相似三角形的判定(sss)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类似于判定三角形全等的方法,我们 能不能通过三边来判断两个三角形相似呢?
三边对应成
A
Байду номын сангаас比例
A’
B’
C’
B
C
A' B' B' C' A' C' AB BC AC
是否有△ABC∽△A’B’C’?
推理论证:
已知:在△ABC和△A′B′C′中
求证:△ABC∽△A′B′C′ A
AB BC AC ,
AB BC A′ AC
2.图中的两个三角形是否相似?
如图在正方形网格上有A1B1C1和A2 B2C2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
答案是2:1
牛刀小试:
1. 根据下列条件判断△ABC与以D、E、F为顶点
的两个三角形是否相似。
(1)AB=3,BC=4,AC=6; △ABC∽△DEF
B
并说明理由.
D
A
C
E
B
F
如图已知 AB BC AC ,试说明∠BAD=∠CAE.
AD DE AE
证明 AB BC AC AD DE AE
A E
∴ΔABC∽ΔADE
D C
∴∠BAC=∠DAE
B
∴∠BAC━∠DAC=∠DAE━∠DAC
即∠BAD=∠CAE
求证:三角形的三条中位线所组成的三角形 与
①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
4
5
6 2
简单地说:三边对应的比相等,两三角形相似.
例1:根据下列条件,判断△ABC与△A’B’C’是否 相似,并说明理由.
AB=4 cm,BC=6cm,AC=8cm,
A’B’=12cm,B’C’=18cm,A’C’=21cm.
(2) AB 4 1 , BC 6 1 , A' B' 12 3 B'C' 18 3
∴ DE BC , EA CA .
BC BC CA CA
因此 DE BC, EA CA .
∴△ADE≌△ ABC
∴△ ABC∽△ABC
B
C` E
C
A
A’
B
C
A' B' B' C' A' C' AB BC AC
B’
C’
△ABC∽△A’B’C’
如果两个三角形的三组对应边的比相等,那么 这两个三角形相似.
AC 8 . A'C' 21 AB BC AC .
A' B' B'C' A'C'
要使两三角形相 似,不改变的 AC长,A’C’的
长应改为多少?
△ABC与△A’B’C‘的三组对应边 的比不等,它们不相似.
1.根据下列条件,判断△ABC与△A’B’C’是否相似, 并说明理由:
AB=10cm,BC=8cm,AC=16cm, A’B’=16cm, B’C’=25.6cm A’C’=12.8cm.
4
3
DE=6,EF=8,DF=12
C 6A
D
(2)AB=3,BC=4,AC=6;
△ABC∽△DEF 8
6
DE=6,EF=8,DF=12
F
DE=6,EF=12,DF=8 △ABC∽ △EDF
12
E
(3)AB=3,BC=4,AC=6; 不相似
DE=6,EF=9,DF=12
2 如图,判断4×4方格中的两个三角形是否相似,
求证:△ABC∽△A`B`C`
AB AC BC A`
证明:在△ABC的边AB(或延长线)上截取AD=A′B′,
过点D作DE∥BC交AC于点E.
∴ △ADE∽△ABC , ∴ ∵ AD AB, AD AB
AB AB
又 AB AC BC
AB AC BC
AD AE DE
B`
AB AC BC
A
D
E
(1)请找出图中的相似三角形。
DE // BC
B
ADE ∽ ABC
F
C
DF // AC BDF ∽ BAC EF // AB CEF ∽ CAB ADE∽ DBF∽ EFC∽ ABC ∽ FED
要作两个形状相同的三角形框架,其中一个三角形 的三边的长分别为4、5、6,另一个三角形框架的 一边长为2,怎样选料可使这两个三角形相似?
原三角形相似。
A
已知:如图,DE,DF,EF是△ABC的中位线
求证: △ABC∽△FED
D
E
证明:
B ∵ DE,DF,EF是△ABC的中位线
F
C
∴ DE= 1 BC,DF= 1 AC,EF= 1 AB
2
∴ DE
DF
2EF
21
BC AC AB 2
∴ △ABC∽△DEF
A
已知:如图,DE,DF,EF是△ABC的中位线。 D
D
E
B 分析:
C
B′
? △A′DE∽△A′B′C′
△A′DE≌△ABC
C′ △ABC∽△A′B′C′
要证明 △ABC∽△A’B’ C’,可以先作一 个与△ABC全等 的三角形,证明 它△A’B’C’与相 似.这里所作的 三角形是证明的 中介,它把 △ABC△A’B’C’ 联系起来.
已知:如图△ABC和△ ABC 中, AB AC BC
三边对应成
A
Байду номын сангаас比例
A’
B’
C’
B
C
A' B' B' C' A' C' AB BC AC
是否有△ABC∽△A’B’C’?
推理论证:
已知:在△ABC和△A′B′C′中
求证:△ABC∽△A′B′C′ A
AB BC AC ,
AB BC A′ AC
2.图中的两个三角形是否相似?
如图在正方形网格上有A1B1C1和A2 B2C2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
答案是2:1
牛刀小试:
1. 根据下列条件判断△ABC与以D、E、F为顶点
的两个三角形是否相似。
(1)AB=3,BC=4,AC=6; △ABC∽△DEF
B
并说明理由.
D
A
C
E
B
F
如图已知 AB BC AC ,试说明∠BAD=∠CAE.
AD DE AE
证明 AB BC AC AD DE AE
A E
∴ΔABC∽ΔADE
D C
∴∠BAC=∠DAE
B
∴∠BAC━∠DAC=∠DAE━∠DAC
即∠BAD=∠CAE
求证:三角形的三条中位线所组成的三角形 与
①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
4
5
6 2
简单地说:三边对应的比相等,两三角形相似.
例1:根据下列条件,判断△ABC与△A’B’C’是否 相似,并说明理由.
AB=4 cm,BC=6cm,AC=8cm,
A’B’=12cm,B’C’=18cm,A’C’=21cm.
(2) AB 4 1 , BC 6 1 , A' B' 12 3 B'C' 18 3
∴ DE BC , EA CA .
BC BC CA CA
因此 DE BC, EA CA .
∴△ADE≌△ ABC
∴△ ABC∽△ABC
B
C` E
C
A
A’
B
C
A' B' B' C' A' C' AB BC AC
B’
C’
△ABC∽△A’B’C’
如果两个三角形的三组对应边的比相等,那么 这两个三角形相似.
AC 8 . A'C' 21 AB BC AC .
A' B' B'C' A'C'
要使两三角形相 似,不改变的 AC长,A’C’的
长应改为多少?
△ABC与△A’B’C‘的三组对应边 的比不等,它们不相似.
1.根据下列条件,判断△ABC与△A’B’C’是否相似, 并说明理由:
AB=10cm,BC=8cm,AC=16cm, A’B’=16cm, B’C’=25.6cm A’C’=12.8cm.
4
3
DE=6,EF=8,DF=12
C 6A
D
(2)AB=3,BC=4,AC=6;
△ABC∽△DEF 8
6
DE=6,EF=8,DF=12
F
DE=6,EF=12,DF=8 △ABC∽ △EDF
12
E
(3)AB=3,BC=4,AC=6; 不相似
DE=6,EF=9,DF=12
2 如图,判断4×4方格中的两个三角形是否相似,
求证:△ABC∽△A`B`C`
AB AC BC A`
证明:在△ABC的边AB(或延长线)上截取AD=A′B′,
过点D作DE∥BC交AC于点E.
∴ △ADE∽△ABC , ∴ ∵ AD AB, AD AB
AB AB
又 AB AC BC
AB AC BC
AD AE DE
B`
AB AC BC
A
D
E
(1)请找出图中的相似三角形。
DE // BC
B
ADE ∽ ABC
F
C
DF // AC BDF ∽ BAC EF // AB CEF ∽ CAB ADE∽ DBF∽ EFC∽ ABC ∽ FED
要作两个形状相同的三角形框架,其中一个三角形 的三边的长分别为4、5、6,另一个三角形框架的 一边长为2,怎样选料可使这两个三角形相似?
原三角形相似。
A
已知:如图,DE,DF,EF是△ABC的中位线
求证: △ABC∽△FED
D
E
证明:
B ∵ DE,DF,EF是△ABC的中位线
F
C
∴ DE= 1 BC,DF= 1 AC,EF= 1 AB
2
∴ DE
DF
2EF
21
BC AC AB 2
∴ △ABC∽△DEF
A
已知:如图,DE,DF,EF是△ABC的中位线。 D
D
E
B 分析:
C
B′
? △A′DE∽△A′B′C′
△A′DE≌△ABC
C′ △ABC∽△A′B′C′
要证明 △ABC∽△A’B’ C’,可以先作一 个与△ABC全等 的三角形,证明 它△A’B’C’与相 似.这里所作的 三角形是证明的 中介,它把 △ABC△A’B’C’ 联系起来.
已知:如图△ABC和△ ABC 中, AB AC BC