等式是一种比较神奇的不等式,它可以被用来求解多元函数的最小值或最大值,这在数学分析考试中非常有用。

它可以帮助考生们高效地求解出多元函数的最优解,简化复杂的数学题目,有助于同学们取得理想的得分。

均值不等式应用(技巧)

均值不等式应用(技巧)

均值不等式应用(技巧)一.均值不等式1. 定理:若a ,b R ∈,则22a b 2ab +≥,222b a ab +≤,ab b a 2≥+,22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当a=b 时取等号)常用结论:①y=b a b a22a b a b+≥+≤-或②2a b 112a b +≤≤≤+(a ,b R +∈ ) 2.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式的应用

均值不等式的应用

均值不等式的应用发布时间:2023-01-11T05:28:28.797Z 来源:《中小学教育》2022年第16期8月作者:杨琳琳[导读] “均值不等式”是基本不等式之一,杨琳琳3 山东省诸城第一中学 262200摘要:“均值不等式”是基本不等式之一,在解决高等数学问题中发挥着重要作用。

它不仅是高中数学课的重要内容,而且近年来在大学入学考试中也引起了人们的注意。

它是证明不等式及其各种最大值的重要依据和方法,利用变异灵活和条件约束的特点,可以在许多领域得到广泛应用并发挥积极作用。

正确应用“均值不等式”是数学教师的一个重要研究课题。

关键词:均值不等式;高中数学;应用说明引言:“均值不等式”作为不等式的一种类型,在整个中等教育中得到了应用,并在高等教育中确立了自己的地位。

为以前无法解决的问题找到了新的解决方案,证明了“均值不等式”的价值。

数学教师可以在理论和教育实践中进行探索和研究,并在数学教学过程中合理运用,帮助高中生探索、认识和理解知识,感悟学习,培养良好的思维能力。

目前,一些数学教师在教学工作中没有很好地利用均值不等式的知识。

因此,教师需要进行综合分析,制定合理的教学方案,总结教学经验,最大限度地发挥利用“均值不等式”的作用和价值。

1.应用均值不等式的技巧1.1 拆分方法已知的结构被分割,在等号成立的条件下,总和(乘积)被凑成定值。

在解决问题的过程中,需要注意的是,使用第n个均值不等式的前提是有n个和或积项(注意:在高级阶段只需要n=2或n=3)。

有时一个问题中可能没有n个项,因此可以把一个或多个项被拆开,形成n 个项,以便为使用均值不等式创造背景。

1.2 匹配方法另一种常见的使用不等式的方法是巧妙地添加不具备使用均值不等式条件的关系式,同样用来创造使用均值不等式的环境。

例如,如果方程的形式是a+b,而ab不是固定的,可以考虑只增加类似项,使之成为a+c-c+b。

请注意,增加项与“积为定值”情况相一致。

二维均值不等式的证明

二维均值不等式的证明

二维均值不等式的证明1. 引言嘿,大家好!今天咱们要聊聊一个听上去很高深,但其实挺有趣的数学概念——二维均值不等式。

别担心,虽然名字长得让人觉得有点“吓人”,但是我保证,咱们会用轻松的方式来理解它,像喝茶一样悠闲。

想想,如果数学能像喝茶那样简单,那该多好啊!所以,放松心情,跟我一起来探讨吧。

2. 二维均值不等式的基本概念2.1 什么是二维均值不等式?首先,我们得搞明白什么是二维均值不等式。

简单来说,它就是关于两个变量的平均值之间的一种关系。

就像你在吃饭时,菜品的味道和米饭的分量,怎么搭配才能让你觉得更好吃。

均值不等式告诉我们,这种搭配也有其数学的道理。

如果我们有两个数,假设是 ( a ) 和 ( b ),那么它们的均值 ( M ) 就是 ( (a + b) / 2 )。

而二维均值不等式则是说,对于某些特定的情况,两个数的某种组合会比简单的均值要大或者小。

想象一下,在生活中,两个好朋友一起出去吃饭,结果一个人点了好多好吃的,另一个只点了个凉拌菜,那总得有一个人“出头”,对吧?2.2 生活中的例子我们再来想想,生活中是不是有类似的例子呢?比如说,假设你和朋友去看电影,你们都买了爆米花。

结果发现,朋友的爆米花是大桶装,而你只是小杯的。

这时候,朋友的快乐值肯定要高一点,这就是一种“均值”的体现。

通过这种生活中的小故事,我们能更好地理解均值不等式的意义。

3. 二维均值不等式的证明过程3.1 证明的直观理解好了,既然我们已经有了一些基础的理解,接下来就是进入核心——证明。

别紧张,证明其实就像是做一道菜,需要一步步来,不急不躁。

首先,我们可以假设有两个非负数 ( x ) 和 ( y ),这两个数可以代表任何东西,比如说你今天的心情和明天的计划。

接着,我们用这两个数的均值来构建一个不等式,这样就能看到它们之间的关系。

具体来说,我们要验证的是,( frac{x+y{2 ) 这个均值应该大于等于 ( sqrt{xy ),也就是这两个数的几何均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档