高考数学三视图练习题

合集下载

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。

高考数学12三视图

高考数学12三视图

三视图
1.某四面体三视图如图所示,该四面体四个面的面积中最大的是( )
A .8
B .62
C .10
D .82
2.某三棱锥的三视图如图所示,该三梭锥的表面积是( )
A .2865+
B .3065+
C .56125+
D .60125+
3.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是_____;若该几何体的所有顶点在同一球面上,则球的表面积是_____.
4.在空间直角坐标系Oxyz 中,已知(2,0,0),(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )
A .123S S S ==
B .21S S =且23S S ≠
C .31S S =且32S S ≠
D .32S S =且31S S ≠ 5.一个多面体的三视图如图所示,则该多面体的表面积为( )
A .213+
B .183+
C .21
D .18
4
34
正(主)视图侧(左)视图
俯视图。

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。

(完整word版)高考数学三视图题型总结,推荐文档

(完整word版)高考数学三视图题型总结,推荐文档

1 .某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+ 【答案】A 2 .一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C3 .某四棱台的三视图如图所示,则该四棱台的体积是()A.4B.14 3C.163D.6【答案】B4.某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C5.一个四面体的顶点在空间直角坐标系O xyz-中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A6.某几何体的三视图如图所示, 则其体积为___3π_____.12211正视图俯视图侧视图第5题图1121【答案】3π 7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】248.某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-9.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________43 233正视图侧视图俯视图(第12题图)【答案】12π2 .已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是()A.1cm3 B.2cm3C.3cm3D.6cm35 .将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为7 .如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A.6B.9C.12D.1813.某三棱锥的三视图如图所示,该三棱锥的表面积是()+A.2865+B.3065+C.56125D.60125+15.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是DCBA正、侧视图18. (立体几何)某几何体的三视图如图1所示,它的体积为()A.12πB.45πC.57πD.81π22.一个几何体的三视图如图所示(单位:m),则该几何体的体积________3m.36.一个几何体的三视图如图所示,则该几何体的表面积为______________.第7题图。

高二数学立体几何专题资料:三视图高考真题

高二数学立体几何专题资料:三视图高考真题

三视图真题6道(2009山东卷理)一空间几何体的三视图如图所示,则该几何体的体积为( ).A.223π+B. 423π+C.232π+D.234π+【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,所以体积为21232333⨯=所以该几何体的体积为232π+.答案:C(2009宁夏海南卷理)一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( )(A )2 (B )2 (C )2 (D )2解析:棱锥的直观图如右,则有PO =4,OD =3,由勾股定理,得PD =5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,故选.A 。

22侧(左)视图22 2正(主)视图(2009浙江卷理)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是3cm.答案:18【解析】该几何体是由二个长方体组成,下面体积为1339⨯⨯=,上面的长方体体积为3319⨯⨯=,因此其几何体的体积为18(2009辽宁卷理)设某几何体的三视图如下(尺寸的长度单位为m)。

则该几何体的体积为3m【解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 体积等于16×2×4×3=4【答案】4(2009福建卷文)如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。

则该集合体的俯视图可以是( )解析解法1 由题意可知当俯视图是A时,即每个视图是变边长为1的正方形,那么此几何体是立方体,显然体积是1,注意到题目体积是12,知其是立方体的一半,可知选C.解法2 当俯视图是A时,正方体的体积是1;当俯视图是B时,该几何体是圆柱,底面积是21424Sπππ⎛⎫=⨯=⎪⎝⎭,高为1,则体积是4π;当俯视是C时,该几何是直三棱柱,故体积是1111122V=⨯⨯⨯=,当俯视图是D时,该几何是圆柱切割而成,其体积是211144Vππ=⨯⨯=.故选C.(2008山东)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )D(A)9π(B)10π(C)11π (D)12π。

专题16 三视图-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)

专题16 三视图-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)

专题16 三视图【母题来源】2021年高考乙卷【母题题文】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【试题解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A BC D -中,12,1AB BC BB ===,,E F分别为棱11,BC BC的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF.故答案为:③④.三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.【命题意图】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【命题方向】空间几何体的结构是每年高考的热点之一,主要涉及空间几何体的表面积与体积的计算、三视图等内容.命题形式以选择题或填空题为主,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想【得分要点】1.三视图问题的常见类型及解题策略(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.2.已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.3.多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,以确保不重复、不遗漏.4.求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.5.求柱体、锥体、台体体积的一般方法(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解.①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.②割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积.因此,从一定意义上说,用割补法求几何体的体积,就是求体积的“加、减”法.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.6.求解空间几何体表面积和体积的最值问题有两个思路(1)根据几何体的结构特征和体积、表面积的计算公式,将体积或表面积的最值转化为平面图形中的有关最值,根据平面图形的有关结论直接进行判断;(2)利用基本不等式或是建立关于表面积和体积的函数关系式,然后利用函数的方法或者利用导数方法解决.7.三视图的概念①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.8.三视图的画法规则(1)正视图与俯视图的长度一致,即“长对正”;(2)侧视图和正视图的高度一致,即“高平齐”;(3)俯视图与侧视图的宽度一致,即“宽相等”.注意:能看见的轮廓线用实线表示;不能看见的轮廓线用虚线表示.9.常见几何体的三视图一、单选题1.(2021·全国高三其他模拟(理))若空间某几何体的三视图如图所示,则该几何体外接球的表面积是()A.16-B.C.24πD.6+【答案】C【分析】根据三视图,可在长方体中利用构造法还原几何体,利用长方体的对角线计算外接球的直径,进而计算表面积.【详解】据三视图分析知,该几何体是由长方体截得如下图所示几何体ABCDE ,=即为外接球的直径,外接球的表面积4624S ππ=⨯=.故选C .2.(2021·全国高三其他模拟(理))某几何体的三视图如图所示,则该几何体的表面积为()A .48+B .24+C .48+D .24+【答案】C【分析】由三视图画出几何体的直观图,然后结合已知的数据求解即可【详解】由三视图可知该几何体为如图所示的四棱锥,所以该几何体的表面积为11142646548222⨯⨯+⨯+⨯⨯⨯=+故选:C.3.(2021·四川成都市·成都七中高一月考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.43B.73C.53D.83【答案】B【分析】由几何体的三视图可知该几何体由一个长方体和一个三棱锥组成,分别求出体积即可.【详解】如图,由几何体的三视图可知该几何体由一个长方体和一个三棱锥组成,1122V =⨯⨯=长方体,111112323V =⨯⨯⨯⨯=三棱锥, 故体积17233V =+=, 故选:B.4.(2021·北京高考真题)某四面体的三视图如图所示,该四面体的表面积为( )A B .4 C .3D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213112⨯⨯⨯= 故选:A.5.(2021·河南高三其他模拟(理))某个由四棱柱和三棱柱组成的组合体的三视图如图所示,则该组合体的表面积为( )A .20+B .22+C .18+D .223【答案】A【分析】 作出几何体的直观图,结合三视图中的数据可求得几何体的表面积.【详解】该组合体的直观图如图所示,其中下底面是边长为2的正方形,所以该组合体的表面积(2421224120S =⨯⨯+⨯++⨯=+故选:A.6.(2021·宜宾市翠屏区天立学校高三其他模拟(文))我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为()A.B.40C.16+D.16+【答案】D【分析】根据三视图,还原几何体的直观图可得,该几何体的表面由两个全等的矩形,与四个全等的等腰梯形组成,根据三视图所给数据,求出矩形与梯形的面积,求和即可.【详解】由三视图可知,该刍童的直观图是如图所示的六面体1111A B C D ABCD -,图中正方体棱长为4, 1111,,,,,,,B C D A B C A D 分别是所在正方体棱的四等分点,其表面由两个全等的矩形,与四个全等的等腰梯形组成,矩形面积为248⨯=,梯形的上下底分别为2,4,梯形的高为FG =()1242⨯+=,所以该刍童的表面积为284⨯+⨯=16+ 故选:D.【点睛】观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7.(2019·吉林高三其他模拟(理))某几何体的三视图如图所示,则该几何体的表面积为( )A .94πB .66π+C .962π+ D .362π+ 【答案】B【分析】【详解】解:根据几何体的三视图转换为直观图为:该几何体为底面半径为1,高为3的圆柱的34. 故:233213212136644S πππ=⨯⋅⋅⋅+⨯⋅⋅+⨯⨯=+表.故选:B .8.(2019·吉林高三其他模拟(文))某几何体的三视图如图所示,则该几何体的体积为()A .94π B .66π+ C .3π D .34π【答案】A【分析】【详解】根据几何体的三视图转换为直观图为:该几何体为底面半径为1,高为3的圆柱体的34. 故239V 1344ππ=⨯⋅⋅=. 故选:A .9.(2021·浙江杭州市·杭州高级中学高三其他模拟)某空间几何体的三视图如图所示,则该几何体的体积为( )A .83B .163C .8D .16【答案】B【分析】根据三视图知该几何体是三棱锥且一个侧面与底面垂直,再根据椎体的体积公式,即可求出该几何体的体积.【详解】由三视图可知,该几何体为如图所示的三棱锥,其高为2,底面三角形的高为该几何体的体积为11162323⨯⨯=. 故选:B【点睛】 方法点睛:由三视图还原几何体,要弄清楚几何体的特征,把三视图中的数据、图形特点准确地转化为对应几何体中的线段长度、图形特点,再进行计算.10.(2019·安徽高三其他模拟(理))一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为()A .16B .8C .8D .8【答案】D【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的表面积.【详解】根据几何体的三视图转换为直观图为:该几何体为底面为边长为2的正方形,高为2的四棱锥体,几何体的直观图如图所示:故:A BCDE BCDE ABE ABC ACD ADE S S S S S S -=++++11222822=⨯⨯+⨯⨯=+故选:D .【点睛】本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的表面积公式的应用,主要考查运算能力和数学思维能力.11.(2021·浙江高二期末)某几何体的三视图如图,正视图和侧视图是两个全等的半圆,俯视图中圆的半径为1,则该几何体的体积为( )A .43πB .23πC .4πD .2π【分析】由三视图可知,该几何体是半径为1的半球,即可求出体积.【详解】由三视图可知,该几何体是半径为1的半球,如图, 则该几何体的体积为31421233ππ⨯⨯=. 故选:B.12.(2021·浙江金华市·高三三模)若某多面体的三视图(单位∶cm )如图所示,则此多面体的体积是( )A 3B .38cm 3 C 3 D .34cm 3【答案】D【分析】根据三视图可得该几何体为一个四棱锥,如图,即可求出体积.【详解】根据三视图还原几何体,可得该几何体为一个四棱锥,且顶点可都为一个正方体的顶点,如图粗线所示, 此多面体可看作半个正方体去掉一个三棱锥, 则此多面体的体积是334c 11222323m 2⨯-⨯⨯⨯=.13.(2020·安徽高三其他模拟)某三棱锥的三视图如图所示,该三棱锥表面上的点M、N、P、Q在三视图上对应的点分别为A、B、C、D,且A、B、C、D均在网格线上,图中网格上的小正方形的边长为1,则几何体MNPQ 的体积为()A.14B.13C.12D.23【答案】C 【分析】根据三视图可得如图三棱锥MNPQ,确定,P N位置,可得1324N MPQ F MEQV V--=⨯,即可得解.【详解】由三视图得,几何体MNPQ是一个三棱锥,且N是QF的中点,QP=34 EQ,如图,所以13331114248832 N MPQ F MEQ Q MEFV V V---=⨯==⨯⨯⨯=.故选:C.14.(2021·全国高三其他模拟(理))如图所示是某几何体的三视图,图中的四边形都是边长为a的正方形,侧视图和俯视图中的两条虚线都互相垂直,已知几何体的体积为203,则a=()A.3B C.2D【答案】C【分析】首先把三视图转换为几何体的直观图,进一步利用割补法的应用求出几何体的体积.【详解】根据几何体的三视图转换为直观图为:该几何体为一个棱长为a的正方体挖去一个底面为边长为a的长方形,高为2a 的四棱锥构成的几何体P ABCD -; 如图所示:故33215326a a V a a =-⨯-==203, 解得a =2,故选:C.二、填空题15.(2021·四川省绵阳南山中学高三其他模拟(理))一个空间几何体的主视图,侧视图是周长为8,一个内角为60︒的菱形,俯视图是圆及其圆心(如图),那么这个几何体的表面积为__________.【答案】4π【分析】由三视图还原几何体,该几何体由两个有公共底面且全等的圆锥构成,圆锥的底面直径为2,母线长度为2,可得答案.【详解】由三视图可知,该几何体由两个有公共底面且全等的圆锥构成,由主视图,侧视图是周长为8,一个内角为60︒的菱形可得,这两个圆锥的底面半径为2,母线长为2, 所以每个圆锥的底面圆的周长为2π 每个圆锥的侧面积为:12222ππ⨯⨯= 所以该几何体的表面积为224ππ⨯=故答案为:4π16.(2021·河南商丘市·高三月考(理))某三棱锥的三视图如图所示,则该三棱锥的最短棱长为___________.【分析】根据三视图还原几何体,然后计算即可.【详解】BC BD Array由图可知该三棱锥的最短棱为底面三角形的直角边即,。

高考数学母题解密专题04 三视图附答案及解析(北京专版)

高考数学母题解密专题04 三视图附答案及解析(北京专版)

专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .83.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ∉,且23S ∉B .22S ∉,且23S ∈C .22S ∈,且23S ∉D .22S ∈,且23S ∈5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .46.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.07.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A.43B.83C.4D.89.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-1D.2+1 211.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是()A .283π-B .83π-C .82π-D .23π 13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .1214.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为( )A.B.C.D.15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.23B.43C.3D.3216.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A.13B.23C.1 D.217.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.6 B.8 C.12 D.24 18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.3219.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.6420.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .23B .32C .22D .223.(2020·北京高三月考)某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为( )A 2B .2C .22D .324.(2010·北京高考真题(理))一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A.B.C.D.25.(2020·重庆市云阳江口中学校高三月考(文))某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2 B.3 C.4 D.626.(2020·北京十五中高三一模)在正方形网格中,某四面体的三视图如图所示,如果小正方形网格的边长为1,那么该四面体最长棱的棱长为()A.25B.42C.6D.43 27.(2020·北京四中高三开学考试)某四棱锥的三视图如图所示,则该四棱锥的体积为()A.23B.43C.83D.328.(2020·湖南省湖南师大附中高三月考(文))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C .3D .429.(2020·北京八中高三月考)某几何体的三视图如图所示,则该几何体的体积是( )A .13B .23C .1D .230.(2020·北京高三月考(文))某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .37cm 2B .37cm 3C .37cm 6D .37cm31.(2020·北京高三其他)某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()A.22B.23C.4D.2632.(2020·北京高三二模)某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该三棱锥的体积为()A.23B.43C.2 D.433.(2020·福建省福州第一中学高三其他(理))已知某几何体的三视图如图所示,则该几何体的体积为()A.83πB.103πC.6πD.3π34.(2020·定远县育才学校高三其他(文))某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.23B.13C.12D.3435.(2020·北京高三一模)某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积等于3的有()A.1个B.2个C.3个D.4个36.(2020·四川省泸县第一中学高三二模(理))某四棱锥的三视图如图所示,该四棱锥的表面积是()A.2025+B.1445+C.26D.1225+37.(2020·上海高三专题练习)一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m)为( )A.48+122B.48+242C.36+122D.36+24238.(2020·上海高三专题练习)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.62C.10 D.8239.(2020·南昌市八一中学高二期中(理))某几何体的三视图如图所示,则这个几何体的体积等于()A.4B.6C.8D.1240.(2020·北京高三二模)如图所示,一个三棱锥的主视图和左视图均为等边三角形,俯视图为等腰直角三角形,则该棱锥的体积为()A 23B.43C43D.3解析附后专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π【答案】C【解析】根据几何体的三视图转换为直观图为:该几何体为一个棱长为1的正方体和一个底面半径为12,高为1的半个圆柱. 如图所示:所以:V 211111()11228ππ=⨯⨯+⨯⨯⨯=+. 2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .8【答案】D 【解析】由三视图知:原几何体是一个正四棱锥,正四棱锥的底面边长为2,高为3,所以侧面的斜高为()23+1=2,所以该几何体的侧面积为1=224=82s ⨯⨯⨯. 3.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A【解析】正方体1111ABCD A B C D -中,过点1,,A E C 的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且23SD .22S ,且23S【答案】D 【解析】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:2AB BC CD AD DE =====, 22AE CE ==,22(22)223BE =+=.故选:D..5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .4【答案】B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为211421333ABCD V S PA =⋅=⨯⨯=正方形. 6.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A .1B .2C .3D .0【答案】C 【解析】由三视图还原原几何体如图,其中ABC ∆,BCD ∆,ADC ∆为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.7.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .18【答案】B【解析】 13V Sh =,1163332=⨯⨯⨯⨯,9=.8.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A .43 B .83 C .4 D .8【答案】A【解析由三视图可知,该几何体是一个三棱锥,其底面为等腰直角三角形,且腰长为2,三棱柱的高为2,所以该三棱柱的体积为114 V222323 =⨯⨯⨯⨯=.9.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B2C2-1D.2+1 2【答案】C【解析】水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为2,因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围是[1,2],因此,,A B D 皆有可能,而2112-<,11.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )A .B .C .D .【答案】B【解析】由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,1AD 在右侧的射影是正方形的对角线,1B C 在右侧的射影也是对角线是虚线.如图B . 12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是( )A .283π- B .83π-C .82π-D .23π 【答案】A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算. 由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是3218222833V ππ=-⨯⨯⨯=-.13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .12【答案】A 【解析】由三视图知,几何体是一个三棱锥1D BCD ,根据三棱锥的三视图的数据,设出三棱锥两两垂直的三条侧棱分别是4DC =,3BC =,12DD =,因此,三棱锥的体积是114324 32⨯⨯⨯⨯=.14.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()A.B.C.D.【答案】D【解析】将长方体截去一个四棱锥,得到的几何体,左向右看得到矩形,矩形对角线从左下角连接右上角,且对角线为虚线,故该几何体的侧视图为D15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A .23B .43C .3D .32【答案】D【解析】根据三视图可知,该几何体的直观图为三棱锥P ABC -,如图可知3,1,==⊥AB BC AB BC ,点P 到平面ABC 的距离为3h =11331222△=⋅⋅=⋅⋅=ABC S AB BC 所以113333322△-=⋅⋅=⋅⋅=P ABC ABC V S h 16.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A .13B .23C .1D .2【答案】C【解析】由三视图可知:原几何体为三棱柱.所以体积为:.17.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .6B .8C .12D .24【答案】B【解析】由三视图画出该三棱锥的直观图,如下图,三棱锥A BCD -中,AB ⊥底面BCD ,4AB =,BC CD ⊥,且4BC =,3CD =,所以该三棱锥的体积1114348332BCDV S AB =⋅=⨯⨯⨯⨯=. 故选:B.18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.32【答案】C【解析】由三视图可知,该几何体为三棱锥,如图,且高为3,∴该三棱锥的体积111133322V=⨯⨯=,故选:C.19.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.64【答案】B【解析】由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.⊥.则BC PC∴该几何体的表面积1(34543445)32S=⨯+⨯+⨯+⨯=.220.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+【答案】B【解析】由三视图还原几何体的直观图,如下图:可得该几何体为一个四分之一的圆柱和一个三棱锥的组合体,所以该几何体的体积21211111243223 Vππ⨯⨯=+⨯⨯⨯⨯=+.故选:B.21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +【答案】D【解析】根据三视图可知,该几何体为正四棱锥.底面积为224⨯=.侧面的高为22215+=,所以侧面积为1425452⨯⨯⨯=.所以该几何体的表面积是()2454cm +. 22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .3B .32C .22D .2【答案】A【解析】由三视图可知其直观图,。

空间几何体的结构及其三视图和直观图、表面积与体积 高考数学真题分类题库2020解析版 考点31

空间几何体的结构及其三视图和直观图、表面积与体积 高考数学真题分类题库2020解析版  考点31

考点31空间几何体的结构及其三视图和直观图、空间几何体的表面积与体积一、选择题1.(2020·全国卷Ⅰ高考文科·T3理科·T3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()【命题意图】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学运算的核心素养,是一道容易题.【解析】选C.如图,设CD=a,PE=b,则PO=B2-B2=由题意PO2=12ab,即b2-24=12ab,化简得-2·-1=0,解得=1+54(负值舍去).2.(2020·全国卷Ⅰ高考文科·T12理科·T10)已知A,B,C为球O的球面上的三个点,☉O1为△ABC的外接圆,若☉O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【命题意图】本题考查空间想象的能力和球的基本知识,注重对学生基础知识的考查和运用,主要的知识点为正弦定理和球的表面积公式.属于中档题.【解题指南】由已知可得等边△ABC的外接圆半径,进而求出其边长,得出OO1的值,根据球截面性质,求出球的半径,即可得出结论.【解析】选A.设圆O1的半径为r,球的半径为R,依题意,得πr2=4π,所以r=2,由正弦定理可得AB=2r sin60°=23,所以OO1=AB=23,根据球截面性质得OO1⊥平面ABC,所以OO1⊥O1A,R=OA=B12+12=B12+2=4,所以球O的表面积S=4πR2=64π.3.(2020·全国卷Ⅱ文科·T11理科·T10)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.3B.32C.1【命题意图】本题考查球的相关问题,意在考查学生的空间想象能力和运算求解能力.【解析】选C.设△ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O的半径为R,△ABC的边长为a,则S△ABC2可得a=3,于是r=3,由题知,球O的表面积为16π,则R=2,由R2=r2+d2易得d=1,即O到平面ABC的距离为1.【方法技巧】解答球的有关问题时,通常要用到截面圆.如图所示,设球O的半径为R,截面圆O'的半径为r,M为截面圆上任意一点,球心O到截面圆O'的距离为d,则在Rt△OO'M中,OM2=OO'2+O'M2,即R2=d2+r2.4.(2020·全国卷Ⅱ理科·T7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【命题意图】本题考查根据三视图判断点的位置,意在考查学生的空间想象能力.【解析】选A.该几何体是两个长方体拼接而成,如图所示,由图可知选A.5.(2020·全国卷Ⅲ理科·T8文科·T9)如图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【命题意图】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力.【解析】选C.根据三视图特征,在正方体中截取出符合题意的立体图形,根据立体图形可得:S△ABC=S△ADC=S△CDB=12×2×2=2,根据勾股定理可得:AB=AD=DB=22,所以△ADB是边长为22的等边三角形,根据三角形面积公式可得:S△ADB=12AB·AD·sin60°=12×(22)2×3=23,所以该几何体的表面积是:3×2+23=6+23.(2020·新高考全国Ⅰ卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处水平面所成的角为()A.20°B.40°C.50°D.90°【命题意图】本题考查直线与平面所成的角、线面垂直的定义以及数学文化,考查学生的空间想象能力,体现了直观想象和数学运算等核心素养.【解析】选B.晷针与晷面垂直,而晷面与赤道所在平面平行,所以晷针与赤道所在平面垂直,进而可知晷针与OA的夹角是50°,又OA垂直点A处的水平面,则晷针与点A处的水平面所成的角为40°.6.(2020·北京高考·T4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+3B.6+23C.12+3D.12+23【命题意图】考查三视图,三棱柱的表面积.【解析】选D.底面为正三角形,其面积为3,侧面为三个全等的长方形,一个长方形的面积为2×2=4,所以表面积为12+23.7.(2020·天津高考·T5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π【命题意图】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.【解题指南】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】选C.这个球是正方体的外接球,其半径等于正方体的体对角线的一半,设外接球的半径为R,则R所以,这个球的表面积为S=4πR2=4π×32=36π.8.(2020·浙江高考·T5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6【命题意图】本题主要考查空间几何体的三视图与体积的计算,考查基本运算求解能力,体现了直观想象与数学运算等核心素养.【解析】选A.根据三视图可知,该空间几何体为三棱柱与三棱锥组合而成,底面积为1,三棱柱高为2,三棱锥高为1,故几何体体积为1×2+13×1×1=73.二、填空题9.(2020·全国卷Ⅲ理科·T15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.【命题意图】考查几何体内切球问题以及球的体积公式的运用,考查学生的空间想象能力以及计算能力.【解析】方法一:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边上的中点,设内切圆的圆心为O,由于AM=32-12=22,故S△ABC=12×2×22=22,设内切圆半径为r,则S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×3+3+2×r=22,解得r其体积:V=43πr3.方法二:分析知圆锥内半径最大的球应为圆锥的内切球,如图,由题可知圆锥的母线长为BS=3,底面半径为BC=1,高SC=B2-B2=22,不妨设该内切圆与母线BS切于D点,令OD=OC=r,则由△SOD∽△SBC,可得O B=B B,即=13,得r此时V=43πr3.10.(2020·全国卷Ⅲ文科·T16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.【命题意图】考查几何体内切球问题以及球的体积公式的运用,考查学生的空间想象能力以及计算能力.【解析】方法一:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边上的中点,设内切圆的圆心为O,由于AM=32-12=22,故S△ABC=12×2×22=22,设内切圆半径为r,则S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×3+3+2×r=22,解得r=2,其体积:V=43πr3=2π.方法二:分析知圆锥内半径最大的球应为圆锥的内切球,如图,由题可知圆锥的母线长为BS=3,底面半径为BC=1,高SC=B2-B2=22,不妨设该内切圆与母线BS切于D点,令OD=OC=r,则由△SOD∽△SBC,可得O B=B B,即22-=13,得r=2,此时V=43πr3=2π.答案:2π11..(2020·浙江高考·T14)已知圆锥的侧面积为2π,且侧面展开图为半圆,则底面半径为.【命题意图】本题主要考查空间几何体的侧面展开问题,考查空间想象能力,体现了直观想象与数学运算等核心素养.【解析】题中圆锥展开图如图,半径为2,所以半圆弧长为2π,即圆锥底面圆周长为2π,所以底面半径为1.答案:112.(2020·江苏高考·T9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm3.【命题意图】本题主要考查正棱柱、圆柱的体积计算,要求学生要熟记公式.【解析】记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,圆柱的体积为V2,则V1=6×12×2×2×sin 60°×2=123(cm3),V2=π×(0.5)2×2=π2(cm3),所以V=V1-V2=123-π2(cm3).答案:123-π2。

高考数学立体几何部分典型例题

高考数学立体几何部分典型例题

(一)1.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ).A.92+14π B.82+14πC.92+24π D.82+24π命题意图:考察空间几何体的三视图,三视图为载体考察面积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析由三视图可知:原几何体为一个长方体上面放着半个圆柱,其中长方体的长宽高分别为5,4,4,圆柱的底面半径为2,高为5,所以该几何体的表面积为:2+1S=5×4+2×4×4+2×5×4+π× 2 2π×2×5×2=92+14π.答案 A2.(本小题满分12 分)命题人:贺文宁如图所示,平面ABCD⊥平面BCEF,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.(12 分)(1)求证:AF∥平面CDE;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值;(3)求直线EF 与平面ADE 所成角的余弦值.命题意图:线面平行的位置关系,线面角、二面角的求法易错点:(1)直接建系,不去证明三条线两两垂直(2)数据解错(3)线面角求成正弦值(1)证明法一取CE 的中点为G,连接D G,FG.∵BF∥CG 且BF=CG,∴四边形BFGC 为平行四边形,则B C∥FG,且BC=FG.∵四边形ABCD 为矩形,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 分∴BC∥AD 且BC=AD,∴FG∥AD 且FG=AD,∴四边形AFGD 为平行四边形,则A F∥DG.∵DG? 平面CDE,AF?平面CDE,∴AF∥平面CDE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3 分(2)解∵四边形ABCD 为矩形,∴BC⊥CD,又∵平面ABCD⊥平面BCEF,且平面ABCD∩平面BCEF=BC,BC⊥CE,∴DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分为y 轴,CD 所在直线为z为x 轴,CE 所在直线以C 为原点,CB 所在直线,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分轴建立如图所示的空间直角坐标系根据题意我们可得以下点的坐标:→=(-2,0,0), A(2,0,4),B(2,0,0),C(0,0,0),D (0,0,4),E(0,4,0),F(2,2,0),则AD→=(0,4,-4). DE设平面ADE 的一个法向量为n1=(x1,y1,z1),则→AD·n1=0,→DE·n1=0,∴-2x=0,4y1-4z1=0,取z1=1,得n1=(0,1,1).∵DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→∴平面BCEF 的一个法向量为C D=(0,0,4).设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cosα=→CD·n1→|CD | |·n1|4==4× 22,2因此,平面ADE 与平面BCEF 所成锐二面角的余弦值为22 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.9 分(3)解根据(2)知平面ADE 的一个法向量为→=(2,-2,0),n1=(0,1,1),∵EF∴cos 〈E→F,n1〉=1〉=→EF·n1-2 1=,⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分=-→ 22 2× 2|EF | |·n1|设直线E F 与平面ADE 所成的角为θ,→则cos θ=|sin 〈EF,n1〉|=3 ,2因此,直线E F 与平面ADE 所成角的余弦值为32 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12分(二)2.某几何体三视图如图所示,则该几何体的体积为( ).ππA.8-2πB.8-πC.8-2 D.8-4命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析这是一个正方体切掉两个1圆柱后得到的几何体,且该几何体的高为2,V 4=2 ×π×1×2=8-π,故选B.3-12答案 B3.(本小题满分12 分)命题人:贺文宁如图所示,四边形ABCD 是边长为 1 的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段A N 上是否存在点S,使得ES⊥平面AMN?若存在,求线段A S的长;若不存在,请说明理由.命题意图:异面直线所成角;利用空间向量解决探索性问题易错点:(1)异面直线所成角容易找错(2)异面直线所成角的范围搞不清(3)利用空间向量解决探索性问题,找不到突破口解(1)如图以D为坐标原点,建立空间直角坐标系D-xyz.依题意得 D (0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),1B(1,1,0),N(1,1,1),E( ,1,0),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分2→1所以NE=(-,0,-1),2→AM=(-1,0,1).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分设直线N E 与AM 所成角为θ,→→则c osθ=|cos〈N E,AM 〉|⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3 分1 →→=|N E ·A M |=→→|N E||·A M |25× 22=1010 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分10所以异面直线N E 与AM 所成角的余弦值为10 .(2)如图,假设在线段AN 上存在点S,使得ES⊥平面AMN,连接A E.→→→因为A N=(0,1,1),可设AS=λAN=(0,λ,λ),→1又EA=( ,-1,0),2→→→1所以ES=EA+AS=( ,λ-1,λ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分2由ES⊥平面AMN,得→→E S·A M=0,→→E S·A N=0,即12-+λ=0,λ-1 +λ=0,→→1 1 1故λ=,此时AS=(0,,2),| A S|=2 222 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分经检验,当A S=2时,ES⊥平面AMN. 2在线段A N 上存在点S,使得ES⊥平面AMN,此时A S=22 .⋯⋯⋯⋯⋯⋯12 分(三)1.一个多面体的三视图如图所示,则该多面体的体积为( ).23 47A. 6 C.6 D.73 B.命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析如图,由三视图可知,该几何体是由棱长为2 的正方体右后和左下分别截去一个小三棱锥得到的,其体积为1 1 23V=2×2×2-2××1×1×1=× 3 . 32答案 A4.(本小题满分12 分)命题人:贺文宁如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P 分别为A B,CB 的中点,M 为底面△OBF 的重心.(1)求证:平面ADF⊥平面CBF;(2)求证:PM∥平面AFC;(3)求多面体CD-AFEB 的体积V.命题意图:面面垂直,线面平行的判定,空间几何体的体积易错点:(1)判定时条件罗列不到位失分(2)求体积时不会分割(1)证明∵矩形ABCD 所在的平面和平面ABEF 互相垂直,且CB⊥AB,∴CB⊥平面ABEF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分又AF? 平面ABEF,所以CB⊥AF,又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=3,2 2 2∴AF +BF =AB ,得AF⊥BF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分BF∩CB=B,∴AF⊥平面CFB,又∵AF? 平面ADF;∴平面ADF⊥平面CBF . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分(2)证明连接O M 延长交B F 于H,则H为B F 的中点,又P为C B 的中点,∴PH∥CF,又∵CF? 平面AFC,PH ?平面AFC,∴PH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6 分P O,则P O∥AC,连接又∵AC? 平面AFC,PO?平面AFC,PO∥平面AFC,PO∩PH=P,∴平面POH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分又∵PM? 平面POH,∴PM∥平面AFC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.8 分(3)解多面体CD-AFEB 的体积可分成三棱锥C-BEF 与四棱锥F-ABCD 的体积之和在等腰梯形ABEF 中,计算得EF=1,两底间的距离E E1=3 2 .1 1 1所以V C △BEF×CB=-BEF=×1×3S×3 23×1=23,121 V F-ABCD=3S1矩形ABCD×EE1=×2×1×33=23,⋯⋯⋯⋯⋯⋯⋯10 分35 3所以V=V C-BEF+V F-ABCD=12 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12 分(四)5.一个几何体的三视图如图所示,则该几何体的体积为________.命题意图:考察空间几何体的三视图,三视图为载体考察体积解析由题意可得,几何体相当于一个棱长为2的正方体切去一个角,角的相邻2 22三条棱长分别是1,2,2,所以几何体的体积为8- 3 .=3答案22 36.(本小题满分12 分)命题人:贺文宁在平行四边形ABCD 中,AB=6,AD=10,BD=8,E 是线段A D 的中点.如图所示,沿直线BD 将△BCD 翻折成△BC′D,使得平面BC′D⊥平面ABD.(1)求证:C′D⊥平面ABD;(2)求直线BD 与平面BEC′所成角的正弦值.命题意图:空间几何体的“翻折”问题,考察学生空间想象能力和知识迁移能力易错点:把平面图形转化为空间几何体,数据错误,垂直平行关系错误(1)证明平行四边形ABCD 中,AB=6,AD=10,BD=8,沿直线BD 将△BCD翻折成△BC′D,可知C′D=CD=6,BC′=BC=10,BD=8,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分即BC′2=C′D2+BD2∴C′D⊥BD.又∵平面BC′D⊥平面ABD,平面BC′D∩平面ABD=BD,C′D? 平面BC′D,∴C′D⊥平面ABD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)解由(1)知C′D⊥平面ABD,且CD⊥BD,如图,以D为原点,建立空间直角坐标系D-xyz.则D(0,0,0),A(8,6,0),B(8,0,0),C′(0,0,6).⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵E 是线段A D 的中点,→∴E(4,3,0),BD=(-8,0,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→→在平面BEC′中,BE=(-4,3,0),BC′=(-8,0,6),设平面BEC′法向量为n=(x,y,z),→∴B E·n=0,→BC′·n=0,即-4x+3y=0,-8x+6z=0,令x=3,得y=4,z=4,故n=(3,4,4).⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分设直线BD 与平面BEC′所成角为θ,则→sin θ=|cos 〈n,BD〉|=→|n·B D|→=3 4141 .|n||BD |3 41∴直线B D 与平面BEC′所成角的正弦值为41 .⋯⋯⋯⋯⋯⋯12 分。

高考数学-立体几何(含22年真题讲解)

高考数学-立体几何(含22年真题讲解)

高考数学-立体几何(含22年真题讲解)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【解析】 【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=bB 1D ,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C <90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l+2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD . 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1,因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设AB =2,则B 1(2,2,2),E (2,1,0),F (1,2,0),B (2,2,0),A 1(2,0,2),A (2,0,0),C (0,2,0), C 1(0,2,2),则EF ⃑⃑⃑⃑⃑ =(−1,1,0),EB 1⃑⃑⃑⃑⃑⃑⃑ =(0,1,2),DB ⃑⃑⃑⃑⃑⃑ =(2,2,0),DA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),AA 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2),AC ⃑⃑⃑⃑⃑ =(−2,2,0),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(−2,2,0),设平面B 1EF 的法向量为m ⃑⃑ =(x 1,y 1,z 1), 则有{m ⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ =−x 1+y 1=0m ⃑⃑ ⋅EB 1⃑⃑⃑⃑⃑⃑⃑ =y 1+2z 1=0 ,可取m ⃑⃑ =(2,2,−1),同理可得平面A 1BD 的法向量为n 1⃑⃑⃑⃑ =(1,−1,−1), 平面A 1AC 的法向量为n 2⃑⃑⃑⃑ =(1,1,0), 平面A 1C 1D 的法向量为n 3⃑⃑⃑⃑ =(1,1,−1), 则m ⃑⃑ ⋅n 1⃑⃑⃑⃑ =2−2+1=1≠0,所以平面B 1EF 与平面A 1BD 不垂直,故B 错误; 因为m ⃑⃑ 与n 2⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1AC 不平行,故C 错误; 因为m ⃑⃑ 与n 3⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1C 1D 不平行,故D 错误, 故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则VO−ABCD =13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3 B .1.2×109m 3 C .1.4×109m 3 D .1.6×109m 3【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为MN =157.5−148.5=9(m),所以增加的水量即为棱台的体积V . 棱台上底面积S =140.0km 2=140×106m 2,下底面积S ′=180.0km 2=180×106m 2, ∴V =13ℎ(S +S ′+√SS ′)=13×9×(140×106+180×106+√140×180×1012) =3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m 3).故选:C .7.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径R =3, 设正四棱锥的底面边长为2a ,高为ℎ, 则l 2=2a 2+ℎ2,32=2a 2+(3−ℎ)2, 所以6ℎ=l 2,2a 2=l 2−ℎ2所以正四棱锥的体积V =13Sℎ=13×4a 2×ℎ=23×(l 2−l 436)×l 26=19(l 4−l 636), 所以V ′=19(4l 3−l 56)=19l 3(24−l 26),当3≤l ≤2√6时,V ′>0,当2√6<l ≤3√3时,V ′<0, 所以当l =2√6时,正四棱锥的体积V 取最大值,最大值为643, 又l =3时,V =274,l =3√3时,V =814,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是[274,643]. 故选:C.8.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径r 1,r 2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径r 1,r 2,所以2r 1=3√3sin60∘,2r 2=4√3sin60∘,即r 1=3,r 2=4,设球心到上下底面的距离分别为d 1,d 2,球的半径为R ,所以d 1=√R 2−9,d 2=√R 2−16,故|d 1−d 2|=1或d 1+d 2=1,即|√R 2−9−√R 2−16|=1或√R 2−9+√R 2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.9.【2022年北京】已知正三棱锥P−ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.3π4B.πC.2πD.3π【答案】B【解析】【分析】求出以P为球心,5为半径的球与底面ABC的截面圆的半径后可求区域的面积.【详解】设顶点P在底面上的投影为O,连接BO,则O为三角形ABC的中心,且BO=23×6×√32=2√3,故PO=√36−12=2√6.因为PQ=5,故OQ=1,故S的轨迹为以O为圆心,1为半径的圆,而三角形ABC内切圆的圆心为O,半径为2×√34×363×6=√3>1,故S的轨迹圆在三角形ABC内部,故其面积为π故选:B10.【2022年浙江】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.22πB.8πC.223πD.163π【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm,圆台的下底面半径为2cm,所以该几何体的体积V=12×43π×13+π×12×2+13×2×(π×22+π×12+√π×22×π×12)=22π3cm3.故选:C.11.【2022年浙江】如图,已知正三棱柱ABC−A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F−BC−A的平面角为γ,则()A.α≤β≤γB.β≤α≤γC.β≤γ≤αD.α≤γ≤β【答案】A【解析】【分析】先用几何法表示出α,β,γ,再根据边长关系即可比较大小.【详解】如图所示,过点F作FP⊥AC于P,过P作PM⊥BC于M,连接PE,则α=∠EFP,β=∠FEP,γ=FMP,tanα=PEFP =PEAB≤1,tanβ=FPPE=ABPE≥1,tanγ=FPPM≥FPPE=tanβ,所以α≤β≤γ,故选:A.12.【2022年新高考1卷】(多选)已知正方体ABCD−A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接B 1C 、BC 1,因为DA 1//B 1C ,所以直线BC 1与B 1C 所成的角即为直线BC 1与DA 1所成的角,因为四边形BB 1C 1C 为正方形,则B 1C ⊥ BC 1,故直线BC 1与DA 1所成的角为90°,A 正确;连接A 1C ,因为A 1B 1⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,则A 1B 1⊥BC 1, 因为B 1C ⊥ BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1C , 又A 1C ⊂平面A 1B 1C ,所以BC 1⊥CA 1,故B 正确; 连接A 1C 1,设A 1C 1∩B 1D 1=O ,连接BO ,因为BB 1⊥平面A 1B 1C 1D 1,C 1O ⊂平面A 1B 1C 1D 1,则C 1O ⊥B 1B , 因为C 1O ⊥B 1D 1,B 1D 1∩B 1B =B 1,所以C 1O ⊥平面BB 1D 1D , 所以∠C 1BO 为直线BC 1与平面BB 1D 1D 所成的角,设正方体棱长为1,则C 1O =√22,BC 1=√2,sin∠C 1BO =C 1O BC 1=12,所以,直线BC 1与平面BB 1D 1D 所成的角为30∘,故C 错误;因为C 1C ⊥平面ABCD ,所以∠C 1BC 为直线BC 1与平面ABCD 所成的角,易得∠C 1BC =45∘,故D 正确. 故选:ABD13.【2022年新高考2卷】(多选)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1【答案】CD【解析】【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.【详解】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.14.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2)6403√3.【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.15.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√55.【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=√32,BD=√DE2+BE2=√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD ⊥平面PAD , 又因PA ⊂平面PAD , 所以BD ⊥PA ;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃑⃑⃑⃑⃑ =(−1,0,√3),BP ⃑⃑⃑⃑⃑ =(0,−√3,√3),DP ⃑⃑⃑⃑⃑ =(0,0,√3), 设平面PAB 的法向量n⃑ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃑ =(√3,1,1), 则cos〈n ⃑ ,DP ⃑⃑⃑⃑⃑ 〉=n ⃑ ⋅DP ⃑⃑⃑⃑⃑⃑|n ⃑ ||DP ⃑⃑⃑⃑⃑⃑ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.16.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CDBD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB ≅△CDB ,所以∠FBA =∠FBC , 由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH //DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.17.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE .以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃑⃑⃑⃑⃑ =(−1,0,1),AB ⃑⃑⃑⃑⃑ =(−1,√3,0), 设平面ABD 的一个法向量为n⃑ =(x,y,z ), 则{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =−x +z =0n ⃑ ⋅AB⃑⃑⃑⃑⃑ =−x +√3y =0,取y =√3,则n ⃑ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃑⃑⃑⃑⃑ =(1,√34,34), 所以cos⟨n ⃑ ,CF ⃑⃑⃑⃑⃑ ⟩=n ⃑ ⋅CF⃑⃑⃑⃑⃑|n ⃑ ||CF⃑⃑⃑⃑⃑ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃑ ,CF⃑⃑⃑⃑⃑ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.18.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值. 【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃑⃑⃑⃑⃑⃑ =(1,1,1),BA ⃑⃑⃑⃑⃑ =(0,2,0),BC ⃑⃑⃑⃑⃑ =(2,0,0), 设平面ABD 的一个法向量m ⃑⃑ =(x,y,z),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =x +y +z =0m ⃑⃑ ⋅BA ⃑⃑⃑⃑⃑ =2y =0,可取m⃑⃑ =(1,0,−1),设平面BDC 的一个法向量n ⃑ =(a,b,c),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =a +b +c =0m ⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =2a =0, 可取n⃑ =(0,1,−1), 则cos〈m ⃑⃑ ,n ⃑ 〉=m⃑⃑⃑ ⋅n ⃑ |m ⃑⃑⃑ |⋅|n ⃑ |=√2×√2=12, 所以二面角A −BD −C 的正弦值为√1−(12)2=√32.19.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE //PD ,即可得证; (2)过点A 作Az //OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE //PD ,又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE //平面PAC(2)解:过点A 作Az //OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃑⃑⃑⃑⃑ =(3√3,1,32),AB ⃑⃑⃑⃑⃑ =(4√3,0,0),AC ⃑⃑⃑⃑⃑ =(0,12,0), 设平面AEB 的法向量为n ⃑ =(x,y,z ),则{n ⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3x +y +32z =0n ⃑ ⋅AB ⃑⃑⃑⃑⃑ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃑ =(0,−3,2);设平面AEC 的法向量为m⃑⃑ =(a,b,c ),则{m ⃑⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3a +b +32c =0m ⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃑⃑ =(√3,0,−6);所以cos⟨n⃑ ,m⃑⃑ ⟩=n⃑ ⋅m⃑⃑⃑|n⃑ ||m⃑⃑⃑ |=√13×√39=−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为1113;20.【2022年北京】如图,在三棱柱ABC−A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【解析】【分析】(1)取AB的中点为K,连接MK,NK,可证平面MKN//平面CBB1C1,从而可证MN//平面CB B1C1.(2)选①②均可证明BB1⊥平面ABC,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.(1)取AB的中点为K,连接MK,NK,由三棱柱ABC −A 1B 1C 1可得四边形ABB 1A 1为平行四边形, 而B 1M =MA 1,BK =KA ,则MK //BB 1,而MK ⊄平面CBB 1C 1,BB 1⊂平面CBB 1C 1,故MK //平面CBB 1C 1, 而CN =NA,BK =KA ,则NK //BC ,同理可得NK //平面CBB 1C 1, 而NK ∩MK =K,NK,MK ⊂平面MKN ,故平面MKN //平面CBB 1C 1,而MN ⊂平面MKN ,故MN //平面CBB 1C 1, (2)因为侧面CBB 1C 1为正方形,故CB ⊥BB 1, 而CB ⊂平面CBB 1C 1,平面CBB 1C 1⊥平面ABB 1A 1, 平面CBB 1C 1∩平面ABB 1A 1=BB 1,故CB ⊥平面ABB 1A 1, 因为NK //BC ,故NK ⊥平面ABB 1A 1, 因为AB ⊂平面ABB 1A 1,故NK ⊥AB ,若选①,则AB ⊥MN ,而NK ⊥AB ,NK ∩MN =N , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB ⊥MK ,所以AB ⊥BB 1,而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA ⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z), 则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB ⃑⃑⃑⃑⃑ 〉|=42×3=23. 若选②,因为NK //BC ,故NK ⊥平面ABB 1A 1,而KM ⊂平面MKN , 故NK ⊥KM ,而B 1M =BK =1,NK =1,故B 1M =NK , 而B 1B =MK =2,MB =MN ,故△BB 1M ≅△MKN , 所以∠BB 1M =∠MKN =90°,故A 1B 1⊥BB 1, 而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z),则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n ⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB⃑⃑⃑⃑⃑ 〉|=42×3=23.21.【2022年浙江】如图,已知ABCD 和CDEF 都是直角梯形,AB//DC ,DC//EF ,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,二面角F −DC −B 的平面角为60°.设M ,N 分别为AE,BC 的中点.(1)证明:FN ⊥AD ;(2)求直线BM 与平面ADE 所成角的正弦值. 【答案】(1)证明见解析; (2)5√714.【解析】 【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC =BC ,再根据二面角的定义可知,∠BCF =60∘,由此可知,FN ⊥BC ,FN ⊥CD ,从而可证得FN ⊥平面ABCD ,即得FN ⊥AD ;(2)由(1)可知FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,求出平面ADE 的一个法向量,以及BM ⃑⃑⃑⃑⃑⃑ ,即可利用线面角的向量公式解出. (1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,AB//DC,CD//EF,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,由平面几何知识易知,DG =AH =2,∠EFC =∠DCF =∠DCB =∠ABC =90°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt △EGD 和Rt △DHA ,EG =DH =2√3, ∵DC ⊥CF,DC ⊥CB ,且CF ∩CB =C ,∴DC ⊥平面BCF,∠BCF 是二面角F −DC −B 的平面角,则∠BCF =60∘, ∴△BCF 是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴ FN ⊥BC ,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD ,而BC ∩CD =C ,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD ∴FN ⊥AD . (2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,设A(5,√3,0),B(0,√3,0),D(3,−√3,0),E(1,0,3),则M (3,√32,32),∴BM ⃑⃑⃑⃑⃑⃑ =(3,−√32,32),AD ⃑⃑⃑⃑⃑ =(−2,−2√3,0),DE⃑⃑⃑⃑⃑ =(−2,√3,3) 设平面ADE 的法向量为n⃑ =(x,y,z) 由{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =0n ⃑ ⋅DE ⃑⃑⃑⃑⃑ =0 ,得{−2x −2√3y =0−2x +√3y +3z =0 ,取n ⃑ =(√3,−1,√3),设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n⃑ ,BM ⃑⃑⃑⃑⃑⃑ 〉|=|n⃑ ⋅BM ⃑⃑⃑⃑⃑⃑⃑ ||n⃑ |⋅BM ⃑⃑⃑⃑⃑⃑⃑ |=|3√3+√32+3√32|√3+1+3⋅√9+34+94=√3√7⋅2√3=5√714.1.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( )A B C D 【答案】C 【解析】 【分析】根据异面直线所成角的定义,取AB 的中点F ,则∠ECF (或其补角)为直线1A G 与CE 所成角,再解三角形即可得解. 【详解】如图所示:,取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则∠ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =EF =3EC =,由余弦定理得cosECF ∠==,即直线1A G 与CE 故选:C .2.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】将棱台补全为棱锥,利用等体积法求A 到面11BCC B 的距离,结合线面角的定义求AC 与平面11BCC B 所成角的大小. 【详解】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC = 由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =CD =222BC BD CD +=,所以122BCD S =⨯⨯=△A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯h = 综上,AC 与平面11BCC B 所成角[0,]2πθ∈,则1sin 2h AC θ==,即6πθ=. 故选:A3.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒ D .四面体PBCD 【答案】C 【解析】 【分析】对于A ,取BD 的中点M ,即可得到BD ⊥面PMC ,A 选项可判断对于B ,采用反证法,假设DP BC ⊥,则BC ⊥面PCD ,再根据题目所给的长度即可判断;对于C ,当面PBD ⊥面BCD 时,此时直线DP 与平面BCD 所成角有最大值,判断即可;对于D ,当面PBD ⊥面BCD 时,此时四面体PBCD 的体积有最大值,计算最大体积判断即可 【详解】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM ∴⊥BD ∴⊥面PMC ,BD PC ∴⊥ ,故A 正确 对于B ,假设DP BC ⊥,又BC CD ⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,PB BC ==1PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角 此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:111(332BCDV S PM ==⨯=,故D 正确 故选:C4.(2022·河南安阳·模拟预测(理))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( )A .2BCD .【答案】C 【解析】 【分析】根据给定条件,求出球O 半径,平面α截球O 所得截面小圆半径,圆锥底面圆半径,再求出平面α截圆锥所得的截面等腰三角形底边长及高即可计算作答. 【详解】球O 半径为R ,由34π125π36R =得52R =,平面α截球O 所得截面小圆半径1r ,由21128π5πS r ==得1r =因此,球心O 到平面α的距离1d r ===,而球心O 在圆锥的轴上,则圆锥的轴与平面α所成的角为45,因圆锥的高为1,则球心O 到圆锥底面圆的距离为132d =,于是得圆锥底面圆半径2r =,令平面α截圆锥所得截面为等腰PAB △,线段AB 为圆锥底面圆1O 的弦,点C 为弦AB 中点,依题意,145CPO ∠=,111CO PO ==,PC =AB ==所以212AB S PC =⋅=. 故选:C 【点睛】关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.5.(2022·浙江·模拟预测)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2,1BD DE ==,点P 在线段EF 上,给出下列命题:①存在点P ,使得直线//DP 平面ACF ②存在点P ,使得直线DP ⊥平面ACF③直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦④三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π 其中所有真命题的序号是( ) A .①③ B .①④C .②④D .①③④ 【答案】D 【解析】 【分析】取EF 中点推理判断①;假定DP ⊥平面ACF ,分析判断②;确定直线DP 与平面ABCD 所成角,求出临界值判断③;求出ACF 外接圆面积判断④作答.令AC BD O =,连接,FO DF ,令EF 中点为G ,连DG ,如图,依题意,O 是,BD AC 的中点,对于①,在矩形BDEF 中,//DO FG ,DO FG =,四边形DOFG 是平行四边形,直线//DG OF ,OF ⊂平面ACF ,DG ⊄平面ACF ,则//DG 平面ACF ,当P 是线段EF 中点G 时,直线//DP 平面ACF ,①正确;对于②,假定直线DP ⊥平面ACF ,由①知,DP OF ⊥,DP DG ⊥,当点P 在线段EF 上任意位置(除点G 外),PDG ∠均为锐角,即DP 不垂直于DG ,也不垂直于OF ,因此,不存在点P ,使得直线DP ⊥平面ACF ,②不正确;对于③,平面BDEF ⊥平面ABCD ,DP 在平面ABCD 内射影在直线BD 上,直线DP 与平面ABCD 所成角为PDB ∠,当点P 由点E 运动到点F 的过程中,PDB ∠逐渐减小,当P 与E 重合时,PDB ∠最大,为90EDB ∠=,max (sin )1PDB ∠=,当P 与F 重合时,PDB ∠最小,为FDB ∠,min (sin )BF PDB DF ∠==所以直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦,③正确;对于④,在ACF 中,2AC =,|AF CF ==FO sin OF FAC AF ∠==由正弦定理得ACF 外接圆直径2sin FC r FAC ==∠半径r =圆面积为298S r ππ==,三棱锥A CDE -的外接球被平面ACF 所截取的截面是ACF 外接圆, 因此三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π,④正确, 所以所有真命题的序号是①③④. 故选:D6.(2022·四川省泸县第二中学模拟预测(文))已知1O 是正方体1111ABCD A B C D -的中心O 关于平面1111D C B A 的对称点,则下列说法中正确的是( )A .11O C 与1A C 是异面直线B .11OC ∥平面11A BCD C .11O C AD ⊥ D .11O C ⊥平面11BDD B【答案】B 【解析】 【分析】根据正方体的性质、空间直线与平面的位置关系,即可对选项做出判断. 【详解】连接1A C 、1AC ,交于点O ,连接11A C 、11B D ,交于点P . 连接AC 、BD 、1A B 、1D C 、1O O .由题可知,1O 在平面11A C CA 上,所以11O C 与1A C 共面,故A 错误;在四边形11OO C C 中,11//O O C C 且11O O C C =,所以四边形11OO C C 为平行四边形. 11//O C OC ∴.OC ⊂平面11A BCD ,11O C ⊄平面11A BCD ,11O C ∴∥平面11A BCD ,故B 正确;由正方体的性质可得1111AC B D ⊥,因为1111O B O D =,所以111O P B D ⊥,又111O P AC P =,11B D ∴⊥平面111O AC , 1111B D O C ∴⊥,又11//B D BD , 11BD O C ∴⊥,而AD 与BD 所成角为45︒,所以显然11O C 与AD 不垂直,故C 错误;显然11O C 与11O B 不垂直,而11O B ⊂平面11BDD B ,所以11O C 与平面11BDD B 不垂直,故D 错误. 故选:B.7.(2022·北京·北大附中三模)已知平面,,αβγ,直线m 和n ,则下列命题中正确的是( ) A .若,m m αβ⊥⊥,则αβ∥ B .若,αγβγ⊥⊥,则αβ∥ C .若,m n m α⊥⊥,则n α∥ D .若,m n αα∥∥,则m n ∥ 【答案】A 【解析】 【分析】对于A 选项,垂直于同一条直线的两个平面互相平行;对于B 选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行; 对于C 选项,由线面垂直的性质即可判断;对于D 选项,平行于同一个平面的两条直线有可能相交、平行或异面. 【详解】选项A 正确,因为垂直于同一直线的两个平面互相平行; 选项B 错误,平面α和β也可以相交; 选项C 错误,直线n 可能在平面α内; 选项D 错误,直线m 和n 还可能相交或者异面. 故选:A.8.(2022·云南师大附中模拟预测(理))已知正方形ABCD 的边长为ABC 沿对角线AC 折起,使得二面角B AC D --的大小为90°.若三棱锥B ACD -的四个顶点都在球O 的球面上,G 为AC 边的中点,E ,F 分别为线段BG ,DC 上的动点(不包括端点),且BE ,当三棱锥E ACF -的体积最大时,过点F 作球O 的截面,则截面面积的最小值为( )A .B .2πC .32πD .89π【答案】D 【解析】 【分析】根据面面垂直的判定定理得BG ⊥平面ACD ,继而表示出三棱锥E ACF -的体积,求出x =V 取得最大值,在∠GCF 中,由余弦定理,得GF =当GF 垂直于截面时,截面圆的面积最小,继而得解. 【详解】因为正方形ABCD 的边长为4AC =.如图,由于平面ABC ⊥平面ACD ,平面ABC 平面ACD AC =,又G 为AC 边的中点,则有BG AC ⊥,所以BG ⊥平面ACD .设CF x =(0x <<,则BE =,所以三棱锥E ACF -的体积13ACF V S EG ==△2111122sin 4(22))323223AC CF ACF EG x x x ⨯∠=⨯⨯-=-,当x =时,V 取得最大值.由于GA GB GC GD ===,则球O 的球心即为G ,且球O 的半径2R =.又在△GCF中,由余弦定理,得cos GF GC CF ACF =∠=。

(完整版)高中数学3三视图课后习题(带答案)

(完整版)高中数学3三视图课后习题(带答案)

三视图课后习题1. (陕西理 5)某几何体的三视图如下图,则它的体积是2288A .3B .3C .82D .32. (全国新课标理 6)。

在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图能够为3. (湖南理 3)设图 1 是某几何体的三视图,则该几何体的体积为991218A .2B .23C .9 42D . 36 1823 正视图侧视图俯视图图 14. (广东理 7)如图 1- 3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.6 3B.9 3C.12 3D.18 3 5.(北京理 7)某四周体的三视图如下图,该四周体四个面的面积中,最大的是A.8B.62C.10D.826.(安徽理 6)一个空间几何体的三视图如下图,则该几何体的表面积为(A) 48(B) 32+8(C) 48+8(D) 807. (辽宁理 15)一个正三棱柱的侧棱长和底面边长相等,体积为2 3,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.8.(天津理 10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________ m39.( 2010 湖南文数) 13. 图 2 中的三个直角三角形是一个体积为2的几何体的三视图,则 h=cm 20cm10.(2010 浙江理数)( 12)若某几何体的三视图(单位:cm)如下图,则此几何体的体积是___________ cm3 .11.( 2010 辽宁文数)( 16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.12. ( 2010辽宁理数)( 15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13. ( 2010 天津文数)( 12)一个几何体的三视图如下图,则这个几何体的体积为。

三视图练习带答案

三视图练习带答案

三视图练习1.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm ),则该三棱柱的表面积为:A .24πcm 2B.)3824(+ cm 2C .314 cm2D .318 cm22.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1 A .1 B .21C .61D .31正视图 侧视图 俯视图3.4. 为2A .324 B . 334 C. 635.一个几何体的三视图如图所示(单位长度: cm ),则此几何体的表面积是A .(80+cm 2 B. 96 cm 2C. (96+cm2D. 112 cm 2俯视图俯视图俯视图侧视图正视图侧视图正视图6.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为7. 如图,一个空间几何体的主视图和左视图都是边长为1俯视图是一个圆,那么这个几何体的侧面积...为_____2π8.用单位立方块搭一个几何体,使它的主视图和俯视图 如右图所示,则它的体积的最小值与最大值分别为( ) A .9与13 B .7与10 C .10与16 D .10与159.如图所示,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是①长方体 ②圆锥 ③三棱锥 ④圆柱A .④③②B .②①③C .①②③D .③②④10.一个几何体的三视图如图所示,则该几何体的体积等于(A) 8 + 4π3 (B) 4 + 4π3(C) 8 + 4π (D) 10π311.一个几何体的三视图如右图所示,其中正视图 和侧视图是腰长为4的两个全等的等腰直角三角形. 则该几何体的体积是 ;用 3 个这样的(甲)(乙)(丙)主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图左视图 主视图 主视图 俯视图俯视图侧视图正视图侧视图正视图俯视图几何体可以拼成一个棱长为4的正方体.12.已知一几何体的三视图如下,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 ①③④⑤ (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体; ⑤每个面都是直角三角形的四面体.13.如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为 (不考虑接触点) A . 6+3+π B . 18+3+π4 C . 18+23+π D . 32+π14.如图,水平放置的三棱柱的侧棱长和底边长均为2, 且侧棱1111AA A B C ⊥面,正视图是边长为2的正方形, 该三棱柱的左视图面积为( ). A. 4B. 32C. 22D.315. 一个空间几何体的正视图、侧视图是两个边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的体积等于( )A .1B .12C .13 D .1416. 一个几何体的三视图如右图所示(单位长度: cm),A. 2(24cm +B. 2(22cm +正视图 侧视图俯视图_ B _1_ A _1_ B_ A _ B _1 _ A _1 _ B _ A正视图俯视图C. 2(28cm +D. 2(26cm +17.如右图,一个空间几何体的主视图、左视图是周长为4一个内角为060的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为__π______.18.已知某个几何体的三视图如图(主视图中的弧线是半圆), 根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )3cm .A.π+8B.328π+C.π+12D.3212π+19.一个几何体的三视图如图所示,其中正视图与左视图都是边长为2的正三角形,则这个几何体的侧面积为 ( ) A B .2π C .3π D .4π例1 如图,下列物体的正视图和俯视图中有错误的一项是 ( )左视图主视图侧视图主视图俯视图俯视图左(侧)视图正(主)视图例 2 如图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是()①长方体;②圆锥;③三棱柱;④圆柱.A.④③②B.②①③C.①②③D.③②④以上两题都是考查最基本的三视图概念. 在理解三视图所表示的几何体中,应有必要的空间想象能力,三视图不仅可以让我们更好地把握空间几何体的性质,而且可以相互转化,即由空间几何体画出三视图,由三视图画出空间几何体,通过这样的转化,进一步培养学生的空间想象能力.斜二侧画法是画几何直观图的基础,在教学过程中,应从实际例子出发,明确画法的原理和法则.例 3 如果平面四边形水平放置直观是一个底角为45 ,腰和上底均为1(下底大于上底)的等腰梯形,那么原平面图形的面积是__________________________________.这是一个不难的问题,只要根据斜二侧画法的法则,即可作出解答,但很多学生在后来碰到这样的问题时,很难理解题目的条件,以至于无法解答,这说明在学习这个画法时就一知半解.高考解答题一般都以几何体作为载体,考查线面间的位置关系,而这个几何体完全可以利用三视图给出,这样不仅要有较好的空间想象能力,而且对三视图的概念应该理解,应用非常熟练,因此在教学过程中必须考虑到这些情况,全面提高学生的数学修养.例4 一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积(单位:cm).这是一个简单的计算题,容易弄错的地方是把图中所标的当作正三棱柱底面边长进行计算,其实是正三棱柱底面三角形的高,这就考查到了三视图的概念,如果再添加点其他元素或关系,则可以作为一个综合题进行考查.。

高二数学空间几何体的三视图与直观图试题答案及解析

高二数学空间几何体的三视图与直观图试题答案及解析

高二数学空间几何体的三视图与直观图试题答案及解析1.如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:(1)求二面角B-AC-D的余弦弦值;(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。

【答案】(1)(2)不存在【解析】(1)观察三视图,得到边长以及线面关系,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,(2)假设存在,把“ED与面BCD成45°角”作为条件,进行计算.试题解析:(1)由AH⊥面BHCD及三视图知:AH=BH=HC=1,,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,,,;(2)假设在线段AC上存在点E合题意,令E在HC上的射影为F,设(),则,矛盾。

所以,不存在(注:本题也可用向量法)【考点】二面角,线面角.2.某几何体是由直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为A.B.C.D.【答案】C【解析】设正视图正方形的边长为m,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b=m,俯视图的宽就是圆锥底面圆的直径,得到俯视图中椭圆的长轴长2a=,则椭圆的焦距,根据离心率公式得,;故选:C.【考点】1.三视图;2.椭圆的性质.3.如图,某四棱锥的三视图如图所示,则最长的一条侧棱长度为()A.B.C.D.【答案】C【解析】由三视图知:四棱锥的一条侧棱与底面垂直,且高为1,如图:SA⊥平面ABCD,AD=CD=SA=1,AB=2,∴最长的侧棱为SB=;故选:C.【考点】三视图4.如图是一个空间几何体的三视图,则该几何体的外接球的体积是()A.B.C.D.【答案】C【解析】由三视图可知,该几何体为直三棱锥,底面为等腰直角三角形,把三棱锥补成长方体,三棱锥和长方体具有相同的外接球,,因此,.【考点】球的体积.5.如图是多面体和它的三视图.(1)若点是线段上的一点,且,求证:;(2)求二面角的余弦值.【答案】(1)证明见解析;(2)【解析】(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面垂直,需证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:解:(1)由题意知AA1,AB,AC两两垂直,建立如图所示的空间直角坐标系,则A(0,0,0),A1(0,0,2),B(-2,0,0),C(0,-2,0),C1(-1,-1,2),则=(-1,1,2),=(-1,-1,0),=(0,-2,-2).(1分)设E(x,y,z),则=(x,y+2,z),=(-1-x,-1-y,2-z).(3分)=2,得E(=设平面C1A1C的法向量为m=(x,y,z),则由,得,取x=1,则y=-1,z=1.故m=(1,-1,1),=,BE⊥平面A1CC1.(6分)(2)由(1)知,平面C1A1C的法向量为m=(1,-1,1)而平面A1CA的一个法向量为n=(1,0,0),则cos〈m,n〉===,故二面角的余弦值.(12分)【考点】利用空间向量证明垂直和夹角问题.6.一个几何体的三视图如图所示,则该几何体的体积为A.2B.1C.D.【答案】C【解析】由三视图可知该几何体是一个四棱锥,其底面是一个对角线为2的正方形,高为1,故其底面面积S=×2×=2,则V=•Sh=,故选C.【考点】由三视图求面积、体积.7.右图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于()A.B.24πC.D.12π【答案】A【解析】由题意可得,直观图为底面直径为4,高为4的圆柱的一半,所以该几何体的表面积是正方形面积+圆柱侧面积的一半+圆的面积,即,故选A.【考点】由三视图求表面积.8.某几何体的三视图如图所示,其中正视图为正三角形,则该几何体的体积为 .【答案】【解析】由空间几何体的三视图可知,该几何体为平放的三棱柱,上下底面为边长是2的正三角形,高为3,所以.【考点】空间几何体的三视图、表面积和体积的计算.9.下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F为PD的中点,求证:AF⊥面PCD;(2)证明:BD∥面PEC;(3)求该几何体的体积.【答案】(1)详见解析;(2)详见解析;(3)【解析】由三视图可知底面是边长为4的正方形,,,∥,且。

高考数学统考一轮复习课时作业39空间几何体的结构及其三视图和直观图含解析新人教版

高考数学统考一轮复习课时作业39空间几何体的结构及其三视图和直观图含解析新人教版

课时作业39 空间几何体的结构及其三视图和直观图[基础达标]、选择题.下列命题中,正确的是().有两个侧面是矩形的棱柱是直棱柱.侧面都是等腰三角形的棱锥是正棱锥.侧面都是矩形的四棱柱是长方体.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.[2021·湖北孝感模拟]如图,网格纸上的小方格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是().[2021·河南郑州质量检测]一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是().[2021·东北四市联考]如图,在正方体ABCD-A1B1C1D1中,P是线段CD的中点,则三棱锥P-A1B1A的侧视图为().如图,矩形O′A′B′C是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是().正方形.矩形.菱形.一般的平行四边形.[2018·北京卷]某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为().1B.2.3D.4.[2021·山西省八校联考]将正方体(如图1)截去三个三棱锥后,得到如图2所示的几何体,侧视图的视线方向如图2所示,则该几何体的侧视图为().[2021·河北模拟]某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则().3∈A B.5∈A.26∈A D.43∈A.[2021·河南百校联考]如图,网格纸上小正方形的边长为1,图中粗线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为().23B.3.6D. 50.[2021·江西南昌模拟]如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为().1:1B.2:1.2:3D.3:2、填空题1.下列说法正确的有________个.1)有一个面是多边形,其余各面都是三角形的几何体是棱锥.2)正棱锥的侧面是等边三角形.3)底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.2.一个几何体的三视图如图所示,其中正视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧视图的面积是________.3.如图,E,F分别为正方体的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是________.4.[2021·洛阳高三统考]在半径为4的球面上有不同的四点A,B,C,D,若AB=AC=AD=4,则平面BCD被球所截得图形的面积为________.[能力挑战]5.[2021·惠州调研]某三棱锥的三视图如图所示,且图中的三个三角形均为直角三角形,则xy 的最大值为().32.327.64.6476.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中().最长的是AB,最短的是AC.最长的是AC,最短的是AB.最长的是AB,最短的是AD.最长的是AC,最短的是AD7.[2021·广州毕业班测试]在棱长为2的正方体ABCD-A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为________.课时作业39.解析:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故A,C都不够准确,B中对等腰三角形的腰是否为侧棱未作说明,故也不正确.案:D.解析:由俯视图和侧视图可知原几何体是四棱锥,底面是长方形,且与长方形的长相交的某一侧面垂直于底面,所以正视图为A.案:A.解析:若俯视图为选项C,侧视图的宽应为俯视图中三角形的高32,所以俯视图不可能是选项C.案:C.解析:图,画出原正方体的侧视图,显然对于三棱锥P-A1B1A,B(C)点消失了,其余各点均在,从而其侧视图为D.案:D.析:如图,在原图形OABC中,有OD=2O′D′=2×22=42(cm),D=C′D′=2 cm,以OC=OD2+CD2(42)2+22=6(cm),所以OA=OC,四边形OABC是菱形,因此选C.案:C.解析:由三视图得四棱锥的直观图如图所示.中SD⊥底面ABCD,AB⊥AD,AB∥CD,SD=AD=CD=2,AB=1.由SD⊥底面ABCD,AD,DC,AB⊂底面ABCD,得SD⊥AD,SD⊥DC,SD⊥AB,故△SDC,△SDA为直角三角形,又∵AB⊥AD,AB⊥SD,AD,SD⊂平面SAD,AD∩SD=D,∴AB⊥平面SAD,又SA⊂平面SAD,∴AB⊥SA,即△SAB也是直角三角形,从而SB=SD2+AD2+AB2=3,又BC=22+11=5,SC=22,∴BC2+SC2≠SB2,∴△SBC不是直角三角形,故选C.案:C.析:将图2中的几何体放到正方体中如图所示,从侧视图的视线方向观察,易知该几何体的侧视图为选项D中的图形,故选D.案:D.析:由三视图可得,该几何体的直观图如图所示,其中底面是边长为4的正方形,AF⊥平面ABCD,AF∥DE,AF=2,DE=4,可求得BE的长为43,BF的长为25,EF的长为25,EC的长为42,故选D.案:D.析:根据三视图,利用棱长为2的正方体分析知,该多面体是一个三棱锥,即三棱锥A1-MNP,如图所示,其中M,N,P是棱长为2的正方体相应棱的中点,可得棱A1M最长,A1M=22+22+12=3,故最长的棱的长度为3,选B.案:B0.解析:根据题意,三棱锥P-BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P-BCD的正视图与侧视图的面积之比为1 1.案:A1.析:(1)错误.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.2)错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.3)错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.案:02.析:根据三视图可知该几何体是一个四棱锥,其底面是正方形,侧棱相等,所以这是一个正四棱锥.其侧视图与正视图是完全一样的正三角形.故其面积为34×22= 3. 案: 33.解析:分别作出在六个面上的射影可知选②③.案:②③4.解析:因为A ,B ,C ,D 为球面上不同的四点,所以B ,C ,D 不共线,由AB =AC =AD 知A 在平面BCD 内的射影为△BCD 外接圆的圆心,记圆心为O 1.设O 为球的球心,则OB =OC =OD ,故O 在平面BCD 内的投影也为△BCD 外接圆的圆心O 1,故有OA ⊥平面BCD .又AB =AC =AD =4,所以平面BCD 垂直平分线段OA .记△BCD 外接圆的半径为r ,由勾股定理得r 2+⎝⎛⎭⎫12OA 2=42,即r 2=16-4=12.从而平面BCD 被球所截得的图形即△BCD 的外接圆,其面积为πr 2=12π.案:12π5.解析:将三视图还原为如图所示的三棱锥P -ABC ,其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC ,BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,所以xy =x 102-[x 2-(27)2]=x 128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.选C.案:C6.解析:由条件知,原平面图形中AB ⊥BC ,从而AB <AD <AC .案:B7.析:设AA 1的中点为N ,连接MN ,NB ,BC 1,MC 1,AD 1,则MN ∥AD 1∥BC 1,平面MNBC 1就是过正方体中C 1,B ,M 三点的截面,因为正方体的棱长为2,所以A 1M =A 1N =1,所以MN =2,同理BC 1=2 2.又MC 1=BN =22+12=5,所以梯形MNBC 1的高h =(5)2-⎝⎛⎭⎪⎫22-222=322,所以所求截面的面积为S 梯形MNBC 1=12×(2+22)×322=92. 案:92。

高考数学一轮复习考点规范练36空间几何体的结构及其三视图和直观图含解析新人教A版

高考数学一轮复习考点规范练36空间几何体的结构及其三视图和直观图含解析新人教A版

考点规范练36 空间几何体的结构及其三视图和直观图基础巩固1.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案:A解析:因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱的正视图是圆或矩形,所以选A.2.将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()答案:C解析:因为长方体的侧面与底面垂直,所以俯视图是C.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案:A解析:根据三视图原则,从上往下看,看不见的线画虚线,则A正确.4.某几何体的正视图和侧视图均为如图(1)所示的图形,则在图(2)的四个图中可以作为该几何体的俯视图的是()图(1)图(2)A.①③B.①④C.②④D.①②③④答案:A解析:由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6√2B.4√2C.6D.4答案:C解析:如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD=√(4√2)2+22=6,故选C.6.如图,Rt △A'B'C'为水平放置的△ABC 的直观图,其中A'C'⊥B'C',B'O'=O'C'=1,则△ABC 的面积为( )A.√2B.2√2C.√3D.2√3答案:B解析:由题意结合直观图的画法,可知△ABC 是底为BC=2,高为AO=2√2的三角形, 则其面积S △ABC =12BC ·AO=12×2×2√2=2√2.7.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图的是( )答案:D解析:易知该三棱锥的底面是直角边分别为1和2的直角三角形,结合A,B,C,D 选项知,D 选项中侧视图、俯视图方向错误,故选D .8.已知三棱柱HIG-EFD 的底面为等边三角形,且侧棱垂直于底面.该三棱柱截去三个角(如图①,A ,B ,C 分别是△GHI 三边的中点)后得到的几何体如图②,则该几何体的侧视图为( )图①图②答案:A解析:因为平面DEHG⊥平面DEF,所以该几何体的侧视图为直角梯形,且直角腰在侧视图的左侧,故选A.9.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC.已知其正视图的面积为23,则其侧视图的面积为.答案:√33解析:设三棱锥V-ABC的底面边长为a,侧面VAC边AC上的高为h,则ah=43,其侧视图是由底面三角形ABC边AC上的高与侧面三角形VAC边AC上的高组成的直角三角形,其面积为12×√32a×h=12×√32×4 3=√33.10.利用斜二测画法得到的以下结论,其中正确的是.(写出所有正确结论的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.答案:①②④解析:①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错误;④正确;原图形中相等的线段在直观图中不一定相等,故⑤错误. 11.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是.答案:①解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD-A1B1C1D1中的四面体ACB1D1;②错误,反例如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.12.如图,O1,O2为棱长为a的正方体的上、下底面中心,若正方体以O1O2为轴顺时针旋转,则该正方体的所有正视图的最大面积是.答案:√2a2解析:所有正视图的最大面积是长为√2a ,宽为a 的矩形,面积为√2a 2.能力提升13.已知一几何体的正视图、侧视图如图所示,则该几何体的俯视图不可能是( )答案:D14.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C.3D.6答案:A解析:如图,几何体是上下结构,下面是三棱柱,底面是等腰直角三角形,斜边为2,高为1,三棱柱的高是2,上面是三棱锥,平面DA 1C 1⊥平面A 1B 1C 1,且DA 1=DC 1,三棱锥的高是1,故几何体的体积V=12×2×1×2+13×12×2×1×1=73.15.如图,在正方体ABCD-A 1B 1C 1D 1中,点P 是线段A 1C 1上的动点,则三棱锥P-BCD 的俯视图与正视图面积之比的最大值为( )A.1B.√2C.√3D.2答案:D解析:在正视图中,底面B ,C ,D 三点,其中D 与C 重合,随着点P 的变化,其正视图均是三角形,且点P 在正视图中的位置在边A 1D 1上移动,由此可知,设正方体的棱长为a ,则S正视图=12a 2;设A 1C 1的中点为O ,随着点P 的移动,在俯视图中,易知当点P 在OC 1上移动时,S 俯视图就是底面三角形BCD 的面积,当点P 在OA 1上移动时,点P 越靠近A 1,俯视图的面积越大,当到达A 1的位置时,俯视图为正方形,此时俯视图的面积最大,S 俯视图=a 2,所以三棱锥P-BCD 的俯视图与正视图面积之比的最大值为a 212a 2=2.16.已知正三棱柱的侧面展开图是相邻边长分别为3和6的矩形,则该正三棱柱的体积是 . 答案:3√32或3√3解析:当正三棱柱的高为6时,底面边长为1,V=12×1×1×√32×6=3√32;当正三棱柱的高为3时,底面边长为2,V=12×2×2×√32×3=3√3.17.(2021全国Ⅰ,文16)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).图①图②图③图④图⑤答案:②⑤或③④解析:根据“长对正、高平齐、宽相等”及图中数据,侧视图只能是②或③.若侧视图为②,如图(1),平面PBC⊥平面ABC,△ABC为等腰三角形(BC为底边),俯视图为⑤;(1)若侧视图为③,如图(2),PB⊥平面ABC,AB=BC,俯视图为④.(2)高考预测18.某三棱锥的正视图如图所示,则下列图①②③④,所有可能成为这个三棱锥的俯视图的是()A.①②③B.①②④C.②③④D.①②③④答案:D解析:①②③④的模型分别如图(1)、图(2)、图(3)、图(4)所示,故选D.图(1)图(2)图(3)图(4)。

全国高考题试题三视图精编

全国高考题试题三视图精编

全国高考数学(理)三视图整精编一、选择题1、(新课标全国Ι)某几何体的三视图如图所示,则该几何体的体积为()2、(广东5)某四棱台的三视图如图所示,则该四棱台的体积是为()3、(湖北8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1、V2、V3、V4,上面两个简单几何体均为旋转体,下面两个简单几何体均,多面体,则有( )4、(2013重庆卷5)某几何体的三视图如图所示,则该几何体的体积为()5、(2013四川卷3)一个几何体的三视图如图所示,则该几何体的直观图可以是()二、填空题6、(2013浙江卷12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于cm2.(第6题)7、(2013福建卷12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2 的正方形,则该球的表面积是8、(2013陕西卷12)某几何体的三视图如图所示,则其体积为(第7题)第8题9、(2013辽宁卷13)某几何体的全视图如图所示,则该几何体的体积是三视图10.文理(15)设某几何体的三视图如下(尺寸的长度单位为m)。

m则该几何体的体积为311.文理(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.2,它的三视12.文理7一个正三棱柱的侧棱长和底面边长相等,体积为3图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是A.42B.3C.2D.313理13.一个几何体的三视图如图1-3所示.则该几何体的表面积为________.图1-314文13.一个几何体的三视图如图所示,则该几何体的体积为__________.15.文理13)某几何体的三视图如图所示,则该几何体的体积是.16.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .2B .1C .2/3D .1/3一、 三视图考点⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧画图邻关系判断几何体各个面的相个数,判断几何体给出某一视图和几何体判断几何体个数体形状给出三视图,判断几何图给出几何体,判断三视例题1:如图所示的几何体的俯视图是( ).A .B .C .D .例题2:下图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )第1题图BCA例题3:一个物体的三视图如图所示,该物体是( ) A .圆柱 B .圆锥 C .棱锥 D .棱柱例题4:如图是一个包装纸盒的三视图(单位:cm ),则制作一个纸盒所需纸板的面积是A .75(1+3)cm 2B .75(1+23)cm 2C .75(2+3)cm 2D .75(2+23)cm 2例题5:下图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是A .5B .6C .7D .8例题6:如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为.左视图俯视图例题7:在如图所示的正方体的三个面上,分别画了填充不同的圆,下面的4个图中,是这个正方体展开图的有( ).例题8:如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).A. 4B. 6C. 7D.8例题9:骰子是一种特别的数字立方体,它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是例题101 42 5 36第8题图从正面看从左面看主视图左视图俯视图例题11:由一些大小相同的小正方体组成的几何体的主视图和俯视图(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方形的块数n,请你写出n的所有可能值。

2023版高考数学一轮总复习专题检测8-1空间几何体的三视图表面积和体积

2023版高考数学一轮总复习专题检测8-1空间几何体的三视图表面积和体积

8.1 空间几何体的三视图、表面积和体积一、选择题1.(2022届山东烟台一中开学考,2)已知圆锥的表面积等于12πcm 2,其侧面展开图是一个半圆,则圆锥的底面半径为( ) A.1cm B.2cm C.3cm D.32cm答案 B 设圆锥的底面圆的半径为rcm,母线长为lcm,∵侧面展开图是一个半圆,∴πl=2πr ⇒l=2r,∵圆锥的表面积为12πcm 2,∴πr 2+πrl=3πr 2=12π,∴r=2,故圆锥的底面半径为2cm.故选B.2.(2022届黑龙江六校11月联考,4)已知圆锥的轴截面为等边三角形,且圆锥的表面积为3π,则圆锥的底面半径为( )A.12 B.1 C.√2 D.√3答案 B 设圆锥的母线长为l,底面半径为r,根据题意,得l=2r,所以圆锥的表面积S=πr 2+πrl=3πr 2=3π,解得r=1,故选B.3. (2022届河北邢台入学考,4)六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体(每个面都是正三角形的八面体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点.若相邻两个氟原子间的距离为2a,则六氟化硫分子中6个氟原子构成的正八面体的体积是(不计氟原子的大小)( )A.4√23a 3B.8√23a 3C.4√2a 3D.8√2a 3答案 B 如图,连接AC,BD,设AC∩BD=O,则O 为正方形ABCD 的中心,连接OE.因为AE=CE,BE=DE,所以OE⊥AC,OE⊥BD,又AC∩BD=O,所以OE⊥平面ABCD.因为AB=BC=AE=2a,所以AC=√AA 2+B A 2=2√2a.因为四边形ABCD 是正方形,所以AO=12AC=√2a,则OE=√AA 2-A A 2=√2a,故该正八面体的体积为13×(2a)2×√2a×2=8√23a 3.4.(2022届河南焦作一模,6)底面是边长为1的正方形,侧面均是等边三角形的四棱锥的体积为( )A.√26 B.√24 C.√23 D.√22答案 A 由题意可知该四棱锥为正四棱锥,底面正方形对角线长为√2,则正四棱锥的高h=√12-(√22)2=√22,所以正四棱锥的体积V=13×12×√22=√26,故选A.5.(2022届河南洛阳期中,7)某四面体的三视图如图所示,已知其正视图、侧视图、俯视图是全等的等腰直角三角形,则该四面体的四个面中直角三角形的个数为( )A.1B.2C.3D.4答案 D 由三视图及已知可知该四面体可补形成正方体,如图所示.易知△DAB,△ABC 均为直角三角形.由正方体的性质可知CB⊥平面DAB,所以CB⊥BD,即△DBC 是直角三角形;又知DA⊥平面ABC,所以DA⊥AC,即△DAC 是直角三角形,所以该四面体的四个面中直角三角形的个数为4,故选D.6.(2022届江西吉安9月月考,8)如图,网格图中小正方形的边长为1,粗线是一个几何体的三视图,则该几何体的体积为( )A.2π+4B.2π+2C.π+4D.6π+12答案 A 由三视图可知,该几何体由半圆锥和三棱锥拼接而成,半圆锥的底面半径为2,高为3,三棱锥的底面是斜边长为4的等腰直角三角形,三棱锥的高为3,故该几何体的体积V=13×(12π×22+4×2×12)×3=2π+4,故选A.7.(2022届江苏海安高级中学期中,8)如图所示,在直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=BC=√3,cos∠ABC=13,P 是A 1B 上的一动点,则AP+PC 1的最小值为( )A.√5B.√7C.1+√3D.3答案 B 连接BC 1,得△A 1BC 1,以A 1B 所在直线为轴,将△A 1BC 1所在平面旋转到平面ABB 1A 1,设点C 1的新位置为C',连接AC', 则AC'的长即为AP+PC 1的最小值.∵AB=BC=√3,cos∠ABC=13,∴由余弦定理可得,AC=2,∴A 1C 1=2,即A 1C'=2,∵AA 1=1,AB=√3,∴A 1B=2,且∠AA 1B=60°.易求得C 1B=2,∵A 1B=BC 1=A 1C 1=2,∴△A 1BC 1为等边三角形,∴∠BA 1C 1=60°.∴在三角形AA 1C'中,∠AA 1C'=120°,又AA 1=1,A 1C'=2,∴AC'=√1+4−2×1×2×(-12)=√7.故选B.8.(2022届吉林顶级名校11月月考,10)已知球O,过球面上A,B,C 三点作截面,若点O 到该截面的距离是球半径的一半,且AB=BC=2,∠B=120°,则球O 的表面积为( ) A.643π B.83π C.323π D.169π答案 A 如图,设球的半径为r,O 1是△ABC 的外心,外接圆半径为R,连接OO 1,OB,O 1B,则OO 1⊥平面ABC,在△ABC 中,AB=BC=2,∠ABC=120°,则∠A=30°,由正弦定理得2sin A =2R,∴R=2,即O 1B=2.在Rt△OBO 1中,由已知得r 2-14r 2=4,得r 2=163,所以球O 的表面积S=4πr 2=4π×163=643π.故选A.9.(2022届合肥联考(一),9)一个四面体的三视图如图所示,则该四面体的表面积为( )A.2√3+√2+1B.√3+2√2+1C.√3+√2+2D.√3+√2+1答案 B 如图,在棱长等于√2的正方体ABCD-A 1B 1C 1D 1上取四面体ABB 1D 1,即为所求四面体,易得该四面体的表面积为12×√2×√2+12×√2×2×2+√34×22=√3+2√2+1.故选B.10.(2022届贵阳摸底,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )A.13√136π B.13π C.9π D.92π答案 A 由三视图可知,此空间几何体是一放倒的圆柱,圆柱的底面半径为1,高为3,如图所示,该圆柱的上、下底面圆周在其外接球的表面上,外接球的半径为OA,因为OO 1=32,O 1A=1,所以OA=√(32)2+12=√132,所以圆柱外接球的体积为43π(√132)3=13√136π,故选A.11.张衡(78年—139年)是中国东汉时期伟大的天文学家、文学家、数学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A,B,若线段AB 的最小值为√3-1,利用张衡的结论可得该正方体的外接球的表面积为( )A.30B.10√10C.12√10D.36答案 C 设正方体的棱长为a,则正方体的内切球半径为r=A2,正方体的外接球半径R 满足:R 2=(A 2)2+(√22a )2,解得R=√32a,由题意知:R-r=√32a-A2=√3-1,则a=2,R=√3,则该正方体的外接球的表面积为12π,又因为圆周率的平方除以十六等于八分之五,即π216=58,所以π=√10,所以外接球的表面积为12√10.故选C.二、填空题12.(2022届甘肃九校联考,16)某零件的结构是在一个圆锥中挖去了一个正方体,且正方体的一个面在圆锥底面上,该面所对的面的四个顶点在圆锥侧面内.在图①②③④⑤⑥⑦⑧中选两个分别作为该零件的主视图和俯视图,则所选主视图和俯视图的编号依次可能为(写出符合要求的一组即可).答案⑤⑦(或①⑧)解析根据题意可知,圆锥和正方体的位置关系如图所示,当主视图为①时,俯视图为⑧;当主视图为⑤时,俯视图为⑦,故符合题意的编号为⑤⑦(或①⑧).13.(2022届浙江浙南名校联盟联考一,15)一圆锥母线长为定值a(a>0),母线与底面所成角),当圆锥体积V最大时,sinθ=.大小为θ(0<A<π2答案√33解析如图,设圆锥的高为h,底面半径为r,则h=asinθ,r=acosθ,∴V=13πr 2h=13πa 2cos 2θ·asinθ=π3a 3(1-sin 2θ)·sinθ=π3a 3(sinθ-s in 3θ),则V'=π3a 3(cosθ-3sin 2θ·cosθ)=π3a 3·cosθ(1-3sin 2θ),令V'=0, ∵0<θ<π2,∴1-3sin 2θ=0,即sin 2θ=13,∴sinθ=√33.∴当sinθ∈(0,√33)时,V'>0,V=π3a 3(sinθ-sin 3θ)单调递增;当sinθ∈(√33,1)时,V'<0,V=π3a 3(sinθ-sin 3θ)单调递减.∴sinθ=√33时,V 最大.14.(2022届河南洛阳期中,15)在三棱锥P-ABC 中,AB=2√6,BC=1,AC=5,侧面PAB 是以P 为直角顶点的直角三角形,若平面PAB⊥平面ABC,则该三棱锥体积的最大值为 . 答案 2解析 因为AB=2√6,BC=1,AC=5,所以AB 2+BC 2=AC 2,所以AB⊥BC,在Rt△PAB 中,过P 作PE⊥AB 交AB 于点E,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PE ⊂平面PAB,所以PE⊥平面ABC,所以PE 是三棱锥P-ABC 的高,设AE=x,则BE=2√6-x,在Rt△PAB 中,PE 2=AE·BE,所以PE=√A (2√6-x).所以V 三棱锥P-ABC =13S △ABC ·PE=13×12×2√6×1×√A (2√6-x)=√63√A (2√6-x),当x=√6时,三棱锥的体积取得最大值2.15.(2020甘肃金昌永昌一高期末,16)已知△ABC 中,P 在边BC 上且AP⊥BC,现以AP 为折痕将△ABC 折起,使得∠BPC=π2.若PA=2PB=2PC=4,则该三棱锥P-ABC 的外接球的体积是 ;内切球的表面积是 . 答案 8√6π;π解析 因为AP⊥BP 且AP⊥PC,且∠BPC=90°,所以PA,PB,PC 两两垂直,所以将三棱锥P-ABC 补成如图所示的长方体,设三棱锥P-ABC 的外接球的半径为R,则(2R)2=PA 2+PB 2+PC 2=16+4+4=24,解得R=√6,所以三棱锥P-ABC 的外接球的体积为43πR 3=43π(√6)3=8√6π.设三棱锥P-ABC 内切球的半径为r,三棱锥P-ABC 的表面积为S,由已知得BC=√22+22=2√2,AB=AC=√42+22=2√5,则S=12×4×2×2+12×2×2+12×2√2×√(2√5)2-(√2)2=16,所以V P-ABC =V B-APC =13×12×4×2×2=13×16r,解得r=12,所以三棱锥P-ABC 内切球的表面积为4πr 2=4π×(12)2=π.16.(2022届北京顺义一中期中,15)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,若平面BED1交棱AA1于点F,给出下列命题:①截面四边形BED1F可以是正方形;②三棱锥B1-BED1的体积恒为定值;③截面四边形BED1F周长的最小值为2√5a.其中是真命题的是(填写所有正确答案的序号).答案②③解析对于①,易得BD1=√3a,设C1E=b(0≤b≤a),则D1E=√A2+A2,BE=√A2+(A-A)2,假设截面四边形BED1F是正方形,则△BED1是以BD1为斜边的等腰直角三角形,从而有{√2·√A2+A2=√3a,√2·√A2+(A-A)2=√3a,由b=a-b得a=2b,则√2·√4A2+A2=2√3b,显然√2·√4A2+A2=2√3b不成立,所以截面四边形BED1F不可能是正方形,①错误;对于②,因为点E到平面BB1D1的距离为定值,又A A1-BE A1=A A-AA1A1,所以三棱锥B1-BED1的体积恒为定值,②正确;对于③,当点E与点C或C1重合时,截面四边形BED1F周长取得最大值2(a+√2a)=2(1+√2)a,当点E是CC1中点时,截面四边形BED1F周长取得最小值2×2·√A2+(A2)2=2√5a,③正确.综上②③正确.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的三视图·评价练习
一、选择题
1.如图所示茶杯,其正视图、左视图及俯视图依次为()
2.由5个小立方块搭成的几何体,其三视图分别为(正视图)、(右视图)、(俯视图),则该几何体是()
3.如图,如下放置的四个几何体中,其正视图为矩形的为()
4.如图,如下放置的几何体中,其俯视不是圆的是()
5.如图,如下放置的几何体(由完全相同的立方体拼成)中,其正视图和俯视图完全
一样的是()
6.如图,下面几何体正视图和左视图类似的是()
7.如图,下列选项不是几何体的三种视图为()
8.将两个圆盘、一个茶叶桶、一个皮球和一个蒙古包模型按如图所示方式摆放在一起,其正视图是()
9.如图,是由一些相同的小正方体构成的几何体的三视图,这些相同的小正体的个数是()
A.4 B.5 C.6 D.7
10.如下图物体的三视图的是()
二、填空题
11.一个几何体,无论我们从哪个方向看,看到的结果都是一样的,则该几何体必定为______.
12.如图所示,桌上放着一个半球,则在它的三视图及从右面看到的图中,有三个图相同,一个不同,这个不同的图应该是_________.
13.如图所示的积木是由16块棱长为1cm的正方体堆积而成的,则它表面积为________.
14.一个立体图形的三视图一般包括______图、_______图和_______图.
15.由小正方体木块搭成的几何体的三视图如下图,则该几何体由_________块小正方体木块搭成.
16.如图(1),E、F分别是正方体的面ADD l A l,面BCC l B1的中心,则四边形BFD l E 正在该正方体的面上的射影(即本节所指的正投影)可能是图(2)中的_________(把可能的序号都填上).
三、简答题
17.试作出下面几何体的三视图
18.找出与下列几何体对应的三视图,在三视图的横线上填上对应的序号.
19.添线补全下列三视图
20.画出如下所示物体的三视图.
21.如下图是由小立方块搭成的几何体俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出它的正视图和左视图.
参考答案
一、选择题
1.C 2.C 3.B 4.C 5.C 6.C 7.A 8.D 9.B 10.C
二、填空题
11.球12.俯视图
13.48cm2
14.正视图,左视图,俯视图
15.7 16.②③
三、解答题
17.解:
18.解:(3),(4),(6),(1),(8),(5),(2),(7).
19.解:略
20.解:
21.解:。

相关文档
最新文档