药用天然高分子材料
天然药用高分子
药用天然高分子摘要:随着材料科学的高速发展,人们对疾病的认识越来越深刻、明了,对天然药物的利用价值越来越看重,对药用天然高分子的研究也迎来了自己的高速发展的时期。
本文主要对药用天然高分子的种类、结构、性质以及利用情况、发展前景进行陈述关键字:药用天然高分子结构种类利用前景一、常见药用天然高分子简介1、药用天然高分子认识:药用高分子材料(polymers for pharmaceuticals):具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料,而药用天然高分子是指来源于自然界中的,在药品的生产和制造加工工程中使用的高分子材料的总称。
它包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料。
应用药物缓释技术,通过医用高分子材料包覆在药物表面,当然药物不是成块状的,而是很小的。
有高分子材料的保护,药物在短时间内不会被身体吸收,而是随血液流动到特定区域,当到达之后药物表面的高分子材料已经溶解到血液中,最终随体液排出。
而药物能够有针对性的治疗病患处而作为包装材料,应满足以下要求:(1)保证药品质量特性和成分的稳定;要根据药品及制剂的特性来选用不同的包装材料。
首先,药品包装材料必须具有安全、无毒、无污染等特性;其次,药品包装材料必须具有良好的物理化学和微生物方面的稳定性,在保质期内不会分解老化,不吸附药品,不与药品之间发生物质迁移或化学反应,不改变药物性能。
(2)适应流通中的各种要求;药品生产出后需要经过储存、运输等各个流通环节才能达到患者手中,每个环节的气候条件、流通周期、运输方式、装卸条件等各不相同甚至有很大的差异。
因此,药品的包装材料还要与流通环境相适应。
既要有一定的耐热性、耐寒性、阻隔性等物理性能,以满足流通区域中的温度、湿度变化的要求;又要有一定的耐撕裂、耐压、耐戳穿、防跌落等机械性能,以防止装卸、运输、堆码过程中的各种形式的破坏和损伤。
(3)具有一定的防伪功能和美观性;为防止假冒伪劣药品、保证药品的纯正,药品包装材料应具有一定的防伪能力,患者通过包装材料可以方便的辨别药品的真假。
药用高分子之纤维素
第四章 药用天然高分子材料
第
1.化学反应性
纤维素的一些重要性质
纤维素原料经磨碎、压碎
二 节
2.氢键的作用
或强烈压缩时,纤维素可发 生降解,结果聚合度下降, 机械降解后的纤维素比氧化、
纤
3.吸湿性
水解或热降解的纤维素具有 更大的反应能力。<机械降
素
4.溶胀性
解后的纤维素除了分子中的
纤 剂的助悬剂。 素 3.用作片剂干性粘合剂的浓度为5%。-20%,
崩解剂浓度为5%-15%,助流剂浓度为1%-2%,
维 但不得用作注射剂或吸入剂辅料,因可致肉芽肿。 在食品工业中可作为无热量食品的添加剂。
精选ppt
17
第四章 药用天然高分子材料
二、微晶纤维素
第 (一)结构与制法 植物纤维是千百万微细纤维所组成,在高倍电子显微
上是以氢键形式存在,氢键的破裂和
二
2.氢键的作用
重新生成对纤维素的性质有很大影响,而 在许多情况下对其反应能力也有影响,氢
节
键破裂,生成游离羟基数量多,其吸湿性
纤
3.吸湿性
增加,市售粉状纤维素在相对湿度为70% 时,其平衡含水量在8%-12%。由X-射线
素
4.溶胀性
衍射的研究表明,纤维素吸水后和再经干 燥,二者的X-射线衍射图没有改变,说明
二 镜下可见微细纤维存在2种不同结构区域,一是结晶区,
节
另一是无定形区。微晶纤维素的聚合度约为220,分子 量约为36000,其结构式同纤维素,但其在水中的分散
纤 性、结晶度和纯度等与机械纤维素不同。 微晶纤维素(MC)的制法如下:将由细纤维所制得的
素 α-纤维素,用25ml盐酸在105℃煮沸15min,去无定形
药用天然高分子
热凝胶化和昙点
热凝胶化和昙点是水溶性非离子型纤维素衍生 物的重要特征,这种特征表现为为聚合物溶解 度不随温度升高而升高。将聚合物溶液加热, 当其高过低临界溶液温度时,聚合物能从溶液 中分离出来,此时称为昙点。
液晶的形成
(一)醋酸纤维素
结构与性质
–醋酸纤维素(CA)是部分乙酰化的纤维素,含乙 酰基(CH3CO)29%~48%。
a.具有良好的黏合性、可压性、促进崩解和溶出性能,且其崩 解作用不受崩解液PH的影响;
b.改善药物溶出作用,有利于生物利用度的提高;
c.改善成粒性能,加水后有适度黏着性,故适于流化床制料, 高速搅拌制粒,并有利于粒度均匀,成粒容易。
值得注意的是,采用预胶化淀粉作为直接压片的干 燥黏合剂,应尽量不用或少用(用量不可超过0.5%) 硬脂酸镁为润滑剂,以免产生软化效应,影响片剂 的硬度。
四、羧甲基淀粉钠(CMS-Na)
1、来源与制法
又称为乙醇酸钠淀粉,为聚α-葡萄糖的羧甲基醚。 含钠量低于10%,取代度为0.5。系由淀粉在碱存在 下与一氯醋酸作用制得。
2、性质 CMS-Na能分散于水,不溶于其他有 机溶剂。具有较强的吸水性及吸水膨胀性,在 水中的体积能膨胀300倍。 3、应用
–醋酸纤维素与纤维素相比,耐热性提高,不易燃烧, 吸湿性变小,电绝缘性提高。
–醋酸纤维素或二醋酸纤维素比三醋酸纤维素更易溶 于有机溶剂。醋酸纤维素的乙酰基含量下降,亲水 性增加,水的渗透性增加,三醋酸纤维素含乙酰基 含量最高,熔点最高,限制了水的渗透。
应用:
–醋酸纤维素和二醋酸纤维素常供药用,缓释和控释 包衣材料多用后者。二醋酸纤维素不溶于水、乙醇、 碱溶液,溶于丙酮、氯仿、醋酸甲酯和二氧六环等 有机溶剂,溶液有良好的成膜性能。
药用高分子材料-高分子材料在药物制剂中的应用
缩聚反应
缩聚反应是合成高分子材 料的重要方法,通过缩合 反应形成高分子链。
共聚反应
共聚反应是将两种或多种 单体进行聚合,生成具有 不同结构和性能的高分子 材料。
药用高分子材料的加工技术
溶解与混合
将高分子材料溶解在适当的溶剂中,与其他药物成分混合均匀。
干燥与除湿
去除高分子材料中的水分和溶剂,保证其质量和稳定性。
04
药用高分子材料的安全性与 评价
药用高分子材料的安全性评价
安全性评价原则
确保药用高分子材料在使用过程中对患者的安全性,避免因材料本 身引发的不良反应或潜在风险。
安全性测试
对药用高分子材料进行全面的安全性测试,包括急性毒性、慢性毒 性、致突变性、致敏性等方面的评估。
临床数据支持
收集并分析药用高分子材料在临床应用中的数据,以评估其长期安全 性。
水溶性
根据药物制剂的需求,药用高分子材料应具有适当的水溶性,以便于 药物的溶解和分散。
粘附性
对于某些药物制剂,如口腔贴片、鼻腔喷雾等,药用高分子材料应具 有较好的粘附性,以保证药物能够较长时间地停留在作用部位。
药用高分子材料的应用领域
口服给药制剂
注射给药制剂
药用高分子材料可用于制造片剂、胶囊剂 、颗粒剂等口服给药制剂,以提高药物的 稳定性和生物利用度。
分类
根据其来源和性质,药用高分子材料可分为天然高分子材料和合成高分子材料两大类。天然高分子材料如淀粉、 纤维素、壳聚糖等,合成高分子材料如聚乙烯吡咯烷酮(PVP)、聚丙烯酸树脂等。
药用高分子材料的基本性质
生物相容性
药用高分子材料应具有良好的生物相容性,不引起免疫排斥反应和毒 性反应。
稳定性
药用高分子材料应具有良好的化学稳定性和热稳定性,以确保药物制 剂在储存和使用过程中的有效性。
药用高分子材料
药用高分子材料
药用高分子材料是一种具有广泛应用前景的新型材料,它在医药领域具有重要
的意义。
药用高分子材料是指在药物制剂中作为载体、包装材料或者药物本身的高分子材料。
它具有良好的生物相容性、生物降解性、可控释放性和多功能性等特点,因此在药物制剂领域具有重要的应用价值。
首先,药用高分子材料在药物制剂中作为载体具有重要作用。
通过将药物载入
高分子材料中,可以提高药物的稳定性、降低毒性、延长药物的作用时间。
例如,聚乳酸-羟基乙酸共聚物(PLGA)是一种常用的药用高分子材料,它可以作为微球、纳米粒等载体,用于控制释放药物,提高药物的生物利用度。
其次,药用高分子材料在药物包装领域也具有重要作用。
药物包装材料需要具
有良好的阻隔性能、稳定性和生物相容性,以保护药物免受外界环境的影响。
药用高分子材料可以作为药物包装材料,例如聚乙烯醇、聚己内酯等,它们可以有效地保护药物,延长药物的保质期,确保药物的安全性和有效性。
此外,药用高分子材料还可以作为药物本身。
一些高分子材料本身具有药物活性,例如聚乙二醇-聚乳酸共聚物(PEG-PLA)可以作为抗癌药物,具有良好的抗
肿瘤活性。
这种药物既可以作为载体,也可以作为药物本身,具有双重作用。
总的来说,药用高分子材料具有重要的应用前景和发展空间。
它在药物制剂中
作为载体、包装材料或者药物本身,都具有重要的作用。
随着科学技术的不断发展,相信药用高分子材料将会在医药领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。
药用高分子材料
药用高分子材料药用高分子材料是一类应用于医药领域的特殊高分子材料。
它们具有良好的生物相容性、可控释放性和生物可降解性等特点,在医疗器械、药物传递系统和组织工程等方面有着广泛的应用。
以下将介绍一些常见的药用高分子材料及其应用。
1. 聚乳酸(PLA)和聚乳酸-羟基乙酸共聚物(PLGA):聚乳酸和PLGA是最常用的药用高分子材料之一。
它们具有良好的生物相容性和生物降解性,可用于制备缝合线、药物载体和组织工程支架等。
此外,由于它们的可良好可控释放性,它们也被广泛应用于药物缓释系统,如微球、纳米颗粒和纳米纤维等。
2.玻尿酸(HA)和聚乙二醇(PEG):玻尿酸是一种天然多糖,具有良好的生物相容性和生物活性。
它可用于制备软骨修复材料、皮肤填充剂和药物传递系统等。
聚乙二醇是一种具有良好生物相容性的合成高分子材料,可用于改善药物的稳定性、增加其溶解度,并延长药物的半衰期。
3.聚酯和聚酰胺:聚酯和聚酰胺是常用的生物降解高分子材料。
它们可用于制备缝线、填充剂和组织工程支架等,在骨科、牙科和整形外科等领域得到广泛应用。
此外,它们还可以通过改变化学结构和物理性质来调控材料的生物可降解性和机械性能,以适应不同的医疗需求。
4.明胶和胶原蛋白:明胶和胶原蛋白是一种具有良好生物相容性和生物活性的天然高分子材料。
它们可用于制备组织工程支架、药物载体和伤口愈合材料等。
此外,由于其结构与人体组织相似,它们在医学成像和细胞培养等方面也有着重要的应用。
除了以上几种常见的药用高分子材料外,还有许多其他类型的药用高分子材料被用于特定的医疗应用,如聚己内酯(PCL)、聚碳酸酯(PC)和聚乳酸-联谷氨酸共聚物(PLLA-Glu)等。
随着科技的不断发展,药用高分子材料还将有更广阔的应用前景,并为医学领域的进步做出贡献。
药用高分子材料论文
药用高分子材料论文药用高分子材料是一类在医学领域中具有广泛应用前景的新型材料。
它们具有良好的生物相容性、可降解性和可控释放性,因此被广泛应用于药物传递、组织工程、医用器械等领域。
本文将从药用高分子材料的特点、应用、研究现状和发展趋势等方面进行论述。
首先,药用高分子材料具有良好的生物相容性。
生物相容性是衡量材料在生物体内是否引起免疫排斥和毒性反应的重要指标。
药用高分子材料可以与生物体组织良好地相容,不会引起明显的免疫排斥反应,因此在医学领域中得到了广泛应用。
例如,可降解聚乳酸材料被用于制备缝合线、修复骨折等医疗器械,其生物相容性得到了充分验证。
其次,药用高分子材料具有可降解性。
可降解性是指材料在生物体内可以被自然降解为无害的物质,不会对生物体造成持久的影响。
这种特性使得药用高分子材料在药物传递领域具有独特优势。
例如,可降解的聚乙烯醇-聚乳酸共聚物被广泛用于制备药物缓释微球,可以实现药物的持续释放,提高药物的疗效和降低毒副作用。
另外,药用高分子材料具有可控释放性。
可控释放性是指药物可以在一定时间内以可控的速率从材料中释放出来。
这种特性使得药用高分子材料在药物传递系统中可以实现精确的药物释放,提高药物的生物利用度。
例如,通过改变材料的孔隙结构和表面性质,可以实现对药物释放速率的调控,从而实现药物的持续释放和定向释放。
在当前的研究中,药用高分子材料的应用领域不断拓展,研究重点逐渐从材料本身向材料与药物的相互作用、材料的结构与性能之间的关系等方面转移。
同时,随着生物医学工程和组织工程等新兴领域的发展,对药用高分子材料的需求不断增加,这也催生了一大批新型药用高分子材料的研究和开发。
未来,随着医学技术和材料科学的不断发展,药用高分子材料必将迎来更广阔的应用前景。
我们相信,在不久的将来,药用高分子材料将会在医学领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。
综上所述,药用高分子材料具有良好的生物相容性、可降解性和可控释放性等特点,在医学领域具有广泛的应用前景。
药用高分子材料
常用的增溶剂与乳化剂包括表面 活性剂、油脂、脂肪酸等。
04
05 药用高分子材料的安全性 与评价
安全性评估方法
01
02
03
04
急性毒性试验
通过观察高分子材料对实验动 物的急性毒性反应,评估其安
全性。
亚急性毒性试验
观察高分子材料对实验动物长 期毒性反应,评估其安全性。
慢性毒性试验
观察高分子材料对实验动物的 长期毒性反应,评估其安全性
以及其在体内的药效和代谢行为。
法规与监管
02
随着新技术的出现和应用,需要制定相应的法规和标准,以确
保药用高分子材料的安全性和有效性。
跨学科合作
03
需要加强药学、化学、生物学、医学等领域的跨学科合作,共
同推动药用高分子材料的发展和创新。
感谢您的观看
THANKS
04 药用高分子材料在药物制 剂中的应用
药物载体
药物载体是药用高分子材料在药物制剂中的重要应用 之一。它能够将药物包裹起来,保护药物免受环境影
响,同时提高药物的稳定性和生物利用度。
输标02入题
药物载体可以控制药物的释放速度,实现药物的缓释 或控释,从而减少服药次数,提高患者的依从性。
01
03
常用的药物载体材料包括脂质体、纳米粒、微球等。
常用的药物控释材料包括生物降解高 分子材料和不可降解高分子材料。
药物稳定剂与保护剂
药物稳定剂与保护剂是利用药 用高分子材料来提高药物的稳 定性和保护药物免受环境因素
影响的制剂。
药物稳定剂能够减缓药物的氧 化、水解等降解反应,延长药
物的保质期和药效时间。
药物保护剂能够将药物包裹在 稳定的微环境中,减少药物与 外界的接触,降低药物的物理 和化学不稳定性。
药用高分子材料
1.高分子材料:高分子化合物材料。
高分子化合物,简称高分子,是分子量很高的一类化合物。
常用高分子的分子量高达104~106。
2.药用高分子材料:药品生产和制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装贮运高分子材料。
药用高分子辅料:指能将药理活性物质制备成药物制剂的各种高聚物。
3药用辅料的作用:在药剂制备过程中有利于成品的加工;加强药剂稳定性,提高生物利用度或病人的顺应性;有助于从外观鉴别药剂;增强药剂在贮藏或应用时的安全和有效。
4.辅料和药用高分子材料的比较:A相同点:辅料与药用高分子辅料都是主药以外的另一种材料,但又是制剂中必不可少的辅助材料。
B不同点:辅料包括制剂中所有用到的气液固材料,含义比药用高分子材料广,但它不具备药理活性;药用高分子材料包括高分子药物,侧重于天然、半天然、合成大分子液体和固体材料应用于现代制剂中。
5.高分子化合物(简称高分子):是指分子量很高的一类化合物。
分子量在104以上.由许多相同的、结构简单的单元(unit)通过共价键(covalent bond)重复键接而成的化合物。
6.单体(monomer):合成聚合物的低分子的原料。
重复单元(repeating unit):大分子链上重复出现的、最小基本单元(分子式中括号内的部分)。
7.结构单元(structural unit):单体在大分子链中形成的单元。
习惯上,将形成结构单元的分子称为单体8 a有机高聚物;碳链高聚物:主链纯为碳原子构成 .杂链高聚物:主链中含有碳原子及氧、氮、硫、磷等原子b 元素有机聚合物:主链结构中不含碳原子,而是由硅、硼、铝、钛等原子和氧原子构成c无机高聚物:主链和侧链结构中均无碳原子,一般呈现规则交联的面型结构或体型结构9.PVC-聚氯乙烯PE-聚乙烯PMMA-聚甲基丙烯酸甲酯PP-聚丙烯PC-聚碳酸酯聚酰胺(尼龙)10.高分子的聚集态有晶态和非晶态之分的晶态比小,高聚物分子的晶态的有序程度差很多,存在着很多缺陷。
药用天然高分子材料
老化作用的防止与利用
在生产上为了防止淀粉的老化作用,采用高温糊化,同时进行激烈搅拌,使淀粉分子充分分散,但必须严格控制加热时间及搅拌条件,使淀粉糊液保持一定的粘度。 淀粉发生凝沉作用,可使食品品质下降,但有时也可利用淀粉的凝沉作用制造各类制品,如我国粉丝的制造,就是利用含直链淀粉高的淀粉(如绿豆、豌豆等),通过糊化、凝沉、干燥等步骤制成。
(3) 有的药物具有不良臭味、苦涩味,甚至有些具有较强的刺激性,影响该制剂的应用,特别是对于儿童和老人,将其制成包合物可使不良臭味、苦味减轻或消除。
(4) 用-环糊精包合挥发油,可使其粉末化,制成散剂、颗粒剂、片剂、硬胶囊剂等剂型,不仅便于生产,而且可使剂量准确,利于保存和携带。
-1,6苷键
-1,4-苷键
支链淀粉
支链淀粉构象示意图
1.淀粉粒的比重约为1.5,不溶于冷水,但吸湿性很强——淀粉制造工业的理论基础 所谓水磨法,就是利用这一性质。先将原料打碎成糊 (若原料为玉米一类籽粒粮则必须先行浸泡,然后湿磨破坏组织,使其成糊),除去蛋白质及其它杂质,再使淀粉在水中沉淀析出 2.直链淀粉溶于热水(60-80度),支链淀粉不可溶。(可用于分离二者)
(三)、淀粉的性质
3.淀粉的糊化
淀粉在水中经加热后出现膨润现象,继续加热,成为溶液状态,这种现象称为糊化,处于这种状态的淀粉称为-淀粉。
表2-5 几种谷物淀粉粒的糊化温度
淀粉种类
糊化温度范围(℃)
糊化开始温度(℃)
大米
58~61
58
小麦
65~67.5
65
玉米
64~72
64
高粱
69~75
69
二、糊精
(一) 来源与制法
淀粉
水解
04天然药用高分子材料(4)
应用
新型优良的薄膜包衣材料
• 肠溶衣 (HP 55、HP 50)
- 二氯甲烷/甲醇 1:1 - 乙醇/水 0.8:0.2 - 水分散体 缓释颗粒
(二) HPMCAS
制备:HPMC + 醋酸酐&无水琥珀酸 性质:
COOH CH2 CH2 COOH
与 HPMCP 相似,溶于 pH5.0-7.1 以上的缓 冲液; 稳定性较HPMCP好;
盐酸地尔硫卓定位释药胶囊
盐酸地尔硫卓+辅料
混悬液
喷于蔗糖微丸
CAP溶液 包衣 装胶囊 小肠下端或结肠释药
二、纤维素醚类
CMC-Na、CCNa、CMC-Ca 甲基纤维素 MC 乙基纤维素 EC 羟丙甲纤维素 HPMC 羟丙基纤维素 HPC 羟乙基纤维素 HEC
(一)羧甲基纤维素钠CMC-Na 制法:碱纤维+ClCH2COOH—CMC-Na 取代度0.6-0.8 性质 • 溶解性:易溶于水,不溶于有机溶剂; • 粘度:与分子量、pH值有关; • 触变性
醋酸纤维素或二醋酸纤维素 溶 溶 溶 溶 溶 溶 溶
应用: 三醋酸纤维素:肾透析膜、透皮吸收制剂 载体; 二醋酸纤维素:制备微孔滤膜的常用材料
醋酸纤维素:控释制剂的骨架材料、渗透
泵膜材、包衣材料(水分散体)。
• 渗透泵片
吲哚美辛
糖粉、糊精、淀粉 压片 醋酸纤维溶液 包衣
打孔 0.7mm
应用
缓释骨架材料:稀释剂、粘合剂
薄膜包衣材料
- 缓释片3—10%,不受pH值影响 - 普通片1-3% - 水分散体:Surlease & Aquacoat
微囊囊材
固体分散物载体,适用对水敏感的药物
药用高分子材料ppt课件
整理版课件
24
药用高分子
乙烯基尿嘧啶是最简单的尿嘧啶单体,能在引发 作用下聚合形成水溶性聚合物,它能像天然核酸那样 彼此间通过氢键缔合形成高分子络合物,有良好的抗 肿瘤作用。
CH2 CH n ON
HN
[ CH2 CH]n ON
HN
整理版课件
25
药用高分子
用甲基富马酰氯与5-氟尿嘧啶(5-Fu)反应得 到单体,均聚物和共聚物都具有抗肿瘤活性。
能通过排泄系统排除体外。
整理版课件
11
药用高分子
(3) 对于导入方式进入循环系统的药物-体内包埋以及注射用 药物的载体或者是高分子药物,由于会进入血液系统,故
要求是水溶性或亲水性的、生物可降解的、能被人体吸收
或排出体外、具有抗凝血性并且不会引起血栓的高分子材
料,作为体内包埋药物的载体还应有一定的持久性;
整理版课件
13
药用高分子
3.1 高分子化药物 3.1.1 低分子药物高分子化的优点
低分子药物与高分子化合物结合后,起医疗作用 的仍然是低分子活性基团,高分子仅起了骨架或载体 的作用。但越来越多的事实表明,高分子骨架并不是 惰性的,它们对药理基团有着一定的活化和促进作用。
整理版课件
14
药用高分子
高分子载体药物有以下优点:能控制药物缓慢 释放,使代谢减速、排泄减少、药性持久、疗效提 高;载体能把药物有选择地输送到体内确定部位, 并能识别变异细胞;稳定性好;释放后的载体高分 子是无毒的,不会在体内长时间积累,可排出体外 或水解后被人体吸收,因此副作用小。
S
D
T 输 送 用 基 团
S
D
S
连
药
接
物
E
药用高分子材料四大类型PPT课件
02
药用高分子材料的四大类 型
天然高分子材料
天然高分子材料是从自然界中获取的高分子材料,如淀粉、纤维素、壳聚糖等。
天然高分子材料具有良好的生物相容性和可降解性,常用于药物载体和组织工程领 域。
天然高分子材料的缺点是稳定性较差,易受微生物侵蚀和环境因素的影响。
合成高分子材料
合成高分子材料是通过化学合 成制备的高分子材料,如聚乙 烯、聚丙烯、聚氯乙烯等。
随着药物传输技术的发展,高分子材料在药物载体方面的应用将更加 广泛,为新型药物的开发提供更多可能性。
提高药物稳定性
高分子材料可以作为药物的稳定剂,提高药物的稳定性和延长药物的 有效期。
靶向药物传输
通过高分子材料的修饰和改性,实现药物的靶向传输,提高药物的疗 效并降低副作用。
生物可降解性
发展可生物降解的高分子材料,减少药物残留和环境污染。
药用高分子材料四大类 型PPT课件
目录 CONTENT
• 药用高分子材料概述 • 药用高分子材料的四大类型 • 药用高分子材料的生产工艺与质
量控制 • 药用高分子材料的发展前景与展
望
01
药用高分子材料概述
药用高分子材料的定义
药用高分子材料是指在药物制剂中用作辅料或载体的高分子 化合物。这些高分子化合物具有良好的生物相容性和药理性 能,能够提高药物的稳定性、延长药物的作用时间、降低药 物的副作用等。
药用高分子材料在药物制剂中起到关键作用,是现代药物制 剂的重要组成部分。
药用高分子材料的应用领域
第一季度
第二季度
第三季度
第四季度
口服给药系统
药用高分子材料在口服 给药系统中作为药物载 体、粘合剂、崩解剂等 ,能够提高药物的生物 利用度、稳定性以及患 者的顺应性。
天然药用高分子材料及其衍生物
显色 原理: 淀粉和糊精分子都具有螺旋结构,每6个葡萄糖基组成的 螺旋内径与(I2.I -)直径大小匹配,当与碘试液作用时, (I2.I-)进入螺旋通道,形成有色包结物. 螺旋结构长,包结的(I2.I-)多,颜色加深 直链-兰色 支链-紫红 加热-螺旋圈伸展成线性-颜色褪去 冷却-螺旋结构恢复-颜色重现
纤维素是杆物细胞壁的主要成分,构成杆物组织的基础。
纤维素都是由D-葡萄糖单体缩聚而成的一个直链高分子,而且都是以-1,4-葡萄糖苷键的形式连结起来的。 分子式:(C6H10O5)n n=10000
-1,4-苷键
纤维素的成键特征
纤维素的结构
~0.02%
~37%
~63%
半缩醛羟基(苷羟基)
是广泛应用的崩解剂,系淀粉的羧甲基醚,水性羧甲基的存在,使淀粉分子内及分子间氢键减弱.结晶性减小,轻微的交联结构降低了它的水溶性,从而在水中易分散并具溶胀性.吸水后体积可增加300倍。目前国内外均有商品出售。
2 羟乙基淀粉
(1 )用作冷冻时血红细胞的保护剂
01
防止红细胞冷冻和溶解过程溶血;
02
体内支链淀粉羟乙基化后,抵抗淀粉酶;
硬脂酸镁(<0.5%)润滑剂-软化效应
02
α-淀粉-全部预胶化-只做黏合剂
03
预胶化淀粉
04
Γ淀粉
05
淀粉加水高压改性
06
糊精
07
片剂胶囊剂-稀释剂
08
片剂-黏合剂-释放性能差,干扰主药含量测定
09
口服液体制剂或混悬剂-增稠剂
10
二 淀粉衍生物
羧甲基淀粉钠
A
羟乙基淀粉
B
交联淀粉
C
1 羧甲基淀粉钠
药用高分子材料学ppt课件
感谢您的观看
THANKS
药用高分子材料学ppt 课件
目录 CONTENT
• 引言 • 药用高分子材料的性质与要求 • 药用高分子材料的制备与加工 • 药用高分ቤተ መጻሕፍቲ ባይዱ材料在药物制剂中的
应用 • 药用高分子材料的安全性与评价 • 药用高分子材料的未来展望与挑
战
01
引言
药用高分子材料的定义与分类
总结词
介绍药用高分子材料的定义,以及按照来源、合成方 法和功能进行的分类。
提高药物的稳定性
某些高分子材料可以作为药物 的保护层,防止药物在储存和 运输过程中发生氧化、水解等 反应,从而提高药物的稳定性 。
改善药物的释放行为
通过使用不同类型和不同分子 量的高分子材料,可以调节药 物的释放速度和释放模式,实 现药物的定时、定量、定位释 放。
药用高分子材料在注射制剂中的应用
用作药物载体和稳定剂
04
药用高分子材料在药物制 剂中的应用
药用高分子材料在口服制剂中的应用
药用高分子材料作为药物 载体
用于改善药物在体内的溶解度 、稳定性和生物利用度。例如 ,利用高分子材料包裹药物, 以实现缓释或控释效果,减少 服药次数和剂量,提高患者的 依从性。
改善药物口感和口感持久 性
通过使用高分子材料,改善药 物口感,使其更易于被患者接 受。同时,高分子材料还可以 增加药物口感的持久性,提高 患者用药的满意度。
表面处理与修饰
对高分子材料表面进行修饰,以提高其生物相容性和稳定性。
药用高分子材料的质量控制
化学结构
确保药用高分子材料的化学结构符合预定要求,无杂质和降解产 物。
物理性质
控制药用高分子材料的物理性质,如粒径、形态、流动性、吸湿性 和稳定性等。
2药用天然高分子材料
⑥水解性 a.酸水解 与淀粉(特别是直链淀粉)分子中苷键(α-1,4-苷键)在酸性条件下 水解相比,纤维素分子中苷键要稳定的多。后者需要在浓酸(常用 浓硫酸或浓盐酸)催化或较高温度条件下,才能与水作用,形成相 应的降解产物。其机理可能是纤维素分子构象(见下图)中,前一 个吡喃葡萄糖基的1位氧(具孤对电子)与后一个吡喃葡萄糖基4位 羟基氢形成分子内氢键缔合,使苷键原子处于相对封闭状态,结 果在水解时氢质子不易接近苷键氧原子,需要破坏这部分氢键即 在更为激烈的条件才能使纤维素的β-1,4-苷键开裂。
1
(2)性质 ①化学反应性 纤维素分子中每个葡萄糖单元均有3个醇羟基,纤维素分子中 存在的大量羟基对纤维素的性质有决定性的影响,它们可以发生 氧化、醚化、酯化反应,分子间氢键,吸水润胀,接枝共聚等。 羟基的反应活性与其羟基类型有关。以酯化为例,伯醇羟基的反 应速度最快。 ②氢键的作用 纤维素大分子中存在大量的羟基,它们可以在纤维素分子内 或分子间形成缔合氢键,也可以与其他分子(如溶剂水及其他极 性物质 )形成氢键。一般来说,纤维素中结晶区内的羟基都已经 形成氢键,而在无定形区,则有少量没有形成氢键的游离羟基, 所以水分子可以进入无定形区,与分子链上的游离羟基形成氢键 ,发生膨化作用。当分子中纤维素氢键的破裂和重新生成时,对 纤维素物料的性质如吸湿性、溶解度以及反应能力等都有影响。
7
(2)纤维素的物理结构改性 ①纤维素的物理结构改性与粉状纤维素 将植物纤维材料纤维浆,用17.5%NaOH(或24%KOH)溶液在 20℃处理,不溶解的部分(称α-纤维素)中包括纤维浆中的纤维素 与抗碱的半纤维素,用转鼓式干燥器制成片状,再经机械粉碎 即得粉状纤维素,又称纤维素絮。 粉状纤维素呈白色,无臭,无味,具有纤维素的通性,不同细 度的粉末的流动性和堆密度不一,国外有多种商品规格,其大小 从35-300μm不等,或呈粒状,在相对湿度为60%时,平衡吸湿量 大都在10%以下,特细的规格,吸湿量较大。粉状纤维素的聚合 度约为500,相对分子质量约为2.43×105,不含木素、鞣酸和树 脂等杂质。 粉状纤维素(powdered cellulose)美国、英国、欧洲及日本定形区,链分子中的羟基只是部分的形成氢键, 还有部分是游离的,这部分游离的羟基,易与极性水分子形成氢 键缔合,产生吸湿(水)作用。纤维素吸水后干燥的失水过程,称 为解吸。纤维素吸水后再干燥的失水量,与环境的相对湿度有关, 纤维素在经历不同湿度的环境后,其平衡含水量的变化存在滞后 现象。即吸附时的吸着量低于解吸时的吸着量,如下图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多糖及其衍生物
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的结构 • 一级结构:单体
a-D-吡喃葡萄糖
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的结构 • 一级结构:键接方式 I
还原端
n
- nH2O
酶
直链淀粉:由a-D-吡喃葡萄糖通过1,4-糖苷键连 接成的聚合物分子。直链淀粉含有一个还原端(半 缩醛)。
✓ 按照其化学组成和结构单元:
• 植物源; • 动物源; • 藻类等微生物源
✓ 按照加工制备方法来:
• 天然高分子; • 生物发酵或酶催化合成的高分子; • 天然高分子衍生物三大类
概述
➢ 天然药用高分子材料的特点:
✓ 基本性能:作为传统的填充辅料而言,天然药用高分子材料一般具有性能稳定、 成膜性好、价格低廉等特点;
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的结构
• 二级结构:支链淀粉
※ 聚合度约105-106,分子 量约数千万至上亿。呈 树枝状分支结构。主链 ,支链均成不同程度, 长短不一的螺旋。流体 力学半径仅为20-75 nm 左右,呈现高密度线团 构象。
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的结构 • 三级结构(聚集态结构)__淀粉粒
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的性质
• 一般物性
※ 淀粉的糊化:
* 糊化:在过量水中,淀粉加热至60~80℃时,颗粒可逆地吸水膨胀,至某一温 度时,颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,这种现 象称为淀粉的糊化,发生糊化所需的温度称为糊化温度。
* 糊化过程的本质:糊化 的本质是高分子的溶胀 溶解现象——先溶胀后 溶解,加热破坏结晶。
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的结构
• 二级结构:直链淀粉
※ 聚合度约103,分子量约数 十万。直链卷曲成螺旋管状 构象,每6个葡萄糖单元组 成螺旋的一个螺距,在螺距 内部只有氢原子,羟基位于 螺旋管外侧。C2和相邻糖 基C3位羟基形成氢键,螺 与螺间形成分子内氢键维持 螺旋构象的稳定。流体力学 半径约10-20 nm。
• 一般物性
※ 形态与物性常数: * 淀粉为白色结晶性粉末,形状和大小与来源有关,一般呈球状或多角形, 平均粒径大小为10~15µm,堆密度0. 462 ml-1,实密度0. 658 ml,比表面积 0.5~0. 72m2.g-1。 * 流动性不良,流动速度为10.8~11.7g/s。 * 淀粉在干燥处且不受热时,性质稳定。
• 一般物性
※ 淀粉的吸湿与解吸:
* 淀粉中含水量受空气湿度和温度变化而改变。在一定的相对湿度和温度条 件下,淀粉吸收水分与释放水分达到平衡,此时淀粉所含的水分称平衡水 分。
* 用作稀释剂和崩解剂的淀粉,宜用平衡水分小的玉米淀粉。
* 淀粉中存在的水,分为自由水和结合水两种状态。自由水是保留在物体团 粒间或孔隙内,仍具有普通水的性质,随环境湿度的变化而变化。这种水 与吸附它的物质只是表面接触,它具有生理活性,可被微生物利用。结合 水是指不再具有普通水性质,温低低于-25℃也不会结冰,不能被微生物利 用。排除这部分水,就有可能改变物质的物理性质。
※ 支链淀粉与支链淀粉一 超分子相互作用组装成 淀粉粒。淀粉粒具有类 似洋葱的环状结构,有 的可以看到明显的环纹 和轮纹,各环共同围绕 的中心称为粒心。
淀粉粒
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的结构 • 三级结构(聚集态结构)__淀粉粒
※ 直链淀粉和支链淀粉的侧链 趋于平行排列,相邻羟基间 经氢键结合形成散射状晶束 。晶束间区域的分子排列杂 乱,形成无定型区。
第四章 药用天然高分子材料
概述 多糖及其衍生物 蛋白质类药用天然高分子及其衍生物
概述
➢ 药用天然高分子材料的定义:来自于植物、动物和藻类,经提取、分 离和改性加工等制备的可供药物制剂作辅料的高分子。
➢ 药用天然高分子材料的分类:
✓ 按照其化学组成和结构单元:
• 多糖类:糖苷键连接,醚氧键,如,纤维素 • 蛋白质类:肽键连接,酰胺键,如,胶原蛋白 • 核酸类:酯键连接,如,DNA • 其它类:无特定组成单元的药用天然高分子的统称
※ 淀粉的溶解性、含水量与氢键作用力: * 淀粉不溶于冷水、乙醇和乙醚等 * 在常温常压下,淀粉约含有10-20%的平衡水分,但却不显示潮湿而呈干 燥的粉末状,这主要是因为淀粉分子中葡萄糖单元存在的众多醇羟基与水 分子相互作用形成氢键的缘故。
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的性质
* 影响糊化温度(过程) 的因素:搅拌时间、搅 拌速度、酸碱度和添加 的化合物等
1,4-糖苷键
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的结构 • 一级结构:键接方式 II
1,6-糖苷键
支链淀粉:支链淀粉是一种高度分支的大分子,主链上分出支链,各葡萄 糖单位之间以α-1,4糖苷键链接构成它的主链,支链通过α-1,6糖苷键与主链 相连,分支点的α-1,6糖苷键占总糖苷键的4%~5%。支链淀粉也含有且仅含 有一个还原端。
✓ 水溶性:它们有的溶于水,有的难溶或不溶于水; ✓ 生物降解性:有的可被消化吸收,有的则在人体内不能降解; ✓ 生物相容性:口服情况下,天然高分子相对小分子化合物具有较低的毒性和较高
的生物相容性,但在静脉注射的情况下生物活性强,如靶向性及免疫原性,这些 生物活性既可能是毒性的来源也可能是天然高分子自身药理活性的基础。 ✓ 应用范围:天然高分子在制药剂中应用范围广泛,天然药用高分子及其衍生物可 作为填充辅料用于传统的药物剂型中,亦可作为功能性材料用于新型现代剂型和 给(输)药系统,甚至可作为具有药理活性的药物,如核酸及抗体类药物。
※ 支链淀粉分子庞大,可穿过 多个晶区及无定型区,为淀 粉颗粒起到骨架作用
淀粉粒的超大分子结构模型 A 直链淀粉;B 支链淀粉
淀粉粒的偏光显微镜照片
原淀粉与淀粉凝沉物的XRD谱图 a.原淀粉; b. φ(正戊醇)= 4% ; c. φ(正戊醇)= 9.6%)
➢ 淀粉及其衍生物__淀粉
✓ 淀粉的结构与性质__淀粉的性质