纳米电子学

合集下载

电子学中的微电子器件和纳电子学

电子学中的微电子器件和纳电子学

电子学中的微电子器件和纳电子学在当今电子技术飞速发展的时代,微电子器件和纳电子学是电子学领域中备受瞩目的研究方向。

它们不仅具有广泛的应用前景,而且可以为我们提供更灵活、更高效、更小巧的电子设备和系统。

本文将从微电子器件和纳电子学两个方面来介绍它们的基本概念、研究进展及应用前景。

微电子器件是指尺寸在微米级别的电子器件。

它主要应用于集成电路、传感器、激光器、光纤通信等领域,具有体积小、速度快、功耗低等优点。

其中最具代表性的就是集成电路。

作为计算机、手机等电子产品核心的集成电路,其重要性可想而知。

随着电子技术的不断进步,集成电路的制造工艺也在不断更新。

现在常用的工艺是CMOS工艺(互补金属-氧化物半导体),它能够制造出集成度更高、功耗更低的芯片。

此外,随着信息时代的来临,传感器在民用、工业、医疗等领域的应用也越来越广泛,这也使得微电子器件在未来的发展中将有更为广泛的应用前景。

而纳电子学则是指研究纳米级别下材料的电子性质和应用的学科。

与微电子器件相比,纳电子学的尺寸更小,结构更复杂,涉及到的物理和化学现象也更为微妙。

其中的纳米材料,如纳米线、纳米管、纳米颗粒等,可以在光电、磁电、荧光、热学等多个领域中发挥独特的性能。

以染料敏化太阳能电池为例,其关键组件就是纳米级的二氧化钛薄膜,它能够吸收太阳光,并将其转换为电能,使得太阳能电池具有更高的转换效率。

在生物医学领域,纳米材料也受到了广泛的关注,例如通过包覆纳米颗粒的方式,可以改善药物的生物分布和毒副作用,实现精准治疗。

在微电子器件和纳电子学的研究中,材料的制备是非常重要的一环。

传统材料制备工艺大多采用物理或化学手段,但在微型尺度下,这些工艺已经不再适用。

因此,研究人员就开始尝试新的制备方法。

近年来,利用生物、化学、物理等交叉学科的知识,在微电子器件和纳电子学领域出现了一些新的材料制备技术,如DNA自组装、容量耦合、微流控等。

这些技术使得微电子器件和纳电子学的研究更加多样化和创新性。

纳米光电子学的研究和应用

纳米光电子学的研究和应用

纳米光电子学的研究和应用纳米光电子学是研究纳米尺度的光电子器件和系统的领域,它已成为现代科技中的一个重要组成部分。

这一领域的发展为人类的科技创新提供了新的思路和手段,有望在信息处理、太阳能、医疗和生物监测等领域发挥巨大的作用。

一、纳米光电子技术的基础纳米光电子技术是运用光子学、半导体技术、纳米加工和量子现象等新颖研究方法,制备小尺寸的纳米级光电子器件和系统。

其制造工艺主要使用了微电子加工工艺和原子层沉积技术,制备出的器件尺寸可达到纳米级别。

二、纳米光电子技术的优势纳米光电子技术因其具有较高的功率、速度、带宽和能量效率,广泛应用于数据存储、信号处理、光子计算和通信等方面。

随着人类对数据的需求不断增长,发展纳米光电子技术的势头也在不断加快。

三、纳米光电子学的应用1.数据存储研究人员已经通过设计和制造纳米结构,将数据存储的密度增加了数倍。

纳米光电子技术的高密度存储能力,使得磁盘、闪存等设备的存储量大幅提升,极大地方便了人们的生活。

2.太阳能纳米光电子技术在太阳能方面同样也表现出其独特的优势。

纳米级的材料可以使得光能被更好的吸收,提高了太阳能电池的光电转换效率。

同时,还可以更好的抵抗风化和光腐蚀,提高太阳能电池寿命,实现可持续发展。

3.医疗纳米光电子技术对医疗领域也有着不小的研究与应用。

以治疗癌症为例,纳米级的磁性材料可以在磁力场的作用下直接将治疗物质输送到病灶部位,减少了对健康组织的侵害。

同时,也可以用纳米光电子器件对病毒进行检测和跟踪等。

4.生物监测纳米光电子技术还在生物监测领域表现出了广阔前景。

利用特殊的纳米技术,制造出用于监测血压、心率、血糖等参数的微型传感器,这些传感器具有更精确、更连续的检测能力和监测范围。

同时,这些传感器的小型化也能够让其更容易被患者所接受。

四、总结纳米光电子技术通过制造小尺寸的纳米级光电子器件和系统,具有高密度存储、高效太阳能电池、癌症治疗、生物监测等领域的广泛应用。

因此,这一技术将在未来发挥着越来越重要的作用。

最新第五讲纳米电子学PPT课件

最新第五讲纳米电子学PPT课件

第三代 中小规模集成电路计算机
1965年到1970年的第三代计 算机采用了集成电路,这段 时期计算机被称为“中小规 模集成电路计算机”。集成 电路是将由几千个晶体管元 件构成的完整电子电路做在 比手指甲还小的一个晶片上 。 所以,第三代计算机的体积 更加小型化,而且大大降低 了功耗;运算速度提高到每 秒几十万次到几百万次
器件功耗过大也是微电子学技术进一步发展的一个主 要限制。
当今的微电子器件(如场效应晶体管),由于本身的 功耗太大,已经很难适应更大规模集成的需要。特别是随 着芯片的集成度和时钟速度大幅度提高后,电子在电路中 流动的速度越来越快,功耗也会成倍增大,并最终导致芯 片不能正常工作。同时,功耗太大出现的芯片过热还会造 成芯片的使用寿命缩短,可靠性降低等问题。所以,能够 满足“更冷”要求的低能耗芯片技术的开发是芯片得以进 一步发展的当务之急。由 IBM公司发展的芯片 SOI技术可 以在一定程度上降低芯片的能耗。
来加工未来的集成电路,同样必须解决加工
速度的问题。
微电子学技术除了在光刻加工技 术上存在着急待突破的技术限制 以外,它还受到了器件内电子行 为的限制和器件功耗过大的限制。
首先以芯片微处理器为例来讨论电子行 为对微电子学技术限制。
芯片微处理器是通过逻辑“门”的开或 关来工作的,而“门”的开或关的状态,取 决于有无电流流过。目前,微处理器中的逻 辑门正常工作时需要数百上千个电子的电流, 而随着芯片集成度和时钟速度的进一步的提 高,所需的电子数还会进一步增加。但是, 芯片内线宽的减小却会导致单位时间内流过 逻辑门的电子数大幅度减少,当电子数减至 数十个数量级时,逻辑门在判断“开”或 “关”时就会处于不确定状态,无法正常工 作。
原子力显微镜的基本原理
STM只能在导电材料的样品表面上分辨出单 个的原子并得到原子结构的三维图像。对于非导 电材料,STM将无能为力。为了弥补STM的不足, 达到分辨不导电物体表面上的单个原子,1986 年 , Binnig 等 发 明 了 原 子 力 显 微 镜 ( Atomic Force Microscopy, AFM) 。 AFM 是 一 种 类 似 于 STM的显微技术,它的许多元件与STM是共同的, 如用于三维扫描的压电陶瓷系统以及反馈控制器 等。

第五章 纳米电子学

第五章 纳米电子学

2.电子器件、电路、系统设计
纳米结构 量子阱 量子线
物理效应 共振隧穿效应 高迁移率一维电子气
应用 谐振晶体管、电路和系统 超高速逻辑开关、电路和系统
量子点 量子点接触
可集蓄电子原理
极大容量存贮器
库仑阻塞效应、单电子 单电子晶体管、电路和系统(包 振荡和单电子隧穿效应 含单电子开关和单电子存贮器)
扫描探针显微镜(SPM)技术、分子自组装合成技术以及 特种超微细加工技术
3.4.1 三束光刻加工技术
1、光学光刻技术
光学光刻是IC产业半导体加工的主流技术。通过光 学系统以投影方法将掩模上的大规模集成电路器件结 构图形“刻”在涂有光刻胶硅片上的技术。
减小光源的波长是提高光刻分辨率的最有效途径。 光刻蚀使用240nm的深紫外光波,能否突破100nm成 为现有光学光刻技术所面临的最为严峻的挑战。
1、RT>RK; 2、e2/2C>> KBT。
➢ 1、RT>RK的物理意义:当一个隧道结两端施以偏压U
时,电子的隧穿几率Γ=U/(eR),那么两次隧穿事件的时间 间隔为1/Γ=eR/U,而由测不准原则所决定的一次隧穿事件的 周期为h/(eU)。因此,必须满足eR/U>>h/eU,即R >>h/e2。 这意味着两次隧穿事件不重叠发生,从而保证电子是一个一 个地隧穿。
光刻技术——X射线刻蚀、电子束刻蚀、软X射线刻蚀、
聚焦离子束刻蚀等
微细加工——扫描探针显微镜(SPM)作为工具的超微细
加工技术
第二节 纳米电子器件的分类
2.1纳米器件与纳米电子器件
2、纳米电子器件
➢纳米电子器件满足两个条件——
1、器件的工作原理基于量子效应; 2、都具有相类似的典型的器件结构——隧穿势垒包围“岛” (或势阱)的结构。

纳米电子学的研究现状与未来发展趋势

纳米电子学的研究现状与未来发展趋势

纳米电子学的研究现状与未来发展趋势导语:纳米电子学作为新兴学科领域,以其独特的研究对象和广阔的应用前景受到了广泛关注。

本文将围绕纳米电子学的研究现状和未来发展趋势展开讨论,揭示其在电子器件与技术领域的重要性和前景。

第一部分:纳米电子学的研究现状随着科学技术的进步和人类对微观世界认识的深入,纳米电子学在过去几十年取得了长足的发展。

纳米电子学是研究纳米尺度下电子结构与性质的科学,旨在通过纳米尺度材料的制备、特性调控和器件设计来推动电子技术发展。

首先,纳米材料的制备与研究已取得了重要突破。

纳米材料具有特殊的物理、化学和电子性质,可以在纳米尺度上表现出与宏观材料不同的行为。

纳米颗粒、纳米线、纳米膜等纳米结构的制备成为纳米电子学的关键,通过控制纳米材料的形貌、尺寸和结构,可以调控其电子性质和器件性能,为纳米电子器件的实现提供了基础。

其次,纳米电子器件的研究取得了显著进展。

纳米尺度下电子器件具有特殊的性能和功能,如高速、低功耗和灵活性等。

纳米电子器件包括纳米晶体管、纳米传感器、纳米记忆等,已经在信息存储、通信、能源等领域展现出广阔的应用前景。

研究人员通过新型材料的开发、器件结构的优化以及工艺工程的改进,不断提升纳米电子器件的性能和可靠性。

第二部分:纳米电子学的未来发展趋势纳米电子学以其结构可控、性能可调的特点,将继续在电子器件与技术领域发挥重要作用并取得更多突破。

首先,纳米尺度下新型材料的研究将成为纳米电子学的重要方向。

纳米材料的表面和界面性质对电子结构和性能的影响巨大,因此研究人员将致力于发现新颖的纳米材料,并研究其特殊的电子性质和器件应用。

例如,二维材料石墨烯已成为纳米电子学的研究热点,其优异的电子输运性能和独特的表面反应活性带来了许多新颖的纳米电子器件。

其次,纳米尺度下的器件结构和功能性探索将成为纳米电子学的重要任务。

新一代的纳米电子器件需要结合纳米材料的特性,发挥其优势。

例如,纳米线与纳米结构相结合的器件可以实现高效能的电子传输和功能器件的集成。

微纳米电子学的研究进展

微纳米电子学的研究进展

微纳米电子学的研究进展微纳米电子学是电子学领域的一个重要分支,特别是在晶片和生物传感领域有着广泛的应用。

它利用微纳米技术制造、加工微小物理结构,使传统电子器件进步到纳米尺度,实现性能的大幅提升,并且可以在纳米尺度下实现新的物理、化学和生物学特性。

本文将针对微纳米电子学的研究进展进行探讨。

一、微纳米电子学的发展历程微纳米电子学产生于20世纪60年代,其产生的根源是传统的芯片工艺技术。

当时人们发现,在制备芯片中使用的机械和化学加工技术可以将精度提高到微米级。

这就为微小电子器件的制造奠定了基础。

在此基础上,人们使用新工艺,如电子束光刻和离子束装置,制造了尺寸更小的电子元器件。

到了20世纪80年代,随着扫描探针显微镜、原子力显微镜等设备的出现,人们可以直接观察与操纵纳米级物理结构。

自此,微纳米技术与电子器件结合,产生了微纳米电子学。

二、纳米结构的制造纳米结构制造是微纳米电子学的关键技术之一。

以硅基微纳米技术为例,目前主流的制造方法有电子束光刻法和气相沉积法。

电子束光刻法利用电子束透过淀粉胶掩膜进行局部照射,其具有精度高和分辨率好的优点。

气相沉积法则是通过将气体在高温和高压下分解成单质或化合物沉积在硅片上,可以制造出高精度、高结晶度以及表面质量优良的材料。

另一个常用的微纳米制造技术是自组装。

这种方法是通过表面化学相互作用和分子间作用力的调控,使自组装物体自发地排列成所需的形态。

这种方法在制造纳米材料和填充纳米孔道时有着广泛应用。

三、纳米电子器件在微纳米电子学领域,纳米电子器件是一个非常重要的研究课题。

其中,石墨烯是一种理论上最佳的纳米材料,它的厚度只有一个原子,可以实现电子载流子的无阻碍传输和导电性能。

石墨烯材料在智能传感和微信道性能上有着潜在的应用前景。

此外,碳纳米管也是一个非常热门的研究课题。

它是一种蕴藏着强大物理、化学和电学性能的新型材料,具有非常大的比表面积和极高的电子传递率。

碳纳米管因其智能传感、分子分析等领域的应用而备受关注。

纳米技术的前景——纳米电子学的发展

纳米技术的前景——纳米电子学的发展

纳米技术的前景——纳米电子学的发展纳米技术已经成为了当今科技领域中最热门的话题之一。

纳米科技的应用领域包括材料科学、医学、环境保护、信息技术等领域,其中纳米电子学更是备受关注。

这篇文章将会探讨纳米电子学的发展,以及如何利用新技术来改变我们的世界。

1. 纳米电子学的概述纳米电子学是指应用纳米尺度的物理和工程学原理来设计、制造和操作电子器件和系统的学科。

纳米电子学是基于纳米技术的电子学,集成了量子物理和材料科学的知识。

纳米电子学的发展对于人类社会的发展有着重要的影响。

电子技术已经成为了现代工业的支柱,而纳米电子学的发展将会使得这一领域进一步发展壮大,从而将为人们提供更多的生活便利以及社会进步的支持。

2. 半导体纳米材料纳米电子学的核心是纳米半导体材料。

纳米半导体材料不仅具有普通半导体材料的特点,如导电性和自发发光,而且具有其他独特特点。

例如,纳米半导体材料比普通半导体材料更透明,表面更粗糙,制造起来更方便。

这些特点使得纳米半导体材料为纳米电子学的应用提供了更大的灵活性和选择性。

随着纳米技术的不断发展,人们已经研制出了各种各样的半导体纳米材料,例如纳米晶体、纳米线、纳米棒等,这些纳米材料具有结构简单、尺寸小、扩散和输运方便、量子效应显著等优点。

这些半导体纳米材料的发展使得纳米电子学在半导体产业的领域中有了更大的应用前景。

3. 单电子器件单电子器件是纳米电子学中的一个重要研究方向。

单电子器件就是利用分子级别的电子的量子效应制造的电子器件。

与传统的电子器件相比,单电子器件不仅具有体积小、功耗低、速度快等优点,而且具有极高的灵敏度、高的信噪比和极低的噪声等特点。

由于单电子器件的优异性能,其应用领域非常广泛,包括高速和高灵敏度传感器、超级计算机、单光子检测器、通信系统等等。

这些应用领域的需求将会催生出更多的研究,推动纳米电子学前景的发展。

4. 纳米电子学的未来纳米电子学在未来将会开启新的科技领域。

纳米电子学的研究正在朝着更小、更快、更节能、更可靠和更智能的方向发展。

电科专业纳米电子学基础第一章

电科专业纳米电子学基础第一章

光年
以上
实际范围 河外星系
适用理论 尚无
宇观 宏观 微观
渺观
1021米=105 光年 102米
10-17米= 10-15厘米
10-36米= 10-34厘米
从3亿公里到 3×1014光年
从3 ×10-6厘米 到3亿公里
从3 ×10-25厘 米到3 ×10-6厘 米
3 ×10-25厘米 以下
从太阳系 到银河系 从大分子 到太阳系 从基本粒子 到大分子
§1.3 材料
纳米结构材料的基本特性
II. 小尺寸效应
特殊的力学性质
Å 陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制成的纳米陶瓷
材料却具有良好的韧性。因为纳米材料具有大的界面,界面的原子排列是 相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧 性与一定的延展性,使陶瓷材料具有新奇的力学性质。美国学者报道氟化 钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所 以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。呈纳米晶粒 的金属要比传统的粗晶粒金属硬3~5倍。至于金属一陶瓷等复合纳米材料 则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。
纳米电子学基础
主讲人:杨红官
课程内容:
第一章 绪 论 第二章 纳电子学的物理基础 第三章 共振隧穿器件 第四章 单电子晶体管 第五章 量子点器件 第六章 碳纳米管器件 第七章 分子电子器件 第八章 纳米级集成系统原理 第九章 纳电子学发展中的问题
参考资料:
1. 纳电子学导论,蒋建飞 编著,科学出版社。 2. 纳米电子学,杜磊 庄奕琪 编著,电子工业出版社。 3. 纳电子器件及其应用,蔡理 编著,电子工业出版社。 4. 纳电子学与纳米系统,陈贵灿 等译,西安交通大学 出版社。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考文献


薛增泉,纳米电子学,现代科学仪器, 1-2(1998),8-12,16. S.Bandyopadhyay et a1.Nanostructure physics and fabrication,Ed.by M.A.Reed and W.P.Kirk,Academic Press Inc.Boston,(1989)183. 刘长利等,纳米电子技术的发展与展望,微纳电子技术, 48(10),(2011),617-622. 杜磊,庄奕琪,纳米电子学ppt 蔡理等单电子晶体管(SET)及其应用,空军工程大学学 报,3(6),(2002),60-63. 李和委等纳米电子器件,半导体情报,36(5),(1999),1-15. ......
纳米电子器件

纳米器件尺寸在1--100nm范围内,空间尺 度上介于微观体系和宏观体系之间,通常 称其为介观体系。纳米电器件工作原理通 常以电子在器件结构中的运动方程来描述, 也就是说以电子传输方程描述。其电子运 动遵从量子力学原理,需要用量子力学理 论来描述。
纳米电器件的尺度范围分界
Moore定律提出后,曾有相当一部分人认为下一代器件是分子电子器件,其理论 基础是分子电子学。经过几年的工作逐渐认识到,在微电子器件与分子电子器件 之间,可能有个过渡——纳米电子器件,即信息加工的功能元件不是单个分子, 而是原子团,即有限个原子构成的纳米尺度体系(含102~109个原子)。这样,就 从两个方向发展,一是微电子器件的尺寸不断减小下去;二是基于有机高分子和 生物技术的分子组装功能材料,使其尺寸不断大起来。
Байду номын сангаас
单电子晶体管

上图是单电子晶体管I-V特性曲线。图中粗线表示单 电子晶体管的漏极电流曲线,细线则表示单电子晶体 管的电导曲线。由图可见,在漏极电压0—-0.75V的 测量范围内,电流曲线中出现4个150mV等距离的库 仑台阶,电导曲线中出现同样4个150mV等距离库仑 振荡峰值,这就表示电子在单电子晶体管中的流动是 一个一个量子化的。为了得到库仑台阶和库仑振荡特 性,实际结构中两个隧道结是非对称的,因为构成隧 道结的两条TiOx线的宽度分别为18nm和27nm。根 据库仑台阶和库仑振荡间隔的测量结果,估计出隧道 电容和栅极电容分别为3.6×10-19F和3.5×10-19F。

前言

在信息社会中,信息的获取、放大、存储、处理、 传输、转换和显示,都离不开电子学。电子学技 术早已经成为人类经济的命脉。
电子学未来的发展,将以“更小,更快,更冷” 为目标。“更小”——提高芯片的集成度,“更 快”——实现更高的信息运算和处理速度,“更 冷”——进一步降低芯片的发热等功耗。

纳米电子学

单电子晶体管
基本结构
制成后的实际结构
单电子晶体管

上图是日本电子技术综合研究所 K.Matsumoto所研制的单电子晶体管结构。 由图可见,晶体管源极和漏极分别与金属 Ti连接,它的两个隧道结是由两条纳米尺 度的TiO x 线构成。它们对电子遂穿构成的 势垒(TiO x /Ti)高度为285meV。中心岛 区域是由被TiO x 围住金属Ti组成的。栅极 连接在Si基板上,栅极用SiO 2 板和上面器 件隔离。
目录
前言 纳米电子学及其概论 纳米电器件 单电子晶体管 展望 参考文献

前言

纳米科学与技术是科学发展跨时代的主要 内容之一,是21世纪高科技的基础。

现在它的学科划分包括六个主要部分:纳 米电子学,纳米物理学,纳米化学,纳米 生物学,纳米机械学和纳米表征测量学。
六个部分中为首的是纳米电子学。
纳米电器件
目前,纳米电器件主要研究方向有: 1、纳米单电子晶体管 2、共振隧穿电子器件 3、纳米场效应晶体管 4、纳米MOS器件 5、非易失性纳米存储器 6、分子电子器件 7、自旋量子器件 8、单原子开关 上述纳米电器件中,纳米单电子晶体管是主要的基 础器件,有典型的代表性。
单电子晶体管
随着半导体刻蚀技术和工艺的发展,大规 模集成电路的集成度越来越高。目前一般 的存储器每个存储元包含了20万个电子, 而单电子晶体管每个存储元只包含了一个 或少量电子,因此它将大大降低功耗,提 高集成电路的集成度。 单电子晶体管是基于库仑堵塞效应和单电 子隧道效应的基本物理原理,而出现的一 种新型的纳米电子器件。它在未来的微电 子学和纳米电子学领域将占有重要的地位。
单电子晶体管

单电子晶体管是单电子学领域中最重要的器件
单电子晶体管一个一个传输电子
单电子晶体管的应用
它至少可以在以下三个方面有重要应用:
对极微弱电流的测量和制成超高灵敏
度的静电计;
构成新机理的超高速微功耗特大规模
量子功能器件、电路和系统,以及量 子功能计算机;
研究高灵敏度红外辐射检测器。
展望

纳米电子学因其新颖、奇异和独特等性能,从开始诞 生就引起了世界范围内的广泛关注。纳米电子学对于 信息时代意义重大。现在刚刚开始探索各种材料、技 术和机理,在这个领域,我们的研究工作与国际上一 样,刚刚开始探索。在纳米电子学运行机理和加工组 装技术方面,我国也做出了很好的工作。在超高密度 信息存储方面我们取得了突破性的进展,这是一个发 展中的交叉学科领域,面临着很多问题有待解决。现 在的研究是从材料和制备技术开始,在获得特性数据 的基础上进行机理分析。这是科学发展跨时代的机遇, 我们应该有勇气迎接挑战。
纳米电子学的技术支撑
纳米加工技术
纳米团簇的超分子化学自组装
纳米量子点微结构的自组织生长技术
纳米电子器件

纳米电子器件以其固有的超高速(10-12— 10-13s)、超高频(大于1000GHz)、高集 成度(大于1010元器件/cm2)、高效低功耗、 极低阈值电流密度(亚毫安)和极高量子 效率等特点在信息领域有着极其重要的应 用前景,将可能触发新的技术革命,成为 未来信息技术的核心和支柱。

在纳米尺度( 1-100nm )研究物质的电子运动规 律、特性及其应用的科学技术,并利用这些特征 规律生成纳米电子材料、器件和系统。

讨论纳米电子元件、电路、集成器件和信息加工 的理论和技术的新学科。它代表了微电子学的发 展趋势并将成为下一代电子科学与技术的基础。 最先实用化的三种器件和技术分别是纳米MOS器 件,共振隧穿器件和单电子存储器。
纳米电子学的理论基础

纳米电子学的理论基础是各种量子化效应。 而在不同的纳米结构与器件中,其量子化 效应的物理体现也是多种多样的。换言之, 也正是各种量子化效应的出现,导致了具 有不同量子功能纳米量子器件的诞生。
纳米电子技术特色效应
表面 表面 效应 效应
量子 量子相 相干 干效应 效应 小尺 小尺 寸效 寸效 应 应 高温 高温超 超导 导效应 效应 巨磁 巨磁阻 阻效 效应 应 库仑 库仑阻 阻塞 塞效应 效应 量子 量子尺 尺寸 寸效应 效应 宏观 宏观量 量子 子隧穿 隧穿 效应 效应
相关文档
最新文档