七年级数学有理数混合运算专项练习汇总
初一七年级数学有理数混合运算专题练习及答案
初一七年级数学有理数混合运算专题练习及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初一七年级有理数混合运算专题练习及答案1.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).2.(1)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(2)7×1÷(﹣9+19)(3)(﹣+﹣+)×(﹣24)(4)﹣13﹣(1﹣0.5)×[2﹣(﹣3)2](5)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.(6)[2﹣(+﹣)×24]÷5×(﹣1)2003.3.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)4.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].5.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+(1﹣0.2×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.6.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).7.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(3)(4)(5).8.计算:(1)5﹣(﹣2)+(﹣3)﹣(+4)(2)(﹣﹣+)×(﹣24)(3)(﹣3)÷××(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.9.计算:(1)1.78+3.64﹣5.25﹣0.2+0.3﹣0.33.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣.10.计算(1)(﹣2.48)+(+4.33)+(﹣7.52)+(﹣4.33)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].11.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).12.计算题(1)﹣3+8﹣15﹣6(2)(﹣)×(﹣1)÷(﹣2)(3)(﹣+﹣)÷(﹣)(4)(﹣6)÷(﹣)2﹣72+2×(﹣3)213.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.14.计算下列各题(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)(2)(﹣1)2017+(﹣3)2×|﹣|﹣42÷(﹣2)4 15.计算(1)(﹣1)﹣(+6)﹣2.25+(2)﹣9×(﹣11)﹣3÷(﹣3)(3)8×(﹣)﹣(﹣4)×(﹣)+(﹣8)×(4)(﹣24)×(+﹣).16.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.17.有理数计算.(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)+(﹣1)2013(2)(﹣12)×(﹣+)+(﹣32)÷2.18.细心算一算(1)19+(﹣6)+(﹣5)+(﹣3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)(4)﹣|﹣5|+(﹣3)3÷(﹣22)(5)﹣14﹣(﹣1)3﹣[2﹣(﹣3)2](6)﹣99×36.19.计算,能简算的要简算.(1)1+(﹣2)+|﹣2|﹣5(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)(3)(﹣81)÷×÷(﹣16)(4)﹣14﹣×[2﹣(﹣4)2](5)(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)20.计算(1)[2﹣5×(﹣)2]÷(﹣)(2)(﹣24)×(﹣1﹣)(3)﹣14﹣(1﹣0.4)÷×[(﹣2)2﹣6].21.计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣0.5)×22.计算(1)16﹣(﹣10+3)+(﹣2)(2)(﹣4)2×﹣27÷(﹣3)3(3)﹣12﹣()2×(﹣﹣)÷23.计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×24.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2| (3)[(﹣+)×(﹣36)+2]÷(﹣14)25.(1)7+(﹣5)﹣(﹣3)+(6)(2)(﹣2)÷(2)×(﹣2.8)(3)25×+(﹣25)×+25×(﹣)(4)(﹣99)×99(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2](6)|﹣|+[×22﹣(﹣)2].26.计算下列各式:(1)(2).27.计算(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+1.75)﹣(﹣1)(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2 28.计算(1)5.02﹣1.37﹣2.63(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.29.计算:(1)(2)(3).30.计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)×()×(3)()×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×)÷(﹣2)].31.计算:(1)﹣20+3+5﹣7(2)(﹣36)×(﹣+﹣);(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)32.计算:(1)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|;(2)[﹣22+(﹣2)3]﹣(﹣2)×(﹣3);(3)()÷();(4);(5)﹣14+[1﹣(1﹣0.5×2)]÷|2﹣(﹣3)2|;(6)[(﹣3)2﹣22﹣(﹣5)2]××(﹣2)4.33.计算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)33.1﹣10.7﹣(﹣22.9)﹣;(3);(4);(5);(6)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.34.计算:(1)13+5×(﹣2)﹣(﹣4)÷(﹣8);(2)÷(﹣2)﹣×(﹣1)+0.75;(3)[1﹣(+﹣)×(﹣2)3]÷(﹣3);(4)﹣24﹣[3+0.4÷(﹣1)×(2)2]+(﹣1)2016×()2016.35.计算:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣);(2)﹣27÷×(﹣)+4﹣4×(﹣);(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2);(4)[﹣﹣()3+﹣]÷(﹣).36.有理数计算题(1)12﹣(﹣5)﹣(﹣18)+(﹣5)(2)﹣6.5+4+8﹣3(3)(﹣3)×(﹣)÷(﹣1)(4)(+﹣)×(﹣12)(5)32﹣50÷22×(﹣)﹣1(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)].37.(1)871﹣87.21+53﹣12.79+43.(2)4×(﹣3)2+6.(3)﹣0.52+(4).38.计算:(1)﹣3﹣7;(2)(﹣)+(﹣)﹣(﹣3);(3)﹣0.5+(﹣15.5)﹣(﹣17)﹣|﹣12|(4)(5)(﹣81)÷(6)〔1﹣(1﹣0.5×)〕×|2﹣(﹣3)2|﹣(﹣62).39.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).40.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].41.计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(2)2﹣3×(﹣)(4)0.25×(﹣2)3﹣[4÷(﹣)2+1]+(﹣1)2008.42.计算题.(1)﹣5+2﹣13+4(2)(﹣2)×(﹣8)﹣9÷(﹣3)(3)(﹣18)×(﹣)(4)﹣(﹣3)+12.5+(﹣16)+(﹣2.5)(5)(6)(7)(简便方法)(8)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.43.计算题(1)(﹣1)2013+(﹣4)÷(﹣5)×(﹣)(2)﹣42+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣1)3﹣(0.5﹣1)×|2﹣(﹣3)2|(4)36×()(﹣)﹣4×.44.计算:(1)(﹣)+(﹣)+(﹣)+;(2)﹣7.2﹣0.8﹣5.6+11.6;(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)3×(﹣4)+28÷(﹣7)(5)(﹣)×0.125×(﹣2)×(﹣8)(6)(7)(8)(﹣24)×(﹣﹣);(9)18×(﹣)+13×﹣4×.(10).45.耐心算一算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19);(2);(3)﹣3.5÷×(﹣)×|﹣|;(4).46.计算(1)﹣20﹣(+14)+(﹣18)﹣(﹣13);(2)﹣3﹣2.4﹣(﹣)+(﹣2);(3)18﹣6÷(﹣)×(﹣);(4)﹣48÷(﹣2)3×(﹣1)2016﹣22(5)[2﹣5×(﹣)2]÷(﹣);(6)﹣32﹣×[(﹣5)2×(﹣)﹣240÷(﹣4)×].47.计算(1)23+(+76)+(﹣36)+(﹣23)(2)﹣40﹣(﹣19)+(﹣24)(3)(﹣)×(﹣1)÷(﹣2)(4)﹣10+8÷(﹣2)3﹣(﹣2)2×(﹣3)(5)﹣14﹣(1﹣0.5)××[﹣(﹣2)2](6)30﹣(+﹣)×36(7)[25×+25×﹣25×]×[(﹣5)26﹣2﹣526].48.计算:(1)(﹣3)2﹣(﹣3)3﹣22+(﹣22)(2)3.25﹣[(﹣)﹣(﹣)+(﹣)+4](3)(﹣4)÷(﹣3)×45÷(﹣5)(4)(﹣)××.49.计算(1)(﹣10)+(+7)(2)12﹣(﹣18)+(﹣7)﹣15(3)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(4)|﹣22+(﹣3)2|﹣(﹣)3(5)2×(﹣3)2﹣33﹣6÷(﹣2)(6)﹣81÷×(﹣)(7)+(﹣)﹣(﹣)+(﹣)﹣(+)(8)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)(9)﹣32×(﹣)2+(﹣+)×(﹣24).50.认真计算,并写清解题过程(1)﹣10÷×÷(﹣2)(2)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(3)(4)(5)×(﹣36)(6).参考答案一、解答题(共50小题)1.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).【分析】(1)先化简,再分类计算即可;(2)先判定符号,再化为连乘计算;(3)利用乘法分配律简算;(4)先算乘方,再算括号里面的减法,再算乘法,最后算括号外面的减法.【解答】解:(1)27﹣18+(﹣7)﹣32=27﹣18﹣7﹣32=27﹣57=﹣30;(2)=﹣7××=﹣;(3)=﹣×(﹣24)﹣×(﹣24)+×(﹣24)=18+20﹣21=17;(4)=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查有理数的混合运算,注意抓组运算顺序,根据数字特点灵活运用运算定律简算.2.(1)(﹣4)﹣(﹣3)﹣(﹣6)+(﹣2)(2)7×1÷(﹣9+19)(3)(﹣+﹣+)×(﹣24)(4)﹣13﹣(1﹣0.5)×[2﹣(﹣3)2](5)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.(6)[2﹣(+﹣)×24]÷5×(﹣1)2003.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算括号中的运算,再计算乘除运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4+3+6﹣2=﹣1+4=2;(2)原式=7÷10=0.7;(3)原式=12﹣4+9﹣10=7;(4)原式=﹣1﹣××(﹣7)=﹣1+=;(5)原式=﹣12﹣15+1=﹣26;(6)原式=(2﹣9﹣4+18)×(﹣)=﹣﹣1=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(2)4﹣8×(﹣)3(3)(4)【分析】(1)减法转化为加法,计算可得;(2)先计算乘方,再计算乘法,最后计算加法即可得;(3)将除法转化为乘法,再利用乘方分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].【分析】(1)将减法转化为加法,再计算加法即可得;(2)将除法转化为乘法,再计算乘法即可得;(3)先计算括号内,再计算除法即可;(4)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=﹣15+(﹣8)+11+(﹣12)=﹣35+11=﹣24;(2)原式=﹣×(﹣)××(﹣2)=﹣;(3)原式=(﹣)÷(﹣﹣)=(﹣)÷(﹣)=﹣×(﹣)=;(4)原式=﹣8+[16﹣(1﹣9)×3]=﹣8+[16﹣(﹣8)×3]=﹣8+(16+24)=﹣8+40=32.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.5.计算(1)(﹣)÷×(﹣)÷(﹣)(2)﹣3﹣[﹣5+(1﹣0.2×)÷(﹣2)](3)(4﹣3)×(﹣2)﹣2÷(﹣)(4)[50﹣(﹣+)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣×××=﹣;(2)原式=﹣3+5+(1﹣)×=﹣3+5+=2;(3)原式=﹣+7+=3;(4)原式=(50﹣28+33﹣6)×=49×=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).【分析】(1)(2)(5)(8)可直接按照有理数的混合运算进行;(3)(7)(9)(10)(11)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)(6)可利用分配律计算;(12)可利用结合律进行运算,最后得出结果.【解答】解:(1)原式=﹣+﹣=﹣=3﹣6=﹣3;(2)原式=﹣21﹣16﹣5=﹣37﹣5=﹣42;(3)原式=﹣8××=﹣8;(4)原式=×8﹣×﹣×=6﹣1﹣=;(5)原式=﹣×﹣8÷2=﹣2﹣4=﹣6;(6)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(7)原式=﹣9×﹣[25×(﹣)﹣240×(﹣)×﹣2]=﹣3﹣(﹣15+15﹣2)=﹣3+2=﹣1;(8)原式=×(﹣)﹣×(﹣)=﹣1+1=0;(9)原式=﹣1﹣××(2﹣9)=﹣1﹣×(﹣7)=﹣1+=;(10)原式=﹣9﹣125×﹣18÷9=﹣9﹣20﹣2=﹣31;(11)原式=﹣1﹣(﹣)×﹣8=﹣1+2﹣8=﹣7;(12)原式=(37.15﹣47.65)×2﹣10.5×7=﹣10.5×﹣10.5×=﹣10.5×(+)=﹣10.5×10=﹣105.【点评】本题考查的是有理数的运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.7.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(3)(4)(5).【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式变形后利用乘法分配律计算即可得到结果;(5)原式先计算乘方运算,以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=﹣32+21﹣4=﹣36+21=﹣15;(3)原式=18﹣20=﹣2;(4)原式=﹣(100﹣)×36=﹣(3600﹣)=﹣3599;(5)原式=﹣1﹣××(2﹣9)=﹣1+=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.8.计算:(1)5﹣(﹣2)+(﹣3)﹣(+4)(2)(﹣﹣+)×(﹣24)(3)(﹣3)÷××(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.【分析】(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=5+2﹣3﹣4=5﹣3+2﹣4=2﹣2=0;(2)原式=×24+×24﹣×24=18+15﹣18=15;(3)原式=(﹣3)×××(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.9.计算:(1)1.78+3.64﹣5.25﹣0.2+0.3﹣0.33.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣.【分析】(1)直接将各数相加减即可;(2)将分母相等的项合并,将分母不等的项通分即可得出值;(3)先计算括号里的值,再去括号,再乘除,最后加减即可求值;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(5)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(6)先乘方后乘除最后算加减,有绝对值的先算绝对值里面的.【解答】(1)原式=5.42﹣5.25﹣0.2+0.3﹣0.33=0.17﹣0.2+0.3﹣0.33=﹣0.03+0.3﹣0.33=0.27﹣0.33=﹣0.06;(2)原式=﹣++1﹣3+﹣=﹣﹣+﹣=+﹣=﹣﹣=﹣﹣=﹣=﹣;(3)原式=(﹣)÷(﹣)×+(﹣1)100=××+1=1+1=2;(4)原式=﹣102﹣[][2﹣32]=﹣100﹣×(2﹣9)=﹣100﹣×(﹣7)=﹣100+=﹣98;(5)原式=﹣2﹣{8+1﹣[﹣8÷(﹣2)﹣]}=﹣2﹣{9+1}=﹣2﹣10=﹣12;(6)原式=+||÷﹣|﹣5|﹣=﹣+×25﹣5﹣5=+﹣10=﹣=﹣.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.10.计算(1)(﹣2.48)+(+4.33)+(﹣7.52)+(﹣4.33)(2)(+3)+(﹣5)+(﹣2)+(﹣32)(3)﹣(+)﹣(+)+(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式结合后,相加即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(﹣2.48﹣7.52)+[(+4.33)+(﹣4.33)]=﹣10;(2)原式=(3﹣2)+(﹣5﹣32)=1﹣38=﹣36;(3)原式=(﹣)+(﹣+)=﹣=﹣;(4)原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;(2)原式=﹣3﹣(﹣2﹣1)=﹣3+3=0;(3)===2﹣12=﹣10;(4)======﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.12.计算题(1)﹣3+8﹣15﹣6(2)(﹣)×(﹣1)÷(﹣2)(3)(﹣+﹣)÷(﹣)(4)(﹣6)÷(﹣)2﹣72+2×(﹣3)2【分析】(1)利用加法的交换律和结合律,依据法则计算可得;(2)将除法转化为乘法,再进一步计算可得;(3)将除法转化为乘法,再利用乘法分配律计算可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣24+8=﹣16;(2)原式=(﹣)×(﹣)÷(﹣)=×(﹣)=﹣;(3)原式=(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=12﹣18+8=2;(4)原式=(﹣6)×9﹣49+2×9=﹣54﹣49+18=﹣85.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.13.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.【分析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=25×(﹣)=﹣;(2)2﹣23÷[()2﹣(﹣3+0.75)]×5=====﹣13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.计算下列各题(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)(2)(﹣1)2017+(﹣3)2×|﹣|﹣42÷(﹣2)4【分析】(1)根据减去一个数等于加上这个数的相反数的减法法则,将有理数减法变成有理数加法进行运算即可(2)根据有理数的运算法则,先乘方,后乘除,最后加减,有括号先算括号里的运算顺序即可【解答】解:(1)原式=﹣28+15﹣17﹣5=﹣35(2)原式=﹣1+9×﹣16÷16=﹣1+2﹣1=0【点评】本题考查有理数的运算法则和运算顺序,熟练掌握有理数的法则和运算顺序是本题的关键15.计算(1)(﹣1)﹣(+6)﹣2.25+(2)﹣9×(﹣11)﹣3÷(﹣3)(3)8×(﹣)﹣(﹣4)×(﹣)+(﹣8)×(4)(﹣24)×(+﹣).【分析】(1)先全部化为假分数,再计算同分母分数加减,最后计算减法;(2)先计算乘除运算,再计算加法;(3)先计算乘法,再计算减法;(4)先用乘法分配律展开,再计算乘法,最后计算加减.【解答】解:(1)原式=﹣﹣﹣+=﹣4﹣3=﹣7;(2)原式=99+1=100;(3)原式=﹣﹣﹣=﹣8;(4)原式=﹣24×+(﹣24)×+(﹣24)×(﹣)=﹣12﹣20+14=﹣18.【点评】本题主要考查有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算除法运算即可求出值.【解答】解:(1)原式=(﹣28)÷(﹣2)+(﹣5)=14﹣5=9;(2)原式=(﹣++)×36=9﹣30+12+54=45.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.有理数计算.(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)+(﹣1)2013(2)(﹣12)×(﹣+)+(﹣32)÷2.【分析】(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.(2)运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【解答】解:(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)+(﹣1)2013=﹣6.4+3+3.6﹣1=﹣3.4+3.6﹣1=0.2﹣1=﹣0.8(2)(﹣12)×(﹣+)+(﹣32)÷2=﹣12×+12×﹣12×+(﹣9)÷2=﹣4+9﹣10﹣=5﹣10﹣=﹣5﹣=﹣【点评】本题考查的是有理数的运算能力.解题过程中注意符号是关键.18.细心算一算(1)19+(﹣6)+(﹣5)+(﹣3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)(4)﹣|﹣5|+(﹣3)3÷(﹣22)(5)﹣14﹣(﹣1)3﹣[2﹣(﹣3)2](6)﹣99×36.【分析】(1)省略加号,再加减;(2)先确定符号,再都化成乘法进行计算;(3)根据乘法分配律进行计算;(4)先计算绝对值和乘方,再加减;(5)先计算括号里的和乘方运算,再加减;(6)把﹣99化成﹣100+,再利用乘法分配律进行计算.【解答】解:(1)原式=19﹣6﹣5﹣3=19﹣14=5;(2)原式=81×××=1;(3)原式=﹣24×+24×+24×=﹣8+3+4=﹣1;(4)原式=﹣5+=;(5)原式=﹣1+1﹣[2﹣9]=﹣1+1﹣(﹣7)=7;(6)原式=(﹣100+)×36=﹣100×36+×36=﹣3600+=﹣3599.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键;同时对于数很大的情况,要进行适当变形再进行计算,如第(6)小题,有一个因数为带分数时,可以转化为一个整数与一个真分数的和的形式,利用乘法分配律进行计算,但要注意所化成的真分数的分母能和另一个因数进行约分才可以.19.计算,能简算的要简算.(1)1+(﹣2)+|﹣2|﹣5(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)(3)(﹣81)÷×÷(﹣16)(4)﹣14﹣×[2﹣(﹣4)2](5)(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)【分析】根据有理数混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)1+(﹣2)+|﹣2|﹣5=﹣1+2﹣5=1﹣5=﹣4(2)(+)+(﹣)﹣(+)﹣(﹣)﹣(+1)=[(+)﹣(﹣)]+[(﹣)﹣(+)]﹣(+1)=1﹣1﹣1=﹣1(3)(﹣81)÷×÷(﹣16)=﹣36×÷(﹣16)=(﹣16)÷(﹣16)=1(4)﹣14﹣×[2﹣(﹣4)2]=﹣1﹣×[2﹣16]=﹣1﹣×[﹣14]=﹣1+2=1(5)(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)=370×0.25+0.25×24.5+5.5×0.25=(370+24.5+5.5)×0.25=400×0.25=100【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.计算(1)[2﹣5×(﹣)2]÷(﹣)(2)(﹣24)×(﹣1﹣)(3)﹣14﹣(1﹣0.4)÷×[(﹣2)2﹣6].【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(2﹣)×(﹣4)=﹣8+5=﹣3;(2)原=﹣12+40+9=37;(3)原式=﹣1﹣×3×(﹣2)=﹣1+=.【点评】此题考查了有理数的混合运算,以及运算律,熟练掌握运算法则是解本题的关键.21.计算:(1)20+(﹣14)﹣(﹣18)﹣13;(2)﹣2;(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)(5)﹣14﹣(1﹣0.5)×【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=20+18+(﹣14)+(﹣13)=11;(2)原式=﹣2﹣﹣3+1=﹣5;(3)原式=35+6=41;(4)原式=﹣3×(﹣120﹣7+37)=﹣×(﹣90)=350;(5)原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算(1)16﹣(﹣10+3)+(﹣2)(2)(﹣4)2×﹣27÷(﹣3)3(3)﹣12﹣()2×(﹣﹣)÷【分析】(1)先计算括号内的,再计算加减可得;(2)先计算乘方,再计算乘除,最后计算加减可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=16﹣(﹣7)+(﹣2)=16+7﹣2=21;(2)原式=16×﹣27÷(﹣27)=2﹣(﹣1)=2+1=3;(3)原式=﹣1﹣×(﹣1)×=﹣1+=﹣.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.23.计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×【分析】(1)根据有理数的加法可以解答本题;(2)根据有理数的除法和加减法可以解答本题;(3)根据有理数的乘法和加减法可以解答本题;(4)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)25.7+(﹣7.3)+(﹣13.7)+7.3=[25.7+(﹣13.7)]+[(﹣7.3)+7.3]=12+0=12;(2)=(﹣)×(﹣36)=18+20+(﹣21)=17;(3)=(﹣1)+﹣1=﹣;(4)﹣14﹣(1﹣0.5)×=﹣1﹣=﹣1﹣=﹣1+=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)【分析】(1)原式变形后,利用乘法分配律计算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式中括号中利用乘法分配律计算,再利用除法法则变形,计算即可得到结果.【解答】解:(1)原式=(100﹣)×(﹣7)=﹣700+=﹣699;(2)原式=﹣16+4+2﹣3﹣2=﹣15;(3)原式=(﹣16+15﹣6+2)×(﹣)=﹣×(﹣)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)7+(﹣5)﹣(﹣3)+(6)(2)(﹣2)÷(2)×(﹣2.8)(3)25×+(﹣25)×+25×(﹣)(4)(﹣99)×99(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2](6)|﹣|+[×22﹣(﹣)2].【分析】(1)先算同分母分数,再算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)(4)根据乘法分配律计算;(5)(6)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)7+(﹣5)﹣(﹣3)+(6)=(7+3)+(﹣5+6)=11+1=12;(2)(﹣2)÷(2)×(﹣2.8)=××=;(3)25×+(﹣25)×+25×(﹣)=25×(﹣﹣)=25×0=0;(4)(﹣99)×99=(﹣100+)×99=﹣100×99+×99=﹣9900+1=﹣9899;(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2]=﹣1﹣[2﹣(1﹣)]×[9﹣4]=﹣1﹣×5=﹣1﹣5=﹣6;(6)|﹣|+[×22﹣(﹣)2]=+[×4﹣]=+[2﹣]=﹣=﹣.【点评】考查了有理数的混合运算,注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.计算下列各式:(1)(2).【分析】(1)根据有理数的混合运算顺序,先算乘方,再算乘除,最后算加减,进行计算即可得解;(2)根据有理数的混合运算顺序,先算乘方,再算乘除,最后算加减,后面的利用乘法分配律进行计算即可得解.【解答】解:(1)9××(﹣)+4+4×(﹣),=﹣6+4﹣6,=﹣12+4,=﹣8;(2)﹣0.25÷(﹣)2×(﹣1)3+(+﹣3.75)×24,=﹣×4×(﹣1)+×24+×24﹣×24,=1+33+56﹣90,=90﹣90,=0.【点评】本题考查了有理数的混合运算,熟记运算顺序是解题的关键,注意利用运算定律使运算更加简便.27.计算(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+1.75)﹣(﹣1)(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题;(3)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)(﹣3)﹣(﹣2)﹣(﹣2)﹣(+1.75)﹣(﹣1)=(﹣3)+2+2+(﹣1)+1=1;(2)﹣4×(﹣2)﹣6×(﹣2)+17×(﹣2)﹣19÷=(﹣4﹣6+17)×(﹣2)﹣(19+)×9=7×(﹣)﹣19×9﹣8=(﹣18)﹣171﹣8=﹣197;(3)﹣12+×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2=﹣1+=﹣1+=﹣1+=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.28.计算(1)5.02﹣1.37﹣2.63(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.【分析】(1)根据减法的性质计算即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的减法,然后计算中括号里面的除法,最后计算中括号外面的乘法即可.(4)首先计算小括号里面的减法,然后计算中括号里面的除法和减法,最后计算中括号外面的除法即可.【解答】解:(1)5.02﹣1.37﹣2.63=5.02﹣(1.37+2.63)=5.02﹣4=1.02(2)72×(﹣+﹣)=72×﹣72×+72×﹣72×=36﹣24+18﹣6=12+18﹣6=24(3)×[÷(﹣)]=×[÷]=×=4(4)[﹣(﹣)÷]÷=[﹣÷]×10=[﹣]×10=×10=1【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律和减法的性质的应用.29.计算:(1)(2)(3).【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=1+﹣=2﹣=1;(2)原式=﹣××=﹣;(3)原式=﹣8+﹣=﹣8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)×()×(3)()×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=×(﹣)××=﹣;(3)原式=﹣5﹣8+9=﹣4;(4)原式=﹣3+5﹣=1.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.31.计算:(1)﹣20+3+5﹣7(2)(﹣36)×(﹣+﹣);(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)【分析】(1)根据有理数的加法法则计算即可;(2)利用乘法分配律计算即可;(3)根据解法交换律以及结合律计算即可;【解答】解:(1)﹣20+3+5﹣7=﹣27+8=﹣19(2)(﹣36)×(﹣+﹣)=﹣36×(﹣)﹣36×﹣36×(﹣)=16﹣30+21=7(3)(﹣4)﹣(﹣5)+(﹣4)﹣(+3)=﹣4﹣3+5﹣4=﹣8+1=﹣6【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,记住先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.计算:(1)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|;(2)[﹣22+(﹣2)3]﹣(﹣2)×(﹣3);(3)()÷();(4);(5)﹣14+[1﹣(1﹣0.5×2)]÷|2﹣(﹣3)2|;(6)[(﹣3)2﹣22﹣(﹣5)2]××(﹣2)4.【分析】(1)先去括号,绝对值符号,再进行计算;(2)先去括号和乘方,再算乘,最后算减;(3)转换成乘法后,运用分配律进行计算;(4)有括号,先算括号里的,再算除法;(5)先算乘方,再算乘除,最后算加减,有括号,先算括号里的;(6)先算乘方,再算乘法,有括号,先算括号里的.【解答】解:(1)原式=﹣0.5﹣15+17﹣12=﹣27.5+17=﹣10.5;(2)原式=(﹣4﹣8)﹣6=﹣12﹣6=﹣18;(3)原式=﹣18+108﹣30+21=81;(4)原式=﹣1.6÷[×(﹣27)﹣4]=﹣1.6÷(﹣16)=0.1;(5)原式=﹣1+[1﹣(1﹣1)]÷7=﹣1+=﹣;(6)原式=(9﹣4﹣25)×××16=(﹣20)×××16=﹣600.【点评】本题考查的是有理数的运算能力,注意要正确掌握运算顺序:先算乘方,再算乘除,最后算加减,有括号,先算括号里的.使用分配律简便的要用分配律进行计算.时刻注意符号问题.33.计算:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)33.1﹣10.7﹣(﹣22.9)﹣;(3);(4);(5);(6)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010.【分析】(1)利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,再利用加法运算律将符合相同的数结合,利用同号两数相加的法则计算,再利用异号两数相加的法则计算,即可得到结果;(2)原式第三项利用减去一个数等于加上这个数的相反数化为加法运算,最后一项利用负数的绝对值等于它的相反数并将分数化为小数,利用同号及异号两数相加的法则计算,即可得到结果;(3)利用乘法分配律给括号中每一项都乘以﹣60,约分后相加,即可得到结果;(4)根据运算顺序从左到右依次计算,利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(5)原式第一项表示1三次幂的相反数,第二项第一个因式括号中两数相加,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,计算后相加即可得到结果;(6)原式第一项表示3个﹣2的乘积,第二项利用异号两数相乘的法则计算,第三项先利用减法法则计算,再利用负数的绝对值等于它的相反数计算,最后一项利用﹣1的偶次幂为1计算,将结果相加即可得到最后结果.【解答】解:(1)原式=[(﹣3)+(﹣4)+(﹣11)]+9=﹣18+9=﹣9;(2)原式=33.1﹣10.7+22.9﹣2.3=(33.1+22.9)﹣(10.7+2.3)=56﹣13=43;(3)原式=(﹣60)×﹣(﹣60)×﹣(﹣60)×=﹣40+5+4=﹣31;(4)原式=(﹣81)×××(﹣)=;(5)原式=﹣1﹣1.5××(﹣)=﹣1+0.125=﹣0.875;(6)原式=(﹣8)+6+3﹣1=﹣2+3﹣1=0.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.34.计算:(1)13+5×(﹣2)﹣(﹣4)÷(﹣8);(2)÷(﹣2)﹣×(﹣1)+0.75;(3)[1﹣(+﹣)×(﹣2)3]÷(﹣3);(4)﹣24﹣[3+0.4÷(﹣1)×(2)2]+(﹣1)2016×()2016.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=13﹣10﹣=2;(2)原式=﹣×+×+0.75=﹣++=;(3)原式=(1+6+3﹣)×(﹣)=﹣﹣3+=﹣3;(4)原式=﹣16﹣3﹣×(﹣)×+1=﹣16﹣3+3+1=﹣15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.计算:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣);(2)﹣27÷×(﹣)+4﹣4×(﹣);(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2);(4)[﹣﹣()3+﹣]÷(﹣).【分析】(1)根据有理数的加减运算法则计算;(2)根据有理数的混合运算法则计算;(3)根据有理数的混合运算法则计算;(4)根据有理数的混合运算法则计算.【解答】解:(1)(﹣2)﹣(﹣5)﹣(+3)﹣(﹣)=(﹣2+)+(5﹣3)=﹣2+2=0;(2)﹣27÷×(﹣)+4﹣4×(﹣)=27××+4+=+4+=;(3)[(﹣1)2014+(1﹣)×]÷(﹣32+2)=(1+×)÷(﹣7)=﹣×=﹣;(4)[﹣﹣()3+﹣]÷(﹣)=×48+×48﹣×48+×48=+6﹣36+4=﹣24.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则是解题的关键.36.有理数计算题(1)12﹣(﹣5)﹣(﹣18)+(﹣5)(2)﹣6.5+4+8﹣3(3)(﹣3)×(﹣)÷(﹣1)(4)(+﹣)×(﹣12)(5)32﹣50÷22×(﹣)﹣1(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)].【分析】(1)(3)(5)(6)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(2)应用加法交换律和加法结合律,求出算式的值是多少即可.(4)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)12﹣(﹣5)﹣(﹣18)+(﹣5)=17+18﹣5=35﹣5=30(2)﹣6.5+4+8﹣3=(﹣6.5﹣3)+(4+8)=﹣10+13=3(3)(﹣3)×(﹣)÷(﹣1)=÷(﹣1)=﹣2(4)(+﹣)×(﹣12)=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4(5)32﹣50÷22×(﹣)﹣1=9+1.25﹣1=9.25(6)﹣32÷[(﹣)2×(﹣3)3+(1﹣1÷)]=﹣9÷[﹣3﹣1]=﹣9÷[﹣4]=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.37.(1)871﹣87.21+53﹣12.79+43.(2)4×(﹣3)2+6.(3)﹣0.52+(4).【分析】(1)根据加法交换律和结合律,以及减法的性质简便计算;直接运用乘法的分配律计算;(2)(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)多次运用乘法的分配律计算.【解答】解:(1)871﹣87.21+53﹣12.79+43=871+(53+43)﹣(12.79+87.21)=871+97﹣100=868.(2)4×(﹣3)2+6=4×9+6=36+6=42.(3)﹣0.52+=﹣+﹣|﹣9﹣9|+×=﹣18+2=﹣16(4)=(﹣﹣)×60×(﹣﹣)=(﹣﹣)×60×(﹣1)=﹣×60+×60+×60=﹣36+30+35=29.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.38.计算:(1)﹣3﹣7;(2)(﹣)+(﹣)﹣(﹣3);(3)﹣0.5+(﹣15.5)﹣(﹣17)﹣|﹣12|(4)(5)(﹣81)÷(6)〔1﹣(1﹣0.5×)〕×|2﹣(﹣3)2|﹣(﹣62).【分析】(1)根据有理数的减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的加减法可以解答本题;(4)根据乘法分配律可以解答本题;(5)根据有理数的乘除法可以解答本题;(6)根据有理数的乘法和加减法可以解答本题;【解答】解:(1)﹣3﹣7=(﹣3)+(﹣7)=﹣10;(2)(﹣)+(﹣)﹣(﹣3)=﹣1+3=2;(3)﹣0.5+(﹣15.5)﹣(﹣17)﹣|﹣12|=﹣0.5+(﹣15.5)+17﹣12=﹣11;(4)=(﹣32)+21+(﹣4)=﹣15;(5)(﹣81)÷=81×=1;(6)〔1﹣(1﹣0.5×)〕×|2﹣(﹣3)2|﹣(﹣62)=[1﹣(1﹣)]×|2﹣9|﹣(﹣36)=[1﹣]×7+36=+36==.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.39.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).【分析】(1)先化简再计算加减法;根据有理数的加法法则计算即可求解;(2)将除法变为乘法,再约分计算即可求解;(3)(5)(6)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)直接运用乘法的分配律计算.【解答】解:(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣17+27=10;(2)=﹣×××=﹣;(3)﹣(3﹣5)+32×(﹣3)=2+9×(﹣3)=2﹣27=﹣25;(4)=30﹣×36﹣×36+×36=30﹣28﹣30+33=5;(5)|=﹣9+×(﹣)+4=﹣9﹣1+4=﹣6;(6)=9﹣7÷7﹣×4=9﹣1﹣1=7.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.40.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算除法运算,再计算加减运算即可得到结果;(3)原式从左到右依次计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣8﹣2=﹣10;(3)原式=10×5×5=250;。
专题 有理数的混合运算计算题(50题)(解析版)-七年级数学上册
七年级上册数学《第一章有理数》专题有理数的混合运算的计算题(50题)1.(2022秋•晋安区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(−12)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(−12)3=﹣3×4﹣1+(−18)=﹣12﹣1+(−18)=﹣1318.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.(2022春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+75=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(2023春•香坊区校级期中)计算:(1)(13−12+14)×24(2)﹣23×34−(−3)3÷9【分析】(1)根据乘法分配律简便计算即可求解.;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(13−12+14)×24=13×24−12×24+14×24=8﹣12+6=2;(2)﹣23×34−(−3)3÷9=﹣8×34+27÷9=﹣6+3=﹣3.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(2023•西乡塘区二模)计算:6×(3−5)+(−2)2+14.【分析】先算乘方,再算乘法,然后算加减法即可.【解答】解:6×(3−5)+(−2)2+14=6×(﹣2)+4+14=﹣12+4+14=﹣734.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•南宁三模)计算:(﹣1)3+8÷22+|4﹣7|×13.【分析】先算乘方,再算乘除法,最后算加法即可.【解答】解:(﹣1)3+8÷22+|4﹣7|×13=(﹣1)+8÷4+3×13=(﹣1)+2+1=2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2023•柳州三模)计算(−1)2−6÷(−2)×|−13|.【分析】先算乘方和绝对值,再算乘除,最后算加减.【解答】解:原式=1﹣(﹣3)×13=1+1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算顺序是解决本题的关键.7.(2023春•浦东新区期末)计算:﹣23+|﹣5|﹣18×(−13)2.【分析】先计算立方、绝对值和平方,再计算乘法,最后计算加减.【解答】解:﹣23+|﹣5|﹣18×(−13)2.=﹣8+5﹣18×19=﹣8+5﹣2=﹣5.【点评】此题考查了有理数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.8.(2023•武鸣区二模)计算:−12023+(−4)÷12−(1−32).【分析】先算括号里面的,再算乘方,除法,最后算加减即可.【解答】解:原式=﹣12023+(﹣4)÷12−(1﹣9)=﹣12023+(﹣4)÷12−(﹣8)=﹣1+(﹣4)×2+8=﹣1﹣8+8=﹣1.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.9.(2023春•松江区期中)计算:−32−42÷|−6|+8×(−12)3.【分析】利用乘方运算、绝对值的定义和有理数的混合运算法则计算.【解答】解:−32−42÷|−6|+8×(−12)3=﹣9﹣42÷6+8×(−18)=﹣9﹣7﹣1=﹣17.【点评】本题考查了有理数的混合运算,解题的关键是掌握乘方运算、绝对值的定义和有理数的混合运算法则.10.(2022秋•万源市校级期末)﹣22+|5﹣8|+24÷(﹣3)×13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3−83=−113.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.(2022春•徐汇区校级期末)计算:−24−14×[2−(−2)2].【分析】利用有理数的混合运算法则进行计算即可.【解答】解:原式=﹣16−14×(2﹣4)=﹣16−14×(﹣2)=﹣16+12=﹣1512.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.12.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(−1112+912)×(﹣16)−73×27=−16×(﹣16)−23=83−23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春•黄浦区期中)计算:(−1112−34)×(−42)+(−213)÷3.5.【分析】先算括号里面的,再算乘除,最后算加减即可.【解答】解:原式=(−1112−912)×(﹣16)+(﹣213)÷3.5=−53×(﹣16)−73×27=803−23=783=26.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.15.(2023春•雁峰区校级期末)计算:(−3)4÷[2−(−7)]+6×(12−1).【分析】先算乘方和括号内的式子,再算括号外的乘除法,最后算加法即可.【解答】解:(−3)4÷[2−(−7)]+6×(12−1)=81÷(2+7)+6×(−12)=81÷9+(﹣3)=9+(﹣3)=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.(2023春•黄浦区期末)计算:(−56+34)×(−42)+(−213)÷3.5.【分析】有理数的混合运算,先算乘方,再算乘除再算加减,有括号的先算括号的,从而可求出最后结果.【解答】解:(−56+34)×(−42)+(−213)÷3.5=−10+912×(−16)+(−73)×27=−13×(−4)−23=43−23=23.【点评】本题主要考查了有理数的混合运算.本题的易错点是对于负号的计算处理.17.(2023•贺州一模)计算:﹣12023+8÷(﹣2)2﹣|﹣4|×5.【分析】按照有理数的运算法则和运算顺序进行计算即可.【解答】解:原式=﹣1+8÷4﹣4×5=﹣1+2﹣20=﹣19.【点评】本题考查了绝对值和含有乘方的有理数的混合运算,掌握相关运算法则是解题的关键.最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(2023•防城港二模)计算:−14×[(−8)+2÷12]−|−3|.【分析】根据有理数的混合运算法则进行计算即可.【解答】解:原式=﹣1×(﹣8+2×2)﹣3=﹣1×(﹣8+4)﹣3=﹣1×(﹣4)﹣3=4﹣3=1.【点评】本题考查有理数的混合运算,其相关运算法则是基础且重要知识点,必须熟练掌握.19.(2023春•浦东新区期末)计算:﹣14+(1﹣0.5)×13×(﹣2)2.【分析】首先计算乘方和小括号里面的减法,然后计算乘法,最后计算加法,求出算式的值即可.【解答】解:﹣14+(1﹣0.5)×13×(﹣2)2=﹣1+12×13×4=﹣1+23=−13.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1−12×(−43)×(2﹣9)=﹣1−143=−173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.23.(2023春•吉林月考)计算:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24).【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24)=1+|﹣8+9|−14×24+16×24=1+1﹣6+4=0.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,24.(2022秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|.【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12)=25×2=50;(2)(﹣3)2×(12−56)+|﹣4|=9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.25.(2022秋•广宗县期末)计算(1)(14−13−1)×(﹣12)(2)﹣22×14+(﹣3)3×(−827)【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.26.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12).【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12)=(14−49)×36+7×(﹣2)=9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.28.(2022秋•翠屏区期末)计算:(1)12×(116−13−34);(2)−22−13÷5×|1−(−4)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法,最后算减法即可.【解答】解:(1)12×(116−13−34)=12×116−12×13−12×34=22﹣4﹣9=9;(2)−22−13÷5×|1−(−4)2|=﹣4−13×15×|1﹣16|=﹣4−13×15×15=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.30.(2022秋•和平区校级期末)计算(1)(13−18+16)×24;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(13−18+16)×24=13×24−18×24+16×24=8﹣3+4=9;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25=16÷649+112×(−16)−14=16×964+(−1112)−14=2712+(−1112)−312=1312.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.31.(2023•章贡区校级模拟)计算:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)];(2)(514−78−712)÷(﹣134).【分析】(1)先算乘方和括号内的式子,然后计算括号外的减法即可;(2)先把除法转化为乘法,然后根据乘法分配律计算即可.【解答】解:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)]=﹣1﹣[(﹣10)﹣16÷(﹣8)]=﹣1﹣[(﹣10)+2]=﹣1﹣(﹣8)=﹣1+8=7;(2)(514−78−712)÷(﹣134)=(214−78−712)×(−47)=214×(−47)−78×(−47)−712×(−47)=﹣3+12+13=−186+36+26=−136.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.32.(2023•长阳县一模)计算:(1)(12−13)×6÷|−15|;(2)(−1)2018+(−10)÷12×2−[2−(−3)3].【分析】(1)根据有理数的加减乘除混合运算法则计算即可;(2)根据有理数的加减乘除乘法混合运算法则计算即可.【解答】解:(1)(12−13)×6÷|−15|=(12−13)×6×5=(12−13)×30=12×30−13×30=15﹣10=5;(2)(−1)2018+(−10)÷12×2−[2−(−3)3]=1+(﹣10)×2×2﹣(2+27)=1﹣40﹣29=﹣68.【点评】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.33.(2022秋•定远县期中)计算:(1)−22−|0.5−1|×13×[3−(−3)2];(2)(−4.66)×49−5.34÷94+5×(23)2.【分析】(1)先计算绝对值里面的式子和中括号里面的式子,然后再计算出括号外的式子;(2)先把除法转化为乘法、然后根据有理数的乘方和乘法分配律即可解答本题.【解答】解:(1)−22−|0.5−1|×13×[3−(−3)2]=﹣4−12×13×(3﹣9)=﹣4−16×(﹣6)=﹣4+1=﹣3;(2)(−4.66)×49−5.34÷94+5×(23)2=(﹣4.66)×49−5.34×49+5×49=[(﹣4.66)﹣5.34+5]×49=﹣5×49=−209.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134−78−712)÷(−78)+(−34)=(74−78−712)×(−87)+(−34)=74×(−87)−78×(−87)−712×(−87)−34=﹣2+1+23−34=−1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(−12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•正阳县期中)计算:(1)(1112−76+34−1324)×(﹣48);(2)﹣9+5×|﹣3|﹣(﹣2)2÷4;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5).【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算加减法即可.【解答】解:(1)(1112−76+34−1324)×(﹣48)=1112×(﹣48)−76×(﹣48)+34×(﹣48)−1324×(﹣48)=﹣44+56+(﹣36)+26=2;(2)﹣9+5×|﹣3|﹣(﹣2)2÷4=﹣9+5×3﹣4÷4=﹣9+15﹣1=5;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5)=﹣1+16×4﹣(1﹣9)×(−16)=﹣1+64﹣(﹣8)×(−16)=﹣1+64−43=6123.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.36.(2022秋•临邑县期中)计算:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712);(2)(−49)÷75×57÷(−25).(3)﹣22÷43−[22﹣(1−12×13)]×12;【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和括号内的式子,然后括号外的乘除法,最后算加减法即可.【解答】解:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712)=(−12)+314+234+(﹣712)=﹣2;(2)(−49)÷75×57÷(−25)=49×57×57×125=1;(3)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−[4﹣(1−16)]×12=﹣3﹣(4−56)×12=﹣3﹣4×12+56×12=﹣3﹣48+10=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.37.(2022秋•南票区期中)计算(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5;(2)(﹣5)×6×(−45)÷(﹣4);(3)﹣11×(−227)+19×(−227)+6×(−227);(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|.【分析】(1)去括号,进行加减运算;(2)把除法变成乘法,再进行计算;(3)先提公因数,再计算;(4)先乘方,再乘除,最后加减运算.【解答】解:(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=(﹣0.8)+0.8﹣0.7﹣2.1+1.2+3.5=0﹣2.8+4.7=1.9;(2)(﹣5)×6×(−45)÷(﹣4)=(﹣5)×6×(−45)×(−14)=﹣6;(3)﹣11×(−227)+19×(−227)+6×(−227)=(−227)×(﹣11+19+6)=(−227)×14=﹣44;(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|=﹣9×(﹣2)+16÷(﹣8)﹣4=18+(﹣2)﹣4=18﹣2﹣4=12.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和运算顺序.38.(2022秋•库车市期中)计算:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37);(2)﹣54×219+(﹣412)×29;(3)(12+56−712)×(﹣24);(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|.【分析】(1)先去括号,再进行加减运算;(2)(3)先算乘除,再算加减;(4)先算乘方和绝对值,再算乘除,最后算加减.【解答】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣53﹣37+21+69=﹣90+90=0;(2)﹣54×219+(﹣412)×29=﹣54×199+(−92)×29=﹣115;(3)(12+56−712)×(﹣24)=12×(﹣24)+56×(﹣24)−712×(﹣24)=﹣12﹣20+14=﹣32+14=﹣18;(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|=﹣1÷(−52)×25﹣7=﹣1×(−25)×25﹣7=10﹣7=3.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.39.(2022秋•南山区校级期中)计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(23−112−415)×(−60);(3)−14−16×[2−(−3)2];(4)(−2)2−[(−23)+(−14)]÷112.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算及括号里面的,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12﹣5﹣14+39=﹣31+39=8;(2)原式=﹣40+5+16=﹣19;(3)原式=−1−16×(2−9)=−1+76=16;(4)原式=4−(−23−14)×12=4+8+3=15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.40.计算:(1)4﹣(﹣28)+(﹣2);(2)(13−16)×(﹣24);(3)(﹣2)3﹣(﹣13)÷(−12);(4)﹣12﹣(1﹣0.5)÷52×15.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1−12×25×15=−1−125=−1125.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.41.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12);(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.42.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.43.(2022秋•西城区校级期中)计算:(1)﹣2+8﹣36﹣(﹣30);(2)﹣24÷(﹣6)×(−14);(3)(−34+56+716)×(﹣48);(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2].【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)根据乘法分配律计算即可;(4)先算乘方和括号内的式子,然后算乘法,最后算减法即可.【解答】解:(1)﹣2+8﹣36﹣(﹣30)=﹣2+8+(﹣36)+30=0;(2)﹣24÷(﹣6)×(−14)=﹣24×16×14=﹣1;(3)(−34+56+716)×(﹣48)=−34×(﹣48)+56×(﹣48)+716×(﹣48)=36+(﹣40)+(﹣21)=﹣25;(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2]=12×(﹣1)﹣(1﹣36)=−12−(﹣35)=−12+35=3412.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.44.计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣0.2×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12)(4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12;(2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125;(3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.45.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)4×(﹣3)2﹣5×(﹣2)+6;(3)(−34+712−59)÷(−136);(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2].【分析】(1)先化简,再计算加减法即可求解;(2)(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)将除法变为乘法,再根据乘法分配律简便计算.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣4﹣28+29﹣24=﹣56+29=﹣27;(2)4×(﹣3)2﹣5×(﹣2)+6=4×9+10+6=36+10+6=52;(3)(−34+712−59)÷(−136)=(−34+712−59)×(﹣36)=34×36−712×36+59×36=27﹣21+20=26;(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2]=﹣1−12÷213×[2﹣9]=﹣1−12÷213×(﹣7)=﹣1+112=12.【点评】考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.46.(2022秋•汤阴县期中)计算:(1)−22×|−5|−6÷(12−13)×56;(2)(−56+13−34)×(−24);(3)(−1)2023×[−24×(−34)2−1];(4)24−12022×(−2)3−5.5÷415×(−815).【分析】(1)先算乘方、括号内的式子和去绝对值,然后计算括号外的乘除法,再算减法即可;(2)根据乘法分配律计算即可;(3)先算乘方和括号内的式子,再算括号外的乘法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)−22×|−5|−6÷(12−13)×56=﹣4×5﹣6÷16×56=﹣20﹣6×6×56=﹣20﹣30=﹣50;(2)(−56+13−34)×(−24)=−56×(﹣24)+13×(﹣24)−34×(﹣24)=20+(﹣8)+18=30;(3)(−1)2023×[−24×(−34)2−1]=(﹣1)×(﹣16×916−1)=(﹣1)×(﹣9﹣1)=(﹣1)×(﹣10)=10;(4)24−12022×(−2)3−5.5÷415×(−815)=24﹣1×(﹣8)−112×154×(−815)=24+8+11=43.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键,注意乘法分配律的应用.47.(2022秋•丰泽区校级期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(−38−16+34)×(﹣24);(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017;(4)﹣22÷43−[22﹣(1−12×13)]×12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算乘方,再算乘法,最后算减法即可;(4)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算减法即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20+(﹣14)+18+(﹣13)=﹣29;(2)(−38−16+34)×(﹣24)=−38×(﹣24)−16×(﹣24)+34×(﹣24)=9+4+(﹣18)=﹣5;(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017=(−14)×16−14×(﹣8)×(﹣1)=﹣4﹣2=﹣6;(4)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−(4﹣1+16)×12=﹣3﹣(3+16)×12=﹣3﹣36﹣2=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.48.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6(3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(2023春•沈阳月考)计算:(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213−(+1013)+(−815)⋅(+325);(3)(−292324)×12;(4)(−24)×(1−34+16−58);(5)−32−(−2)3×(−4)÷(−14);(6)(−32+3)×[(−1)2022−(1−0.5×13)].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)先算乘法,再算加减法即可;(3)先变形,然后根据乘法分配律计算即可;(4)根据乘法分配律计算即可;(5)先算乘方,再算乘除法,最后算减法即可;(6)先算括号内的式子,再算括号外的乘法即可.【解答】解:(1)3﹣(+63)﹣(﹣259)﹣(﹣41)=3+(﹣63)+259+41=240;(2)213−(+1013)+(−815)⋅(+325);=213+(﹣1013)+(−415)×175=213+(﹣1013)+(−69725)=﹣8+(−69725)=−89725;(3)(−292324)×12=(﹣30+124)×12=﹣30×12+124×12=﹣360+12=﹣35912;(4)(−24)×(1−34+16−58)=﹣24×1+24×34−24×16+24×58=﹣24+18﹣4+15=5;(5)−32−(−2)3×(−4)÷(−14)=﹣9﹣(﹣8)×(﹣4)×(﹣4)=﹣9+128=119;(6)(−32+3)×[(−1)2022−(1−0.5×13)]=(﹣9+3)×[1﹣(1−16)]=(﹣6)×(1−56)=(﹣6)×16=﹣1.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.50.(2022秋•朝阳区校级月考)计算.(1)﹣32﹣(+11)+(﹣9)﹣(﹣16);(2)﹣9+0.8+(﹣1)+(−45)−(−10);(3)﹣212÷(−5)×(−313)÷0.75;(4)(−16−512+13)×(−72);(5)−12023+27×(−13)2−|﹣5|;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12.【分析】(1)先把减法统一成加法,写成省略括号和的形式,再把负数、正数分别相加;(2)先把分数化成小数,再把和为0的放一起先加;(3)先把除法统一成乘法,再算乘法;(4)利用乘法的分配律计算比较简便;(5)先算乘方化简绝对值,再算乘法,最后算加减;(6)先算乘方,再算括号里面的,最后算乘法、加减.【解答】解:(1)﹣32﹣(+11)+(﹣9)﹣(﹣16)=﹣32﹣11﹣9+16=﹣52+16=﹣36;(2)﹣9+0.8+(﹣1)+(−45)−(−10)=﹣9+0.8﹣1﹣0.8+10=(﹣9﹣1+10)+(0.8﹣0.8)=0+0=0;(3)﹣212÷(−5)×(−313)÷0.75=−52×(−15)×(−103)÷34=−52×15×103×43=−209;(4)(−16−512+13)×(−72)=(−16)×(﹣72)−512×(﹣72)+13×(﹣72)=12+30﹣24=18;(5)−12023+27×(−13)2−|﹣5|=﹣1+27×19−5=﹣1+3﹣5=﹣3;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12=(−24+34)×(﹣8)+16+2×12=14×(﹣8)+16+1=﹣2+16+1=15.【点评】本题考查了有理数的混合运算,掌握有理数的运算律、运算法则是解决本题的关键.。
有理数的混合运算专项练习题集
七年级有理数计算练习题 一、 有理数加法(-9)+(-13)(-12)+27(-28)+(-34) 67+(-92)(-+(-23)+7+(-152)+65|52+(-31)|(-52)+|―31|38+(-22)+(+62)+(-78)(-8)+(-10)+2+(-1)(-32)+0+(+41)+(-61)+(-21)(-8)+47+18+(-27) (-5)+21+(-95)+29(-)++(-)+(-)+(-) 6+(-7)+(9)+272+65+(-105)+(-28) (-23)+|-63|+|-37|+(-77)19+(-195)+47(+18)+(-32)+(-16)+(+26)(-)+(-)+(-)+(-)(-8)+(-321)+2+(-21)+12553+(-532)+452+(-31)()+(-343)++ 二、 有理数减法7-9―7―90-(-9)(-25)-(-13)―(―(-321)-541(--(-(-26)+(-12)―12―18―1―(-21)―(+23)(-20)-(+5)-(-5)-(-12)(-23)―(-59)―(-|-32|―(-12)―72―(-5)(-41)―(-85)―81(+103)―(-74)―(-52)―710(-516)―3―(-)―7(+71)―(-72)―73(+)―(-)―(-)―(-32)―(-143)―(-132)―(+ (-332)―(-2)43―(-132)―(--843-597+461-392 -443+61+(-32)―25+(-41)-(-)+21(+)-(-4)+(-)-(+4)(-)-(-341)+-521三、 有理数乘法(-9)×32(-132)×(-)(-2)×31×(-) 31×(-5)+31×(-13)(-4)×(-10)××(-3) (-83)×34×(-)(-)×(-74)×4×(-7) (-73)×(-54)×(-127)(-8)×4×(-21)×(-) 4×(-96)×(-)×481(74-181+143)×56(65―43―97)×36 (-36)×(94+65-127)(-43)×(8-34-)(-66)×〔12221-(-31)+(-115)〕25×43-(-25)×21+25×41 (187+43-65+97)×7231×(2143-72)×(-58)×(-165)四、 有理数除法18÷(-3)(-24)÷6(-57)÷(-3)(-53)÷52(-42)÷(-6)(+215)÷(-73)(-139)÷÷(-81)-36÷(-131)÷(-32)(-1)÷(-4)÷743÷(-76)×(-97) 0÷[(-341)×(-7)]-3÷(31-41)(-2476)÷(-6) 2÷(5-18)×181131÷(-3)×(-31)-87×(-143)÷(-83)(43-87)÷(-65)(29-83+43)÷(-43) -×(61-)×73÷21-172÷(-165)×183×(-7) 56×(-31-21)÷4575÷(-252)-75×125-35÷4×112+×(-72)-÷73+×119五、有理数混合运算(-1275420361-+-)×(-15×4)()⨯⨯-73187(-)2÷(-73)×74÷(-571)[1521-(141÷152+321]÷(-181)51×(-5)÷(-51)×5-(31-211+143-72)÷(-421)-13×32-×72+31×(-13)-75×-(-25)÷(-5)(-13)×(-134)×131×(-671)(-487)-(-521)+(-441)-381(-16-50+352)÷(-2)(-)-(-341)+-521 178-+43212+532119-(-6)×(-4)+(-32)÷(-8)-3 -72-(-21)+|-121|(-9)×(-4)+(-60)÷12 [(-149)-175+218]÷(-421)-|-3|÷10-(-15)×31 -153×(327-165)÷221(231-321+11817)÷(-161)×(-7) -43×(8-231-)-2×23-22-()31-43-34 31--2×()31-()23-÷()24-2-×()22-232-+()34-()32-×()42-×()52-2-×23-()232⨯-()22-2-+()32-+3222--3)3(-×()31--()31--()[]221--+()221-0-()23-÷3×()32- 22-×()221-÷()38.0--23×()231--()32-÷()221-6+22×()51- ()243-×(-32+1)×0-10+8÷()22--4×3-51-()()[]55.24.0-⨯- ()251--(1-)×31()32-×()232-×()323-4×()23-+6 ()1321-×83×()122-×()731--27+2×()23-+(-6)÷()231-()42-÷(-8)-()321-×(-22)()()[]222345----×(11587÷)×()47- ()22--2[()221--3×43]÷51()26-÷9÷()296÷-36×()23121--{()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛-⨯+--)2(2114.0333}-41+(1-)×31×[2×()23-]-4×()[]3671÷-+()[]()33235-÷---33-()[]1283--÷+()23-×()32-÷25.01有理数的混合运算习题一.选择题1. 计算3(25)-⨯=()2. B.-1000 D.-303. 计算2223(23)-⨯--⨯=()4. B.-54 C.-72 D.-185. 计算11(5)()555⨯-÷-⨯=6. C.-57. 下列式子中正确的是()8. A.4232(2)(2)-<-<- B.342(2)2(2)-<-<- 9. C.4322(2)(2)-<-<- D.234(2)(3)2-<-<- 10. 422(2)-÷-的结果是()11. B.-4 D.-2 12.如果210,(3)0a b -=+=,那么1b a+的值是()13. A.-2 B.-3 C.-4 二.填空题1.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。
七年级有理数混合运算100题
七年级有理数混合运算100题1. 计算:(3) + 7 22. 计算:(4 9) × (2)3. 计算:4 ÷ 2 + 54. 计算:5 (3) × 25. 计算:3 × (4) ÷ 26. 计算:2 + 3 × 4 57. 计算:7 ÷ (3) + 2 × 48. 计算:(8 5) × (3) + 49. 计算:6 ÷ 3 + (2) × 510. 计算:9 (4) × 2 711. 计算:5 + 6 ÷ 2 312. 计算:4 × (3) + 7 ÷ (2)13. 计算:8 + (5) × (2)14. 计算:3 ÷ (4) + 2 × (6)15. 计算:7 4 × (3)16. 计算:5 × (2) ÷ 4 + 617. 计算:9 + 8 ÷ (2) 518. 计算:(7 4) × 3 919. 计算:6 ÷ (3) + 2 × (5)20. 计算:8 3 × 4 + 1021. 计算:4 + 9 ÷ 3 622. 计算:7 × (2) + 5 ÷ (4)23. 计算:5 + (8) × (3)24. 计算:4 ÷ (5)+ 3 × (7)25. 计算:9 6 × (2)26. 计算:8 ÷ 2 + (4) × 327. 计算:7 + 5 × (6) ÷ (3)28. 计算:(9 7) × (4) + 829. 计算:5 ÷ 2 + (3) × 730. 计算:11 (5) × 2 13继续完善七年级有理数混合运算100题:31. 计算:如果你有10个苹果,然后又得到了5个,再分给2个朋友,每人分几个?32. 计算:小明做数学题,先减去8,然后乘以3,加上10,如果开始是5,他得到了多少分?33. 计算:一个篮子里有12个橙子,拿走了6个,再放进去8个,篮子里现在有多少个橙子?34. 计算:小华每天跑步,今天跑了4公里,明天计划跑3倍的距离,然后休息一天,她总共会跑多少公里?35. 计算:小刚有20元,他先花了5元,然后又赚了10元,他现在有多少元?36. 计算:一个水池里有15升水,倒出了10升,然后又加入了8升,水池里现在有多少升水?37. 计算:小王每天吃2个糖果,连续吃了5天,然后决定再也不吃了,他一共吃了多少个糖果?38. 计算:小李的体重减少了5公斤,然后他又增重了3公斤,他的体重变化了多少公斤?39. 计算:如果3个孩子每人分得4个气球,那么他们总共分得了多少个气球?40. 计算:小张在考试中先扣了10分,然后又因为表现好加了8分,他的最终得分是多少?41. 计算:一个班级有25名学生,如果每天有2名学生请假,连续3天后,班级还剩多少名学生?42. 计算:小赵每天存5元,连续存了4天,然后一次性取出了20元,他现在有多少元?43. 计算:一辆车行驶了30公里,然后倒退了10公里,接着又前进了15公里,这辆车总共行驶了多少公里?44. 计算:小陈的分数先减去了20%,然后又增加了15%,他的分数最终变化了多少?45. 计算:如果4个家庭每个家庭有6口人,那么这些家庭总共有多少人?46. 计算:小刘每天学习3小时,连续学习了5天,然后决定休息一天,他总共学习了多少小时?47. 计算:一个图书馆有50本书,借出了20本,然后又增加了15本,图书馆现在有多少本书?48. 计算:小王每天赚50元,连续工作了6天,然后休息了2天,他总共赚了多少元?49. 计算:如果8个篮子每个篮子能装12个鸡蛋,那么这些篮子总共能装多少个鸡蛋?50. 计算:小明的成绩先下降了15分,然后又提升了20分,他的成绩最终变化了多少分?继续完善七年级有理数混合运算100题:51. 计算:一个科学家在实验中,初始温度是0℃,下降了5℃后,又上升了8℃,现在的温度是多少℃?52. 计算:小芳的储蓄罐里原本有50元,她先花掉了15元,然后又存入了20元,现在储蓄罐里有多少元?53. 计算:一辆火车从车站出发,先行驶了100公里,然后返回了30公里,接着又向前行驶了50公里,火车最终离车站多远?54. 计算:小杰在数学竞赛中,初始得分是80分,扣除10分后,他又获得了15分,他的最终得分是多少?55. 计算:一个鱼缸里有20条鱼,捞出了10条,然后又放回了5条,鱼缸里现在有多少条鱼?56. 计算:小梅在超市购物,她先买了价值30元的商品,然后退掉了价值10元的商品,又买了价值20元的商品,她总共花费了多少钱?57. 计算:一个学生在操场上跑步,他先跑了400米,然后休息了200米,又跑了300米,他总共跑了多少米?58. 计算:小华的体重是60公斤,他先减重了3公斤,然后又增重了2公斤,他的体重现在是多少公斤?59. 计算:一个班级有40名学生,如果每天有5名学生请假,连续3天后,班级还剩多少名学生?60. 计算:小丽的成绩提高了10%,然后又下降了5%,她的成绩最终变化了多少百分比?61. 计算:一本书的厚度是2厘米,如果撕掉了1/4,然后又增加了1/3的厚度,书的最终厚度是多少厘米?62. 计算:小王每天节约5元,连续节约了6天后,他一共节约了多少钱?63. 计算:一个农场有50只鸡,卖掉了20只,然后又买进了15只,农场现在有多少只鸡?64. 计算:小张的工资先增加了10%,然后又减少了5%,他的工资最终变化了多少?65. 计算:一个水桶里有10升水,倒掉了1/5,然后又加满了,水桶里现在有多少升水?66. 计算:小陈在游戏中获得了100分,然后失去了20分,接着又获得了30分,他的最终得分是多少?67. 计算:一列火车在起点站停留了10分钟,然后行驶了30分钟,又停留了15分钟,火车总共停留了多少分钟?68. 计算:小刘的存款是800元,他先取出了100元,然后又存入了50元,他的存款现在是多少元?69. 计算:如果每棵树能降低5%的噪音,那么10棵树能降低多少百分比的噪音?70. 计算:小明的成绩是85分,他先失去了5分,然后又获得了8分,他的成绩最终是多少分?71. 计算:一个班级的学生平均身高增加了2厘米,然后又减少了1厘米,学生的平均身高最终变化了多少厘米?72. 计算:小赵每天步行8000步,如果有一天他多走了20%,然后第二天又减少了10%,他这两天总共走了多少步?73. 计算:一个游泳池的水位上升了30厘米,然后又下降了15厘米,又上升了20厘米,游泳池的水位最终上升了多少厘米?74. 计算:小王在比赛中得到了90分,评委扣除了他5分,然后又因为表现突出加回了7分,他最终得分是多少?75. 计算:一箱苹果有50个,吃掉了1/4后,又买来了相同数量的苹果,箱子里现在有多少个苹果?(通过这些实际问题,学生可以更好地理解有理数混合运算在生活中的应用,从而提高解决实际问题的能力。
专题 有理数的混合运算计算题(50题提分练)(解析版)
七年级上册数学《第2章有理数及其运算》专题 有理数的混合运算计算题(50题)一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.1.(2023秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|. 【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12) =25×2=50;(2)(﹣3)2×(12−56)+|﹣4| =9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.2.(2023秋•广宗县期末)计算(1)(14−13−1)×(﹣12) (2)﹣22×14+(﹣3)3×(−827) 【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12) =﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827) =﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.3.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12). 【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12) =(14−49)×36+7×(﹣2) =9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.(2024•昭平县三模)计算:5÷[(﹣1)3﹣4]+32×(﹣1).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=5÷(﹣1﹣4)+9×(﹣1)=5÷(﹣5)+(﹣9)=﹣1+(﹣9)=﹣10.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.(2024•仙居县二模)计算:(−18)×[23−(−12)]−22.【分析】先算乘方,再算乘法,然后算减法即可.【解答】解:(−18)×[23−(−12)]−22=(﹣18)×23−(﹣18)×(−12)﹣4=(﹣12)﹣9﹣4=﹣25.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2024•西乡塘区校级三模)计算:2×(﹣5+3)﹣42÷(﹣8).【分析】先算括号内的式子和乘方,再算括号外的乘除法,然后算减法即可.【解答】解:2×(﹣5+3)﹣42÷(﹣8)=2×(﹣2)﹣16÷(﹣8)=﹣4+2=﹣2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.7.(2024春•秀屿区校级月考)计算:(−3)2÷[2−(−7)]+6×(−12 ).【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【解答】解:(−3)2÷[2−(−7)]+6×(−1 2 )=9÷(2+7)+6×(−12)=9÷9+(﹣3)=1+(﹣3)=﹣2.【点评】本题主要考查了含乘方的有理数混合计算,注意先计算乘方,再计算乘除法是关键.8.(2024•前郭县三模)计算:−14÷(−3)2×(−92)−|12−2|.【分析】先算乘方,再算乘除,后算加减,即可解答.【解答】解:−14÷(−3)2×(−92)−|12−2|=﹣1÷9×(−92)−32=−19×(−92)−32=12−32=﹣1.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.9.(2024春•长宁区期中)计算:−52÷1916−(118)×(−23)2.【分析】先算乘方,再算乘除法,然后算减法即可.【解答】解:−52÷1916−(118)×(−23)2=﹣25×1625−98×49=﹣16−1 2=−332. 【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.10.(2024春•长宁区期中)计算:(−1112+34)×(−42)+(213)÷(−312);【分析】先算乘方和括号内的式子,再算括号外的乘除法,然后计算加法即可.【解答】解:(−1112+34)×(−42)+(213)÷(−312)=(−1112+912)×(﹣16)+73×(−27)=(−212)×(﹣16)+(−23) =83+(−23) =2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.11.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312. 【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.12.(2023秋•安次区期末)计算:(1)(﹣20)﹣(﹣8)﹣7+(﹣2);(2)(﹣1)4×|3﹣7|÷(−3)×34.【分析】(1)减法转化为加法,再进一步计算即可;(2)先计算乘方和绝对值,并将除法转化为乘法,再约分即可得出答案.【解答】解:(1)原式=﹣20+8﹣7﹣2=﹣21;(2)原式=1×4×(−13)×34=﹣1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.13.(2023秋•永善县期末)计算:(1)1356+34−56−(−14);(2)(−2)3+13×(−3)−|(﹣9)÷3|.【分析】(1)利用加法交换律和结合律进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)1356+34−56−(−14)=1356+34−56+14 =(1356−56)+(34+14)=13+1=14;(2)(−2)3+13×(−3)−|(﹣9)÷3|=﹣8+(﹣1)﹣3=﹣9﹣3=﹣12.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.14.(2023秋•安州区期末)计算:(1)24+(﹣14)+(﹣16)+8;(2)(﹣81)÷94×49÷(﹣8).【分析】(1)把正数和负数分别相加,再求和;(2)把除法转化为乘法,运用乘法法则求积即可.【解答】解:(1)24+(﹣14)+(﹣16)+8=24﹣14﹣16+8=32﹣30=2;(2)(﹣81)÷94×49÷(﹣8)=81×49×49×18=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键.15.(2023春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+7 5=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(2023秋•高碑店市期末)计算:(1)−24×(13−34+58);(2)−22÷[2+(−6)]−4×(−12)2.【分析】(1)利用乘法分配律进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,有括号先算括号里,即可解答.【解答】解:(1)−24×(13−34+58)=﹣24×13+24×34−24×58=﹣8+18﹣15=10﹣15=﹣5;(2)−22÷[2+(−6)]−4×(−1 2 )2=﹣4÷(﹣4)﹣4×1 4=1﹣1=0.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.17.计算:(1)(﹣7)×5﹣(﹣36)÷4;(2)﹣14﹣(1﹣0.4)×13×(2﹣32).【分析】(1)首先计算乘法、除法,然后计算减法即可.(2)首先计算乘方和小括号里面的运算,然后计算小括号外面的乘法和减法即可.【解答】解:(1)(﹣7)×5﹣(﹣36)÷4=﹣35﹣(﹣9)=﹣35+9=﹣26.(2)﹣14﹣(1﹣0.4)×13×(2﹣32)=﹣1﹣0.6×13×(2﹣9)=﹣1﹣0.2×(﹣7)=﹣1+1.4=0.4.【点评】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.(2023秋•连山区期末)计算:(1)﹣23÷8−14×(﹣2)2;(2)(−112−116+34−16)×(﹣48).【分析】(1)先算乘方,再算乘除法,最后算减法即可;(2)根据乘法分配律计算即可.【解答】解:(1)﹣23÷8−14×(﹣2)2=﹣8÷8−14×4=﹣1﹣1=﹣2;(2)(−112−116+34−16)×(﹣48)=−112×(﹣48)−116×(﹣48)+34×(﹣48)−16×(﹣48) =4+3+(﹣36)+8=﹣21.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.19.(2023秋•西丰县期末)计算:(1)(56−14+13)÷(−112); (2)(﹣2)3×(−12)﹣|﹣1﹣5|.【分析】(1)先把有理数的除法转化为乘法,然后再利用乘法分配律进行计算,即可解答;(2)先算乘方,再算乘法,后算加减,即可解答.【解答】解:(1)(56−14+13)÷(−112) =(56−14+13)×(﹣12) =﹣12×56+12×14−12×13=﹣10+3﹣4=﹣11;(2)(﹣2)3×(−12)﹣|﹣1﹣5|=﹣8×(−12)﹣6=4﹣6=﹣2.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.20.(2023秋•忻州期末)计算:(1)3÷(−12)﹣(25−13)×15;(2)(﹣3)2﹣(﹣2)3×(−14)﹣(﹣1+6);【分析】(1)先将除法转化为乘法、计算括号内的运算,再计算乘法,最后计算减法即可;(2)先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:(1)原式=3×(﹣2)−115×15=﹣6﹣1=﹣7;(2)原式=9﹣(﹣8)×(−14)﹣5=9﹣2﹣5=2.【点评】本题主要考查有理数的运算,解题的关键是掌握有理数的混合运算顺序和运算法则.21.(2023秋•成武县期末)计算:(1)﹣32+|5﹣8|+24÷(−3)×1 3;(2)(﹣10)2﹣5×(﹣3×2)2+22×10.【分析】(1)先算乘方及绝对值,再算乘除,最后算加法即可;(2)先算乘方及括号里面的,再算乘法,最后算加减即可.【解答】解:(1)原式=﹣9+|﹣3|+24×(−13)×13=﹣9+3−8 3=−263;(2)原式=100﹣5×(﹣6)2+4×10=100﹣5×36+40=100﹣180+40=﹣40.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.22.(2024春•东坡区期末)(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].【分析】(1)把除法变乘法后用乘法分配律进行求解即可;(2)根据有理数混合运算的顺序和法则进行计算即可.【解答】解:(1)原式=(−34)×(−36)−59×(−36)+712×(−36)=27+20﹣21=26;(2)原式=−1−12×13×(2−9)=−1+76=16.【点评】本题考查了含乘方的有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.23.(2023秋•满城区期末)计算题:(1)−2+(−65)×(−23)+(−65)×173;(2)﹣14﹣5×[2﹣(﹣3)2].【分析】(1)先计算乘法运算,再计算加减运算即可;(2)先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)−2+(−65)×(−23)+(−65)×173=−2+45−345=﹣8;(2)﹣14﹣5×[2﹣(﹣3)2]=﹣1﹣5×(2﹣9)=﹣1﹣5×(﹣7)=﹣1+35=34.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(2023秋•綦江区期末)计算:(1)(−13+12)×6÷|−15|;(2)(−1)2024+(−10)÷12×2−[(−3)3−2].【分析】(1)根据有理数的四则混合运算法则进行计算即可;(2)根据有理数的四则混合运算法则进行计算即可.【解答】解:(1)(−13+12)×6÷|−15|=(−26+36)×6÷15 =16×6×5=5;(2)(−1)2024+(−10)÷12×2−[(−3)3−2]=1+(﹣10)×2×2﹣(﹣27﹣2)=1﹣40+29=﹣10.【点评】本题考查了有理数的混合运算,熟练掌握运算法则与运算顺序是解此题的关键.25.(2023秋•青山区期末)计算:(1)(﹣11)﹣7+(﹣8)﹣(﹣6);(2)﹣16﹣(1−23)÷13×[﹣2﹣(﹣3)2].【分析】(1)直接利用有理数的加减的法则进行运算即可;(2)先算乘方,除法转化为乘法以及括号里的运算,最后算加减即可.【解答】解:(1)(﹣11)﹣7+(﹣8)﹣(﹣6)=﹣11﹣7﹣8+6=﹣18﹣8+6=﹣26+6=﹣20;(2)﹣16﹣(1−23)÷13×[﹣2﹣(﹣3)2]=﹣1−13×3×(﹣2﹣9)=﹣1−13×3×(﹣11)=﹣1+11=10.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.26.(2023秋•关岭县期末)计算:(1)(﹣3)2﹣|﹣2|+(﹣1)2024×(﹣4);(2)(79+56−34)÷(−136).【分析】(1)先算乘方,去绝对值,再算乘法,最后算加减;(2)把除化为乘,用乘法分配律计算即可.【解答】解:(1)原式=9﹣2+1×(﹣4)=9﹣2﹣4=3;(2)原式=79×(﹣36)+56×(﹣36)−34×(﹣36)=﹣28﹣30+27=﹣31.【点评】本题考查有理数混合运算,解题的关键是掌握有理数相关运算的法则.27.(2024春•南岗区校级月考)计算:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024(2)(﹣3)2×5﹣(﹣2)3÷8【分析】(1)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可;(2)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可.【解答】解:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024=﹣6﹣(﹣6)+1=﹣6+6+1=1;(2)(﹣3)2×5﹣(﹣2)3÷8=9×5﹣(﹣8)÷8=45﹣(﹣1)=46.【点评】本题考查有理数的混合运算,熟练掌握有理数混合运算法则是关键.28.(2023秋•游仙区期末)计算:(1)4+(﹣2)3×5﹣(﹣0.28)÷4;(2)−14−16×[2−(−3)2].【分析】(1)先算乘方,再算乘除法,然后计算加减法即可;(2)先算乘方和括号内的式子,再算乘法,然后计算减法即可.【解答】解:(1)4+(﹣2)3×5﹣(﹣0.28)÷4=4+(﹣8)×5+0.07=4+(﹣40)+0.07=﹣35.93;(2)−14−16×[2−(−3)2]=﹣1−16×(2﹣9)=﹣1−16×(﹣7)=﹣1+76=16.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2023秋•太康县期末)计算:(1)(14+38−712)÷124; (2)﹣14﹣(1−12)2×15×[2+(﹣3)3].【分析】(1)先把除法转化为乘法,再根据乘法分配律计算即可;(2)先计算乘方,再计算乘除,后计算加减法,有括号的先计算括号内的.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1;(2)原式=﹣1−(12)2×15×(2﹣27)=﹣1−14×15×(−25)=﹣1+5 4=14.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.30.(2023秋•河东区期末)计算:(1)(﹣1)2023×|﹣3|−(−2)3+4÷(−23)2;(2)−32×(−13)2+(34+16+38)×(−24).【分析】各个小题均按照混合运算法则,先算乘方,再算乘除,最后算加减即可.【解答】解:(1)原式=−1×3−(−8)+4÷4 9=−1×3+8+4×94=﹣3+8+9=9+8﹣3=17﹣3=14;(2)原式=−9×19−24×34−24×16−24×38=﹣1﹣18﹣4﹣9=﹣32.【点评】本题主要考查了有理数的混合运算,解题关键是熟练掌握有理数的加减乘除法则.31.(2023秋•江西期末)计算:(1)|−2|+(−1)2019−(−12)2;(2)16÷(−2)3−(−18)×(−4).【分析】(1)先算乘方,去绝对值符号,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)|−2|+(−1)2019−(−1 2 )2=2−1−14 =34;(2)16÷(−2)3−(−18)×(−4)=16÷(−8)−12=−2−12=−52.【点评】本题主要考查了有理数的混合运算,熟知有理数混合运算的法则是解题的关键.32.计算:(1)−22÷15×5−(−10)2−|−3|;(2)(−1)2023+(−5)×[(−2)3+2]−(−4)2÷(−12 ).【分析】(1)先算乘方,乘除法和绝对值,再算加减;(2)先算括号里面的运算及乘方,乘除法,后算加减即可.【解答】解:(1)−22÷15×5−(−10)2−|−3|=﹣4×5×5﹣100﹣3=﹣100﹣100﹣3=﹣203;(2)(−1)2023+(−5)×[(−2)3+2]−(−4)2÷(−1 2 )=−1+(−5)×(−8+2)−16÷(−12)=﹣1+(﹣5)×(﹣6)+32=﹣1+30+32=61.【点评】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.33.(2024春•南岗区校级月考)计算:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024(2)(﹣3)2×5﹣(﹣2)3÷8【分析】(1)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可;(2)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可.【解答】解:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024=﹣6﹣(﹣6)+1=﹣6+6+1=1;(2)(﹣3)2×5﹣(﹣2)3÷8=9×5﹣(﹣8)÷8=45﹣(﹣1)=46.【点评】本题考查有理数的混合运算,熟练掌握有理数混合运算法则是关键.34.(2023秋•邹平市期末)计算:(1)2023+(﹣5)3×8﹣|﹣2024|÷(﹣4);(2)−156−(−13)2×[(−2)3+(−6)2−1].【分析】(1)先算乘方和去绝对值,然后算乘除法,再算加减法即可;(2)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)2023+(﹣5)3×8﹣|﹣2024|÷(﹣4)=2023+(﹣125)×8﹣2024÷(﹣4)=2023+(﹣1000)+506=1529;(2)−156−(−13)2×[(−2)3+(−6)2−1]=﹣1−19×(﹣8+36﹣1)=﹣1−19×27=﹣1﹣3=﹣4.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.35.(2024春•阿荣旗校级月考)计算:(1)(−48)×(−12−58+712); (2)﹣14+9÷(﹣3)2×|﹣3﹣1|.【分析】(1)利用乘法运算律计算求解即可;(2)先计算有理数的乘方,绝对值,然后进行乘除运算,最后进行加减运算即可.【解答】解:(1)(−48)×(−12−58+712)=(−48)×(−12)+(−48)×(−58)+(−48)×712 =24+30﹣28=26;(2)﹣14+9÷(﹣3)2×|﹣3﹣1|=﹣1+9÷9×4=﹣1+4=3.【点评】本题考查了乘法分配律,有理数的乘方,绝对值,有理数的混合运算,熟练掌握以上运算法则是解题的关键.36.(2023秋•长寿区期末)计算:(1)﹣22﹣|﹣7|+3﹣2×(−12);(2)﹣14+[4﹣(38+16−34)×24]÷5. 【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4﹣7+3+1=﹣7;(2)原式=﹣1+(4﹣9﹣4+18)÷5=﹣1+95=45.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.37.(2023秋•杜尔伯特县期末)计算:(1)﹣22﹣(﹣2)2﹣8+(﹣2)3﹣42+|﹣4|;(2)(−4)×(−57)÷(−47)−(12)2.【分析】(1)先算乘方和化简绝对值,再算有理数的加减混合运算:(2)先算乘方,再算有理数的乘除,最后运算有理数的加减混合运算.【解答】解:(1)﹣22﹣(﹣2)2﹣8+(﹣2)3﹣42+|﹣4|=﹣4﹣4﹣8﹣8﹣16+4=﹣36;(2)(−4)×(−57)÷(−47)−(12)2=−4×(−57)×(−74)−14=−5−14=−514.【点评】本题考查了含有理数的混合运算、化简绝对值,熟练掌握运算法则是关键.38.(2023秋•台儿庄区期末)计算:(1)−24÷(−4)3−(−12)3×|﹣4|;(2)−6÷(−13)2−52+2×(−4)2.【分析】(1)先算乘方,再算乘除,后算加减,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)−24÷(−4)3−(−12)3×|−4|=−16÷(−64)−(−18)×4 =14−(−12)=14+12=34;(2)−6÷(−13)2−52+2×(−4)2=﹣6÷19−25+2×16=﹣6×9﹣25+32=﹣54﹣25+32=﹣79+32=﹣47.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.39.(2023秋•浚县期末)计算:(1)−8×(−16+34−112)÷16;(2)−12022−[2−(−2)3]÷(−25)×52.【分析】(1)先将除法转化为乘法,再利用乘法运算律进行简便计算即可;(2)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(1)−8×(−16+34−112)÷16=﹣8×(−16+34−112)×6=﹣48×(−16+34−112)=﹣48×(−16)﹣48×34−48×(−112)=8﹣36+4=﹣24;(2)−12022−[2−(−2)3]÷(−25)×52=﹣1﹣[2﹣(﹣8)]×(−52)×52=﹣1﹣10×(−52)×52=﹣1+125 2=1232.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.40.(2023秋•海南期末)计算:(1)(12−13)×6÷|−15|;(2)−12022+(−10)÷12×2−[2−(−3)3].【分析】(1)先将除法转化为乘法,然后根据有理数的乘法进行计算即可求解;(2)先计算括号内的,有理数的乘方,然后计算乘除,最后计算加减即可求解.【解答】解:(1)原式=(36−26)×6×5=16×6×5=5;(2)原式=﹣1+(﹣10)×2×2﹣(2+27)=﹣1﹣20×2﹣29=﹣1﹣40﹣29=﹣41﹣29=﹣70.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则以及运算顺序是解题的关键.41.(2023秋•文峰区期末)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【分析】(1)先算乘方,除法转化为乘法,括号里的减法运算,绝对值,再算乘法,最后算加减即可;(2)先算乘方,除法转化为乘法,再算括号里的运算,接着算乘法,最后最加减即可.【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.42.(2023秋•陇县期末)计算:(1)﹣9+(﹣32)﹣(﹣27)﹣(﹣4);(2)(−1.5)×(−2)÷(−23)÷(−15);(3)−32÷(−2)2×|−1−13|−(−2)3.【分析】(1)根据减去一个数,等于加上这个数的相反数,即可求得结果;(2)根据除以一个数等于乘以这个数的倒数,两个负数相乘结果为正,即可得到结果;(3)先将含有乘方的化简,然后求出数的绝对值,然后进行计算.【解答】解:(1)﹣9+(﹣32)﹣(﹣27)﹣(﹣4)=﹣9﹣32+27+4=﹣41+27+4=﹣10;(2)(−1.5)×(−2)÷(−23)÷(−15)=3×(−32)×(−5) =452;(3)−32÷(−2)2×|−1−13|−(−2)3=−9÷4×|−43|−(−8)=−9×14×43−(−8)=﹣3﹣(﹣8)=﹣3+8=5.【点评】本题考查了含有乘方的有理数混合运算、求一个数的绝对值,正确计算是解题的关键.43.(2023秋•仁怀市期中)计算:(1)(﹣23)﹣59+(﹣41)﹣(﹣59);(2)−5×2+3÷13−(−1);(3)−12+(3−5)2−|−14|÷(−12)3;(4)(−48)×(18−13+14)+(−2)2÷12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先算乘除法,再算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(﹣23)﹣59+(﹣41)﹣(﹣59)=(﹣23)+(﹣59)+(﹣41)+59=﹣64;(2)−5×2+3÷13−(−1)=﹣10+3×3+1=﹣10+9+1=0;(3)−12+(3−5)2−|−14|÷(−12)3=﹣1+(﹣2)2−14÷(−18)=﹣1+4−14×(﹣8)=﹣1+4+2=5;(4)(−48)×(18−13+14)+(−2)2÷12=﹣48×18+48×13−48×14+4×2=﹣6+16﹣12+8=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.44.(2024春•香坊区校级月考)计算:(1)15+(﹣27)+(﹣5)+27;(2)−14−16×[3−(−3)2];(3)7×34−(−7)×12+7×(−14);(4)(−2557)÷5.【分析】(1)根据有理数的加法计算法则求解即可;(2)按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可;(3)先去括号,然后利用乘法分配律的逆运算法则求解即可;(4)把原式变形为(−25−57)÷5,进一步变形得到−25÷5−57÷5,据此计算求解即可.【解答】解:(1)15+(﹣27)+(﹣5)+27=15﹣27﹣5+27=10;(2)−14−16×[3−(−3)2]=−1−16×(3−9) =−1−16×(−6)=﹣1+1=0;(3)7×34−(−7)×12+7×(−14)=7×34+7×12−7×14 =7×(34+12−14)=7×1=7;(4)(−2557)÷5=(−25−57)÷5 =−25÷5−57÷5 =−25÷5−57÷5 =−5−17=−517.【点评】本题主要考查了有理数的混合计算,熟练掌握有理数混合运算法则是关键.45.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13; (3)(34−13−56)×(﹣12); (4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12) =34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.46.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34 );(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−3 4 )=﹣1×(4﹣9)+3×(−4 3)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)] =−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.47.(2024春•南岗区校级月考)计算:(1)﹣4.2+5.7﹣8.4+10;(2)76×(16−13)×314÷35; (3)﹣22×5﹣(﹣2)3÷4;(4)(﹣10)3+[(﹣4)2﹣(1﹣3)2×2].【分析】(1)根据有理数的加减混合运算法则求解即可;(2)根据有理数的混合运算法则求解即可;(3)先计算乘方,然后计算乘除,最后计算加减;(4)先计算乘方,然后计算乘除,最后计算加减.【解答】解:(1)﹣4.2+5.7﹣8.4+10=1.5+1.6=3.1;(2)76×(16−13)×314÷35 =76×(−16)×314×53=−736×514=−572;(3)﹣22×5﹣(﹣2)3÷4=﹣4×5﹣(﹣8)÷4=﹣20﹣(﹣2)=﹣18;(4)(﹣10)3+[(﹣4)2﹣(1﹣3)2×2]=﹣1000+(16﹣4×2)=﹣1000+8=﹣992.【点评】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.48.(2024春•海陵区校级月考)计算:(1)[3−(−2)2]×|−6|÷2 3;(2)(56−12−712)÷(−124).【分析】(1)先算乘方和绝对值,最后算除法即可求解;(2)先通分算括号内的,最后算除法即可求解.【解答】解:(1)[3−(−2)2]×|−6|÷2 3=(3−4)×6÷23 =−1×6×32=﹣9.(2)(56−12−712)÷(−124)=(1012−612−712)÷(−124)=(−14)÷(−124)=14×24=6.【点评】本题考查了有理数的混合运算,正确掌握有理数的混合运算顺序是解题的关键.49.(2024春•南岗区校级月考)计算:(1)8+(−14)−5−(−0.25);(2)−24×(−12+34−13);(3)25×34+(−25)×12−25×(−14);(4)−22+8÷(−2)3−2×(18−12).【分析】(1)原式利用减法法则变形,然后利用加法交换律和结合律计算即可得到结果;(2)原式利用乘法分配律解题即可得到结果;(3)原式利用乘法分配律的逆运算即可得到结果;(4)原式先运算乘方和括号,然后乘除,最后加减计算即可得到结果.【解答】解:(1)8+(−14)−5−(−0.25)=(8−5)+[(−14)−(−0.25)]=3;(2)−24×(−12+34−13)=−24×(−12)−24×34−24×(−13)=12﹣18+8=2;(3)25×34+(−25)×12−25×(−14)=25×(34−12+14)=25×12=252;(4)−22+8÷(−2)3−2×(18−12)=−4+8÷(−8)−2×(−38)=−4−1+34=−414.【点评】本题考查有理数的混合运算,掌握运算顺序和运算法则是解题的关键.50.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417; (3)原式=﹣18×49×49×(−116)=29; (4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
七年级数学(上)有理数混合运算100题(含答案)
七年级数学(上)有理数混合运算100题(含答案)1. 计算:(3) + 5 2答案:02. 计算:(4 7) × (2)答案:63. 计算:4 ÷ 2 + 3答案:14. 计算:5 (3) + 2答案:105. 计算:3 × (2) 4答案:26. 计算:7 ÷ (1) + 6答案:17. 计算:4 + 8 ÷ (2)答案:88. 计算:(5) × (3) + 2答案:179. 计算:9 6 ÷ 3答案:710. 计算:2 × (4) + 5答案:1311. 解决这个问题:如果你有8个苹果,然后又得到了6个,你现在有多少苹果?答案:2个苹果12. 小华做数学题,先减去了10,然后又加上了15,请计算小华的最终结果。
答案:513. 一个数加上3后再乘以2,结果是多少?如果这个数是5。
答案:414. 小明将4分成两个相同的部分,然后将每个部分都加上5,的结果是多少?答案:6答案:116. 小红有一堆糖果,如果她每天吃掉4颗,5天后她还剩下多少糖果?如果她一开始有25颗糖果。
答案:5颗糖果17. 一个数乘以2后再减去8,结果是12,这个数是多少?答案:218. 如果一个数的两倍减去4等于8,那么这个数是多少?答案:619. 计算下列表达式的值:(3) × (2) 5 + 7 ÷ (1)答案:120. 小李的分数先减去了10分,然后又增加了20分,他的最终分数是多少?如果他的原始分数是50分。
答案:60分(继续进行下一部分的题目,确保每个题目都有其独特性,帮助同学们从不同角度理解和掌握有理数的混合运算。
)21. 假设你的温度计显示温度下降了5度,然后又上升了3度,最终温度相比初始温度变化了多少?答案:下降了2度22. 如果你原本有20元,然后花了7元买了一个笔记本,接着又找到了3元,你现在有多少元?答案:16元23. 一个学生在考试中得到了3分,然后又因为表现好被加回了5分,他的最终得分是多少?答案:2分24. 一个数减去它自己的两倍,结果是多少?如果这个数是7。
7年级有理数混合运算100题
7年级有理数混合运算100题一、练习题(前20题)1. (-2)+3-(-5)2. 4 - (-2)×(-3)3. (-3)×(-4)+(-2)^24. 12÷(-3)+(-4)×(-2)5. (-2)^3 - (-3)^26. -5 + 2×(-3)^27. (-1)^2023+(-2)^2×38. 3×(-2)+4÷(-(1)/(2))9. [(-3)+(-4)]×(-5)10. (-2)^2 - 2×(-3)11. (-4)×(-(1)/(2))-(-3)^212. 2×(-3)+(-4)^2÷(-2)13. (-3)^3÷(-9)-(-2)14. (-2)^4 - 3×(-1)^315. (-5)×(-(1)/(5))+(-6)16. 4 - (-3)^2÷(-1)17. (-2)^3×(-(1)/(2))+(-3)^218. (-1)^5+(-3)×[(-4)^2 - 2]19. (-2)^2×(-3)+4×(-1)^320. (-3)×(-2)^2 - (-1)^4二、解析。
1. (-2)+3-(-5)- 解析:根据有理数的减法法则,减去一个数等于加上它的相反数。
所以-(-5)= + 5。
则原式=(-2)+3 + 5=1 + 5 = 6。
2. 4-(-2)×(-3)- 解析:先计算乘法,(-2)×(-3)=6,再计算减法,4 - 6=-2。
3. (-3)×(-4)+(-2)^2- 解析:先算乘方,(-2)^2 = 4,再算乘法(-3)×(-4)=12,最后算加法12 + 4 = 16。
4. 12÷(-3)+(-4)×(-2)- 解析:先算除法12÷(-3)=-4,再算乘法(-4)×(-2)=8,最后算加法-4+8 = 4。
七年级有理数的混合运算列式专项练习题(附答案)
七年级有理数的混合运算列式专项练习题一、计算题1.计算:()341162|3|1--+÷-⨯-2.计算下列各式(1)()()1218723--+-+- (2) 11224463⎛⎫+-⨯ ⎪⎝⎭3.计算题 (1)551469⎛⎫⎛⎫÷-⨯- ⎪ ⎪⎝⎭⎝⎭(2)111135332114⎛⎫⨯-⨯÷ ⎪⎝⎭ 4.计算题(1)20(14)(18)13-+---- (2)()1 850.254⎛⎫+-+- ⎪⎝⎭(3)772(6)483÷-⨯- (4)3571491236⎛⎫--+÷ ⎪⎝⎭ 5.计算211(6)()23-⨯- 6.计算题(1)()517248612⎛⎫-+-⨯- ⎪⎝⎭(2)()()4211235⎡⎤---⨯--⎣⎦ 7.简算:(1))201620180311243⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭ (2)22102525298⨯-⨯8.计算. (1)3351 (1)()48624-+÷- (2)3221113()(2)(2)()(3)()222⨯---÷+-⨯-÷-(3)2419(5)25-⨯- (4)43510.712(15)0.7(15)9494⨯+⨯-+⨯+⨯- (5)2111315()1(2)(5)223114-⨯-⨯÷⨯-÷- (6)31002111132(2)()(1)3(3)82--++⨯-+-⨯-- 9.计算. (1)()()50.750.34-÷÷-. (2)()349731221⎛⎫⎛⎫⨯⨯- ⎪ ⎪⎝⎭⎝-÷⎭- . (3)()11150.6 1.75232⎛⎫-⨯-⨯÷- ⎪⎝⎭. (4)3777148128⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+--+-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 10.计算 (1)4512117621⎛⎫⎛⎫⎛⎫÷÷ ⎪ ⎪ ⎪⎝⎭⎝-⎭⎝-⎭-. (2)()14812649⎛⎫-÷⨯-÷ ⎪⎝⎭. (3)11111345660⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭. 11.计算(1)()1481341()1139⎛⎫⎛⎫⨯÷- -÷+⎝-⎪ ⎪⎭⎝⎭. (2)()453251⎡⎤⎛⎫⎛⎫÷÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣-⎦-. (3)157136918⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭. 12.计算 (1)222183(2)(6)()3-+⨯-+-÷- (2)221124[(5)()0.8]5255⎧⎫----⨯-÷⎨⎬⎩⎭(3)3223731(25)(1)()()(0.1)940.1-⨯--⨯---÷-13.计算(1)222302(3)(1)(1)---⨯--- (2)2211(0.51)()[2(3)]3---⨯-⨯-- (3)23225(3)(2)()52--⨯-+-⨯ (4)2223[(4)7]()2--÷- (5)321424(3)(3)263⨯--+--- (6)214(8.1)2(16)45549-÷⨯÷---÷ (7)2521(1)(1)(0.5)32-----+- (8)222247111()()(6)()36322-÷-÷-⨯- 14.计算:(1)521315.565772-+--; (2)111()(24)8612--⨯-; (3)1111115()133()555-⨯--⨯-⨯-; (4)20192311917(1)5()5-+÷--⨯-;(5)20182110.2(20)(2)4---⨯-+-; (6)2233[5(10.6)(3)]5---+-⨯÷-.参考答案1.答案:解:原式()11684=-+÷⨯-18=--9=-.解析:2.答案:(1)原式12187815=+--=(2)原式112=242424463⎛⎫⨯+⨯-⨯ ⎪⎝⎭()=6428+-⨯()=1016=6-- 解析:3.答案:(1)551469⎛⎫⎛⎫÷-⨯- ⎪ ⎪⎝⎭⎝⎭56114596=⨯⨯= (2)111135332114⎛⎫⨯-⨯÷ ⎪⎝⎭1131423116515⎛⎫=⨯⨯-⨯=- ⎪⎝⎭ 解析:4.答案:(1)()()20141813-+----20141813=--+-20141318=---+474829=-+=- (2)()1850.254⎛⎫+-+-- ⎪⎝⎭1850.254=-++8513=+= (3)()7726483÷-⨯-()78447=⨯--246=+= (4)4571341236⎛⎫--+÷ ⎪⎝⎭457363412⎛⎫=--+⨯ ⎪⎝⎭2202126=--+=- 解析:5.答案:原式=1136()1812623⨯-=-= 解析:6.答案:(1)25(2)25解析:7.答案:(1)169;(2)41600. 解析:8.答案:解:(1)原式735(24)(24)(24)486=⨯--⨯-+⨯- 42920=-+-53=-(2)原式1113()(2)()(3)4842=⨯---⨯+-⨯-⨯31166828=-++= (3)原式1(20)(5)25=-+⨯- 1(20)(5)(5)25=-⨯-+⨯- 1410099.55=-= (4) 原式7135111()(15)()109944=⨯++-⨯+ 7(15)35=+-⨯ 21(45)5=+- 343.5=- (5)原式11134144()26115525=⨯⨯⨯⨯⨯-=- (6)原式213(8)()1398=-+⨯-+-⨯ 283()()398=-+-+- 67172=- 解析:9.答案:(1)2.(2)3-.(3)1135,(4)123-. 解析:10.答案:(1)162121-;(2)83;(3)7-. 解析:11.答案:(1)()14131418931⎛⎫⎛⎫⎛⎫÷+⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 44138113914=-⨯⨯⨯ 7221077=-=-. (2)()124535⎡⎤⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦124525=-÷⨯ 2453545=-⨯⨯=-. (3)157136918⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭ ()15718369⎛⎫=-+⨯- ⎪⎝⎭ ()()()157181818368=⨯--⨯-+⨯- 615145=-+-=-.解析:12.答案:解:(1)原式16434(6)9=-+⨯+-÷ 641254=-+-106=-.(2)原式11427[4(25)]22555=---⨯-÷ 145[4(1)]2527=----⨯ 145(41)2527=-+⨯ 5163=-+ 12=- (3)原式3231691(10)()(10)()91610=---⨯--÷- 10001100(1000)=-+-⨯-10001100000=-++99001.=解析:13.答案:解:(1)原式491(1)49112=--⨯--=--+=-.(2)原式111()()(29)23=---⨯-⨯-1711(7)1.666=--⨯-=-+= (3)原式45229(8)727225255=-⨯-+⨯=+= (4)原式34(1649)()3()44.43=-÷-=-⨯-=(5)原式124(3)24()246=⨯-+⨯-+4(27)43⨯---2743227421.=--++-=-(6)原式81441(45)109916=-⨯⨯⨯---19981010=-=-(7)原式8191(1)3136 4444=---+=+-+=(8)原式1113636364=÷⨯⨯111136.36364144=⨯⨯⨯=解析:14.答案:(1)解:原式521(36)(15.55)10100772=--+-=-+=(2)解:原式111(242424)(342)3 8612=-⨯-⨯-⨯=---=(3)解:原式1111 (5133)()5()1155=-+-⨯-=⨯-=-(4)解:原式114 191725363512555 =--+⨯=-+=-.(5)解:原式1111(20)41(20)41(1)44 4520=---⨯-+=--⨯-+=---+=(6)解:原式331 9[5(1)]559 =---+-⨯⨯119(5)925 =---+-1195925=-+-+164225=-解析:。
专题2.6 有理数的混合运算专项训练(40题)-2024-2025学年七年级数学上册举一反三系列(北
专题2.6 有理数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对有理数混合运算的理解!1.(2023春·河北唐山·七年级统考期末)计算:(512−59)÷(−536)【答案】1【分析】先将除法变成乘法,再去括号运算即可.【详解】解:(512−59)÷(−536)=(512−59)×(−365) =512×(−365)−59×(−365) =−3+4=1.【点睛】本题主要考查有理数的混合运算,掌握有理数的混合运算的法则是解题的关键.2.(2023春·辽宁大连·七年级统考期末)计算:(−10)+3[(−4)2÷(−8)−(1+32)×2].【答案】−1022【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】解:原式=−1000+[16÷(−8)−(1+9)×2]=−1000+(−2−10×2)=−1000−2−20=−1022.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.3.(2023春·上海浦东新·六年级上海市民办新竹园中学校考期中)计算:[(−1)2018+(1−12)×13]+(−32+2) 【答案】−556【分析】先计算有理数的乘方,再计算括号内的减法、有理数的乘法,然后计算有理数的减法即可.【详解】解:原式=(1+12×13)+(−9+2)=(1+16)−7 =116−7 =−556【点睛】本题考查了含乘方的有理数混合运算,熟记有理数的运算法则是解题关键.4.(2023春·安徽安庆·七年级统考期末)计算:−16−(0.5−13)÷16×[−2−(−3)3]−|23−32|. 【答案】−27【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可.【详解】解:原式=−1−16×6×[−2−(−27)]−|8−9| =−1−25−1=−27.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.5.(2023春·河南南阳·七年级统考期中)计算: (12−1)×(13−1)×(13−1)×...×(12022−1) .【答案】−12022【分析】计算出每个括号内的减法运算,观察相邻两个因数的分子分母,第一项的分母可以与第二项的分子约分,第二项的分母可以与第三项的分子约分,以此类推,化简式子计算出最终结果.【详解】解:(12−1)×(13−1)×(14−1)×...×(12022−1),=(−12)×(−23)×(−34)×...×(−20212022),=−12022.【点睛】本题考查了有理数的复杂运算,解决此题的关键是观察式子的一般规律子再利用简便运算计算结果.6.(2023春·河南南阳·七年级统考期中)计算(1)(−15)×(18−13)÷(−124); (2)−12020×[4−(−3)2]+3÷|−34|;【答案】(1)−1(2)9【分析】(1)按照有理数四则混合运算法则计算即可;(2)先算乘方、然后按照有理数四则混合运算法则计算即可.【详解】(1)解:(−15)×(18−13)÷(−124) =−15×(324−824)×(−24) =−15×(−524)×(−24) =−1.(2)解:−12020×[4−(−3)2]+3÷|−34|=−1×(4−9)+3×43=5+4=9.【点睛】本题主要考查了有理数四则混合运算、含乘方有理数四则混合运算等知识点,灵活运用相关运算法则成为解答本题的关键.7.(2023春·黑龙江双鸭山·七年级统考期末)计算:(1)−12×(−16+34−512); (2)−1×[−32×(−23)2−2]×(−32). 【答案】(1)−2(2)−9【分析】(1)利用乘法分配律求解即可;(2)按照有理数的运算顺序,进行计算即可求解.【详解】(1)解:原式=(−12)×(−16)+(−12)×34+(−12)×(−512) =2+(−9)+5=−2;(2)解:原式=−1×(−9×49−2)×(−32)=−1×(−4−2)×(−32)=−1×(−6)×(−3 2 )=−9.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.8.(2023春·云南昭通·七年级统考期末)计算:(1)(−21)÷7+3×(−4)−(−12);(2)−12020+(−2)3×(−12)−|−1−5|.【答案】(1)−3(2)−3【分析】(1)先算乘除,再算加减;(2)先乘方,去绝对值,再乘除,最后算加减.【详解】(1)解:(−21)÷7+3×(−4)−(−12)=−3−12+12=−3;(2)−12020+(−2)3×(−12)−|−1−5|=−1−8×(−12)−6=−1+4−6=−3.【点睛】本题考查有理数的运算.熟练掌握有理数的运算法则,以及运算顺序,是解题的关键.9.(2023春·四川凉山·七年级统考期末)计算(1)−14+(1−0.5)×13×[3−(−3)2](2)(−13+15−215)×(−60)【答案】(1)−2(2)16【分析】(1)首先进行有理数的乘方计算,然后计算括号里面的数字,最后进行计算乘法和加法即可;(1)利用乘法分配律进行简便计算即可得出答案.【详解】(1)解:原式=−1+12×13×(−6)=−1−1=−2;(2)解:原式=−13×(−60)+15×(−60)−215×(−60)=20−12+8=16.【点睛】本题主要考查了有理数混合运算,熟练掌握相关运算法则和运算律是解题关键.10.(2023春·上海嘉定·六年级统考期末)计算:(1)3.2−23+35.(2)323×2215+523×1315−2×1315.【答案】(1)4715(2)11【分析】(1)首先把小数化为分数,再进行有理数的加减运算,即可求得结果;(2)利用有理数乘法分配律的逆用,进行运算,即可求得结果.【详解】(1)解:3.2−23+35=165−23+35=4815−1015+915=48−10+915=4715;(2)解:323×2215+523×1315−2×1315=323×2215+(523×1315−2×1315)=323×2215+1315×(523−2)=323×2215+1315×323=323×(2215+1315) =323×3 =11.【点睛】本题考查了有理数的混合运算及运算律,熟练掌握和运用有理数的运算律是解决本题的关键.11.(2023春·七年级课时练习)计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}. 【答案】(1)原式=514;(2)原式=3. 【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加;(2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587 =(3.587-1.587)+(5+7)+(-512-314) =2+12-834=514.(2)原式=-1×{[-143÷4+0.5]÷(-19)-9}=-1×[(-23)÷(-19)-9]=-1×(6-9)=-1×(-3)=3.12.(2023春·湖北武汉·七年级统考期末)计算:(1)11+(−7)−12−(−5)(2)−22×5−(−2)3÷4 -22×5-(-2)3÷4【答案】(1)−3;(2)-18【分析】(1)根据有理数的加减运算法则进行计算即可得到答案;(2)先进行乘方运算,再进行有理数乘除运算,最后进行有理数减法运算即可得到答案.【详解】(1)解:11+(−7)−12−(−5)=11−7−12+5=−3;(2)解:−22×5−(−2)3÷4=−4×5−(−8)÷4=−20−(−2)=−18.【点睛】本题考查了有理数的混合运算,乘方运算,熟练掌握相关运算法则是解题关键.13.(2023春·辽宁葫芦岛·七年级统考期末)计算(1)(12−56−712)×(−12)(2)−32÷3+(12−23)×12−(−1)2022【答案】(1)11(2)−6【分析】(1)根据乘法分配律计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用.【详解】(1)(12−56−712)×(−12)=12×(−12)−56×(−12)−712×(−12)=−6+10+7=11(2)−32÷3+(12−23)×12−(−1)2022=−9÷3+12×12−23×12−1=−3+6−8−1=−6【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春·全国·七年级期末)计算:(1)(−34+156−78)×(−24) (2)−23+|5−8|+24÷(−3)【答案】(1)-5(2)-13【详解】试题分析:(1)根据乘法分配律先去括号,然后根据有理数的乘法计算即可;(2)根据乘方、绝对值、和有理数的除法计算即可.试题解析:(1)(1)(−34+156−78)×(−24) =(−34)×(−24)+116×(−24)+(−78)×(−24) =18-44+21=-5 (2)−23+|5−8|+24÷(−3)=-8+3-8=-1315.(2023春·辽宁大连·七年级统考期末)计算:(1)42×(−23)+(−34)÷(−0.25); (2)2×(−3)3−4×(−3)+15.【答案】(1)−25(2)−27【分析】(1)根据有理数四则混合运算法则计算即可.(2)先算乘方,后算乘除,最后算加减.【详解】(1)42×(−23)+(−34)÷(−0.25)=−28+3=−25;(2)2×(−3)3−4×(−3)+15=−54+12+15=−27.【点睛】此题考查了有理数的运算,解题的关键是熟悉有理数四则混合运算法则.16.(2023春·湖南湘潭·七年级校联考期中)计算.(1)(−12.5)×(+317)×(−45)×(−0.1);(2)−12−(23−78+112−56)×(−24);(3)482425÷(−48);(4)7777×13879+29÷(−17777)−3859×7777.【答案】(1)−317(2)−24(3)−1150(4)777700【分析】(1)先根据有理数的乘法法则确定符号,再结合乘法交换律即可计算结果;(2)根据有理数乘方法则,结合乘法分配律即可计算结果;(3)根据有理数乘除运算法则,结合乘法分配律即可计算结果;(4)根据有理数乘除运算法则,逆用乘法分配律即可计算结果.【详解】(1)解:(−12.5)×(+317)×(−45)×(−0.1)=−504×317×45×110=−(504×45×110)×317=−317;(2)解−12−(23−78+112−56)×(−24)=−1−[23×(−24)−78×(−24)+112×(−24)−56×(−24)]=−1−(−16+21−2+20)=−1+16−21+2−20=−24;(3)解:482425÷(−48)=(48+2425)×(−148) =48×(−148)+2425×(−148) =−1−150 =−1150; (4)解:7777×13879+29÷(−17777)−3859×7777=7777×13879+29×(−7777)−3859×7777 =7777×(13879−29−3859) =7777×100=777700.【点睛】本题考查了有理数的混合运算,乘法运算律,熟练掌握相关运算法则是解题关键.17.(2023春·辽宁抚顺·七年级统考期中)计算:(1)(−49)−(+91)−(−5)+(−9);(2)(14+38−712)÷124; (3)(−1)2021×|−112|−(0.5)÷(−13). (4)−23×(−8)−(−12)3×(−16)+49×(−3)2 【答案】(1)-144(2)1(3)0(4)66【分析】(1)统一成省略加号和括号的和的形式,再结合有理数加法法则解答;(2)先转化为乘法,再利用乘法分配律解答;(3)先乘方,再乘除,最后计算加减;(4)先乘方,再乘除,最后计算加减、注意负号的作用;【详解】(1)(−49)−(+91)−(−5)+(−9)=-49+5-91-9=-44-100=-144(2)(14+38−712)÷124 =14×24+38×24−712×24=6+9-14=1 (3)(−1)2021×|−112|−(0.5)÷(−13)=−1×32−12×(−3) =0(4)−23×(−8)−(−12)3×(−16)+49×(−3)2=64+18×(-16)+4 =64-2+4=66【点睛】本题考查含有乘方的有理数的混合运算,是重要考点,掌握相关知识是解题关键.18.(2023春·山东菏泽·七年级统考期中)计算:(1)(1−16+34)×(−48) (2)−14+(−2)÷(−13)−|−9|(3)(−1)2÷12×[6−(−2)3]【答案】(1)−76(2)−4(3)28【分析】(1)利用乘法分配律进行计算即可得到答案;(2)先分别计算出乘方、绝对值、商,最后再加减即可;(3)按照先乘方,再乘除,有括号的先算括号内的顺序进行计算即可得到答案,计算中注意符号.【详解】(1)(1−16+34)×(−48)=1×(−48)−16×(−48)+34×(−48)=−48+8−36=−76(2)−14+(−2)÷(−13)−|−9|=−1+(−2)×(−3)−9=−1+6−9=−4(3)(−1)2÷12×[6−(−2)3]=1×2×[6−(−8)]=1×2×14= 28【点睛】本题考查有理数的计算,熟练掌握有理数的计算法则和计算顺序,是解题的关键.19.(2023春·山东德州·七年级校联考期中)计算(1)(−0.5)−(−314)+2.75−(+712);(2)(−49)÷75×57÷(−25)(3)−22÷43−[22−(1−12×13)]×12;【答案】(1)−2(2)1(3)−41【分析】(1)根据有理数加减运算法则直接计算即可得到答案;(2)根据有理数乘除运算法则直接计算即可得到答案;(3)先算乘方运算,再按照运算顺序及相关运算法则计算即可得到答案.【详解】(1)解:(−0.5)−(−314)+2.75−(+712)=(−12)−(−314)+234−(+712) =(−12)+314+234−712=(−12−712)+(314+234)=−8+6(2)解:(−49)÷75×57÷(−25)=(−49)×57×57÷(−25)=(−25)÷(−25)=1;(3)解:−22÷43−[22−(1−12×13)]×12=−4÷43−[4−(1−12×13)]×12=−4×34−[4−(1−16)]×12=−3−(4−56)×12=−3−(246−56)×12=−3−196×12=−3−38=−41.【点睛】本题考查有理数混合运算,涉及乘方运算、有理数加减乘除运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.20.(2023春·甘肃酒泉·七年级统考期中)计算(1)(−7)+(+15)−(−25)(2)7.54+(−5.72)−(−12.46)−4.28(3)−24×(−56+38−112)(4)−13×3+6×(−13)(5)−22+3×(−1)4−(−4)×5(6)(−3)÷34×43×(−15)【答案】(1)33(2)10(3)13(5)19(6)80【分析】(1)根据有理数加减运算法则即可解答;(2)先去括号,然后再利用加法结合律即可解答;(3)直接运用乘法分配律计算即可;(4)根据有理数四则混合运算法则计算即可;(5)先算乘方、然后根据有理数四则混合运算法则计算即可;(6)根据有理数乘除混合运算法则计算即可.【详解】(1)解:(−7)+(+15)−(−25)=−7+15+25=33.(2)解:7.54+(−5.72)−(−12.46)−4.28=7.54+(−5.72)+12.46−4.28=(7.54+12.46)+[(−5.72)−4.28]=20−10=10.(3)解:−24×(−56+38−112)=−56×(−24)+38×(−24)−112×(−24)=20−9+2=13.(4)解:−13×3+6×(−13)=−1−2=−3.(5)解:−22+3×(−1)4−(−4)×5=−4+3×1+20=−4+3+20(6)解:(−3)÷34×43×(−15)=(−3)×43×43×(−15)=(−4)×43×(−15)=−163×(−15)=80.【点睛】本题主要考查了有理数加减运算、有理数乘除运算、有理数乘方运算、有理数运算律等知识点,灵活应用相关运算法则成为解答本题的关键.21.(2023春·重庆万州·七年级重庆市万州新田中学校考期中)计算:(1)8+(−10)+(−2)−(−5)(2)(−0.5+13+16)÷124(3)53÷[4×(−34)2−1](4)−14−(−3)3÷[(12−23)−|0.52−13|]【答案】(1)1(2)0(3)43(4)−109【分析】(1)先将减法化成加法,再按加法法则计算即可;(2)先将除法转化成乘法,然后运用乘法分配律计算即可,最后计算加法;(3)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;(4)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;【详解】(1)解:原式=8+(−10)+(−2)+5=(8+5)+[(−10)+(−2)]=13−12=1;(2)解:原式=(−12+13+16)×24=−12×24+13×24+16×24=−12+8+4=0;(3)解:原式=53÷[4×916−1]=53÷[94−1]=53÷54=43;(4)解:原式=−1+27÷[−16−|14−13|]=−1+27÷[−16−112]=−1+27÷(−312)=−1−108=−109.【点睛】本题考查有理数的混合运算,绝对值,熟练掌握有理数混合运算法则是解题的关键.22.(2023春·河南南阳·七年级统考期中)计算:(1)−32−(+11)+(−9)−(−16);(2)(−45911)÷|−9|(用简便方法计算);(3)(−3)2−(112)3×29−6÷|−23|3;(4)(−12+34)×(−2)3+(−4)2÷2×12.【答案】(1)−36(2)−5111(3)−12(4)2【分析】(1)减法转化为加法,再进一步计算即可;(2)原式变形为(−45−911)×19,再进一步计算即可; (3)先计算乘方、除法转化为乘法,再计算乘法,最后计算减法即可;(4)先计算乘方,再计算乘除,最后计算加法即可.【详解】(1)原式=−32−11−9+16,=−52+16,=−36;(2)原式=(−45−911)×19, =−45×19−911×19,=−5−111,=−5111;(3)原式=9−278×29−6×278, =9−34−814,=−12;(4)原式=14×(−8)+16÷2×12, =−2+8×12, =−2+4,=2;【点睛】本题主要考查含乘方的有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.23.(2023春·河南驻马店·七年级统考期中)计算:(1)(1112−76+34−1324)×(−48);(2)−9+5×|−3|−(−2)2÷4;(3)−18+(−4)2÷14−(1−32)×(13−0.5). 【答案】(1)2(2)5(3)6123【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减即可;(3)先算乘方和括号内的式子,然后再计算括号外的乘除法,最后算加减法即可.【详解】(1)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48) =−44+56+(−36)+26=2(2)−9+5×|−3|−(−2)2÷4=−9+5×3−4÷4=−9+15−1=5(3)−18+(−4)2÷14−(1−32)×(13−0.5)=−1+64−(−8)×(−16) =−1+64−43=6123【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.24.(2023春·福建漳州·七年级校考期中)计算:(1)−41−28+(−19)+(−22)(2)(−20)×(−115)+4÷(−23) (3)(12+56−712)×(−24) (4)−32−24÷(−4)×12+(−1)2022【答案】(1)−110(2)18(3)−18(4)−5【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式从先乘除后加减计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方,然后乘除法,最后减法即可求出值.【详解】(1)解:−41−28+(−19)+(−22)=(−41−19)+(−28−22)=−60+(−50)=−110;(2)解:(−20)×(−115)+4÷(−23) =(−20)×(−65)+4×(−32) =24−6=18;(3)解:(12+56−712)×(−24)=12×(−24)+56×(−24)−712×(−24) =−12−20+14=−32+14=−18;(4)解:−32−24÷(−4)×12+(−1)2022=−9+6×12+1 =−8+3=−5.【点睛】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则及运算律是解本题的关键.25.(2023春·湖北襄阳·七年级统考期末)计算:(1)(−7)−(+5)+(−4)−(−10)(2)115×(13−12)×311÷54(3)(−10)4+[(−4)2−(3+32)×2].【答案】(1)−6;(2)−225; (3)9992.【分析】(1)根据有理数的加减混合运算进行计算即可得到答案;(2)先计算括号内,再进行有理数乘除计算即可得到答案;(3)先计算乘方和括号内,再去括号进行加减计算即可得到答案.【详解】(1)解:(−7)−(+5)+(−4)−(−10)=−7−5−4+10=−6;(2)解:115×(13−12)×311÷54=115×(−16)×311×45=−115×16×311×45 =−225; (3)解:(−10)4+[(−4)2−(3+32)×2]=10000+(16−12×2)=10000+16−24=9992.【点睛】本题考查了有理数的四则运算,乘方运算,熟练掌握相关运算法则是解题关键.26.(2023春·海南海口·七年级统考期末)计算(1)5×(−3)+(−12)×(−34)−52(2)(−48)×(56−1+712−18)(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12)【答案】(1)−8.5(2)−14(3)75【详解】(1)解:5×(−3)+(−12)×(−34)−52=−15+9−52=−8.5;(2)(−48)×(56−1+712−18)=56×(−48)−1×(−48)+712×(−48)−18×(−48) =−40+48−28+6=−14;(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12) =[−1+9×(−16)]×310÷(−0.01) =(−1−32)×310÷(−0.01) =(−52)×310÷(−0.01) =75.【点睛】此题考查了有理数的混合运算,正确掌握有理数的乘方运算法则,乘法分配律,及四则混合运算的计算法则是解题的关键.27.(2023春·河北唐山·七年级统考期中)计算:(1)35−3.7−(−25)−1.3(2)(−34+712−58)÷(−124) (3)−32+1÷4×14−|−114|×(−0.5)2 【答案】(1)−4(2)19(3)−914【分析】(1)减法转化为加法,再利用加法交换律和结合律计算即可;(2)将除法转化为乘法,再利用乘法分配律计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可.【详解】(1)解:35−3.7−(−25)−1.3 =35−3.7+25−1.3 =(35+25)+(−3.7−1.3) =1+(−5)=−4;(2)(−34+712−58)÷(−124)=(−34+712−58)×(−24) =−34×(−24)+712×(−24)−58×(−24) =18−14+15=19;(3)−32+1÷4×14−|−114|×(−0.5)2 =−9+1×14×14−54×14=−9+116−516 =−9+(116−516) =−9+(−14) =−914.【点睛】本题考查有理数的混合运算.解题的关键是掌握有理数混合运算顺序和运算法则.28.(2023春·山东滨州·七年级统考期末)计算:(1)(134−78−712)÷(−78);(2)−1100÷(−12)3−17×[2−(−4)2].【答案】(1)−13(2)10【分析】(1)根据除以一个数等于乘以这个数的倒数和乘法分配律计算即可.(2)先算乘方,再算括号里面的,再计算乘除,最后算加减.【详解】(1)解:原式=(74−78−712)×(−87) =74×(−87)−78×(−87)−712×(−87) =−2+1+23=−13 (2)解:原式=(−1)÷(−18)−17×(2−16) =8−17×(−14) =8+2=10【点睛】本题考查了含乘方的有理数混合运算,熟练掌握运算法则是解题的关键.29.(2023春·山东临沂·七年级统考期末)计算:(1)23−|−5|−(−2)÷12;(2)−14−(1−0.5)×13×[2−(−3)2]. 【答案】(1)22(2)16【分析】(1)根据绝对值性质,有理数四则混合运算法则直接运算即可得到答案;(2)先算乘方,再算乘除,最后算加减即可得到答案;【详解】(1)解:原式=23−5−(−4)=18+4=22;(2)解:原式=−1−12×13×(2−9)=−1−16×(−7) =−1+76=16.【点睛】本题考查含乘方有理数混合运算,解题的关键是注意符号选取及去绝对值.30.(2023春·云南昆明·七年级校考期中)计算:(1)13+(−56)+47+(−34)(2)(16−314+23)×(−42)(3)2×(−5)+22−3÷12(4)−22+|6−10|−3×(−1)2023【答案】(1)−30(2)−26(3)−12(4)3【分析】(1)根据有理数的加减法即可得到答案;(2)根据乘法分配和有理数的加减法即可得到答案;(3)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;(4)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;【详解】(1)解:原式=13+47+(−56)+(−34)=60+(−90)=−30;(2)解:原式=16×(−42)−314×(−42)+23×(−42)=−7−(−9)+(−28)=−35+9=−26;(3)解:原式=−10+4−6=−12;(4)解:原式=−4+4−3×(−1) =−4+4+3=3.【点睛】本题主要考查有理数的混合运算,掌握有理数的运算性质是解题的关键.31.(2023·山东潍坊·七年级统考期中)计算下列各题:(1)(﹣12)﹣(﹣65)+(﹣8)﹣710(2)(﹣34+712﹣59)÷(﹣136)(3)﹣3×22﹣(﹣3×2)3(4)﹣32+16÷(﹣2)×12﹣(﹣1)2017(5)(﹣14﹣56+89)×62+(﹣2)2×(﹣14)(6)14÷73+0.25×815﹣27×14+715×0.25 (7)(﹣32)2×23÷|﹣3|+(﹣0.25)÷(12)6(8)(﹣2)3﹣35[3×(﹣23)2﹣14]+8[(12)3﹣(﹣12)2﹣1].【答案】(1)﹣1912(2)26(3)204(4)﹣12(5)﹣63(6)214(7)﹣1512(8)﹣1715 【详解】试题分析:(1)直接利用有理数加减运算法则计算得出答案;(2)利用乘法分配律,用括号里的每一项分别乘以﹣36,再进行加减运算即可;(3)直接利用有理数混合运算法则计算得出答案;(4)直接利用有理数混合运算法则计算得出答案;(5)利用乘法分配律,用括号里的每一项分别乘以36,再进行混合运算即可;(6)直接利用有理数混合运算法则计算得出答案;(7)直接利用有理数混合运算法则计算得出答案;(8)直接利用有理数混合运算法则计算括号里面,进而得出答案.试题解析:(1)(﹣12)﹣(﹣)+(﹣8)﹣=﹣12+﹣8﹣=﹣20+=﹣19;(2)(﹣+﹣)÷(﹣)=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+20=26;(3)﹣3×22﹣(﹣3×2)3=﹣3×4+216=204;(4)﹣32+16÷(﹣2)×﹣(﹣1)2017=﹣9﹣4+1=﹣12;(5)(﹣﹣+)×62+(﹣2)2×(﹣14)=﹣×36﹣×36+×36﹣4×14=﹣9﹣30+32﹣56=﹣63;(6)14÷+0.25×﹣×14+×0.25=6+0.25×(+)﹣4=2+=2;(7)(﹣)2×÷|﹣3|+(﹣0.25)÷()6=××﹣×64=﹣16=﹣15;(8)(﹣2)3﹣[3×(﹣)2﹣14]+8[()3﹣(﹣)2﹣1] =﹣8﹣×(﹣1)+8×(﹣﹣1)=﹣8﹣+1﹣2﹣8=﹣17.点睛:此题主要考查了有理数的混合运算,关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.(2023·山东济宁·七年级校考期中)计算下列各题(1)−5.53+4.26+(−8.47)−(−2.38)(2)−0.125×(−47)×8×(−7)(3)(1112−76+34−1324)×(−48)(4)−12018+12+(−12)×[−2−(−3)]【答案】(1)-7.36;(2)-4;(3)2;(4)-1.【分析】分别根据有理数的加、减、乘、除法进行计算,有乘方的先算乘方,再算乘除,最后算加减法.【详解】(1)−5.53+4.26+(−8.47)−(−2.38)=−5.53+4.26−8.47+2.38=−5.53−8.47+4.26+2.38=−14+6.64=−7.36;(2)−0.125×(−47)×8×(−7)=−18×47×8×7=-4;(3)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48)=−44+56−36+26=2;(4)−12018+12+(−12)×[−2−(−3)]=−1+12+(−12)×(−2+3)=−1+12−12=-1.【点睛】此题考查有理数的加、减、乘、除、乘方运算,掌握正确的计算顺序是解题的关键.33.(2023春·山东聊城·七年级统考期中)计算(1)−449−(+556)+(−559)−(−56) (2)2×(−137)−234×13+(−137)×5+14×(−13)(3)16÷(−2)3−(−12)3×(−4)+2.5(4)(−1)2019+|−22+4|−(12−14+18)×(−24)【答案】(1)−15,(2)-49,(3)0,(4)8【分析】(1)利用减法法则把加减法统一成加法,相加即可得到结果;(2)运用加法交换律和结合律,把含有相同因数的两个式子相加;再用乘法分配律的逆运算,进行简便运算即可;(3)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)按照乘方、绝对值、乘法分配律进行运算即可.【详解】(1)−449−(+556)+(−559)−(−56) =−449−556−559+56 =(−449−559)+(−556+56) =−10−5=−15(2)2×(−137)−234×13+(−137)×5+14×(−13)=[2 ×(−137)+(−137)×5]+[− 234×13+14×(−13 )] =(−137)×(5+2)+13×(−234−14)=-10-39=-49(3)16÷(−2)3−(−12)3×(−4)+2.5=16÷(−8)−(−18)×(−4)+2.5=−2−12+2.5 =0(4)(−1)2019+|−22+4|−(12−14+18)×(−24) =−1+0−[12×(−24)−14×(−24)+18×(−24)]=−1+12−6+3=8【点睛】此题考查了有理数的混合运算,熟练掌握运算法则及恰当的运用运算律是解本题的关键.34.(2023春·七年级课时练习)计算:(1)(−323)−(−2.4)+(−13)−(+425) (2)[−23+(−35)]+[1+(−23)×(−35)] (3)(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]} (4)[(223+334)(223−334)+(223−334)2]÷(334−223)【答案】(1)−6(2)215(3)1336(4)−513【分析】(1)先算同分母分数,再计算加减法;(2)先算乘法,再去括号,再算同分母分数,再计算加减法;(3)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算;(4)根据乘法分配律简便计算.【详解】(1)解:(−323)−(−2.4)+(−13)−(+425)原式=(−323)+2.4−13−4.4=(−323−13)+(2.4−4.4)=−4−2=−6(2)解:[−23+(−35)]+[1+(−23)×(−35)]原式=−23−35+(1+25)=−23−35+1+25=(−23+1)+(−35+25)=13−15=215(3)解:(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]}原式=1−{35−[19+25×(−32)÷4]}=1−[35−(19−320)]=1−(35−19+320)=1−[(35+320)−19]=1−(34−19)=1−34+19=14+19=1336(4)解:[(223+334)(223−334)+(223−334)2]÷(334−223)原式=(223+334+223−334)(223−334)÷(334−223)=513×(223−334)÷(334−223)=513×(−1)=−513【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,简化运算过程.35.(2023春·七年级课时练习)计算(1)−33−(12+56−712)×(−24)(2)−212+12÷(−2)×|−83|【答案】(1)-15(2)−316【详解】试题分析:根据有理数的混合运算的法则和运算律计算即可,解题时注意运算符号,避免出错. 试题解析:(1)−33−(12+56−712)×(−24)=-33-12×(−24)-56×(−24)+712×(−24)=-33+12+20-14=-15(2)−212+12÷(−2)×|−83|=−212+12×(−12)×|−83| =−212--23 =-31636.(2023春·七年级课时练习)计算(1)−225−(+3411)+(−35)−(−1311) (2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)【答案】(1)−5111(2)18【详解】试题分析:根据有理数的混合运算的法则和运算律计算即可,解题时注意运算符号,避免出错. 试题解析:(1)−225−(+3411)+(−35)−(−1311)=−225−3411−35+1311 =-3-2111=-5111(2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)=-81×49×(−49)×18+2×4×2 =2+16=1837.(2023春·七年级课时练习)计算:(1)(−2878+1479)÷7;(2)(−1313)÷5−123÷5+13×15; (3)112×[3×(−23)−1]−13×(−8)−8;(4)−|−13|−|−34×23|−|12−13|;(5)(213−312+718)÷(−116)+(−116)÷(213−312+718).【答案】(1)-2172;(2)−25;(3)−596;(4)-1;(5)136. 【分析】(1)利用有理数的混合运算法则和乘法分配律、结合律计算即可完成;(2)根据有理数混合运算法则,结合乘法分配律计算即可得答案;(3)根据有理数混合运算法则计算即可得答案;(4)根据有理数混合运算法则计算即可得答案;(5)先根据有理数混合运算法则,结合乘法分配率求出第一个加数的值,进而根据第二个加数是第一个加数的倒数即可求出第二个加数的值,最后计算加法即可得答案.【详解】(1)(-2878+1479)÷7=(-28-78+14+79)×17=−28×17−78×17+14×17+79×17=-4-18+2+19 =-2172.(2)(-1313)÷5-123÷5+13×15=(-1313)×15-123×15+13×15=(-13-13-1-23+13)×15=-2×15 =-25.(3)112×[3×(-23)-1]-13×(-8)-8=32×(-2-1)+83-8=-92+83-8=-596.(4)-|-13|-|-34×23|-|12-13|=-13-12-(12-13)=-13-12-12+13=-1.(5)(213-312+718)÷(-116)+(-116)÷(213-312+718) ∵(213-312+718)÷(-116) =(73-72+718)×(-67)=73×(-67)-72×(-67)+718×(-67)=-2+3-13=23,∵(-116)÷(213-312+718)=32, ∵原式=23+32=136. 【点睛】本题考查有理数的混合运算和运算律的运用,熟练掌握有理数的运算法则以及运算律是解题关键.38.(2023春·七年级课时练习)计算:(1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1)(2) −0.5−314+(−2.75)+712(3) (−34−56+78)×(−24)(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137 (5)(-1)9×(-3)3-30(6)-︱-3︱×(-4)-6÷(-13)2【答案】(1)0;(2)1;(3)17;(4)0;(5)-3;(6)-42【分析】(1)先去括号,再根据有理数的加减混合运算法则计算;(2)将分数化为小数及去括号,再根据加减法计算法则计算;(3)利用乘法分配律计算;(4)利用乘法分配律计算法则计算;(5)先计算乘方,再计算乘法,最后计算减法;(6)先同时化简绝对值及乘方,再计算乘法和除法,最后计算减法.【详解】(1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1)=2.5+2.2-3.1-0.5-1.1=0;(2) −0.5−314+(−2.75)+712=-0.5-3.25-2.75+7.5=7-6=1;(3) (−34−56+78)×(−24)=−34×(−24)−56×(−24)+78×(−24)=18+20-21=17;(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137=[(−8)+(−7)+15]×1137=0;(5)(-1)9×(-3)3-30=-1×(-27)-30=27-30=-3;(6)-︱-3︱×(-4)-6÷(-13)2 =−3×(−4)−6÷19=12-54=-42.【点睛】此题考查计算,掌握有理数的加法法则、减法法则、乘方法则、混合计算法则,正确计算是解题的关键.39.(2023春·七年级课时练习)计算:6.91÷3+13×9100−0.3·18711+83100−9.42÷137311−7.12+41750. 【答案】4【分析】根据题意将小数和分数互相转化,将分数除法转变为分数乘法,然后根据分数的乘法运算法则和乘法分配律计算即可.【详解】原式=(6.91+0.09−1)×1318711+8.03−9.42×(37311−7.12+4.34) =220511−1.39×(41011−2.78) =220511−1.39×[(20511−1.39)×2] =2×2=4故答案为4.【点睛】本题考查了含小数的分数乘除混合运算,关键是掌握分数除法的运算法则,并且要将小数转化为分数或分数转化为小数.40.(2023春·全国·七年级期末)(1)计算:133+233+232+23; (2)计算:1310+2310+⋯+234+233+232+23; (3)计算:23n +⋯+234+233+232+23.【答案】(1)1;(2)1;(3)1−13n【分析】(1)根据同分母的分数相加,分母不变分子相加得出结论;(2)利用(1)中规律相加即可;(3)根据(1)规律加13n ,再减13n,然后作和即可.【详解】解:(1)133+233+232+23=333+232+23=132+232+23=332+23=13+23=1;(2)1310+2310+⋯+234+233+232+23=3310+239+...+234+233+232+23=139+239+...+234+233+232+23……=132+232+23 =332+23 =13+23=1;(3)23n +⋯+234+233+232+23=13n+23n+⋯+234+233+232+23−13n=13n−1+23n−1+...+234+233+232+23−13n……=132+232+23−13n =332+23−13n =13+23−13n=1−13n.【点睛】本题考查数字变化类,关键是找到式子中的规律进行求和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学有理数混合运算专项练习汇总
〔有理数加减法运算练习〕
一、加减法法则、运算律的复习。
A .△同号两数相加,取__________________,并把____________________________。
1、(–3)+(–9)
2、85+(+15)
3、(–3)+(–3)
4、(–3.5)+(–5)61323
2△绝对值不相等的异号两数相加,取_________________________,并用____________________
_____________. 互为__________________的两个数相加得0。
1、(–45) +(+23)
2、(–1.35)+6.35
3、+(–2.25)
4、(–9)+7
412△一个数同0相加,仍得_____________。
1、(–9)+ 0=______________;
2、0 +(+15)=_____________。
B .加法交换律:a + b = ___________ 加法结合律:(a + b) + c = _______________
1、(–1.76)+(–19.15)+ (–8.24)
2、23+(–17)+(+7)+(–13)
3、(+ 3)+(–2)+ 5+(–8)
4、++(–)41534352521125
2C .有理数的减法可以转化为_____来进行,转化的“桥梁”是___________。
△减法法则:减去一个数,等于_____________________________。
即a–b = a + (
) 1、(–3)–(–5) 2、3–(–1) 3、0–(–7)
4143D .加减混合运算可以统一为_______运算。
即a + b–c = a + b + _____________。
1、(–3)–(+5)+(–4)–(–10)
2、3–(+5)–(–1)+(–5)414
3△把–2.4–(–3.5)+(–4.6)+ (+3.5)写成省略加号的和的形式是______________,
读作:__________________________,也可以读作:__________________________。
1、 1–4 + 3–5
2、–2.4 + 3.5–4.6 + 3.5
3、 3–2 + 5–88153875
2二、综合提高题。
1、–99 + 100–97 + 98–95 + 96–……+2
2、–1–2–3–4–……–100
3、一个病人每天下午需要测量一次血压,下表是病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160单位。
星 期
一二三四五
收缩压的变化(与前一天比较)
升30
单位
降20
单位升17单位升18单位降20单位请算出星期五该病人的收缩压。
(乘除法法则、运算律的复习)
一、乘除法法则、运算律的复习。
A.有理数的乘法法则:两数相乘,同号得________,异号得_______,并把___________________。
任何数同0相乘,都得______。
1、(–4)×(–9)
2、(–)×528
1
3、(–6)×0
4、(–2)×5313
5B.乘积是_____的两个数互为倒数。
数a (a≠0)的倒数是_________。
1、 3的倒数是______,相反数是____,绝对值是____。
2、–4的倒数是____,相反数是____,绝对值是____。
2、-3.5的倒数是_____,相反数是____,绝对值是____。
C.多个__________的数相乘,负因数的个数是________时,积是正数;负因数的个数是________时,积是负数。
几个数相乘,如果其中有因数为0,积等于_________。
1.(–5)×8×(–7)
2.(–6)×(–5)×(–7)
3.(–12)×2.45×0×9×100
D .乘法交换律:ab= ______; 乘法结合律:(ab)c=_________; 乘法分配律 :a(b+c)= __________。
1、100×(0.7––+ 0.03) 3、(–11)×+(–11)×9103254525
3E.有理数的除法可以转化为_______来进行,转化的“桥梁”是____________。
除法法则一:除以一个不等于0的数,等于____________________________________。
除法法则二:两数相除,同号得_____,异号得_____,并把绝对值相_______. 0除以任何一个不等于0的数,都得____.
1. (–18)÷(–9)
2. (–63)÷(7)
3. 0÷(–105)
4. 1÷(–9)
F.有理数加减乘除混合运算,无括号时,“先________,后_________”,有括号时,先算括号内的,同级运算,从_____到______. 计算时注意符号的确定,还要灵活应用运算律使运算简便。
二、加减乘除混合运算练习。
1. 3×(–9)+7×(–9)
2. 20–15÷(–5)
3. [÷(––)+2]÷(–1)652131818
14. 冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度降低5℃,那么3小时后冰箱内部的温度是多少?
5.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”号表示成绩大于18秒,“–”号表示成绩小于18秒。
–1+0.80–1.2–0.10+0.5–0.6
这个小组女生的达标率为多少?平均成绩为多少?
(有理数的乘方)
一、填空。
1、中,3是________,2是 _______,幂是_________.
533、-的底数是______,指数是______,读作________________,计算结果是_______.534、-表示___________________________.结果是________.
545、地球离太阳约有150 000 000万千米,用科学记数法表示为___________万千米.
6、近似数3.04,精确到______位,有_______个有效数字。
7、3.78×是________位数。
1078、若a 为大于1的有理数,则 a , , 三者按照从小到大的顺序列为_______________.
a 1a 29、用四舍五入法得到的近似值0.380精确到________位,48.68万精确到_________位。
10、1.8亿精确到_________位,有效数字为_______________。
11、代数式( a + 2 )+ 5取得最小值时的 a 的值为___________.
212、如果有理数a ,b 满足︱a -b ︱=b -a ,︱a ︱=2,︱b ︱=1,则( a + b )
=__________.3二、选择。
13、一个数的平方一定是(
)A.正数 B.负数 C.非正数 D.非负数
14、下面用科学记数法表示106 000,其中正确的是( )
A.1.06×
B.10.6×
C.1.06×
D.1.06×105105106107
15、︱x -︱+ ( 2y+1 ) =0 , 则+的值是( )2
12x 2y 3 A . B. C. - D. - 83818
18316、若( b+1 )
+3︱a -2︱=0, 则a -2b 的值是2 A. -4
B.0
C.4
D.2
三、计算。
17、-10 + 8÷( -2 ) -(-4)×(-3)
218、-49 + 2×( -3 )+ ( -6 ) ÷ ( - )29
1
19、有一组数:(1,1,1),(2,4,8),(3,9,27),(4,16,64),…求第100组的三个数的和。
20、一杯饮料,第一次倒去一半,第二次倒去剩下的一半,……如此倒下去,第八次后剩下的饮料是原来的几分之几?。