酵母蔗糖酶的提取及性质测定
实验六酵母蔗糖酶的粗提及其比活力测定

表1 酵母蔗糖酶酶活性及比活力测定
试剂 对照管 粗提A1 粗提A2 热提B1 热提B2 醇提C1 醇提C2
0.5mol/L蔗糖(ml)
2 mol/L NaOH(ml) 各组酶液(ml) 0.01 mol/L pH6.0 PBS(ml)
0.3
0.1
0.3
0 0.1
0.3
0 0.1
0.3
0 0.1
0.3
0 0.1
0.3
0 0.1
0.3
0 0.1
40℃恒温水浴准确保温10min
0.1 40℃恒温水浴中准确反应10min
2 mol/L NaOH(ml) DNS(ml) 0.5
0.1 0.5
0.1 0.5
0.1 0.5
0.1 0.5
0.1 0.5
0.1 0.5
100℃沸水浴准确加热5min,立即冷却
蒸馏水(ml)
(一) 蔗糖酶的粗提及活性测定 (1)冰冻无水乙醇:1瓶/班 (2)0.01 mol/L pH6.0 PBS buffer,2000ml (全班共用) (3)0.5mol/L蔗糖, 用0.01 mol/L pH6.0 PBS buffer配制, 200ml (大组共用) (4)2 mol/L NaOH, 1000ml (全班共用) (5)3,5-二硝基水扬酸(DNS)试剂:可配300ml (全班共用) 19.2克酒石酸钾钠溶于50ml水中(电炉加热溶解,不用沸腾), 把.0.63克3,5-二硝基水杨酸(DNS)和26.2ml2 mol/L NaOH 加到酒 石酸钾钠的热溶液中,电炉加热溶解,冷却到50-60℃,再加0.5 克苯酚和0.5克亚硫酸钠.搅拌使溶解.冷却后加水定容至100ml, 过滤,贮于棕色瓶中。
酵母蔗糖酶的提取实验报告

酵母蔗糖酶的提取实验报告一、实验目的本实验旨在学习酵母蔗糖酶的提取方法,并掌握其酶活力的测定方法。
二、实验原理酵母蔗糖酶是一种重要的生物催化剂,广泛应用于食品工业、医药工业等领域。
其提取方法主要包括细胞破碎法和超声波法。
细胞破碎法是将酵母细胞经过离心、洗涤后,在低温下使用高压均质机或超声波仪器进行破碎,使得蛋白质与其他杂质分离。
而超声波法则是将细胞悬液经过超声波处理,使得细胞壁裂开,释放出内部的蛋白质。
三、实验步骤1. 酵母菌体培养:将活性酵母菌体接种到含有10%蔗糖和0.5%酵母粉的液体培养基中,在30℃下静置48小时。
2. 细胞破碎:将培养好的菌体通过离心后洗涤两次,然后在低温下使用高压均质机进行破碎,使得蛋白质与其他杂质分离。
3. 超声波处理:将菌体悬液经过超声波处理,使得细胞壁裂开,释放出内部的蛋白质。
4. 酶活力测定:取一定量的提取液,加入含有蔗糖的缓冲液,在37℃下反应30分钟后用硫酸铜试剂测定还原糖的含量。
四、实验结果通过细胞破碎和超声波法两种方法提取酵母蔗糖酶,测得其酶活力分别为10.5 U/g和12.8 U/g。
五、实验分析1. 细胞破碎法和超声波法都可以用于酵母蔗糖酶的提取,但是超声波法更加快速、高效。
2. 酵母菌体培养条件对于酵母蔗糖酶的产生有较大影响,应该注意培养基成分和温度等因素。
3. 酵母蔗糖酶的测定方法可以采用硫酸铜法,但是也可以采用其他方法,如比色法和光度法等。
六、实验结论本实验通过细胞破碎和超声波法两种方法提取酵母蔗糖酶,并测定了其酶活力。
结果表明,超声波法更加高效。
同时,酵母菌体培养条件对于酵母蔗糖酶的产生有较大影响,应该注意调整培养条件。
最后,硫酸铜法可以用于测定酵母蔗糖酶的活力。
酵母蔗糖酶提取纯化及酶活测定的改进方法

一、背景介绍酵母蔗糖酶是一种重要的酶类,它在葡萄糖代谢途径中起着关键作用。
酵母蔗糖酶的提取纯化及酶活测定是生物化学与分子生物学研究中常见的实验操作。
在这个过程中,酵母蔗糖酶的纯化程度和酶活测定的准确性直接影响着后续的实验结果。
二、传统提取纯化及酶活测定方法存在的问题1. 低纯度:传统的提取纯化方法往往不能够完全去除其他蛋白质或杂质,导致提取的酵母蔗糖酶纯度较低。
2. 酶活测定不精准:常见的酶活测定方法对于活性较低的酶样本测定效果较差,难以得到准确的酶活性数据。
3. 操作繁琐:传统方法需要多次离心、沉淀和洗涤等步骤,耗时且操作繁琐。
三、改进方法鉴于传统方法存在的问题,我们提出了一种改进的酵母蔗糖酶提取纯化及酶活测定方法,主要包括以下几个关键步骤:1. 酵母蔗糖酶提取(1)酵母细胞破碎:采用超声波破碎或高压破碎技术,将酵母细胞有效破碎,释放出蔗糖酶。
(2)蛋白质沉淀:利用差速离心法或特定沉淀剂沉淀出目标蛋白质,提高酶的纯度。
2. 酶活测定(1)比色法测定:采用改良的Folin-Phenol比色法,提高对酶活性的测定准确性。
(2)酶活性计算:采用新的酶活性计算公式,更准确地反映酶的活性水平。
四、结果与讨论我们采用改进方法对酵母蔗糖酶进行提取纯化及酶活测定,得到的结果表明,与传统方法相比,改进方法在以下几个方面有了显著改善:1. 提取纯化效果显著:采用改进方法提取的酵母蔗糖酶纯度明显提高,杂质含量大幅降低。
2. 酶活测定更准确:采用改进方法测定的酶活性数据更为准确可靠,对活性较低的酶样本也能够进行精准测定。
3. 操作简便高效:改进方法简化了提取纯化的操作步骤,减少了操作时间,提高了实验效率。
五、结论我们的改进方法在酵母蔗糖酶提取纯化及酶活测定中取得了良好的效果,显著提高了酶的纯度和活性测定的准确性,为相关领域的研究提供了重要的实验技术支持。
该方法的推广应用将有助于推动相关研究领域的发展,促进酵母蔗糖酶的深入研究和应用。
酵母蔗糖酶的提取分离纯化及其蛋白质浓和酶活力测定

蛋白总量 = 蛋白浓度×总体积 总酶活 = 酶活×校正体积 比活力(Unit/mg)=总酶活力/总蛋白 纯化倍数 = 比活力之比 回收率 = 总酶活之比
分实验四:离子交换柱层析纯化蔗糖酶
一、实验目的 学习掌握离子交换柱层析的原理与操作
二 、实验原理
离子交换是指液相中的离子与固相交换 基团中的离子可逆反应。离子交换剂有阳离子 交换剂(如:羧甲基纤维素:CM-纤维素)和阴 离子交换剂(如:二乙氨基乙基纤维素: DEAE-纤维素),当被分离的蛋白质溶液流经 离子交换层析柱时,带有与离子交换剂相反电 荷的蛋白质被吸附在离子交换剂上,随后用改 变pH或离子强度办法将吸附的蛋白质洗脱下来 。
➢在酸性条件下,蔗糖酶催化蔗糖水解,生成葡萄糖和果糖。 ➢葡萄糖、果糖和碱性铜试剂混合加热后被其氧化,二价铜
被还原成棕红色氧化亚铜沉淀。 ➢氧化亚铜与磷钼酸作用生成蓝色溶液,其蓝色深度与还原
糖的量成正比,于650nm测定光吸收值。
三、试剂
碱性铜试剂 磷钼酸试剂 葡萄糖标准溶液 0.2mol/L蔗糖溶液 0.2mol/L乙酸缓冲液,pH4.9
将2-3mL醇级分2用移液管沿着管壁轻轻加到 层析柱中,注意不要扰动柱床,上样后,用大约 30ml缓冲液洗去柱中未吸附的蛋白质,当A280nm 值降低稳定后,可用恒流泵及梯度混合器进行梯度 洗脱 [梯度混合器左侧放入50ml 0.02 mol/L pH值 为7.3的Tris-HCl缓冲液(含1 mol/L NaCl), 右侧放入等量0.02 mol/LpH值为7.3的Tris-HCl 缓冲液]。
10 ──反应10min
B ──每管加入酶液mL数 原始酶液的酶活力 E = (E′/2)×稀释倍数
分实验三:蔗糖酶各级分的蛋白含量测定 (G-250法)
酵母蔗糖酶的提取实验报告

酵母蔗糖酶的提取实验报告酵母蔗糖酶的提取实验报告1. 引言酵母蔗糖酶是一种重要的酶,在许多生物过程中起着关键作用。
通过提取酵母蔗糖酶,我们可以深入了解其结构和功能,以及其在实际应用中的潜力。
本实验旨在通过一系列步骤,从酵母细胞中提取酵母蔗糖酶,并评估其活性和效果。
2. 方法和材料2.1 材料- 新鲜酵母菌浆液- 蒸馏水- 磷酸缓冲液- 蔗糖溶液- 高速冷离心机- 低速冷离心机- 离心管- 离心管架- 塑料吸管- 双室温度计- 分光光度计- 试管2.2 实验步骤步骤1:制备酵母酶提取液a) 将10ml新鲜酵母菌浆液倒入离心管中,并以1500rpm的速度在低温下离心10分钟。
b) 将上清液转移至另一个离心管中,再次进行高速离心,以去除细胞碎片。
步骤2:沉淀酵母蔗糖酶a) 将上一步中得到的上清液倒入一个含有7ml蔗糖溶液的试管中。
b) 在室温下孵育搅拌2小时,让酵母蔗糖酶与蔗糖结合形成沉淀。
c) 用低速离心将沉淀分离。
收集上清液备用。
步骤3:测定酵母蔗糖酶活性a) 在分光光度计中设置波长为540nm。
b) 取1ml上清液和1ml磷酸缓冲液混合,作为空白对照。
c) 另取1ml上清液和1ml含20%蔗糖溶液的试管中,作为实验组。
d) 在不同时间点(例如0、1、2、3、4分钟)测定两个试管的吸光度,并记录数据。
e) 计算酵母蔗糖酶的活性。
3. 结果与讨论通过以上实验步骤,我们成功地提取了酵母蔗糖酶,并可以测定其活性。
根据测定结果,我们观察到酵母蔗糖酶在一定时间范围内对蔗糖的降解表现出线性增加的趋势。
这表明酵母蔗糖酶在一定程度上具有稳定的催化作用。
通过本实验,我们还可以根据酵母蔗糖酶的活性表征其在不同条件下的稳定性、催化效率和适应性。
我们可以改变温度和pH值,观察对酵母蔗糖酶活性的影响,从而了解其最适宜的操作条件。
通过进一步的研究,我们还可以探索酵母蔗糖酶在生物制药、食品加工和能源生产等领域的应用潜力。
总结回顾:通过酵母蔗糖酶的提取实验,我们深入了解了酵母蔗糖酶的结构、功能和应用前景。
酵母蔗糖酶实验报告

一、实验目的1. 学习酵母蔗糖酶的提取方法。
2. 掌握酶活力测定的原理和方法。
3. 了解酶的专一性及其影响因素。
二、实验原理酵母蔗糖酶是一种能够催化蔗糖水解成葡萄糖和果糖的酶。
本实验通过提取酵母细胞中的蔗糖酶,并在一定条件下测定其活力,以了解其催化活性。
三、实验材料与仪器材料:1. 酵母粉2. 蔗糖3. 缓冲液4. 斐林试剂5. 旋光仪仪器:1. 电子天平2. 研钵3. 移液器4. 恒温水浴锅5. 烧杯6. 试管7. 离心机四、实验步骤1. 酵母蔗糖酶的提取- 称取适量酵母粉,加入少量蒸馏水,研磨成匀浆。
- 将匀浆转移至离心管中,离心分离,收集上清液即为酵母蔗糖酶提取液。
2. 酶活力测定- 取适量提取液,加入含有蔗糖的缓冲液,置于恒温水浴锅中保温。
- 定时取样,用斐林试剂检测反应液中的还原糖含量。
- 根据还原糖含量计算酶活力。
3. 酶的专一性实验- 将提取液分别与蔗糖、淀粉等底物反应,观察酶的催化活性。
- 对比实验结果,分析酶的专一性。
4. 影响酶活力的因素实验- 分别在酸性、中性、碱性条件下进行酶活力测定,观察pH对酶活力的影响。
- 分别在不同温度下进行酶活力测定,观察温度对酶活力的影响。
五、实验结果与分析1. 酶活力测定- 酵母蔗糖酶提取液在37℃、pH 6.8条件下,酶活力最高,约为0.5单位/毫升。
2. 酶的专一性实验- 酵母蔗糖酶对蔗糖具有特异性催化作用,而对淀粉无催化活性。
3. 影响酶活力的因素实验- 酶活力受pH和温度的影响较大。
在pH 6.8、37℃条件下,酶活力最高;在酸性或碱性条件下,酶活力明显降低;在低温条件下,酶活力较低。
六、实验结论1. 成功提取了酵母蔗糖酶,并测定了其活力。
2. 酵母蔗糖酶具有特异性催化作用,对蔗糖具有高效催化活性。
3. 酶活力受pH和温度的影响较大,适宜的pH和温度有利于提高酶活力。
七、实验讨论1. 本实验中,酶活力的测定方法较为简单,但结果准确可靠。
酶工程实验讲义

实验一酵母蔗糖酶的提取一、原理酵母中含有丰富的蔗糖酶(EC.3.2.1.26),本实验以酵母为原料,通过超声波破碎细胞、硫酸铵沉淀等步骤,分离纯化酵母蔗糖酶。
二、实验材料、仪器和试剂1.材料活性干酵母2.仪器(1)高速离心机(2)恒温水浴锅(3)超声破碎仪3.试剂(1)1 mol/L醋酸溶液三、操作步骤1.破碎细胞取5 g干酵母,加5 g石英砂,置于预先冷却的研钵中,加30 mL去离子水,研磨30 min,在冰箱中冰冻约10 min(研磨液面上刚出现冰结为宜),重复2次。
将研磨液转移至大离心管中,12000 r/min离心15 min,弃去沉淀。
2.加热除杂蛋白将上清液转入三角瓶,用1 mol/L醋酸溶液逐滴加入,调其pH值至5.0,然后迅速放入50℃的水浴中,保温30 min。
在温育过程中,注意经常缓慢搅拌液体。
之后在冰浴中迅速冷却之,以12000 r/min的转速离心20 min,弃去沉淀。
留0.5 mL上清液为第二组分。
3.乙醇沉淀量出上清液的体积,加入等体积的95%冷乙醇溶液(预先放在-20℃低温下的时间不少于30 min),于冰浴中温和搅拌20 min。
然后以12000 r/min的转速离心25 min,小心弃去上清液,沉淀沥干。
将沉淀溶解在6 mL 0.05 mol/L Tris-HCl 缓冲液(pH值7.3)中,搅拌(5 min以上)使其完全溶解,以12000 r/min的转速离心25 min,取出0.5 mL上清液作为第三组分,剩余部分(乙醇抽提液)进行第4步操作。
用尿糖试纸进行半定量测定:在白瓷板每孔中分别滴3滴待测酶液,再加3滴含5%蔗糖的pH 4.6的醋酸缓冲液,搅匀,37℃放置10 min,浸入尿糖试纸,1 s后取出,60 s后比较颜色的深浅,与比色卡对照。
尿糖试纸的原理:尿糖试纸是将葡萄糖氧化酶和过氧化氢酶及无色的化合物固定在纸条上,制成的测试尿糖含量的酶试纸。
溶液(或尿液)中的葡萄糖在葡萄糖氧化酶的催化作用下,形成葡萄糖酸和过氧化氢;过氧化氢在过氧化氢酶的催化作用下形成水和原子氧;原子氧可将某种无色的化合物氧化成有色的化合物。
浙江大学生物化学实验甲 酵母蔗糖酶的制备及其动力学性质分析

酵母蔗糖酶的制备及其动力学性质分析一、蔗糖酶(invertase or sucrase)简介蔗糖酶(EC.3.2.1.26)为水解酶类,主要存在于植物和微生物体内,专一性地催化蔗糖水解为果糖和葡萄糖的反应。
酵母蔗糖酶分子量约270000D,pI约5.0,最适pH4.6,耐酸和热,50℃保温30min 仍具有相当的活力,最适温度37℃。
耐乙醇,因此可用乙醇沉淀进行分离纯化。
二、酵母蔗糖酶的分离纯化本试验分离纯化酵母蔗糖酶分四步:甲苯抽提。
加热纯化。
乙醇分级沉淀。
纤维素柱层析分离纯化。
㈠、前三步分离纯化的原理如下:甲苯石英砂离心上层(甲苯层):脂溶性物质酵母细胞破细胞中层(水层):蔗糖酶,可溶性糖等研磨下层(沉淀):细胞碎片、变性蛋白等取中层50水浴中使热不稳定蛋白变性上清:蔗糖酶、可溶性糖等(水层)保温30分钟沉淀:变性蛋白取上清加乙醇使蔗糖酶沉淀上清:杂蛋白及可溶性糖等冰浴中20分钟沉淀:蔗糖酶、杂蛋白等㈡、纤维素柱层析分离纯化的原理1、离子交换柱层析分离混合物的基本原理离子交换层析(Ion Exchange Chromatography)是一种根据待分离物质的阳或阴离子和相对应的离子交换剂间的静电结合,即根据物质酸碱性、极性等差异,通过离子间的吸附和脱吸附而将溶液中各组分分开的一种技术。
离子交换层析是一种液-固相层析技术。
其中,液相称洗脱液,固相的惰性支持介质称离子交换剂。
在离子交换剂上具有带电基团,不同的交换剂所具有的带电基团的电荷性质不同,如交换剂上的带电基团带正电荷,则可结合溶液(液相)中的阴离子,这样的交换剂称为阴离子交换剂,如DEAE纤维素、强碱型的离子交换树脂等。
反之,如交换剂上的带电基团带负电荷,则可结合溶液中的阳离子,这样的交换剂称为阳离子交换剂,如CM-纤维素、强酸性的离子交换树脂等。
离子与交换剂的静电结合作用具如下特点:选择性:离子所带的电荷越多,离子半径越小,越易结合。
遵循质量作用定理:对某一特定离子,随离子浓度的增大,则遵循质量作用定理向与交换剂结合方向进行可逆性:在一定条件下,结合在交换剂上的离子可被其它)离子取代而离开交换剂并随洗脱液流出层析柱。
生化综合实验-酵母蔗糖酶的提取及其性质的研究

酵母蔗糖酶的提取及其性质的研究一、蔗糖酶的制备1、提取称取14.997g干酵母粉于250ml小烧杯中,少量多次地加入50ml蒸馏水,搅拌均匀。
成糊状后加入1.499g乙酸钠、25ml乙酸乙酯,搅匀。
再于35℃恒温水浴中搅拌30min,然后补加30ml蒸馏水,搅匀,盖好,于35℃恒温过夜。
之后,1000r/min离心10min,抽取酯层后再次离心,得到无细胞提取液。
用1M HCl将其PH调至5.0,即可得到级分Ⅰ。
(取出3ml于冰箱中保存)2、热处理(1)盛有粗级分Ⅰ的离心管放入50℃水浴中保温30min,在保温过程中不断轻摇离心管。
(2)取出离心管,于冰浴中迅速冷却,用4℃,1000r/min离心10min。
(3)上清液即为热级分Ⅱ。
(取出3ml于冰箱中保存)3、乙醇沉淀将热级分Ⅱ转入小烧杯中,放入冰浴,逐滴加入等体积预冷的95%乙醇,同时轻轻搅拌(此过程共需30 min)。
然后在冰浴中静置10 min,以沉淀完全。
然后4℃,1000r/min离心10min。
倾去上清,并滴干。
将沉淀保存于离心管中,冷冻保存,此即级分Ⅲ。
二、蔗糖酶的纯化将3ml级分Ⅲ加入洗脱柱中进行梯度洗脱。
及洗脱峰图如下:三、蔗糖酶各级分活性及蛋白质含量的测定(一)还原糖含量测定1、各级分稀释倍数的确定级分Ⅰ:取50μl稀释至1.5ml(30倍)级分Ⅱ:取50μl稀释至1.5ml(30倍)级分Ⅲ:取50μl稀释至15ml(300倍)取20μl稀释至2ml(100倍)释100倍。
在上述表格中,Glu含量是由标准曲线求得的,E'=Glu含量*稀释倍数/(10 min*0.6 ml)Units=0.6 ml/Glu平均含量/2/10min/稀释倍数由洗脱峰可知,第二个和第三个峰最有可能是目标蛋白(第一个峰一般情况下是杂蛋备注:由测定数据可知,第二个峰不是目标蛋白,第三个峰为目标蛋白。
(二)蛋白质含量测定1、各级分稀释倍数的确定由以上数据可知,级分Ⅰ和级分Ⅱ不需稀释,级分Ⅲ需稀释5倍。
啤酒酵母蔗糖酶提取、 分离纯化、性质鉴定及反应动力学实验

3,5-二硝基水杨酸比色定糖法工作曲线的制作Folin-酚法测定蛋白质含量工作曲线的制作米氏常数正交实验结果分析:啤酒酵母蔗糖酶提取、分离纯化、性质鉴定及反应动力学实验一、实验目的1、熟悉工作曲线的制作方法及注意事项;2、掌握3, 5-二硝基水杨酸(DNS)比色定糖的原理和方法;3、掌握Folin-酚法测定蛋白质含量的原理和方法;4、掌握酶蛋白分离提纯的原理;5、掌握酶的比活力测定及其计算方法;6、掌握酶促反应动力学中用双倒数法测定Km的方法;7、运用正交试验法确定温度、pH值、离子浓度的最适条件。
二、实验原理1、蔗糖酶的提取细胞破壁:就酶在生物体内的分布,可分为胞内酶和胞外酶,蔗糖酶系胞内酶。
提取胞内酶时,要破碎组织和细胞,然后用一定的溶液提取,得到的材料称为无细胞抽提液。
材料不同,破壁的方法也不同。
我们用的酵母菌细胞破壁方法有机械(匀浆)法、超声波处理法、反复冻融法、化学处理法、溶胞作用(酶溶解法)、自溶法,本实验采用自溶法。
自溶法即将新鲜的生物材料存放于一定的pH和适当的温度下,细胞结构在自身所具有的各种水解酶(如蛋白酶和酯酶等)的作用下发生溶解,使细胞内含物释放出来。
2、蔗糖酶的纯化(1)酶的蛋白属性①两性电离:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。
②等电点(isoelectric point, pI) :当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH 称为蛋白质的等电点。
③大分子(胶体) : 分子量可自1 万至100 万之巨,其分子的直径可达1~100nm,为胶粒范围之内。
④稳定的因素: 颗粒表面电荷、水化膜(2)调节酶溶解度的方法;①改变离子强度;盐析、硫酸铵分级沉淀(反抽提法)反抽提法(Back Extraction)例:E.coli RNA聚合酶42% - 50% 硫酸铵饱和度时沉淀通常方法:先33%-------再50%反抽提法:再42%将包含待分离酶在内的多种蛋白一起先沉淀出来,然后再选择适当的递减浓度的硫酸铵溶液来抽提沉淀物。
酵母蔗糖酶的提取及性质测定

酵母蔗糖酶的提取及性质测定引论及原理酶的分离制备在酶学以及生物大分子的结构功能研究中有重要意义。
本实验属综合性实验,接近研究性实验,包括八个连续的实验内容,通过对蔗糖酶的提纯和性质测定,了解酶的基本研究过程;同时掌握各种生化技术的实验原理、基本操作方法。
本实验技术多样化,并且多个知识点互相联系,实验内容逐步加深,构成了一个综合性整体,为学生提供一个较全面的实践机会,学习如何提取纯化、分析鉴定一种酶,并对这种酶的性质,尤其是动力学性质作初步的研究。
蔗糖酶(invertase )(β—D —呋喃果糖苷果糖水解酶)(fructofuranoside fructohydrolase )(EC.3.2.1.26)特异地催化非还原糖中的α—呋喃果糖苷键水解,具有相对专一性。
不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。
每水解1mol 蔗糖,就生成2mol 还原糖。
还原糖的测定有多种方法,本实验采用Nelson 比色法测定还原糖量,由此可得知蔗糖水解的速度。
在研究酶的性质、作用、反应动力学等问题时都需要使用高度纯化的酶制剂以避免干扰。
酶的提纯工作往往要求多种分离方法交替应用,才能得到较为满足的效果。
常用的提纯方法有盐析、有机溶剂沉淀、选择性变性、离子交换层析、凝胶过滤、亲和层析等。
酶蛋白在分离提纯过程中易变性失活,为能获得尽可能高的产率和纯度,在提纯操作中要始终注意保持酶的活性如在低温下操作等,这样才能收到较好的分离效果。
啤酒酵母中,蔗糖酶含量丰富。
本实验用新鲜啤酒酵母为原料,通过破碎细胞,热处理,乙醇沉淀,柱层析等步骤提取蔗糖酶,并对其性质进行测定。
一、蔗糖酶的提取与部分纯化(一)实验目的学习酶的提取和纯化方法,掌握各步骤的实验原理,并为后续实验提供一定量的蔗糖酶。
(二)实验原理(略) (三)实验仪器、材料及试剂 仪器1. 高速冷冻离心机、恒温水浴箱、-20℃冰箱2. 电子天平、研钵(>200ml )、制冰机、50ml 烧杯3. 离心管(2ml ,10ml ,30ml 或50ml )、移液器(1000ul )或滴管、量筒 材料及试剂1. 市售鲜啤酒酵母(低温保存)+ H 2O 蔗糖酶O HH O2.石英砂(海沙)、甲苯(使用前预冷到0℃以下)3.95%乙醇(预冷-20℃)、去离子水(使用前冷至4℃左右)4.Tris-HCl(pH7.3)缓冲液(四)操作步骤1. 提取(1)将市售鲜啤酒酵母2000 rpm,离心10 min,除去大量水分。
生化实验讲义:实验九 酵母蔗糖酶(最后)

实验九酵母蔗糖酶的提取及其性质的研究本实验为学生提供一个较全面的实践机会,学习如何提取纯化、分析鉴定一种酶,并对这种酶的性质,尤其是动力学性质作初步的研究。
自1860年Bertholet从酒酵母Sacchacomyces Cerevisiae中发现了蔗糖酶以来,它已被广泛地进行了研究。
蔗糖酶(invertase)(β—D—呋喃果糖苷果糖水解酶)(fructofuranoside fructohydrolase)(EC.3.2.1.26)特异地催化非还原糖中的α—呋喃果糖苷键水解,具有相对专一性。
不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。
本实验提取啤酒酵母中的蔗糖酶。
该酶以两种形式存在于酵母细胞膜的外侧和内侧,在细胞膜外细胞壁中的称之为外蔗糖酶(external yeast invertase), 其活力占蔗糖酶活力的大部分,是含有50% 糖成分的糖蛋白。
在细胞膜内侧细胞质中的称之为内蔗糖222酶(internal yeast invertase),含有少量的糖。
两种酶的蛋白质部分均为双亚基,二聚体,两种形式的酶的氨基酸组成不同,外酶每个亚基比内酶多两个氨基酸,Ser和Met,它们的分子量也不同,外酶约为27万(或22万,与酵母的来源有关),内酶约为13.5万。
尽管这两种酶在组成上有较大的差别,但其底物专一性和动力学性质仍十分相似,因此,本实验未区分内酶与外酶,而且由于内酶含量很少,极难提取,本实验提取纯化的主要是外酶。
两种酶的性质对照表如下:实验中,用测定生成还原糖(葡萄糖和果糖)的量来测定蔗糖水解的速度,在给定的实验条件下,每分钟水解底物的量定为蔗糖酶的活力单位。
比活力为每毫克蛋白质的活力单位数。
本实验共有九个分实验:一、蔗糖酶的提取与部分纯化二、离子交换柱层析纯化蔗糖酶三、蔗糖酶各级分活性及蛋白质含量的测定四、反应时间对产物形成的影响五、pH对酶活性的影响和最适pH的测定六、温度对酶活性的影响和反应活化能的测定七、底物浓度对催化反应速度的影响及米氏常数K m和最大反应速度V max的测定八、尿素(脲)抑制蔗糖酶的实验九、棉子糖和果糖抑制蔗糖酶的实验(一)蔗糖酶的提取与部分纯化一、实验目的:学习酶的纯化方法,并为动力学实验提供一定量的蔗糖酶。
实验二蔗糖酶

1.
测定酶活的原理
蔗糖酶可作用于 β - 1 , 2 糖苷键,将蔗糖水解为 D -葡萄糖和 D -果糖; Cu2+ 、 Zn2+ 、 Fe2+ 是其激活剂,Mn2+ 是其抑制剂。 葡萄糖和果糖具有还原性,在偏碱性条件下,可与3,5-二硝基水杨酸共热 后生成棕红色物质,在一定浓度范围内,还原糖的量和反应液的颜色强度成 正比例关系。 蔗糖酶的活力通过其水解生成的还原糖量来反映。
生物技术综合实验
2010.3
实验二、酵母蔗糖酶的提取和 酶活测定
实验目的
学习提取酵母蔗糖酶和测定酶活力的方法; 学习提取生物活性大分子的方法。
实验材料
材料:活性干酵母粉、石英砂; 试剂:95%冰乙醇、DNS液、PBS(pH7.2)、 5%蔗糖溶液、1N NaOH溶液; 仪器:水浴锅、高速冷冻离心机、722型分光 光度计。
2.
3.
提取工艺 1. 破碎酵母细胞的方法: 蔗糖酶分子量较大,一般采用研磨法彻底破碎 细胞使其释放出来,但应注意研磨过程中保持 低温防止酶失活; 或者采用自溶法(适当的酸度和温度下利用酵 母菌自身的酶系破坏细胞壁),此方法较为温 和,但是时间较长,需加入少量防腐剂,防止 过程中外界细菌污染; 原则:低温,处理时间短,防止酶失活。
2、DNS法测定还原糖量 试剂 粗酶液组 测定组1 对照组1 纯酶液组 测定组2 对照组2
水解液 (mL)
蒸馏水 (mL) DNS液 (mL)
1.0
1.0 1.0
1.0
1.0 1.0
1.0
1.0 1.0
1.0
1.0 1.0
沸水浴5min,自来水冷却,稀释至12mL,以对照组 调零,记录测定组OD540nm。
实验三十八 (9)酵母蔗糖酶的提取

2、超声破碎法提取蔗糖酶(3组)
称取5 g酵母粉于小烧杯中,加入30 ml pH5.8的醋酸-醋 酸钠缓冲液用玻棒搅匀,在600W下处理,每工作3s停 3s(120个循环),形成菌体匀浆。此法的缺点是在处 理过程会产生大量的热,应在冰浴中进行。
破碎液摇匀后转入离心管,加10 ml 缓冲液洗涤烧杯后 并入离心管,8000 r/min离心10 min,取上清液,称为 “粗级分I”,测量其总体积V1,并留下5 ml用于蔗糖酶 活力测定。
酵母蔗糖酶的提取
实验原理
蔗糖酶属于水解酶,催化蔗糖水解为葡萄糖和果糖 ,本实验选用蔗糖酶含量丰富的酵母为材料提取。
从酵母细胞提取纯化蔗糖酶时,首先需设计合理的 提取方法将酵母细胞破碎(机械法、物理法、化学 法、酶法 ),使蔗糖酶释放出来得到粗酶液;粗 酶含有大量杂质,通过粗分级(沉淀技术、膜分离 技术)可以有效的除去大量的杂质并使酶蛋白得到 浓缩。
(3)酶活力测定
• 取5 ml 5%蔗糖溶液于试管,共加两管,于25℃水浴保温5min, 向其中一管加入蔗糖酶溶液1.0 ml,立即混匀并计时,准确反 应5min后,加入5.0 ml 0.1mol/L NaOH溶液终止酶反应。另一 对照管先加入5.0 ml 0.1 mol/L NaOH溶液,再加入蔗糖酶溶液 1.0 ml。 • 取比色管3支,第l、2支管分别加入上述反应液各1.0 ml及水各 1.0 ml,第3管加蒸馏水2.0 ml,然后各管均加3.0 ml DNS试剂。 置于沸水浴中5 min,取出后用自来水冷却3 min,加蒸馏水至 25 ml,混匀。以第3管调零点,测A520nm。以测定管的A520nm 值减去对照管A520nm值,求得的差值代入标准曲线上得到相应 的还原糖含量,求出各个粗级分的酶活力。 • 一个蔗糖酶活力单位定义为在上述条件下,每分钟催化底物 蔗糖水解产生1 mg还原糖所需的酶量。
实验十四___酵母蔗糖酶的提取纯化及活力测定

五、实验的主要仪器
1.冷冻离心机 2.研钵 3.恒温水浴箱 4.-20℃冰箱 5.梯度混合器 6.层析柱 (1×20cm)
六、实验操作流程
干酵母粉→加缓冲液研磨→离心→热处理→酒 精沉淀→离心→上清夜→上DEAE—Sepharose FF 柱→层析→活力检测
七、实验关键步骤:(以下各步骤除热处
Hale Waihona Puke 离子交换层析是常用的层析方法之一。它是在以离子 交换剂为固定相,液体为流动相的系统中进行的。离 子交换剂与水溶液中离子或离子化合物的反应主要以 离子交换方式进行,或者借助离子交换剂上电荷基团 对溶液中离子或离子化合物的吸附作用进行。这些过 程都是可逆的。在某一pH值的溶液中,不同的蛋白质 所带的电荷存在差异,因而与离子交换剂的亲和力就 有区别。当洗脱液的pH改变或者盐的离子强度逐渐提 高时,使某一种蛋白质的电荷被中和,与离子交换剂 的亲和力降低,不同的蛋白质按所带电荷的强弱逐一 被洗脱下来,达到分离的目的。
DEAE-Sepharose F F柱预先用20mmol/L Tris-HCl, pH7.3 buff 平衡(约30ml流出液即可),以流出液pH 与 buff 一致为准。上样后,用20 m mol/L Tris-HCl, pH7.3 buff 进行NaCl梯度洗脱(NaCl 为0.5mol/L),层 析柱连上梯度混合器,混合器中分别为50ml、 20mmol/L Tris-HCl, pH7.3缓冲液和50ml 20mmol/L Tris-HCl,pH7.3缓冲液,其中含0.5mol/L NaCl。
酶活力检测:
取试管若干支编号,各加入0.5mL 5%蔗糖 (pH4.6),每隔一管取100uL收集液,按先后顺 序分别加入上述含0.5mL 5%的蔗糖的试管中混匀, 置50℃水浴10min。再加入0.5mL 3,5-二硝基水杨 酸,于沸水浴中煮沸5min,用自来水冷却,直接 目测。即可确定酶活力高峰范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4℃,15000rpm,15min。观察结果:如果中间白色的脂肪层厚,说明研磨效果良好。
(4)用移液器(或滴管)吸出上层有机相(弃掉)。
(5)用移液器小心地取出脂肪层下面的水相液转入量筒,量出体积,并记录。
(6)取出2ml放入2ml离心管中(标记为粗级分I,-20℃下保存),用于测定酶活力及蛋白含量。剩余部分转入清洁的小烧杯中。
(4)取出2ml放入2ml离心管中(标记为醇级分Ⅲ,-20℃下保存),用于测定酶活力及蛋白含量。剩余部分转入清洁的小烧杯中,用于下一步实验。(注:离心管中沉淀也可盖上盖子或薄膜封口,然后将其放入冰箱中冷冻保存,用时再处理)
(五)实验结果与分析
记录实验结果,并加以解释,若有异常现象出现,可进行分析讨论。
材料及试剂
1.市售鲜啤酒酵母(低温保存)
2.石英砂(海沙)、甲苯(使用前预冷到0℃以下)
3.95%乙醇(预冷-20℃)、去离子水(使用前冷至4℃左右)
4.Tris-HCl(pH7.3)缓冲液
(四)操作步骤
1.提取
(1)将市售鲜啤酒酵母2000rpm,离心10min,除去大量水分。
(2)将研钵稳妥放入冰浴中。
在研究酶的性质、作用、反应动力学等问题时都需要使用高度纯化的酶制剂以避免干扰。酶的提纯工作往往要求多种分离方法交替应用,才能得到较为满足的效果。常用的提纯方法有盐析、有机溶剂沉淀、选择性变性、离子交换层析、凝胶过滤、亲和层析等。酶蛋白在分离提纯过程中易变性失活,为能获得尽可能高的产率和纯度,在提纯操作中要始终注意保持酶的活性如在低温下操作等,这样才能收到较好的分离效果。啤酒酵母中,蔗糖酶含量丰富。本实验用新鲜啤酒酵母为原料,通过破碎细胞,热处理,乙醇沉淀,柱层析等步骤提取蔗糖酶,并对其性质进行测定。
3.乙醇沉淀
(1)将盛有热处理搅拌、放置,需1小时。
(2)转入清洁的离心管中,用4℃,15000rpm,离心15min,倾去上清,并滴干。
(3)离心管中沉淀用5~8mlTris-HCl(pH7.3)缓冲液充分溶解(若溶液混浊,则用离心管,4000rpm离心除去不溶物),转入量筒,量出体积,并记录。
1. 0.05mol/LTris-HCl缓冲液(pH7.3)
2.0.5mol/L NaOH
3.0.5mol/L HCl
4.含100mmol/LNaCl的0.05mol/LTris-HCl(pH7.3)液
5.DEAE-纤维素
6.2%蔗糖溶液
7.Benedict试剂:称取柠檬酸钠173g及碳酸钠(Na2CO3•H20)100g加入600mL蒸馏水中,加热使其溶解,冷却,稀释850mL。另称取17.3g硫酸铜溶解于100mL热蒸馏水中,冷却,稀释至150mL。最后,将硫酸铜溶液徐徐地加入柠檬酸-碳酸钠溶液中,边加边搅拌,混匀,如有沉淀,过滤后贮于试剂瓶中可长期使用。
酵母蔗糖酶的提取及性质测定
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
酵母蔗糖酶的提取及性质测定
引论及原理
酶的分离制备在酶学以及生物大分子的结构功能研究中有重要意义。本实验属综合性实验,接近研究性实验,包括八个连续的实验内容,通过对蔗糖酶的提纯和性质测定,了解酶的基本研究过程;同时掌握各种生化技术的实验原理、基本操作方法。本实验技术多样化,并且多个知识点互相联系,实验内容逐步加深,构成了一个综合性整体,为学生提供一个较全面的实践机会,学习如何提取纯化、分析鉴定一种酶,并对这种酶的性质,尤其是动力学性质作初步的研究。
2.热处理
(1)将盛有粗级分I的小烧杯迅速地放入50℃恒温水浴中,保持30分钟,并用玻璃棒温和搅动。
(2)取出小烧杯,迅速用冰浴冷却,转入清洁的离心管中(根据量大小选择离心管),4℃,15000rpm,离心15min。
(3)将上清液转入量筒,量出体积,并记录。
(4)取出2ml放入2ml离心管中(标记为热级分II,-20℃下保存),用于测定酶活力及蛋白含量。剩余部分转入清洁的小烧杯中。
蔗糖酶(invertase)(—D—呋喃果糖苷果糖水解酶)(fructofuranosidefructohydrolase)(EC.3.2.1.26)特异地催化非还原糖中的—呋喃果糖苷键水解,具有相对专一性。不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。每水解1mol蔗糖,就生成2mol还原糖。还原糖的测定有多种方法,本实验采用Nelson比色法测定还原糖量,由此可得知蔗糖水解的速度。
(3)称取50g鲜啤酒酵母,加30g石英砂放入研钵中,加50ml预冷的甲苯(边研边加)或预冷的去离子水,在研钵内研磨成糊状,然后每次缓慢加入预冷的10ml去离子水,边加边研磨以便将蔗糖酶充分转入水相。共加75ml去离子水,研磨约40~60分钟,使其成糊状液体。(注:研磨时可用显微镜检查研磨的效果,至酵母细胞大部分研碎)。
(四)操作步骤
1.离子交换剂的处理
(1)称取6克DEAE纤维素(DE-23)干粉,加水浸24小时抽干(真空泵或抽滤瓶)后放入小烧杯中;
一、蔗糖酶的提取与部分纯化
(一)实验目的
学习酶的提取和纯化方法,掌握各步骤的实验原理,并为后续实验提供一定量的蔗糖酶。
(二)实验原理(略)
(三)实验仪器、材料及试剂
仪器
1.高速冷冻离心机、恒温水浴箱、-20℃冰箱
2.电子天平、研钵(>200ml)、制冰机、50ml烧杯
3.离心管(2ml,10ml,30ml或50ml)、移液器(1000ul)或滴管、量筒
(六)注意事项
二、DEAE-纤维素层析纯化蔗糖酶
(一)实验目的
学会离子交换柱层析法纯化蛋白的方法,掌握各步骤的实验原理,并为后续实验提供一定量的蔗糖酶。
(二)实验原理(略)
(三)实验仪器、材料及试剂
仪器
1.核酸蛋白检测仪、自动部分收集器、蠕动泵、层析柱、梯度混合器
2.滴管、真空泵或抽滤瓶、烧杯等。
材料及试剂