立体几何题型与解题方法
2023年高考数学甲卷立体几何解法
篇章说明:本篇文章主要针对2023年高考数学甲卷的立体几何部分进行详细解析,旨在帮助考生更好地理解和掌握解答技巧,提高考试成绩。
文章将从题目分析、解题思路和步骤、相关知识点详解等方面展开,希望对广大考生有所帮助。
一、题目分析1.1 题目类型本次数学甲卷的立体几何部分主要包括平面与空间直角坐标系、三视图、旋转体、二面角等内容。
1.2 题目数量根据往年高考数学甲卷的趋势,立体几何部分一般有3-4道题目,覆盖面较广,深度一般。
二、解题思路和步骤2.1 题目分析在解答立体几何题目时,首先要仔细阅读题目,理清题意,确定所给数据和所求量,并尽可能画出对应的图形。
2.2 利用相关知识点根据题目所涉及的内容,运用相关的立体几何知识进行分析和计算,例如平面与空间直角坐标系的性质、旋转体的体积计算方法、三视图的绘制等。
2.3 运用解题技巧在解题过程中,要善于运用立体几何的解题技巧,例如利用平行投影、三视图推导、旋转体的切割与拼接等方法,增加解题的灵活性和多样性。
2.4 对答案进行检验在得出最终答案后,要对答案进行反复检验,确保计算和推导过程的准确性,避免因计算错误导致得出错误的结论。
三、相关知识点详解3.1 平面与空间直角坐标系平面与空间直角坐标系是立体几何的基础,涉及点、线、面的坐标计算以及相关性质的运用,考生需熟练掌握坐标计算和平面几何性质,例如点到直线的距离公式、向量的运算与应用等。
3.2 三视图三视图是立体图形的展开图,由正视图、俯视图和侧视图组成,通过三视图可以确定立体图形的形状和大小,考生需要掌握三视图的画法及相互关系,能够准确理解和绘制三视图。
3.3 旋转体旋转体是立体几何的一个重要内容,包括圆柱体、圆锥体、旋转抛物面等,通过观察旋转体的特点,运用相关计算公式可以准确求解旋转体的体积和表面积。
3.4 二面角二面角是平面几何与立体几何的交叉部分,涉及到二面角的性质、计算和应用等内容,考生需要掌握二面角的相关知识点,能够准确应用到解题过程中。
部编版高中数学必修二第八章立体几何初步带答案考点题型与解题方法
(名师选题)部编版高中数学必修二第八章立体几何初步带答案考点题型与解题方法单选题1、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为( )A .132B .223C .152D .2332、已知直线a 与平面α,β,γ,能使α//β的充分条件是( ) ①α⊥γ,β⊥γ ②α//γ,β//γ ③a //α,a //β ④a ⊥α,a ⊥β A .①②B .②③C .①④D .②④3、下列命题中,正确的是( ) A .三点确定一个平面B .垂直于同一直线的两条直线平行C .若直线l 与平面α上的无数条直线都垂直,则l ⊥αD .若a 、b 、c 是三条直线,a ∥b 且与c 都相交,则直线a 、b 、c 在同一平面上4、如图.AB 是圆的直径,PA ⊥AC ,PA ⊥BC ,C 是圆上一点(不同于A ,B ),且PA =AC ,则二面角P −BC −A 的平面角为( )A .∠PACB .∠CPAC .∠PCAD .∠CAB5、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为( )A .18πB .20πC .22π3D .26π6、如图,某圆锥的轴截面ABC 是等边三角形,点D 是线段AB 的中点,点E 在底面圆的圆周上,且BE ⌢的长度等于CE⌢的长度,则异面直线DE 与BC 所成角的余弦值是( )A .√24B .√64C .√104D .√1447、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .278、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ ,则x +y 的值为( )A .1B .57C .1417D .56多选题9、《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC −A 1B 1C 1中,AC ⊥BC ,且AA 1=AB =2.下列说法正确的是( )A .四棱锥B −A 1ACC 1为“阳马” B .四面体A 1C 1CB 为“鳖膈” C .四棱锥B −A 1ACC 1体积最大为23D .过A 点分别作AE ⊥A 1B 于点E ,AF ⊥A 1C 于点F ,则EF ⊥A 1B10、在正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,则下列命题正确的是()A.异面直线C1P和CB1所成的角为定值B.直线CD和平面BPC1相交C.三棱锥D−BPC1的体积为定值D.直线CP和直线A1B可能相交11、已知PA⊥矩形ABCD所在的平面,则下列结论中正确的是()A.PB⊥BCB.PD⊥CDC.PD⊥BDD.PA⊥BD填空题12、对于任意给定的两条异面直线,存在______条直线与这两条直线都垂直.部编版高中数学必修二第八章立体几何初步带答案(四)参考答案1、答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V=23−(13×12×12×1+13×12×12×2)=152,故选:C.2、答案:D解析:根据线面的平行关系,结合相关性质,逐个分析判断即可得解.对①,若α⊥γ,β⊥γ,垂直于同一个平面的两个平面可以相交,故①错误;对②,若α//γ,β//γ,则α//β,平面的平行具有传递性,故②正确;对③,若a//α,a//β,平行于同一直线的两平面可以相交,故③错误;对④,a⊥α,a⊥β,垂直于同一直线的两平面平行,故④正确.综上:②④正确,故选:D.3、答案:D分析:利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A错误;B.由墙角模型,显然B错误;C.根据线面垂直的判定定理,若直线l与平面α内的两条相交直线垂直,则直线l与平面α垂直,若直线l与平面α内的无数条平行直线垂直,则直线l与平面α不一定垂直,故C错误;D.因为a//b,所以a、b确定唯一一个平面,又c与a、b都相交,故直线a、b、c共面,故D正确;故选:D.4、答案:C解析:由圆的性质知:AC⊥BC,根据线面垂直的判定得到BC⊥面PAC,即BC⊥PC,结合二面角定义可确定二面角P−BC−A的平面角.∵C是圆上一点(不同于A,B),AB是圆的直径,∴AC⊥BC,PA⊥BC,AC∩PA=A,即BC⊥面PAC,而PC⊂面PAC,∴BC⊥PC,又面ABC∩面PBC=BC,PC∩AC=C,∴由二面角的定义:∠PCA为二面角P−BC−A的平面角.故选:C5、答案:A分析:由题意可知该几何体的体积是由半球的表面积加上圆柱的侧面积,再加上圆的面积即可解:由题意得,球的半径R=2,圆柱的底面半径r=1,高ℎ=3,则该几何体的表面积为S=2πR2+πR2+2πrℎ=8π+4π+2π×1×3=18π故选:A.6、答案:A分析:过点A作AO⊥BC于点O,过点A作DG⊥BC于点G,取AO的中点F,连接GE、OE、EF,则有∠DEF (或其补角)就是异面直线DE与BC所成的角,设圆锥的底面半径为2,解三角形可求得答案.解:过点A作AO⊥BC于点O,过点A作DG⊥BC于点G,取AO的中点F,连接GE、OE、EF,BC,所以∠DEF(或其补角)就是异面直线DE与BC所成的角,则DF//BC,且DF=12设圆锥的底面半径为2,则DF=1,OE=2,AO=2√3,所以DG=OF=√3,在Rt△GOE中,GO=1,OE=2,所以GE=√GO2+OE2=√5,在Rt△GDE中,GE=√5,DG=√3,所以DE=√GD2+GE2=2√2,在Rt△FOE中,FO=√3,OE=2,FE=√FO2+OE2=√7,所以在△DFE中,满足DF2+FE2=DE2,所以∠DFE=90∘,所以cos∠DEF=DFDE =2√2=√24,故选:A.7、答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D. 8、答案:C分析:由向量的线性运算法则化简得到AO ⃑⃑⃑⃑⃑ ==(x −y2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ 和BO ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE⃑⃑⃑⃑⃑ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解. 根据向量的线性运算法则,可得AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +y(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =xAB ⃑⃑⃑⃑⃑ −yAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(AD ⃑⃑⃑⃑⃑ +DC⃑⃑⃑⃑⃑ ) =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(2AF ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ )=(x −y)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ +12yAB ⃑⃑⃑⃑⃑ =(x −y2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ −xBA ⃑⃑⃑⃑⃑ +y ⋅43BE ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0 ,解得x =817,y =617,所以x +y =1417.故选:C. 9、答案:ABD分析:根据“阳马”和“鳖膈”的定义,可判断A ,B 的正误;当且仅当AC =BC 时,四棱锥B −A 1ACC 1体积有最大值,求值可判断C 的正误;根据题意可证A 1B ⊥平面AEF ,进而判断D 的正误. 底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”, ∴在堑堵ABC −A 1B 1C 1中,AC ⊥BC ,侧棱AA 1⊥平面ABC ,A 选项,∴AA 1⊥BC ,又AC ⊥BC ,且AA 1∩AC =A ,则BC ⊥平面A 1ACC 1, ∴四棱锥B −A 1ACC 1为“阳马”,对;B 选项,由AC ⊥BC ,即A 1C 1⊥BC ,又A 1C 1⊥C 1C 且BC ∩C 1C =C , ∴A 1C 1⊥平面BB 1C 1C ,∴A 1C 1⊥BC 1,则△A 1BC 1为直角三角形,又由BC⊥平面AA1C1C,得△A1BC为直角三角形,由“堑堵”的定义可得△A1C1C为直角三角形,∥CC1B为直角三角形.∴四面体A1C1CB为“鳖膈”,对;C选项,在底面有4=AC2+BC2≥2AC⋅BC,即AC⋅BC≤2,当且仅当AC=BC=√2时取等号,V B−A1ACC1=13S A1ACC1×BC=13AA1×AC×BC=23AC×BC≤43,错;D选项,因为BC⊥平面AA1C1C,则BC⊥AF,AF⊥A1C且A1C∩BC=C,则AF⊥平面A1BC,∴AF⊥A1B,又AE⊥A1B且AF∩AE=A,则A1B⊥平面AEF,所以则A1B⊥EF,对;故选:ABD.10、答案:AC解析:A:由正方体的性质判断B1C⊥平面ABC1D1,得出B1C⊥C1P,异面直线C1P与CB1所成的角为90°;B:由CD//AB,证明CD//平面ABC1D1,即得CD//平面BPC1;C:三棱锥D−BPC1的体积等于三棱锥的体积P−DBC1的体积,判断三棱锥D−BPC1的体积为定值;D:可得直线CP和直线A1B为异面直线.对于A,因为在正方体ABCD−A1B1C1D1中,B1C⊥BC1,B1C⊥C1D1,又BC1∩C1D1=C1,BC1,C1D1⊂平面ABC1D1,所以B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以A正确;对于B,因为平面BPC1与面ABC1D1是同一平面,DC//AB,AB⊂平面ABC1D1,CD⊂平面ABC1D1,故CD//平面ABC1D1,即CD//平面BPC1,故B错误;对于C,三棱锥D−BPC1的体积等于三棱锥P−DBC1的体积,而平面DBC1为固定平面,且△DBC1大小一定,又因为P∈AD1,因为AD1//BC1,AD1⊂平面BDC1,BC1⊂平面BDC1,所以AD1//平面DBC1,所以点A到平面DBC1的距离即为点P到该平面的距离,为定值,所以三棱锥D−BPC1的体积为定值,故C正确;对于D,直线CP和直线A1B是异面直线,不可能相交,故D错误.故选:AC.分析:本题考查线面平行的判定,线面垂直的判定及性质,异面直线所成的角,直线与平面所成的角,空间中的距离,正确理解判定定理和性质是解题的关键.11、答案:ABD分析:由PA⊥矩形ABCD,得PA⊥BD,若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,不成立,故PD⊥BD不正确.解:∵PA⊥矩形ABCD,BD⊂矩形ABCD,∴PA⊥BD,故D正确.若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,故PD⊥BD不正确,故C不正确;∵PA⊥矩形ABCD,∴PA⊥CD,AD⊥CD,∴CD⊥平面PAD,∴PD⊥CD,故B正确;∵PA⊥矩形ABCD,∴由三垂线定理得PB⊥BC,故A正确;故选:ABD.12、答案:无数分析:平移一条直线与另一条相交并确定一个平面,再由线面垂直的意义及异面直线所成角判断作答. 令给定的两条异面直线分别为直线a,b,平移直线b到直线b′,使b′与直线a相交,如图,则直线b′与a确定平面α,点A是平面α内任意一点,过点A有唯一直线l⊥α,因此,l⊥a,l⊥b′,即有l⊥b,由于点A的任意性,所以有无数条直线与异面直线a,b都垂直.所以答案是:无数。
高一立体几何题型及解题方法
高一立体几何题型及解题方法
高一立体几何是数学中的一个重要部分,也是高中数学中难度较大的内容之一。
下面介绍一些高一立体几何的题型及解题方法。
1. 空间向量题型
空间向量题型是高一立体几何中比较基础的题型,需要掌握空间向量的基本概念和运算规律。
解题时需要根据向量的定义和性质,运用向量加法、数乘等基本运算法则,求解向量的模长、方向余弦等相关量。
2. 空间几何体积题型
空间几何体积题型是高一立体几何中比较常见的题型,需要掌握各种几何体的面积和体积公式,并能够灵活运用这些公式进行计算。
解题时需要注意几何体的立体图形,确定所求的体积或面积,再根据公式进行计算。
3. 立体图形的相似题型
立体图形的相似题型需要掌握几何体的相似性质和基本比例关系,能够根据相似性质推导出几何体的相关量。
解题时需要注意几何体的相似条件,确定所求的比例关系,再根据比例关系求解相关量。
4. 空间几何位置关系题型
空间几何位置关系题型需要掌握空间中点、线、面的位置关系及相关性质。
解题时需要注意点、线、面的位置关系,确定所求的相关量,再根据相关性质进行计算。
总之,高一立体几何的题型比较多,需要学生具备扎实的基础知
识和灵活的解题思路,加强对几何图形和空间位置关系的理解和掌握,才能顺利解决高一立体几何的各种题型。
高中数学必修二第八章立体几何初步考点题型与解题方法(带答案)
高中数学必修二第八章立体几何初步考点题型与解题方法单选题1、下列说法中正确的是()A.如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B.平面α内△ABC的三个顶点到平面β的距离相等,则α与β平行C.α//β,a//α,则a//βD.a//b,a//α,b⊄α,则b//α答案:D分析:根据线面关系,逐一判断每个选项即可.解:对于A选项,如果一条直线与一个平面平行,那么这条直线与平面内的无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图1,D,E,F,G分别为正方体中所在棱的中点,平面DEFG设为平面β,易知正方体的三个顶点A,B,C到平面β的距离相等,但△ABC所在平面α与β相交,故错误;对于选项C,a可能在平面β内,故错误;对于选项D,正确.故选:D.2、已知直三棱柱ABC−A1B1C1的各顶点都在同一球面上,且该棱柱的体积为√3,AB=2,AC=1,∠BAC=60°,则该球的表面积为()A.4πB.4√2πC.8πD.32π答案:C解析:利用三棱柱ABC −A 1B 1C 1的侧棱垂直于底面,棱柱的体积为√3,AB =2,AC =1,∠BAC =60°,求出AA 1,再求出ΔABC 外接圆的半径,即可求得球的半径,从而可求球的表面积. ∵三棱柱ABC −A 1B 1C 1的侧棱垂直于底面, 棱柱的体积为√3,AB =2,AC =1,∠BAC =60°, ∴12×2×1×sin60°×AA 1=√3,∴AA 1=2∵BC 2=AB 2+AC 2−2AB ⋅ACcos60°=4+1−2=3,∴BC =√3. 设ΔABC 外接圆的半径为R ,则BCsin60°=2R ,∴R =1.∴外接球的半径为√1+1=√2,∴球的表面积等于4π×(√2)2=8π. 故选:C.小提示:本小题主要考查根据柱体体积求棱长,考查几何体外接球有关计算,属于基础题.3、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( ) A .√22B .1C .√2D .2√2 答案:C分析:计算出V 方盖差,V ,即可得出结论.由题意,V 方盖差=r 3−18V 牟=r 3−18×4π×43×π×r 3=13r 3, 所有棱长都为r 的正四棱锥的体积为V 正=13×r ×r ×r 2−(√2r 2)2=√26r 3, ∴V 方盖差V 正=13r 3√2r 36=√2,故选:C .4、已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) A .2πR 2B .94πR 2C .83πR 2D .πR 2答案:B分析:根据圆柱的表面积公式以及二次函数的性质即可解出.设圆柱的底面半径为r,圆柱的高为ℎ,所以在轴截面三角形中,如图所示:由相似可得,rR =3R−ℎ3R,所以,ℎ=3R−3r,即圆柱的全面积为S=2πr2+2πrℎ=2πr2+2πr(3R−3r)=2π(−2r2+3rR)=2π[−2(r−34R)2+98R2]≤9π4R2,当且仅当r=34R时取等号.故选:B.5、如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤答案:D解析:根据平面的表示方法判断.③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.6、如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,BD=2,DE=1,点P在线段EF上.给出下列命题:①存在点P,使得直线DP//平面ACF;②存在点P,使得直线DP⊥平面ACF;,1];③直线DP与平面ABCD所成角的正弦值的取值范围是[√55④三棱锥A−CDE的外接球被平面ACF所截得的截面面积是9π.8其中所有真命题的序号()A.①③B.①④C.①②④D.①③④答案:D分析:当点P是线段EF中点时判断①;假定存在点P,使得直线DP⊥平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出△ACF外接圆面积判断④作答.取EF中点G,连DG,令AC∩BD=O,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则DO//GF且DO=GF,即四边形DGFO是平行四边形,即有DG//FO,而FO⊂平面ACF,DG⊄平面ACF,于是得DG//平面ACF,当点P与G重合时,直线DP//平面ACF,①正确;假定存在点P,使得直线DP⊥平面ACF,而FO⊂平面ACF,则DP⊥FO,又DG//FO,从而有DP⊥DG,在Rt△DEF中,∠DEF=90∘,DG是直角边EF上的中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,则线段EF上的动点P在平面ABCD上的射影在直线BD上,于是得∠PDB是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,∠PDB=∠DPE,sin∠PDB=sin∠DPE=DEDP =√DE2+EP2=√1+EP2,而0<EP≤2,则√55≤sin∠PDB<1,当P与E重合时,∠PDB=π2,sin∠PDB=1,因此,√55≤sin∠PDB≤1,③正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,BF⊥BD,BF⊂平面BDEF,则BF⊥平面ABCD,BC=√2,在△ACF中,AF=CF=√BC2+BF2=√3,显然有FO⊥AC,sin∠FAC=FOAF =√BO2+BF2AF=√2√3,由正弦定理得△ACF外接圆直径2R=CFsin∠FAC =√2,R=2√2,三棱锥A−CDE的外接球被平面ACF所截得的截面是△ACF的外接圆,其面积为πR2=9π8,④正确,所以所给命题中正确命题的序号是①③④.故选:D小提示:名师点评两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.7、边长为5 cm的正方形EFGH是圆柱的轴截面,则从E点沿圆柱的侧面到相对顶点G的最短距离是()A.10cm B.5√2cmC.5√π2+1cm D.52√π2+4cm答案:D分析:将圆柱展开,根据题意即可求出答案.圆柱的侧面展开图如图所示,展开后E′F=12×2π×52=52π(cm),∴E′G=√52+(5π2)2=52√π2+4(cm),即为所求最短距离.8、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/多选题9、(多选题)下列说法中,正确的结论有()A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行答案:BD分析:由等角定理可判断A的真假;根据直线夹角的定义可判断B的真假;举反例可判断C的真假;由平行公理可判断D的真假.对于选项A:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故选项A错误;对于选项B:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等,故选项B正确;对于选项C:如果一个角的两边和另一个角的两边分别垂直,这两个角的关系不确定,既可能相等也可能互补,也可能既不相等,也不互补.反例如图,在立方体中,∠A1D1C1与∠A1BC1满足A1D1⊥A1B,C1D1⊥C1B,但是∠A1D1C1=π2,∠A1BC1=π3,二者不相等也不互补.故选项C错误;对于选项D:如果两条直线同时平行于第三条直线,那么这两条直线平行,故选项D正确.故选:BD.10、矩形ABCD中,AB=2,BC=1,将此矩形沿着对角线BD折成一个三棱锥C−BDA,则以下说法正确的有()A.三棱锥C−BDA的体积最大值为2√515B.当二面角C−BD−A为直二面角时,三棱锥C−BDA的体积为2√515C.当二面角C−BD−A为直二面角时,三棱锥C−BDA的外接球的表面积为5πD.当二面角C−BD−A不是直二面角时,三棱锥C−BDA的外接球的表面积小于5π答案:ABC分析:求出点C到平面ABD的最大距离即可计算棱锥的最大体积判断选项A,B;求出三棱锥C−BDA的外接球的半径即可判断选项C,D作答.过C作CE⊥BD于E,在平面DBA内过E作BD的垂线EG,则∠CEG为二面角C−BD−A的平面角,如图,平面CEG⊥平面DBA,过C作CF⊥EG于F,则CF⊥平面DBA,在直角△BCD中,∠BCD=90∘,BC=1,CD=2,CE=BC⋅CDBD =2√55,显然CF≤CE,当且仅当点E与F重合时取“=”,即点C到平面ABD距离的最大值为CE=2√55,而S△DBA=12AB⋅AD=1,则三棱锥C−BDA的体积最大值为13CE⋅S△DBA=2√515,A正确;当CF取最大值2√55时,CF⊂平面BCD,又CF⊥平面DBA,则平面BCD⊥平面DBA,即二面角C−BD−A为直二面角,三棱锥C−BDA的体积为2√515,B正确;取BD中点O,连接AO,CO,显然有AO=CO=12BD=BO=DO,于是得点A,B,C,D在以O为球心,AO=√52为半径的球面上,显然,无论二面角C−BD−A如何变化,点A,B,C,D都在上述的球O上,其表面积为5π,C正确,D不正确.故选:ABC11、如图,正方体ABCD−A1B1C1D1的棱长为1,则下列四个命题正确的是()A.两条异面直线D1C和BC1所成的角为π4B.直线BC与平面ABC1D1所成的角等于π4C.点D到面ACD1的距离为√33D.三棱柱AA1D1−BB1C1外接球半径为√32答案:BCD分析:对于A:根据异面直线的求法易得:异面直线D1C和BC1所成的角为∠AD1C;对于B:可证B1C⊥平面ABC1D1,则直线BC与平面ABC1D1所成的角为∠CBC1;对于C:根据等体积转换V D−ACD1=V D1−ACD,求点D到面ACD1的距离;对于D:三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球,直接求正方体外接球的半径即可.连接AC、AD1∵AB∥C1D1且AB=C1D1,则四边形ABC1D1为平行四边形,∴异面直线D1C和BC1所成的角为∠AD1C∵AC=AD1=D1C,则△ACD1为正三角形,即∠AD1C=π3A不正确;连接B1C在正方形BB1C1C中,BC1⊥B1C∵AB⊥平面BB1C1C,B1C⊂平面BB1C1C∴AB⊥B1CAB∩BC1=B,则B1C⊥平面ABC1D1∴直线BC与平面ABC1D1所成的角为∠CBC1=π4 B正确;根据等体积转换可知:V D−ACD1=V D1−ACD即13×ℎ×12×√2×√2×√32=13×1×12×1×1,则ℎ=√33C正确;三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球则外接球的半径即为正方体ABCD−A1B1C1D1体对角线的一半,即R=√32 D正确;故选:BCD.填空题12、一个圆锥的母线长为20,母线与轴的夹角为60∘,则圆锥的高为________.答案:10分析:利用圆锥的几何性质可求得该圆锥的高.由题意可知,该圆锥的高为ℎ=20cos60∘=10.所以答案是:10.13、若将两个半径为1的铁球熔化后铸成一个球,则该球的半径为______.答案:√23分析:根据球的体积等于两个半径为1的球的体积之和即可求其半径.设大球的半径为r,则根据体积相同,可知43π+43π=43πr3,则r3=2,解得r=√23.所以答案是:√23.14、已知一三角形ABC用斜二测画法画出的直观图是面积为√3的正三角形A′B′C′(如图),则三角形ABC中边长与正三角形A′B′C′的边长相等的边上的高为______.答案:2√6分析:根据面积公式求出三角形的边长,以及高,利用斜二测画法的原理还原出原三角形的高,并求出答案. 设正三角形A′B′C′的边长为a,∵S△A′B′C′=√34a2=√3∴a=2,DC′=√3O′C′=√6∴O′C=2√6所以答案是:2√6.解答题15、如图,在正方体ABCD−A1B1C1D1中,A1C1与B1D1交于点O1,求证:(1)直线A1B∥平面ACD1;(2)直线BO1∥平面ACD1.答案:(1)证明见解析(2)证明见解析分析:(1)根据题意,先证得四边形A1D1CB是平行四边形,从而证得A1B∥D1C,即可证得线面垂直;(2)连接BD,交AC于O,连接D1O,只需证明O1B∥D1O,即可证得线面垂直;(1)证明:直线A1B在平面ACD1外,因为A1D1∥BC,A1D1=BC,所以四边形A1D1CB是平行四边形,所以A1B∥D1C,而D1C是平面ACD1内的直线,根据判定定理可知,直线A1B∥平面ACD1.(2)证明:如图,连接BD,交AC于O,连接D1O,易知D1O1∥OB,D1O1=OB,则四边形D1O1BO是平行四边形,所以O1B∥D1O,所以D1O在平面ACD1上,根据判定定理可知,O1B∥平面ACD1.。
立体几何题型与解题方法
立体几何重点题型与解题方法1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)。
证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线。
(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2)。
平行公理:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)。
立体几何题型及解题方法
立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。
以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。
解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。
2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。
解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。
3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。
解题方法包括使用不等式、极值定理和优化方法等。
4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。
解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。
以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。
在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。
立体几何体积表面积题型总结
立体几何体积表面积题型总结全文共四篇示例,供读者参考第一篇示例:立体几何体积和表面积是几何学中非常重要的概念,它们广泛应用于日常生活和各种工程领域。
在考试中,经常会出现与立体几何体积和表面积相关的题型,考查学生的综合能力和解题技巧。
本文将对关于立体几何体积表面积题型进行总结,希望能帮助读者更好地掌握相关知识。
在解立体几何体积表面积题型时,首先需要了解各种常见几何体的体积和表面积公式。
下面是一些常见几何体的体积和表面积公式:1. 立方体:- 体积公式:V = a³ (a为边长)- 表面积公式:S = 6a²了解以上公式是解立体几何体积表面积题目的基础,接下来需要根据具体题目的要求灵活运用这些公式。
在解题过程中,可以遵循以下一般步骤:1. 画图:根据题目绘制准确的图形,有助于理清思路和分析问题。
2. 确定参数:明确各个参数的含义,包括边长、半径、高等。
3. 应用公式:根据具体题目要求,选择合适的体积和表面积公式进行计算。
4. 计算验证:将得到的具体数值代入公式进行计算,并进行验证。
5. 总结解法:总结解题过程,确保计算结果正确且符合题目要求。
在解题过程中,有一些常见的考点和技巧也是需要注意的,下面列举一些常见的题型及解题技巧:1. 混合体积问题:有时题目会涉及到多种几何体的组合,需要将各个部分的体积分别计算,然后相加得到总体积。
2. 变换题型:有些题目需要根据给定条件进行变换,例如将一个正方体切割成若干小正方体,需要注意每个小正方体的边长与体积的关系。
3. 边长、半径的关系:根据题目给定的条件,需灵活利用边长、半径之间的关系来求解问题。
4. 知己知彼:要根据具体题目的特点选择合适的解题方法,不要死记硬背,要有灵活应对的能力。
5. 多维度思考:对于复杂的题目,可以通过多种角度进行思考,可以更快地找到解题思路。
第二篇示例:立体几何体积和表面积是几何学中非常重要的概念,它们广泛应用于工程、建筑、物理学和计算机图形学等领域。
高中数学高考专题(5)立体几何的高考解答题型及求解策略
高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。
高中数学第八章立体几何初步解题方法技巧(带答案)
高中数学第八章立体几何初步解题方法技巧单选题1、若一个正方体的体对角线长为a ,则这个正方体的全面积为( )A .2a 2B .2√2a 2C .2√3a 2D .3√2a 2答案:A分析:设正方体的棱长为x ,求出正方体的棱长即得解.解:设正方体的棱长为x ,则√3x =a ,即x 2=13a 2,所以正方体的全面积为6x 2=6×13a 2=2a 2. 故选:A2、一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,的中点为N ,下列结论正确的是( )A .MN//平面ABEB .MN//平面ADEC .MN//平面BDHD .MN//平面CDE答案:C解析:根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A 作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定GH理可以证明MN与平面BDE的平行关系,进而判定C;利用M,N在平面CDEF的两侧,可以判定MN与平面CDE 的关系,进而对D作出判定.根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.小提示:本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN的平行线BO.3、球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正△ABC的项点都在半径为2的球面上,球心到△ABC所在平面距离为2√63,则A、B两点间的球面距离为()A.πB.π2C.2π3D.3π4答案:C分析:设球心为点O,计算出∠AOB,利用扇形弧长公式可求得结果.设球心为点O ,平面ABC 截球O 所得截面圆的半径为r =√22−(2√63)2=2√33, 由正弦定理可得4√33=AB sin∠ACB ,∴AB =4√33sin π3=2,又∵OA =OB =2,所以,△AOB 为等边三角形,则∠AOB =π3,因此,A 、B 两点间的球面距离为2×π3=2π3.故选:C.小提示:思路点睛:求球面距离,关键就是要求出球面上两点与球心所形成的角,结合扇形的弧长公式求解,同时在计算球的截面圆半径时,利用公式r =√R 2−d 2(其中r 为截面圆的半径,R 为球的半径,d 为球心到截面的距离)来计算.4、如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为( )A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .矩形答案:B解析:利用面面平行的性质判断EF 与的平行、EH 与FG 平行.因为平面ABFE //平面CGHD ,且平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面CGHD =GH ,根据面面平行的性质可知EF //,同理可证明EH //FG .所以四边形EFGH 为平行四边形.故选:B.小提示:本题考查长方体截面形状判断,考查面面平行的性质应用,较简单.GH GH5、空间三个平面如果每两个都相交,那么它们的交线有( )A .1条B .2条C .3条D .1条或3条答案:D分析:根据平面与平面的位置关系即可得出结论.三个平面可能交于同一条直线,也可能有三条不同的交线,如图所示:故选:D6、在正方体ABCD −A 1B 1C 1D 1中,E 为线段A 1B 1的中点,则异面直线D 1E 与BC 1所成角的余弦值为( )A .√55B .√105C .√155D .2√55 答案:B分析:连接AD 1,,得到AD 1//BC 1,把异面直线D 1E 与BC 1所成角转化为直线D 1E 与AD 1所成角,取AD 1的中点F ,在直角△D 1EF 中,即可求解.在正方体ABCD −A 1B 1C 1D 1中,连接AD 1,,可得AD 1//BC 1,所以异面直线D 1E 与BC 1所成角即为直线D 1E 与AD 1所成角,即∠AD 1E 为异面直线D 1E 与BC 1所成角,不妨设AA 1=2,则AD 1=2√2,D 1E =AE =√5,取AD 1的中点F ,因为D 1E =AE ,所以EF ⊥AD 1,在直角△D 1EF 中,可得cos∠AD 1E =D 1F D 1E =√2√5=√105. 故选:B.AE AE7、在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π6答案:D分析:平移直线AD1至BC1,将直线PB与AD1所成的角转化为PB与BC1所成的角,解三角形即可.如图,连接BC1,PC1,PB,因为AD1∥BC1,所以∠PBC1或其补角为直线PB与AD1所成的角,因为BB1⊥平面A1B1C1D1,所以BB1⊥PC1,又PC1⊥B1D1,BB1∩B1D1=B1,所以PC1⊥平面PBB1,所以PC1⊥PB,设正方体棱长为2,则BC1=2√2,PC1=12D1B1=√2,sin∠PBC1=PC1BC1=12,所以∠PBC1=π6.故选:D8、甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104答案:C 分析:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r 1r 2=2,所以r 1=2r 2,又2πr 1l +2πr 2l =2π, 则r 1+r 2l =1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l , 乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.多选题9、折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE⏜,AC ⏜所在圆的半径分别是3和9,且∠ABC =120∘,则该圆台的( )A.高为4√2B.体积为50√23πC.表面积为34πD.上底面积、下底面积和侧面积之比为1:9:22答案:AC分析:设圆台的上底面半径为r,下底面半径为R,求出r=1,R=3,即可判断选项A正确;利用公式计算即可判断选项BCD的真假得解.解:设圆台的上底面半径为r,下底面半径为R,则2πr=13×2π×3,2πR=13×2π×9,解得r=1,R=3.圆台的母线长l=6,圆台的高为ℎ=√62−(3−1)2=4√2,则选项A正确;圆台的体积=13π×4√2×(32+3×1+12)=52√23π,则选项B错误;圆台的上底面积为π,下底面积为9π,侧面积为π(1+3)×6=24π,则圆台的表面积为π+9π+24π=34π,则C正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D错误.故选:AC.10、如图,在透明塑料制成的长方体ABCD−A1B1C1D1容器内灌进一些水(未满),现将容器底面一边BC固定在底面上,再将容器倾斜,随着倾斜度的不同,有下列四种说法,其中正确命题的是()A.水的部分始终呈棱柱状B.水面四边形EFGH的面积为定值C .棱A 1D 1始终与水面EFGH 平行D .若E ∈AA 1,F ∈BB 1,则AE +BF 是定值答案:ACD分析:利用棱柱的定义即可判断选项A ,由水面四边形EFGH 的边长在变化,即可判断选项B ,利用线面平行的判定定理即可判断选项C ,由于水平放置时,水的高度是定值,从而求出AE +BF 为定值,即可判断选项D 解:由于四边形ABFE 与四边形DCGH 全等,且平面ABFE ‖平面DCGH ,则由棱柱的定义可知,水的部分始终呈棱柱状,所以A 正确,因为BC ‖FG ,BC ⊥平面,所以FG ⊥平面,因为EF ⊂平面,所以FG ⊥EF ,因为FG ‖EH ,FG =EH ,所以因为四边形EFGH 为矩形,所以水面四边形EFGH 的面积等于EF ⋅FG ,因为水面四边形EFGH 的边长FG 不变,EF 在变化,所以水面四边形EFGH 的面积在变化,所以B 错误,容器底面一边BC 固定在底面上时,BC ‖FG ‖A 1D 1,所以由线面平行的判定定理可知,棱A 1D 1始终与水面四边形EFGH 平行,所以C 正确,如图,由于水平放置时,水的体积是定值,水的高度是定值ℎ,底面面积不变,所以当一部分上升的同时,另一部分下降相同的高度a ,设BF =ℎ−a ,则AE =ℎ+a ,所以BF +AE =ℎ−a +ℎ+a =2ℎ为定值,所以当E ∈AA 1,F ∈BB 1时, AE +BF 是定值,所以D 正确,故选:ACD11、已知正四面体的外接球、内切球的球面上各有一动点M 、N ,若线段MN 的最小值为√6,则( )A .正四面体的棱长为6B .正四面体的内切球的表面积为6πC .正四面体的外接球的体积为8√6πD .线段MN 的最大值为2√6答案:ABD分析:设这个四面体的棱长为a ,利用分割补形法求出其外接球的半径,由等体积法求其内切球半径,再由已知列式求解a ,然后逐个分析判断即可设这个四面体的棱长为a ,则此四面体可看作棱长为√22a 的正方体截得的,所以四面体的外接球即为正方体的外接球,外接球直径为正方体的对角线长,设外接球的半径为R ,内切球的半径为r ,则 11ABB A 11ABB A 11ABB A2R=√3×(√22a)2=√62a,所以R=√64a,四面体的高为ℎ=√a2−(√33a)2=√63a,则等体积法可得1 3Sℎ=4×13Sr,所以r=14ℎ=√612a,由题意得R−r=√6,所以√64a−√612a=√6,解得a=6所以A正确,所以R=√64×6=3√62,所以外接球的体积为43πR3=43π⋅(3√62)3=27√6π,所以C错误,因为内切球半径为r=√612×6=√62,所以内切球的表面积为4πr2=4π⋅(√62)2=6π,所以B正确,线段MN的最大值为R+r=3√62+√62=2√6,所以D正确,故选:ABD12、已知PA⊥矩形ABCD所在的平面,则下列结论中正确的是()A.PB⊥BCB.PD⊥CDC.PD⊥BDD.PA⊥BD答案:ABD分析:由PA⊥矩形ABCD,得PA⊥BD,若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,不成立,故PD⊥BD不正确.解:∵PA⊥矩形ABCD,BD⊂矩形ABCD,∴PA⊥BD,故D正确.若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,故PD⊥BD不正确,故C不正确;∵PA⊥矩形ABCD,∴PA⊥CD,AD⊥CD,∴CD⊥平面PAD,∴PD⊥CD,故B正确;∵PA⊥矩形ABCD,∴由三垂线定理得PB⊥BC,故A正确;故选:ABD.13、(多选题)下列命题中,错误的结论有()A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行答案:AC分析:由等角定理可判断A、B的真假;举反例可判断C的真假;由平行公理可判断D的真假.对于选项A:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故选项A错误;对于选项B:由等角定理可知B正确;对于选项C:如果一个角的两边和另一个角的两边分别垂直,这两个角的关系不确定,既可能相等也可能互补,也可能既不相等,也不互补.反例如图,在立方体中,∠A1D1C1与∠A1BC1满足A1D1⊥A1B,C1D1⊥C1B,但是∠A1D1C1=π2,∠A1BC1=π3,二者不相等也不互补.故选项C错误;对于选项D:如果两条直线同时平行于第三条直线,那么这两条直线平行,故选项D正确.故选:AC.填空题,则这个圆锥的底面半径为______.14、已知圆锥的表面积为28π,其侧面展开扇形的圆心角大小为π3答案:2分析:根据圆锥展开图的特征列出关于半径r,母线长l的方程组,解出即可.设圆锥的底面半径为r,母线长为l,由题意,有πrl+πr2=28π①,由于侧面展开扇形的圆心角大小为π,3l=2πr,即l=6r②,所以π3由①②得l=12,r=2,即圆锥的底面半径为2,所以答案是:2.15、如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化后正好盛满杯子,则杯子高ℎ=_______cm.答案:8解析:根据题意半球的体积等于圆锥的体积,根据等体积法化简即可.解:由题意得半球的半径和圆锥底面圆的半径r =4,如果冰淇淋融化后正好盛满杯子,则半球的体积等于圆锥的体积所以12×43π×43=13×(π×42)ℎ⇒ℎ=8 所以答案是:816、如图所示,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为上一点,若PA//平面EBF ,则PF FC =_______答案:12##0.5分析:连接AC 交BE 于点M ,连接,由线面平行的性质得线线平行,由平行线性得结论.连接AC 交BE 于点M ,连接,PC FM FM∵PA//平面EBF ,PA ⊂平面,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 解答题17、已知四边形ABCD ,∠ABC =∠CAD =90°,AB =BC =√22AD ,将△ABC 沿AC 翻折至.(Ⅰ)若PA =PD ,求证:AP ⊥CD ;(Ⅱ)若二面角P −AC −D 的余弦值为−14,求PD 与面所成角的正弦值.答案:(Ⅰ)证明见解析;(Ⅱ)√10514. 分析:(Ⅰ)由平面几何的性质可得;(Ⅱ)作出二面角P −AC −D 的平面角,建立空间直角坐标系,利用空间向量法求出线面角的正弦.(Ⅰ)取CD 的中点E ,连接,PEPAC PAC△PACAE不妨设AD =2,则AB =BC =√2,即AP =PC =√2因为∠ABC =∠CAD =90°,所以AC =2,则AE ⊥CD,CD =2√2,又因为PC =PD =PA =√2,所以P,E 重合,则AP ⊥CD .(Ⅱ)取AC 的中点O ,连接PO ,OE ,PE ,不妨设AD =2,则AB =BC =√2,即AP =PC =√2因为∠ABC =∠CAD =90°,则,又因为O 为AC 中点,E 为CD 的中点,则OE//AD ,所以OE ⊥AC ,所以∠POE 为二面角P −AC −D 的平面角.因此以点O 为坐标原点,以OA ,OE ,Oz 分别为x ,y ,z 轴建空间直角坐标系如图:A (1,0,0),B (1,2,0),C (−1,0,0),P (0,−14,√154) 设面的法向量为n ⃗ =(x,y,z ),CA⃗⃗⃗⃗⃗ =(2,0,0), OP ⃗⃗⃗⃗⃗ =(0,−14,√154),DP ⃗⃗⃗⃗⃗ =(−1,−94,√154) 则{2x =0−14y +√154z =0,所以x =0,令y =√15,则z =1, 所以面的一个法向量为n ⃗ =(0,√15,1),设PD 与面所成的角为θ,则sinθ=|n →⋅DP ⃗⃗⃗⃗⃗⃗ |n →||DP ⃗⃗⃗⃗⃗⃗ ||=√10514. 18、如图所示,已知四棱柱ABCD −A 1B 1C 1D 1的底面ABCD 为菱形.PO ACPAC PAC PAC(1)证明:平面AB1C//平面A1C1D;(2)在直线CC1上是否存在点P,使BP//平面A1C1D?若存在,确定点P的位置;若不存在,说明理由.答案:(1)证明见解析;(2)存在;在C1C的延长线上取点P,使C1C=CP.解析:(1)由棱柱ABCD−A1B1C1D1的性质知,AB1//DC1,得到AB1//平面A1C1D,同理可得B1C//平面A1C1D,再利用面面垂直的判定定理.(2)易知四边形A1B1CD为平行四边形,A1D//B1C,在C1C的延长线上取点P,使C1C=CP,连接BP,则四边形BB1CP为平行四边形,得到BP//A1D,再利用线面平行的判定定理证明.(1)由棱柱ABCD−A1B1C1D1的性质可知,AB1//DC1,∵AB1⊄平面DA1C1,DC1⊂平面A1C1D,∴AB1//平面A1C1D,同理可证B1C//平面A1C1D,而AB1∩B1C=B1,AB1、B1C⊂平面AB1C,∴平面AB1C//平面A1C1D;(2)存在这样的点P,使BP//平面A1C1D,∵A1B1//CD,A1B1=CD,∴四边形A1B1CD为平行四边形,∴A1D//B1C,如图所示:在C1C的延长线上取点P,使C1C=CP,连接BP,∵B1B//C1C,B1B=C1C,∴B1B//C1P,B1B=C1P,∴四边形BB1CP为平行四边形,则BP//B1C,BP=B1C,∴BP//A1D,又BP⊄平面A1C1DA1D⊂平面A1C1D,∴BP//平面A1C1D.小提示:方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(3)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).。
新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)
立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。
高中数学的归纳立体几何中的常见问题解析与解题方法
高中数学的归纳立体几何中的常见问题解析与解题方法立体几何作为高中数学中的一个重要分支,是学生们遇到的较为复杂和抽象的数学知识之一。
在这个领域中,归纳推理是解决问题的重要方法之一。
本文将针对高中数学中归纳立体几何的常见问题,分析其解题方法,帮助学生们更好地掌握这一知识。
一、平面几何的归纳思维在解决立体几何问题时,平面几何的归纳思维是非常重要的。
通过观察、总结和归纳,我们可以找到一些规律,从而解决问题或推导出结论。
下面,我们以立体的表面积和体积问题为例,介绍归纳思维的应用。
1. 立方体的体积问题立方体是最基础的立体之一,其体积的计算是立体几何中的一个重要问题。
我们可以通过观察立方体的结构,发现其体积与边长之间存在着一定的关系。
进而通过归纳思维,我们可以得出结论:立方体的体积等于边长的立方。
2. 圆柱的表面积问题圆柱是另一个常见的立体,其表面积的计算同样是立体几何中的重点内容。
通过观察不同半径和高度的圆柱,我们可以发现其表面积与半径和高度之间存在着一定的关系。
由此,我们可以归纳出结论:圆柱的表面积等于两个底面积和侧面积之和。
二、解体思路与技巧除了归纳思维,掌握解题的思路和技巧也是高中数学归纳立体几何的关键。
下面,我们将介绍一些解题思路和技巧,帮助学生们更好地解决立体几何中的常见问题。
1. 利用平行关系平行关系是解决立体几何问题中常用的思路之一。
通过观察立体的各个部分,我们可以找到平行的线段、平面或面对面的关系。
利用平行关系,可以得出许多有用的结论,进而解决问题。
举例来说,当我们需要计算一个立体的体积时,可以通过将其分成若干个平行的截面,然后计算每个截面的面积,并将其相加,从而求得整个立体的体积。
2. 利用相似关系相似关系也是解决立体几何问题的常用技巧之一。
当两个立体之间存在相似的关系时,我们可以利用相似关系来求解未知量。
举例来说,当我们需要求解一个复杂立体的某一部分的长度或面积时,可以先找到一个与之相似且已知部分的长度或面积,然后利用相似比例来求解未知量。
立体几何的练习题及解题方法
立体几何的练习题及解题方法立体几何是数学中的一个重要分支,它研究的是空间中的几何图形。
在学习立体几何时,我们常常需要进行一些练习题来加深对各种几何图形的理解,并熟悉解题方法。
本文将提供一些立体几何的练习题,并探讨它们的解题方法。
一、体积计算题1.请计算一个边长为5cm的正方体的体积。
解题方法:正方体的体积计算公式为V = a^3,其中a表示边长。
将已知数据带入公式,得到V = 5^3 = 125 cm^3。
因此,正方体的体积为125立方厘米。
2.已知一个椎体的底面半径为4cm,高为6cm,求它的体积。
解题方法:椎体的体积计算公式为V = (1/3)πr^2h,其中r表示底面半径,h表示高。
将已知数据带入公式,得到V = (1/3)π(4^2)(6) ≈100.53 cm^3。
因此,椎体的体积约为100.53立方厘米。
二、表面积计算题1.已知一个正方体的边长为3cm,求它的表面积。
解题方法:正方体的表面积计算公式为S = 6a^2,其中a表示边长。
将已知数据带入公式,得到S = 6(3^2) = 54 cm^2。
因此,正方体的表面积为54平方厘米。
2.请计算一个圆锥的表面积,已知它的底面半径为6cm,侧面高为8cm。
解题方法:圆锥的表面积计算公式为S = πr(r + l),其中r表示底面半径,l表示斜高。
首先,我们需要计算斜高,可以利用勾股定理得到l = √(r^2 + h^2)。
将已知数据带入公式,得到l = √(6^2 + 8^2) = 10 cm。
然后,将r和l带入表面积计算公式,得到S = π(6)(6 + 10) ≈ 251.33 cm^2。
因此,圆锥的表面积约为251.33平方厘米。
三、图形的相交与不相交题1.已知一个正方体和一个立方体,它们的边长均为4cm,判断它们是否相交。
解题方法:两个立体图形相交的条件是它们至少有一个公共点。
由于正方体和立方体的边长相等,并且它们的中心点重合,因此它们相交。
高中立体几何最佳解题方法及考题详细解答
高中立体几何最正确解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、假如一条直线和一个平面平行,经过这条直线的平面与这个订交,那么这条直线和交线平行。
(线面平行的性质定理)4、假如两个平行平面同时和第三个平面订交,那么它们的交线平行。
(面面平行的性质定理)5、假如两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、假如平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判断定理)3、两个平面平行,此中一个平面内的随意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、假如一个平面内的两条订交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判断定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理; 2 、等腰三角形; 3 、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、假如一条直线和这个平面垂直,那么这条直线和这个平面内的随意直线都垂直。
7、在平面内的一条直线,假如和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,假如和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、假如两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的随意直线都垂直;2、点在面内的射影;3、假如一条直线和一个平面内的两条订交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判断定理)4、假如两个平面相互垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
高中数学立体几何的相关题型及解题思路
高中数学立体几何的相关题型及解题思路在高中数学中,立体几何是一个重要的考点,也是许多学生感到困惑和头疼的地方。
本文将介绍一些常见的立体几何题型,并给出相应的解题思路和技巧,希望能够帮助高中学生和他们的父母更好地应对这一考点。
一、体积计算题体积计算题是立体几何中最基础的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的体积。
解决这类题目的关键在于熟练掌握各种几何体的体积公式,并能够根据题目给出的条件灵活运用。
例如,某题给出一个长方体的底面积为12平方厘米,高为5厘米,要求计算其体积。
我们可以直接应用长方体的体积公式V=底面积×高,代入已知数据计算得出答案为60立方厘米。
二、表面积计算题表面积计算题也是立体几何中常见的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的表面积。
解决这类题目的关键在于熟练掌握各种几何体的表面积公式,并能够根据题目给出的条件灵活运用。
例如,某题给出一个正方体的边长为3厘米,要求计算其表面积。
我们可以直接应用正方体的表面积公式S=6a^2,其中a为边长,代入已知数据计算得出答案为54平方厘米。
三、立体图形的相似题立体图形的相似题是立体几何中较为复杂的题型之一,常见的题目有判断两个立体图形是否相似、计算相似立体图形的比例等。
解决这类题目的关键在于观察立体图形的形状和比例关系,并能够利用相似三角形的性质进行推理。
例如,某题给出一个正方体ABCDA'B'C'D',另一个正方体EFGHE'F'G'与之相似,要求计算两个正方体的体积比。
我们可以观察到两个正方体的边长比为AE/AA'=EF/EE'=FG/FF'=...=1/2,而体积与边长的关系为V=k^3,其中k为边长的比值。
因此,两个正方体的体积比为(1/2)^3=1/8。
四、立体图形的投影题立体图形的投影题是立体几何中较为抽象的题型之一,常见的题目有计算某个立体图形在某个平面上的投影面积或投影长度等。
高考数学中的立体几何问题及解题方法
高考数学中的立体几何问题及解题方法高考数学中,立体几何是一项重要的考试题型。
相比于平面几何、代数和概率统计等内容,立体几何更为抽象,对学生的空间想象力和逻辑能力要求更高。
本文旨在探讨高考数学中的立体几何问题及其解题方法。
一、立体几何常考题型常见的立体几何问题包括立体几何图形的性质、体积、表面积等问题。
下面列举一些高考中经常出现的立体几何考点。
1. 立体图形的名字和性质高考中经常出现的立体图形包括正方体、长方体、棱柱、棱锥、圆柱、圆锥、球等。
学生需要掌握这些图形的属性,比如正方体的六个面都是正方形、长方体的所有面都是矩形等等,只要掌握了它们的基本属性,在解决题目时就能做到心中有数。
2. 体积求立体图形的体积是立体几何中比较基础和常见的题型。
学生需要清楚掌握各种常见图形的体积公式,例如:①正方体的体积公式:V=a³②长方体的体积公式:V=lxwxh③棱柱的体积公式:V=Ah④圆柱的体积公式:V=πr²h⑤球的体积公式:V=4/3πr³⑥棱锥的体积公式:V=1/3Ah注意,这些公式必须要掌握,不要在考试中还在纠结于公式的推导方法。
3. 表面积求立体图形的表面积也是数学中的一大题型。
常见的几何图形表面积的计算方式有如下几种公式:①正方体的表面积公式:S=6a²②长方体的表面积公式:S=2(lw+lh+wh)③棱柱的表面积公式:S=2B+Ph④圆柱的表面积公式:S=2πr²+2πrh⑤球的表面积公式:S=4πr²⑥棱锥的表面积公式:S=B+1/2Pl其中B表示底面积,P表示底面外接多边形的周长,l表示斜几何。
上面列举的是一些常见的立体几何题目,还有一些特殊题目需要学生掌握,例如“平行四边形体积定理”、“曲面半径定理”等等。
二、举例分析解题方法1. 体积题例题:某学校花坛为正方形,长和宽之和为25米,现在将花坛增加5个方块,每个方块边长为2米,求增加的花坛的体积。
立体几何线面平行-题型全归纳(解析版)
立体几何线面平行-题型全归纳题型一利用三角形中位线例题1、如图所示,在三棱柱ABC-111C B A 中,侧棱⊥1AA 底面ABC ,AB ⊥BC ,D 为AC 的中点。
求证:1AB //平面DBC 1证明:连接C B 1,交1BC 于点O,再连接OD,平面11B BCC 是平行四边形,∴O是1BC 的中点,又D是AC的中点,∴OD是1ACB ∆的中位线,1//AB OD ∴,⊂OD 平面D BC 1,⊄1AB 平面D BC 1,//OD ∴平面D BC 1。
解题步骤(1)把直线通过平移到平面上,得到线线平行的初步形状;(2)连接平行四边形的对角线,再连接两个中点,恰好为平移所得到的线段;(3)通过延长两条线段的端点,构成一个三角形,即可得到三角形的中位线。
变式训练1、如图,在直四棱柱ABCD-1111D C B A 中,底面ABCD 为菱形,E 为1DD 中点。
求证:1BD //平面ACE ;证明:连接BD,交AC于点O,再连接OE,在直四棱柱ABCD-1111D C B A 中,O为BD的中点,且E为1DD 的中点,∴OE是1BDD ∆的中位线,1//BD OE ∴,又OE⊂平面ACE,⊄1BD 平面ACE,∴1BD //平面ACE 。
变式训练2、如图,在斜三棱柱ABC-111C B A 中,CA=CB ,D 、E 分别是AB ,C B 1的中点,求证:DE//平面11A ACC ;证明:连接1BC ,连接1AC ,在斜三棱柱ABC-111C B A 中,∴点E在线段1BC 上,∴点E是1BC 的中点,又点D是AB的中点,∴DE是1ABC ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC 变式训练3、如图所示,正三棱柱ABC-111C B A 的高为2,点D 是B A 1的中点,点E 是11C B 的中点,求证:DE//平面11A ACC证明:连接1AB ,连接1AC ,在正三棱柱ABC-111C B A 中,∴点D在线段1AB 上,∴点D是1AB 的中点,又点E是11C B 的中点,∴DE是11C AB ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC题型二利用平行四边形的对边平行例题2、如图,在多面体ABCDE 中,AEB 为等边三角形,AD//BC ,BC AD 21=,F 为EB 的中点。
数学立体几何解题技巧
数学立体几何解题技巧数学立体几何解题技巧我们把不同于一般解法的巧妙解题方法称为解题技巧,它来源于对数学问题中矛盾特殊性的认识。
下面是店铺精心整理的数学立体几何解题技巧,欢迎阅读与收藏。
数学立体几何解题技巧篇11平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
立体几何题型及解题方法总结
立体几何题型及解题方法总结1. 立体几何题型啊,那可是个神奇的领域!有求各种立体图形体积的题型,就像求一个装满水的古怪形状瓶子能装多少水一样。
比如说正方体,正方体的体积公式就是边长的立方。
要是有个正方体边长是3厘米,那它的体积就是3×3×3 = 27立方厘米,简单吧!这类型的题就像是数糖果,一个一个数清楚就行。
2. 还有求立体图形表面积的题型呢。
这就好比给一个形状奇怪的礼物包装纸,得算出需要多少纸才能把它包起来。
像长方体,表面积就是六个面的面积之和。
假如一个长方体长4厘米、宽3厘米、高2厘米,那表面积就是2×(4×3 + 4×2 + 3×2) = 52平方厘米。
哎呀,可别小瞧这表面积,有时候算错一点就像给礼物包了个破纸一样难看。
3. 立体几何里关于线面关系的题型也不少。
这就像在一个迷宫里找路,线和面的关系复杂得很。
比如说直线和平面平行的判定,就像在一个方方正正的房间里,一根直直的杆子和地面平行,只要杆子和地面内的一条直线平行就行。
像有个三棱柱,一条棱和底面的一条棱平行,那这条棱就和底面平行啦,是不是很有趣呢?4. 线面垂直的题型也很重要哦。
这就像是建房子时的柱子和地面的关系,必须垂直才稳当。
判断一条直线和一个平面垂直,就看这条直线是不是和平面内两条相交直线都垂直。
就像搭帐篷,中间那根杆子要和地面上交叉的两根绳子都垂直,帐篷才能稳稳地立起来。
比如一个正四棱锥,它的高就和底面垂直,因为高和底面两条相交的对角线都垂直呢。
5. 面面平行的题型有点像照镜子。
两个平面就像两面镜子,要想平行,得看一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行。
就像有两个一样的盒子,一个盒子里面两条交叉的边和另一个盒子里面对应的两条交叉边平行,那这两个盒子的面就是平行的关系。
想象一下,如果两个平行的黑板,是不是很有画面感?6. 面面垂直的题型就像是打开的书页。
高中数学立体几何解题技巧及常见题型详解
高中数学立体几何解题技巧及常见题型详解立体几何是数学中的一个重要分支,它研究的是空间中的图形和体积。
在高中数学中,立体几何是一个重要的考点,也是考试中难度较大的部分之一。
本文将介绍一些高中数学立体几何解题技巧,并详细解析几种常见的立体几何题型,帮助读者更好地应对这一考点。
一、平行六面体的体积计算平行六面体是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定底面积和高,进而计算体积。
例如,有一平行六面体的底面积为A,高为h,求其体积。
解题技巧:首先,我们需要明确平行六面体的定义,即六个面都是平行的。
其次,根据平行六面体的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的平行六面体。
因此,平行六面体的体积可以通过底面积乘以高来计算,即V = Ah。
举例说明:假设有一个平行六面体,其底面积为5平方厘米,高为10厘米。
那么,它的体积可以通过计算5乘以10得到,即V = 5 × 10 = 50立方厘米。
二、正方体的表面积计算正方体是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定正方体的边长,进而计算表面积。
例如,有一个正方体的边长为a,求其表面积。
解题技巧:首先,我们需要明确正方体的定义,即六个面都是正方形。
其次,根据正方体的性质,我们可以将其看作一个立方体,因为立方体是一种特殊的正方体。
因此,正方体的表面积可以通过边长的平方乘以6来计算,即S = 6a²。
举例说明:假设有一个正方体,其边长为3厘米。
那么,它的表面积可以通过计算6乘以3的平方得到,即S = 6 × 3² = 54平方厘米。
三、棱柱的体积计算棱柱是高中数学中常见的立体几何题型之一。
解决这类题目的关键是确定底面积和高,进而计算体积。
例如,有一个棱柱的底面积为A,高为h,求其体积。
解题技巧:首先,我们需要明确棱柱的定义,即底面是一个多边形,顶面与底面的对应点通过直线相连。
其次,根据棱柱的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的棱柱。
专题03 立体几何大题解题模板(解析版)
专题03 立体几何大题解题模板一、证明平行或垂直的主要方法:1、证明线线平行的方法:(1)利用直线平行的传递性:31//l l ,32//l l ⇒21//l l ;(2)利用垂直于同一平面的两条直线平行:α⊥1l ,α⊥2l ⇒21//l l ;(3)中位线法:选中点,连接形成中位线;(4)平行四边形法:构造平行四边形;(5)利用线面平行推线线平行:2l =βα ,β⊂1l ,α//1l ⇒21//l l ;(6)建系:),,(1111z y x l =,),,(2222z y x l =,21l l λ=⇒21//l l 。
2、证明线面平行的方法:(1)利用线面平行的判定定理(主要方法):α⊄1l ,α⊂2l ,21//l l ⇒α//1l ;(2)利用面面平行的性质定理:βα//,β⊂1l ⇒α//1l ;(3)利用面面平行的性质:βα//,α⊄1l ,β//1l ⇒α//1l 。
(4)建系:),,(1111z y x l =,平面α的法向量),,(222z y x n =,01=⋅n l ⇒α//1l 。
3、证明面面平行的方法:(1)利用面面平行的判定定理(主要方法:证明两个平面内的两组相交直线相互平行):31//l l ,42//l l ,A l l =21 ,B l l =43 ,α⊂21l l 、,β⊂43l l 、⇒βα//;(2)利用垂直于同一条直线的两平面平行(客观题可用):α⊥1l ,β⊥1l ⇒βα//;(3)利用平面平行的传递性:γα//,γβ//⇒βα//。
(4)建系:平面α的法向量),,(1111z y x n =,平面α的法向量),,(2222z y x n =,21n n λ=⇒βα//。
4、证明线线垂直的方法:(1)利用平行直线的性质:31l l ⊥,32//l l ⇒21l l ⊥;(2)利用直面垂直的推理:α⊥1l ,α⊂2l ⇒21l l ⊥;(3)中线法:等腰三角形中选中点,三线合一;(4)利用勾股定理的逆定理:若222c b a +=,则ABC ∆是直角三角形;(5)建系:),,(1111z y x l =,),,(2222z y x l =,021=⋅l l ⇒21l l ⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简证:如图,在平面内过0作OA 0B分别垂直于11,12,
因为PM ,0A ,PM ,0B则PM OA, PM OB.所以结论成立
(6).两异面直线任意两点间的距离公式:Im2n2d22mncos(为锐角取减,为钝角取加,
综上,都取减则必有0,
5.棱柱•棱锥
(1).棱柱•
(4).两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直
两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面•(“线面垂直
面面垂直”)
注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系
(5).两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一 个平面•
3若直线a与平面 平行,则 内必存在无数条直线与a平行•(V)(不是任意一条直线,可利用平行的传
递性证之)
4两条平行线中一条平行于一个平面,那么另一条也平行于这个平面•(X)(可能在此平面内)
5平行于同一个平面的两直线平行•(X)(两直线可能相交或者异面)
6直线I与平面、 所成角相等,则//•(X)(、 可能相交)
三垂线定理的逆定理亦成立
直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面
性质:如果两条直线同垂直于一个平面,那么这两条直线平行
(5)a垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证 明两平面重合
2.空间直线.
(1).空间直线位置关系三种:相交、平行、异面•相交直线:共面有且仅有一个公共点;平行直线:共面 没有公共点;异面直线:不同在任一平面内,无公共点
[注]:①两条异面直线在同一平面内射影一定是相交的两条直线•(X)(也可能两条直线平行,也可能是点
(1).空间两个平面的位置关系:相交、平行•
(2).平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行•( “线
面平行面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行
[注]:一平面内的任一直线平行于另一平面•
(3).两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行•(“面面平 行线线平行”)
和直线等)
2直线在平面外,指的位置关系是平行或相交
3若直线a、b异面,a平行于平面 ,b与 的关系是相交、平行、在平面内•
4两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.
5在平面内射影是直线的图形一定是直线•(X)(射影不一定只有直线,也可以是其他图形)
6在同一平面内的射影长相等,则斜线长相等•(X)(并非是从平面外一点.向这个平面所引的垂线段和
段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线 段短•
[注]:垂线在平面的射影为一个点•[一条直线在平面内的射影是一条直线•(X)]
b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平
分线上。
4.平面平行与平面垂直.
(直线与直线所成角[0,90])
(向量与向量所成角[0,180])
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等
(3)•两异面直线的距离:公垂线段的长度•
空间两条直线垂直的情况:相交(共面)垂直和异面垂直
[注]:11,12是异面直线,则过11,12外一点P,过点P且与11,12都平行平面有一个或没有,但与11,12距离相等的
(3)•直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那
么这条直线和交线平行•(“线面平行线线平行”)
(4)•直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一
点有且只有一个平面和一条直线垂直
若PA丄,a丄AO,得a丄PO(三垂线定理),
斜线段)
7a,b是夹在两平行平面间的线段,若a b,则a,b的位置关系为相交或平行或异面•
8异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线•(不在
任何一个平面内的两条直线)
(2)•平行公理:平行于同一条直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图)•
立体几何重点题型与解题方法
1.平面
平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,
推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的 公共点,这第三条直线是这两个平面的交线。
3.直线与平面平行、直线与平面垂直
(1).空间直线与平面位置分三种:相交、平行、在平面内
(2).直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平
面平行•(“线线平行线面平行”)
[注]:①直线a与平面 内一条直线平行,则a//.(X)(平面外一条直线)
2直线a与平面 内一条直线相交,则a与平面 相交•(X)(平面外一条直线)
2
(1)• a.最小角定理:cos cos1cos2(勺为最小角,如图)
b.最小角定理的应用(/PBN为最小角)
简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.
成角比交线夹角一半大,又比交线夹角补角小,一定有2条•
成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.
成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有•