2017年历年山西省数学中考真题及答案
2017年山西省中考数学试题及参考答案(word解析版)
2017年山西省中考数学试题及参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1.计算﹣1+2的结果是( )A .﹣3B .﹣1C .1D .32.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠43.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差4.将不等式组26040x x -≤⎧⎨+>⎩的解集表示在数轴上,下面表示正确的是( )A .B .C .D .5.下列运算错误的是( )A .01)1=B .291(3)44-÷=C .5x 2﹣6x 2=﹣x 2D .(2m 3)2÷(2m )2=m 46.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC′D ,C′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20°B .30°C .35°D .55° 7.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C . 2x x -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .186×108吨B .18.6×109吨C .1.86×1010吨D .0.186×1011吨9.公元前5q p(p 与q 是互质的两个正整数).于是22()2q p ==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知”的假设不这种证明”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法10.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2二、填空题(本大题共5个小题,每小题3分)11.计算:= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (﹣1,1),C (﹣2,2),将△ABC 向右平移4个单位,得到△A′B′C′,点A ,B ,C 的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为 米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD=4cm ,则EF 的长为 cm .三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:321(2)()sin 453--+ ; (2)分解因式:(y+2x )2﹣(x+2y )2.17.(6分)已知:如图,在▱ABCD 中,延长AB 至点E ,延长CD 至点F ,使得BE=DF .连接EF ,与对角线AC 交于点O .求证:OE=OF .18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数kyx=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数kyx=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到△AD′H ,再沿AD′折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN (3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线2y x =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ .过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E ,连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(t >0).(1)求直线BC 的函数表达式;(2)①直接写出P ,D 两点的坐标(用含t 的代数式表示,结果需化简)②在点P 、Q 运动的过程中,当PQ=PD 时,求t 的值;(3)试探究在点P ,Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点?若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10个小题,每小题3分,共30分)1.计算﹣1+2的结果是( )A .﹣3B .﹣1C .1D .3【考点】有理数的加法.【分析】直接利用有理数加减运算法则得出答案.【解答】解:﹣1+2=1.故选:C.【点评】此题主要考查了有理数加法,正确掌握运算法则是解题关键.2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【考点】平行线的判定.【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【考点】统计量的选择;算术平均数;方差.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.【点评】本题考查平均数、方差、众数、中位数等知识,解题的关键是理解方差的意义,属于中考常考题型.4.将不等式组26040xx-≤⎧⎨+>⎩的解集表示在数轴上,下面表示正确的是()A.B.。
2017年山西省中考数学试卷(含答案和解释)
2017年山西省中考数学试卷(含答案和解释)山西省2017年中考数学真题试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算的结果是() A.-3 B.-1 C.1 D.3 【答案】C.【解析】试题分析:�1+2=1.故选C.考点:有理数的加法. 2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4 【答案】D.考点:平行线的判定. 3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的() A.众数B.平均数C.中位数D.方差【答案】D.【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.考点:在数轴上表示不等式的解集;解一元一次不等式组. 5.下列运算错误的是() A. B. C.D.【答案】B.考点:有理数的除法;合并同类项;整式的除法;零指数幂. 6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.B.C.D.【答案】A.【解析】试题分析:由翻折的性质得,∠DBC=∠DBC′,∵∠C=90°,∴∠DBC=∠DBC′=90°-35°=55°,∵矩形的对边AB∥DC,∴∠1=∠DBA=35°,∴∠2=∠DBC′-∠DBA=55°-35°=20°.故选A.考点:平行线的性质;翻折变换(折叠问题). 7.化简的结果是() A.B.C.D.【答案】C.考点:分式的加减法. 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为() A.吨B.吨C.吨D.吨【答案】C.【解析】试题分析:将186亿用科学记数法表示为:.故选C.考点:科学记数法―表示较大的数. 9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机.是无理数的证明如下:假设是有理数,那么它可以表示成(与是互质的两个正整数).于是,所以,.于是是偶数,进而是偶数.从而可设,所以,于是可得也是偶数.这与“ 与是互质的两个正整数”矛盾,从而可知“ 是有理数”的假设不成立,所以,是无理数.这种证明“ 是无理数”的方法是() A.综合法B.反证法C.举反例法D.数学归纳法【答案】B.【解析】试题分析:显然选项A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选B.考点:反证法. 10.右图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.B.C.D.【答案】B.考点:矩形的性质;扇形面积的计算;圆周角定理第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11.计算:.【答案】.【解析】试题分析:原式= = ,故答案为:.考点:二次根式的加减法. 12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为元,商店将进价提高后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.【答案】1.08a.【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为:1.08a.考点:列代数式. 13.如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2).将△ABC向右平移4个单位,得到,点A、B、C的对应点分别为,再将绕点顺时针旋转,得到,点的对应点分别为,则点的坐标为.【答案】(6,0).考点:平移的性质;旋转的性质;综合题. 14.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这颗树的高度为米(结果保留一位小数.参考数据:,,).【答案】15.3.【解析】试题分析:如图,在Rt△ACD中,AD=CD•tan54°≈10×1.3764=13.764米,AC≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用�仰角俯角问题. 15.一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E 作EF⊥CD于点F.若AD=4cm,则EF的长为.【答案】.考点:直角三角形的性质;梯形中位线定理;综合题.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(1)计算:.(2)分解因式:.【答案】(1)-1;(2).考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值. 17.已知:如图,在 ABCD中,延长线AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【答案】证明见解析.【解析】试题分析:先由平行四边形的性质得出AB=CD,AB∥DC,再得出∠F=∠E,CF=AE,∠DCA=∠CAB,即可推出△COF≌△AOE,从而得到结论.试题解析:∵四边形ABCD 是平行四边形,∴AB=CD,AB∥DC,∴∠F=∠E,∠DCA=∠CAB,∵AB=CD,FD=BE,∴CF=AE,在△COF和△AOE中,∵∠F=∠E,CF=AE,∠DCA=∠CAB,∴△COF≌△AOE,∴∴OE=OF.考点:平行四边形的性质;全等三角形的判定与性质. 18.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.(1)求函数的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.【答案】(1),E(2,1),f(-1,-2);(2).考点:反比例函数综合题. 19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【答案】(1)300;(2)25.考点:一元一次不等式的应用;二元一次方程组的应用. 20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).【答案】(1)①2038;②答案见解析;(2).②“知识技能”的增长率= =2.05=205% “资金”的增长率= =1.0863≈109% 对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.(2)列表如下:由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P(抽到“共享出行”和“共享知识”)= = .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图. 21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(1);(2)∠CDE=2∠A.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分. 22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF=ND′,证明见解析;(3)证明见解析;(4)△MFN,△MD′H,△MDA.考点:勾股定理的应用;新定义;阅读型;探究型;压轴题. 23.综合与探究如图,抛物线与轴交于A、B两点(点A在点B的左侧),与轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E.连接PD,与BC交于点F.设点P的运动时间为秒().(1)求直线BC的函数表达式.(2)①直接写出P、D两点的坐标(用含的代数式表示,结果需化简).②在点P、Q运动的过程中,当PQ=PD时,求的值.(3)试探究在点P、Q运动的过程中,是否存在某一时刻,使得点F为PD的中点.若存在,请直接写出此时的值与点F的坐标;若不存在,请说明理由.【答案】(1);(2)①P(,),D(,);② ;(3)t=3,F(,).(3)由中点坐标公式和F在直线BC上得到,解得t=3.把t=3代入得到F的坐标.试题解析:(1)由y=0,得,解得:,,∴点A的坐标为(-3,0),点B的坐标为(9,0).由x=0,得,∴点C的坐标为(0,).(2)①过点P作PG⊥x轴于点G .∵A(-3,0),B(9,0),C(0,)∴AO=3,BO=9,OC= ,∴tan∠CAO= ,∴∠CAO=60°,∴∠APG=30°,∵AP=t,∴AG= ,PG= ,∴OG=3- ,∴P(,).∵OQ= ,∴D的横坐标为,∵D在抛物线上,∴D的纵坐标为 = ,∴D D(,).综上所述:P(,),D(,);②过点P作PG⊥x轴于点G,PH⊥QD于点H.∵QD⊥x轴,∴四边形PGQH是矩形,∴HQ=PG.∵PQ=PD,PH⊥QD,∴QD=2HQ=2PG.∵P、D 两点的坐标分别为P(,),D(,),∴ = ,解得:(舍去),,∴当PQ=PD时,t的值为.考点:二次函数综合题;动点型;存在型;压轴题.。
2017山西中考数学试题解析
山西省2017年中考数学真题试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+的结果是()1.计算12A.-3 B.-1 C.1 D.3【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.2.如图,直线a,b被直线c所截,下列条件不能..判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.考点:平行线的判定.3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【答案】D.【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.考点:在数轴上表示不等式的解集;解一元一次不等式组.5.下列运算错误..的是()A .0(31)1-=B .291(3)44-÷= C .22256x x x -=- D .3224(2)(2)m m m ÷= 【答案】B .考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20oB .30oC .35oD .55o【答案】A .【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A .考点:平行线的性质;翻折变换(折叠问题).7.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C .2x x -+ D .2x x - 【答案】C .考点:分式的加减法.8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨B .918.610⨯吨C .101.8610⨯吨D .110.18610⨯吨【答案】C .【解析】试题分析:将186亿用科学记数法表示为:101.8610⨯.故选C .考点:科学记数法—表示较大的数.9.公元前5世纪,2,导致了第一次数学危机.2是无理数的证明如下: 2是有理数,那么它可以表示成q p(p 与q 是互质的两个正整数).于是22()(2)2q p ==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知2是有理数”的假设不成立,所以,2是无理数. 2是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法【答案】B .【解析】试题分析:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选B .考点:反证法.10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π【答案】B .考点:矩形的性质;扇形面积的计算;圆周角定理第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:41892-= .【答案】32 .【解析】试题分析:原式=12292-=32,故答案为:32.考点:二次根式的加减法.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.【答案】1.08a .【解析】试题分析:根据题意得:a •(1+20%)×90%=1.08a ;故答案为:1.08a .考点:列代数式.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90o,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .【答案】(6,0).考点:平移的性质;旋转的性质;综合题.14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin540.8090=o ,cos540.5878=o ,tan54 1.3764=o).21世纪教育网版权所有【答案】15.3.【解析】试题分析:如图,在Rt △ACD 中,AD =CD •tan54°≈10×1.3764=13.764米,AC ≈1.5+13.764≈15.3米. 故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB =∠BCD =90°,∠A =60°,∠CBD =45°.E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD =4cm ,则EF 的长为 cm .21·cn ·jy ·com【答案】26+ .考点:直角三角形的性质;梯形中位线定理;综合题.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()8sin 453--+o g . (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值.17.已知:如图,在Y ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .【答案】证明见解析.【解析】试题分析:先由平行四边形的性质得出AB =CD ,AB ∥DC ,再得出∠F =∠E ,CF =AE ,∠DCA =∠CAB ,即可推出△COF ≌△AOE ,从而得到结论.试题解析:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,∴∠F =∠E ,∠DCA =∠CAB ,∵AB =CD ,FD =BE ,∴CF =AE ,在△COF 和△AOE 中,∵∠F =∠E ,CF =AE ,∠DCA =∠CAB ,∴△COF ≌△AOE ,∴∴OE =OF . 考点:平行四边形的性质;全等三角形的判定与性质.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.【答案】(1)2yx,E(2,1),f(-1,-2);(2)32.考点:反比例函数综合题.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【答案】(1)300;(2)25.考点:一元一次不等式的应用;二元一次方程组的应用.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).【答案】(1)①2038;②答案见解析;(2)16.②“知识技能”的增长率=610200200-=2.05=205%“资金”的增长率=208631000010000-=1.0863≈109%对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.21教育名师原创作品(2)列表如下:由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P(抽到“共享出行”和“共享知识”)=212=16.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(1)52;(2)∠CDE=2∠A.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD ⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.2-1-c-n-j-y考点:切线的性质;探究型;和差倍分.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【出处:21教育名师】实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF 交于点N,然后展平.21·世纪*教育网问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.2·1·c·n·j·y【答案】(1)证明见解析;(2)NF=ND′,证明见解析;(3)证明见解析;(4)△MFN,△MD′H,△MDA.考点:勾股定理的应用;新定义;阅读型;探究型;压轴题.23.综合与探究 如图,抛物线2333393y x x =-++x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC 的函数表达式.(2)①直接写出P 、D 两点的坐标(用含t 的代数式表示,结果需化简).②在点P 、Q 运动的过程中,当PQ =PD 时,求t 的值.(3)试探究在点P 、Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.【版权所有:21教育】【答案】(1)333y x =-+;(2)①P (132t -,3t ),D (92t -,24383t t -+ );②154;(3)t =3,F (34,1134).(3)由中点坐标公式和F 在直线BC 上得到2690t t -+=,解得t =3.把t =3代入得到F 的坐标. 试题解析:(1)由y =0,得232333093x x -++=,解得:13x =-,29x =,∴点A 的坐标为(-3,0),点B 的坐标为(9,0).由x =0,得33y =C 的坐标为(0,33).(2)①过点P 作PG ⊥x 轴于点G .∵A (-3,0),B (9,0),C (0,33 )∴AO =3,BO =9,OC =33,∴tan ∠CAO =333CO AO == ,∴∠CAO =60°,∴∠APG =30°,∵AP =t ,∴AG =12t ,PG =3t ,∴OG =3-12t ,∴P (132t -,32t ).∵OQ =92t -,∴D 的横坐标为92t -,∵D 在抛物线23233393y x x =-++上,∴D 的纵坐标为2323(92)(92)3393y t t =--+-+=2438393t t -+,∴D D (92t -,2438393t t -+ ). 综上所述:P (132t -,3t ),D (92t -,24383t t -+ ); ②过点P 作PG ⊥x 轴于点G ,PH ⊥QD 于点H .∵QD ⊥x 轴,∴四边形PGQH 是矩形,∴HQ =PG .∵PQ =PD ,PH ⊥QD ,∴QD =2HQ =2PG .∵P 、D 两点的坐标分别为P (132t -,32t ),D (92t -,2438393t t -+ ),∴2438393t t -+=322t ⨯,解得:10t =(舍去),2154t =,∴当PQ =PD 时,t 的值为154.考点:二次函数综合题;动点型;存在型;压轴题.。
(精品word版)2017年山西省中考真题数学
2017年山西省中考真题数学一、选择题(本大题共10个小题,每小题3分,共30分)1.计算-1+2的结果是( )A.-3B.-1C.1D.3解析:直接利用有理数加减运算法则得出答案.答案:C.2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4解析:根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.答案:D.3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A.众数B.平均数C.中位数D.方差解析:因为方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.答案:D.4.将不等式组26040xx-≤+⎧⎨⎩>的解集表示在数轴上,下面表示正确的是( )A.B.C. D.解析:首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可. 答案:A.5.下列运算错误的是( )A.(3-1)0=1 B.(-3)2÷9144= C.5x 2-6x 2=-x 2D.(2m 3)2÷(2m)2=m 4解析:根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可. 答案:B.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°解析:∵∠1=35°,CD ∥AB , ∴∠ABD=35°,∠DBC=55°, 由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'-∠DBA=55°-35°=20°. 答案:A. 7.化简2442x xx x ---的结果是( ) A.-x 2+2xB.-x 2+6xC.-2x x +D.2x x - 解析:根据分式的运算法则即可求出答案. 答案:C.8. 2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨解析:186亿吨=1.86×1010吨. 答案:C.9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机,2是无理数的证明如下:那么它可以表示成q p (p 与q 是互质的两个正整数).于是(q p)22=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m)2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾..( ) A.综合法B.反证法C.举反例法D.数学归纳法.答案:B.10.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为( )A.5πcm2B.10πcm2C.15πcm2D.20πcm2解析:根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=2S 扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.答案:B.二、填空题(本大题共5个小题,每小题3分)11.计算:解析:先化简,再做减法运算即可.答案:12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为_____元.解析:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元).答案:1.08a.13.如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为_____.解析:由平移的性质和旋转的性质作出图形,即可得出答案.答案:(6,0).14.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为_____米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)解析:在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题. 答案:15.3.15.一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为_____cm.解析:过A作AG⊥Dc于G,得到∠ADC=45°,进而得到AG的值,在30°的直角三角形ABD 和45°直角三角形BCD中,计算出BD,CB的值.再由AG∥EF∥BC,E是AB的中点,得到F 为CG的中点,最后由梯形中位线定理得到EF的长.答案:三、解答题(本大题共8个小题,共75分)16.(1)计算:(-2)3+(13)-2sin45°.(2)分解因式:(y+2x)2-(x+2y)2.解析:(1)根据实数的运算,可得答案;(2)根据平方差公式,可得答案.答案:(1)原式=-8+9-2=-1;(2)原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=3(x+y)(x-y).17.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.解析:由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.答案:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,E FAE CFOAE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.18.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=kx(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=kx的表达式,并直接写出E 、F 两点的坐标; (2)求△AEF 的面积.解析:(1)根据正方形的性质,以及函数上点的坐标特征可求点D 的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E 、F 两点的坐标;(2)过点F 作FG ⊥AB ,与AB 的延长线交于点G ,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF 的面积. 答案:(1)∵正方形OABC 的边长为2, ∴点D 的纵坐标为2,即y=2, 将y=2代入y=2x ,得x=1, ∴点D 的坐标为(1,2), ∵函数y=kx的图象经过点D , ∴2=1k , 解得k=2, ∴函数y=k x 的表达式为y=2x, ∴E(2,1),F(-1,-2);(2)过点F 作FG ⊥AB ,与AB 的延长线交于点G ,∵E(2,1),F(-1,-2), ∴AE=1,FG=2-(-1)=3, ∴△AEF 的面积为:12AE ·FG=12×1×3=32.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?解析:(1)可设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,根据2016年全国谷子年总产量为150万吨列出方程组求解即可;(2)可设我省应种植z万亩的谷子,根据我省谷子的年总产量不低于52万吨列出不等式求解即可.答案:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有200016060150 ********x yx y+=⎧⎪⎨+=⎪⎩,解得3001700 xy=⎧⎨=⎩.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有1601000z≥52,解得z≥325,325-300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人. 如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_____亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)解析:(1)①根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;②将(2016年的资金-2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(2)画树状图列出所有等可能结果,根据概率公式求解可得.答案:(1)①由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元;②“知识技能”的增长率为:610200200-×100%=205%,“资金”的增长率为:208631000010000-×100%≈109%,由此可知,“知识技能”领域交易额较小,当增长率最高,达到200%以上,其发展速度惊人.(2)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率=21126=.21.如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,OD ⊥AB ,与AC 交于点E ,与过点C 的⊙O 的切线交于点D.(1)若AC=4,BC=2,求OE 的长.(2)试判断∠A 与∠CDE 的数量关系,并说明理由.解析:(1)由圆周角定理得出∠ACB=90°,由勾股定理求出=,得出OA=12AOE ∽△ACB ,得出对应边成比例即可得出答案; (2)连接OC ,由等腰三角形的性质得出∠1=∠A ,由切线的性质得出OC ⊥CD ,得出∠2+∠CDE=90°,证出∠3=∠CDE ,再由三角形的外角性质即可得出结论. 答案:(1)∵AB 为⊙O 的直径, ∴∠ACB=90°,在Rt △ABC 中,由勾股定理得:=∴OA=12∵OD ⊥AB ,∴∠AOE=∠ACB=90°, 又∵∠A=∠A , ∴△AOE ∽△ACB ,∴OE OA BC AC =,即2OE =解得:OE=2; (2)∠CDE=2∠A ,理由如下: 连接OC ,如图所示:∵OA=OC ,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E 处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.解析:(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.答案:(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,HN HN HF HD=⎧⎨='⎩,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8-x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△CFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:CF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.23.如图,抛物线y=2x x +x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC.点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E ,连接PD ,与BC 交于点F.设点P 的运动时间为t 秒(t >0).(1)求直线BC 的函数表达式;(2)①直接写出P ,D 两点的坐标(用含t 的代数式表示,结果需化简)②在点P 、Q 运动的过程中,当PQ=PD 时,求t 的值;(3)试探究在点P ,Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点?若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.解析:(1)函数的解析式得到B(9,0),C(0,,解方程组即可得到结论;(2)①过p 作PG ⊥x 轴于G ,解直角三角形得到∠CAO=60°,得到,AG=12t ,于是得到P(12t-3,t),把OQ=9-2t 代入二次函数的解析式即可得到D(9-2t ,2),②过P 作PH ⊥QD 于H ,得到四边形PGQH 是矩形,列方程即可得到即可;(3)根据折叠坐标公式得到F(-34t+3,29-+),由点F 在直线BC 上,列方程即可得到结论.答案:(1)由y=0得2x x +, 解得:x 1=-3,x 2=9,∴B(9,0),由x=0得∴C(0,,设直线BC 的解析式为y=kx+b ,∴90k b b +=⎧⎪⎨=⎪⎩,∴k b ⎧=⎪⎨⎪=⎩,∴直线BC 的解析式为(2)①过p 作PG ⊥x 轴于G ,∵A(-3,0),C(0,,∴∴tan ∠∴∠CAO=60°,∵AP=t ,∴,AG=12t , ∴OG=3-12t , ∴P(12t-3, ∵DQ ⊥x 轴,BQ=2t ,∴OQ=9-2t ,∴D(9-2t,2), ②过P 作PH ⊥QD 于H ,则四边形PGQH 是矩形,∴HQ=PG ,∵PQ=PD ,PH ⊥QD ,∴DQ=2HQ=2PG ,∵P(12t-3,2t),D(9-2t ,293-+),∴2=2, 解得:t 1=0(舍去),t 2=154,∴当PQ=PD 时,t 的值是154; (3)∵点F 为PD 的中点,∴F 的横坐标为:12(12t-3+9-2t)=-34t+3,F 的纵坐标为122+)=29-,∴F(-34t+3,29-), ∵点F 在直线BC 上,∴2334t =-++) ∴t=3,∴F(34).。
2017年山西省中考数学试卷及答案-(word整理版)
2017年山西省中考数学试卷-(word 整理版)一、选择题(共10小题;共50分) 1. 计算 的结果是A. B. C. D.2. 如图,直线 , 被直线 所截,下列条件不能判定直线 与 平行的是 A.B. C.D.第2题图 第6题图 第8题图 第10题图 3. 在体育课上,甲、乙两名同学分别进行了 次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的 A. 众数B. 平均数C. 中位数D. 方差4. 将不等式组的解集表示在数轴上,下面表示正确的是A. B.C.D.5. 下列运算错误的是A.B.C. D.6. 如图,将矩形纸片 沿 折叠,得到 , 与 交于点 .若 ,则 的度数为 A.B. C. D.7. 化简的结果是A. B. C.D.8. 年 月 日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到 亿吨油当量,达到我国陆上石油资源总量的 .数据 亿吨用科学记数法可表示为A. 吨B. 吨C. 吨D. 吨9. 公元前 世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数 ,导致了第一次数学危机. 是无理数的证明如下:假设 是有理数,那么它可以表示成( 与 是互质的两个正整数).于是,所以, .于是 是偶数,进而 是偶数.从而可设 ,所以 , ,于是可得 也是偶数.这与“ 与 是互质的两个正整数”矛盾,从而可知“ 是有理数”的假设不成立,所以, 是无理数.这种证明“ 是无理数”的方法是A. 综合法B. 反证法C. 举反例法D. 数学归纳法10. 如图是某商品的标志图案, 与 是 的两条直径,首尾顺次连接点 , , , ,得到四边形 .若 , ,则图中阴影部分的面积为A.B.C.D.二、填空题(共5小题;共25分)11. 计算: .12. 某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为 元,商店将进价提高 后作为零售价进行销售,一段时间后,商店又以 折优惠价促销,这时该型号洗衣机的零售 价为 元.13. 如图,已知 三个顶点的坐标分别为 , , .将 向右平移 个单位,得到 ,点 , , 的对应点分别为 , , ,再将 绕点 顺 时针旋转 ,得到 ,点 , , 的对应点分别为 , , ,则点 的坐标为 .14. 如图,创新小组要测量公园内一棵树的高度 ,其中一名小组成员站在距离树 米的点 处,测得树顶 的仰角为 .已知测角仪的架高 米,则这颗树的高度为 米(结果保留一位小数.参考数据: , , ). 15. 一副三角板按如图方式摆放,得到 和 ,其中 , , . 为 的中点,过点 作 于点 .若 ,则 的长 为 .三、解答题(共8小题;共104分)16. (1)计算:.(2)分解因式:.17. 已知:如图,在平行四边形中,延长至点,延长至点,使得.连接,与对角线交于点.求证:.18. 如图,在平面直角坐标系中,正方形的顶点与坐标原点重合,其边长为,点,点分别在轴,轴的正半轴上.函数的图象与交于点,函数(为常数,)的图象经过点,与交于点,与函数的图象在第三象限内交于点,连接,.(1)求函数的表达式,并直接写出,两点的坐标.(2)求的面积.19. “春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.年全国谷子种植面积为万亩,年总产值为万吨,我省谷子平均亩产量为,国内其他地区谷子的平均亩产量为.请解答下列问题:(1)求我省年谷子的种植面积是多少万亩?(2)年,若我省谷子的平均亩产量仍保持不变,要使我省谷子的年总产量不低于万吨,那么,今年我省至少应再多种植多少万亩的谷子?20. 从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告》显示,年我国共享经济市场交易额约为亿元,比上年增长;超亿人参与共享经济活动,比上年增加约亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从年到年交易额的增长率(精确到),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D 表示).21. 如图,内接于,且为的直径.,与交于点,与过点的的切线交于点.(1)若,,求的长.(2)试判断与的数量关系,并说明理由.22. 综合与实践背景阅读:早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比的三角形称为(,,)型三角形.例如:三边长分别为,,或,,的三角形就是(,,)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作:如图,在矩形纸片中,,.第一步:如图,将图中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.第二步:如图,将图中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去.第三步:如图,将图中的矩形纸片沿折叠,得到,再沿折叠,折痕为,与折痕交于点,然后展平.(1)问题解决()请在图中证明四边形是正方形.()请在图中判断和的数量关系,并加以证明.()请在图中证明是(,,)型三角形.(2)探索发现()在不添加字母的情况下,图中还有哪些三角形是(,,)型三角形?请找出并直接写出它们的名称.23. 如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.点沿以每秒个单位长度的速度由点向点运动,同时,点沿以每秒个单位长度的速度由点向点运动,当一个点停止运动时,另一个点也随之停止运动,连接.过点作轴,与抛物线交于点,与交于点.连接,与交于点,设点的运动时间为秒.(1)求直线的函数表达式.(2)①直接写出,两点的坐标(用含的代数式表示,结果需化简).②在点,运动的过程中,当时,求的值.(3)试探究在点,运动的过程中,是否存在某一时刻,使得点为的中点.若存在,请直接写出此时的值与点的坐标;若不存在,请说明理由.2017年山西省中考数学试卷答案1. C2. D3. D4. A5. B6. A7. C8. C9. B 10. B 11. 12. 13. 14. 15.16. (1)(2)解法一:【解析】解法二:17. 如图,四边形是平行四边形,,.,,即.,.,.在和中,,.18. (1)正方形的边长为,点的纵坐标为,即.将代入,得.点的坐标为.函数的图象经过点,,.函数的表达式为,,.(2)过点作,与的延长线交于点.,两点的坐标分别为,,,.的面积为:.19. (1)设我省年谷子的种植面积为万亩.由题意,得解,得答:我省年谷子的种植面积是万亩.(2)设我省今年应再多种植万亩谷子.由题意,得解,得答:我省今年至少应多种植万亩谷子.20. (1)①;②“知识技能”的增长率为:.“资金”的增长率为:.对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到以上,其发展速度惊人.【解析】②或“资金”领域交易额最大,年达到万亿以上,成倍增长,带动了共享经济市场规模不断扩大.(2)列表如下:由列表可知一共有种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有种.抽到共享出行和共享知识.【解析】画树状图如下:由树状图可知一共有种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有种.抽到共享出行和共享知识.21. (1)是的直径,.在中,由勾股定理得..,,又,...(2).理由如下:如图,连接.,.是的切线,.,.,,.,.22. (1)()四边形是矩形,.由折叠知:,..四边形是矩形.,矩形是正方形.().证明:连接.由折叠知:,。
山西省中考数学真题试题(含解析)
山西省2017年中考数学真题试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+的结果是()1.计算12A.-3 B.-1 C.1 D.3【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.2.如图,直线a,b被直线c所截,下列条件不能..判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.考点:平行线的判定.3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【答案】D.【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D .考点:在数轴上表示不等式的解集;解一元一次不等式组. 5.下列运算错误..的是( )A .01)1=B .291(3)44-÷= C .22256x x x -=- D .3224(2)(2)m m m ÷= 【答案】B .考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A .考点:平行线的性质;翻折变换(折叠问题). 7.化简2442x xx x ---的结果是( )A .22x x -+B .26x x -+ C .2x x -+ D .2x x - 【答案】C .考点:分式的加减法.8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨【答案】C . 【解析】试题分析:将186亿用科学记数法表示为:101.8610⨯.故选C . 考点:科学记数法—表示较大的数.9.公元前5假设是有理数,那么它可以表示成qp(p 与q 是互质的两个正整数).于是22()2qp==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”)A .综合法B .反证法C .举反例法D .数学归纳法 【答案】B . 【解析】试题分析:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选B . 考点:反证法.10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为( )A .25cm π B .210cm π C .215cm π D .220cm π 【答案】B .考点:矩形的性质;扇形面积的计算;圆周角定理第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:= .【答案】. 【解析】试题分析:原式= 考点:二次根式的加减法.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.【答案】1.08a . 【解析】试题分析:根据题意得:a •(1+20%)×90%=1.08a ;故答案为:1.08a . 考点:列代数式.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .【答案】(6,0).考点:平移的性质;旋转的性质;综合题.14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为米(结果保留一位小数.参考数据:sin540.8090=,cos540.5878=,tan54 1.3764=).【答案】15.3.【解析】试题分析:如图,在Rt△ACD中,AD=CD•tan54°≈10×1.3764=13.764米,AC≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.15.一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm..考点:直角三角形的性质;梯形中位线定理;综合题.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()sin 453--+.(2)分解因式:22(2)(2)y x x y +-+. 【答案】(1)-1;(2)3()()x y x y +- .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值. 17.已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .【答案】证明见解析. 【解析】试题分析:先由平行四边形的性质得出AB =CD ,AB ∥DC ,再得出∠F =∠E ,CF =AE ,∠DCA =∠CAB ,即可推出△COF ≌△AOE ,从而得到结论.试题解析:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,∴∠F =∠E ,∠DCA =∠CAB ,∵AB =CD ,FD =BE ,∴CF =AE ,在△COF 和△AOE 中,∵∠F =∠E ,CF =AE ,∠DCA =∠CAB ,∴△COF≌△AOE ,∴∴OE =OF .考点:平行四边形的性质;全等三角形的判定与性质.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数ky x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积. 【答案】(1)2y x =,E (2,1),f (-1,-2);(2)32.考点:反比例函数综合题.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【答案】(1)300;(2)25.考点:一元一次不等式的应用;二元一次方程组的应用.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).【答案】(1)①2038;②答案见解析;(2)16.②“知识技能”的增长率=610200200-=2.05=205%“资金”的增长率=208631000010000-=1.0863≈109%对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.(2)列表如下:由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P(抽到“共享出行”和“共享知识”)=212=16.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(1(2)∠CDE=2∠A.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E 处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF =ND ′,证明见解析;(3)证明见解析;(4)△MFN ,△MD ′H ,△MDA .考点:勾股定理的应用;新定义;阅读型;探究型;压轴题.23.综合与探究如图,抛物线293y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC 的函数表达式.(2)①直接写出P 、D 两点的坐标(用含t 的代数式表示,结果需化简).②在点P 、Q 运动的过程中,当PQ =PD 时,求t 的值.(3)试探究在点P 、Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.【答案】(1)3y x =-+(2)①P (132t -,2),D (92t -,293-+ );②154;(3)t =3,F (34,4).(3)由中点坐标公式和F 在直线BC 上得到2690t t -+=,解得t =3.把t =3代入得到F 的坐标.试题解析:(1)由y=0,得,解得:,,∴点A 的坐标为(-3,0),点B的坐标为(9,0).由x=0,得,∴点C的坐标为(0,).(2)①过点P作PG⊥x轴于点G.∵A(-3,0),B(9,0),C(0,)∴AO=3,BO=9,OC=,∴tan∠CAO=,∴∠CAO=60°,∴∠APG=30°,∵AP=t,∴AG=,PG=,∴OG=3-,∴P(,).∵OQ=,∴D的横坐标为,∵D在抛物线上,∴D的纵坐标为=,∴D D(,).综上所述:P(,),D(,);②过点P作PG⊥x轴于点G,PH⊥QD于点H.∵QD⊥x轴,∴四边形PGQH是矩形,∴HQ=PG.∵PQ=PD,PH⊥QD,∴QD=2HQ=2PG.∵P、D两点的坐标分别为P(,),D(,),∴=,解得:(舍去),,∴当PQ=PD时,t的值为.考点:二次函数综合题;动点型;存在型;压轴题.。
2017年山西省中考数学试卷-答案
山西省2017年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】121-+=.【提示】直接利用有理数加减运算法则得出答案.【考点】有理数的加法2.【答案】D【解析】由13∠=∠,可得直线a 与b 平行,故A 能判定;由24180∠+∠=,25∠=∠,43∠=∠,可得35180∠+∠=,故直线a 与b 平行,故B 能判定;由14∠=∠,43∠=∠,可得13∠=∠,故直线a 与b 平行,故C 能判定;由34∠=∠,不能判定直线a 与b 平行,故选D .【提示】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【考点】平行线的判定3.【答案】D【解析】因为方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.【提示】方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好.【考点】数据的集中趋势和离散程度4.【答案】A【解析】26040x x -≤⎧⎨+>⎩①②,解不等式①得,3x ≤;解不等式②得,4x >-.在数轴上表示为:【解析】135∠=,CD 35,55DBC ∠,由折叠可得55, 553520DBA ∠=-=.【提示】根据矩形的性质,可得35ABD ∠=,55DBC ∠,根据折叠可得55,最后根DBC '∠-∠【解析】AC 90,∴四边形图中阴,OA OB =36,72∴∠,∴图中阴影部分的272π510360⨯=根据已知条件得到四边形ABCD 是矩形,36,由圆周角定理得到72,于是得到结论【解析】如图所示:(0,4)A ,90,得到则点A ''的坐标为(6,0).54,tan ACE ∠tan CD ACD ∠13.8 1.515.3m AB AD BD ∴=+=+=.,45CDB ∠=,90ADB ∠,45∴∠,;30ABD ∠=,BD ∴,45CBD ∠=,6CB ∴.AG CG ⊥CG ,AG EF BC ∴∥.又E 的中点,∴F 为CG )(22BC =45,进而得到30的直角三角形45AG EF ∥的中点,得到证明:四边形,BE DF=,AB CD∥OCF ,AOE ∴△)正方形,函数,(2,1)E,11222AE FG=⨯(2)画树状图为:)AB90,⊥90,OD AB∠=∠,又A AOE OA∴=BC AC解得OE=2CD90,90∴∠,⊥OD ABCDE A∴∠=∠.∠=∠+∠=∠,2A A31290,由勾股定理求出,得出对应边成比例即可得出答案;90,)证明:四边形90,90,90,∴四边形是矩形,=是正方形;AE AD(2)NF ND '=,理由:连接HN ,由折叠得,90AD H D '∠=∠=,HF HD HD '==,四边形AEFD 是正方形,90EFD ∴∠=,90AD H ∠'=,90HD N '∴∠=,在Rt HNF △与Rt HND '△中,HN HN HF HD =⎧⎨'=⎩, Rt Rt HNF HND ∴'△≌△,NF ND ∴=';(3)四边形AEFD 是正方形,8cm AE EF AD ∴===,由折叠得,8AD AD cm '==,设cm NF x =,则cm ND x '=,在Rt AEN △中,222AN AE EN =+,222(8)8(8)x x ∴+=+-,解得2x =,810cm AN x ∴=+=,6cm EN =,:3:4:5EN AE AN ∴=:,AEN ∴△是(345),,型三角形; (4)图4中还有MFN △,MD H '△,MDA △是(345),,型三角形, CF AE ∥,MFN AEN ∴△∽△,:3:4:5EN AE AN =:,:34:5FN MF CN ∴=::,MFN ∴△是(345),,型三角形; 同理,MD H '△,MDA △是(345),,型三角形.【解析】(1)根据矩形的性质得到90D DAE ∠=∠=,由折叠的性质得到AE AD =,90AEF D ∠=∠=,求得90D DAE AEF ∠=∠=∠=,得到四边形AEFD 是矩形,由于AE AD =,于是得到结论; (2)连接HN ,由折叠的性质得到90AD H D '∠=∠=,HF HD HD '==,根据正方形的想知道的90HD N '∠=,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到8cm AE EF AD ===,由折叠得,8AD AD cm '==,设cm NF x =,则 cm ND x '=,根据勾股定理列方程得到2x =,于是得到结论;(4)根据(345),,型三角形的定义即可得到结论. 【考点】矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,折叠的性质,勾股定理,解(3,0)A -3OA ∴=,tan CAO ∴∠60,AP t =,t , 3OG ∴=-DQ x ⊥轴,9OQ ∴=P PQ PD =13,2P t ⎛- ⎝2439t ∴-)点点60,得到⎛。
山西省2017年中考数学真题及答案
山西省2017年中考数学真题试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算12-+的结果是( )A.-3 B.-1 C.1 D.32.如图,直线a ,b 被直线c 所截,下列条件不能..判定直线a 与b 平行的是( ) A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠43.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A.众数 B.平均数 C.中位数 D.方差5.下列运算错误..的是( )A.01)1-= B.291(3)44-÷= C.22256x x x -=- D.3224(2)(2)m m m ÷=6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为()A.20 B.30 C.35 D.55 7.化简2442x x x x ---的结果是( ) A.22x x -+ B.26x x -+ C.2x x -+ D.2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的高途课堂整理国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.818610⨯吨 B.918.610⨯吨 C.101.8610⨯吨 D.110.18610⨯吨9.公元前5世纪,,是无理数的证明如下: 是有理数,那么它可以表示成q p (p 与q 是互质的两个正整数).于是22()2q p ==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知是有理数”的假设不成立,是无理数.是无理数”的方法是( ) A.综合法 B.反证法 C.举反例法 D.数学归纳法 10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为()A.25cm π B.210cm π C.215cm π D.220cm π第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:= . 12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元. 高途课堂整理13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90 ,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin 540.8090= ,cos540.5878= ,tan 54 1.3764= ).15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB =∠BCD =90°,∠A =60°,∠CBD =45°.E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD =4cm ,则EF 的长为 cm.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()sin 453--+ . (2)分解因式:22(2)(2)y x x y +-+.17.已知:如图,在 ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .高途课堂整理18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg ,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg 不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:高途课堂整理(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.高途课堂整理②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作 如图1,在矩形纸片ABCD 中,AD =8cm ,AB =12cm .第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF . 第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到△AD ′H ,再沿AD ′折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决 (1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND ′的数量关系,并加以证明.(3)请在图4中证明△AEN 是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.综合与探究如图,抛物线293y x x =-++x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).高途课堂整理(1)求直线BC的函数表达式.(2)①直接写出P、D两点的坐标(用含t的代数式表示,结果需化简).②在点P、Q运动的过程中,当PQ=PD时,求t的值.(3)试探究在点P、Q运动的过程中,是否存在某一时刻,使得点F为PD的中点.若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.高途课堂整理参考答案:1.【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.2.【答案】D.考点:平行线的判定.3.【答案】D.【解析】 试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D. 考点:在数轴上表示不等式的解集;解一元一次不等式组.5.【答案】B.考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.【答案】A.【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC′=90°-35°=55°,∵矩形的高途课堂整理对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A. 考点:平行线的性质;翻折变换(折叠问题).7.【答案】C.考点:分式的加减法.8.【答案】C.【解析】试题分析:将186亿用科学记数法表示为:.故选C.考点:科学记数法—表示较大的数.9.【答案】B.【解析】试题分析:显然选项A 中13不是“正方形数”;选项B、D 中等式右侧并不是两个相邻“三角形数”之和. 故选B.考点:反证法.10.【答案】B. 考点:矩形的性质;扇形面积的计算;圆周角定理11.【答案】【解析】试题分析:原式==,故答案为:考点:二次根式的加减法.12.【答案】1.08a .101.8610⨯-高途课堂整理【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为:1.08a.考点:列代数式.13.【答案】(6,0).高途课堂整理考点:平移的性质;旋转的性质;综合题.14.【答案】15.3.【解析】试题分析:如图,在Rt△ACD中,AD=CD•tan54°≈10×1.3764=13.764米,AC≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.考点:直角三角形的性质;梯形中位线定理;综合题.16.【答案】(1)-1;(2) .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值.17.【答案】证明见解析.【解析】试题分析:先由平行四边形的性质得出AB =CD ,AB ∥DC ,再得出∠F =∠E ,CF =AE ,∠DCA =∠CAB ,即可推出△COF ≌△AOE,从而得到结论.3()()x y x y +-高途课堂整理试题解析:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,∴∠F =∠E ,∠DCA =∠CAB ,∵AB =CD ,FD =BE ,∴CF =AE ,在△COF 和△AOE 中,∵∠F =∠E ,CF =AE ,∠DCA =∠CAB ,∴△COF ≌△AOE ,∴∴OE =OF . 考点:平行四边形的性质;全等三角形的判定与性质.18.【答案】(1),E (2,1),f (-1,-2);(2). 考点:反比例函数综合题.19.【答案】(1)300;(2)25.2y x 32高途课堂整理考点:一元一次不等式的应用;二元一次方程组的应用.20.【答案】(1)①2038;②答案见解析;(2).②“知识技能”的增长率==2.05=205% “资金”的增长率= =1.0863≈109% 对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.(2)列表如下:16610200200-208631000010000-高途课堂整理由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P (抽到“共享出行”和“共享知识”)==.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图. 21.【答案】(1);(2)∠CDE =2∠A . (2)∠CDE =2∠A .理由如下:连结OC ,∵OA =OC ,∴∠1=∠A ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCD =90°,∴∠2+∠CDE =90°,∵OD ⊥AB ,∴∠2+∠3=90°,∴∠3=∠CDE .∵∠3=∠A +∠1=2∠A ,∴∠CDE =2∠A .考点:切线的性质;探究型;和差倍分.22.【答案】(1)证明见解析;(2)NF =ND ′,证明见解析;(3)证明见解析;(4)△MFN ,△MD ′H ,△MDA. 212162高途课堂整理考点:勾股定理的应用;新定义;阅读型;探究型;压轴题.23.【答案】(1);(2)①P (),D (, );②;(3)t=3,F (,). 3y x =-+132t -2t 92t -293t t -+154344高途课堂整理(3)由中点坐标公式和F 在直线BC 上得到,解得t =3.把t =3代入得到F 的坐标. 试题解析:(1)由y =0,得,解得:,,∴点A 的坐标为(-3,0),点B 的坐标为(9,0).由x =0,得C 的坐标为(0, ). (2)①过点P 作PG ⊥x 轴于点G .∵A(-3,0),B (9,0),C (0, )∴AO =3,BO =9,OC =,∴tan∠CAO = ,∴∠CAO =60°,∴∠APG =30°,∵AP =t ,∴AG =,PG =,∴OG =3-,∴P (,).∵OQ =,∴D 的横坐标为,∵D 在抛物线∴D 的纵坐标为=,∴D D (, ). 综上所述:P(,),D (, ); 2690t t -+=2093x x -++=13x =-29x=y =3CO AO ==12t 2t 12t 132t -2t 92t -92t -293y x x =-++2(92)(92)93y t t =--+-+293t t -+92t -293t -+132t -2t 92t -293t t -+高途课堂整理②过点P 作PG ⊥x 轴于点G ,PH ⊥QD 于点H .∵QD ⊥x 轴,∴四边形PGQH 是矩形,∴HQ =PG .∵PQ =PD ,PH ⊥QD ,∴QD =2HQ =2PG .∵P 、D 两点的坐标分别为P (,),D (, ),∴=,解得:(舍去),,∴当PQ =PD 时,t 的值为.考点:二次函数综合题;动点型;存在型;压轴题.132t-2t 92t-293t t -+293t t -+22t ⨯10t =2154t =154高途课堂整理。
2017年山西省中考数学试卷(解析版)
2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3B.﹣1C.1D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4 3.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A 向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【解答】解:﹣1+2=1.故选:C.2.【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.3.【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选:D.4.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.5.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选:B.6.【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.7.【解答】解:原式=﹣==﹣故选:C.8.【解答】解:186亿吨=1.86×1010吨.故选:C.9.【解答】解:由题意可得:这种证明“是无理数”的方法是反证法.故选:B.10.【解答】解:∵AC与BD是⊙O的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD是矩形,∴△ABO与△CDO的面积的和=△AOD与△BOC的面积的和,∴图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选:B.二、填空题(本大题共5个小题,每小题3分)11.【解答】解:原式=12=3,故答案为:3.12.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.13.【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).14.【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE =1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.315.【解答】解:过点A作AG⊥DC于G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).三、解答题(本大题共8个小题,共75分)16.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).17.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.18.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.19.【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.20.【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.21.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.22.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△MFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:MF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.23.【解答】解:(1)由y=0得﹣x2+x+3=0,解得:x1=﹣3,x2=9,∴B(9,0),由x=0得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,∴,∴,∴直线BC的解析式为y=﹣x+3;(2)①过P作PG⊥x轴于G,∵A(﹣3,0),C(0,3),∴OA=3.OC=3,∴tan∠CAO=,∴∠CAO=60°,∵AP=t,∴PG=t,AG=t,∴OG=3﹣t,∴P(t﹣3,t),∵DQ⊥x轴,BQ=2t,∴OQ=9﹣2t,∴D(9﹣2t,﹣t2+t),②过P作PH⊥QD于H,则四边形PGQH是矩形,∴HQ=PG,∵PQ=PD,PH⊥QD,∴DQ=2HQ=2PG,∵P(t﹣3,t),D(9﹣2t,﹣t2+t),∴﹣t2+t=2×t,解得:t1=0(舍去),t2=,∴当PQ=PD时,t的值是;(3)∵点F为PD的中点,∴F的横坐标为:(t﹣3+9﹣2t)=﹣t+3,F的纵坐标为(t﹣t2+t)=﹣t2+t,∴F(﹣t+3,﹣t2+t),∵点F在直线BC上,∴﹣t2+t=﹣(﹣t+3)+3,∴t=3,∴F(,).。
山西省2017年中考数学真题试卷和答案
山西省2017年中考数学真题试卷和答案山西省2017年中考数学真题试卷和答案一、选择题(每小题3分,共30分)。
1.计算﹣1+2的结果是( )A .﹣3B .﹣1C .1D .32.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠43.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差4.将不等式组{2x −6≤0x +4>0的解集表示在数轴上,下面表示正确的是( )A .B .C .D .5.下列运算错误的是( )A .(√3﹣1)0=1 B .(﹣3)2÷94=14C .5x 2﹣6x 2=﹣x 2D .(2m 3)2÷(2m )2=m 46.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC′D,C′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20°B .30°C .35°D .55°7.化简4xx 2−4﹣xx−2的结果是( )A .﹣x 2+2x B .﹣x 2+6x C .﹣xx+2 D .xx−28.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .186×108吨B .18.6×109吨C .1.86×1010吨D .0.186×1011吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数√2,导致了第一次数学危机,√2是无理数的证明如下:假设√2是有理数,那么它可以表示成qp (p 与q 是互质的两个正整数).于是(qp)2=(√2)2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m )2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾.从而可知“√2是有理数”的假设不成立,所以,√2是无理数.这种证明“√2是无理数”的方法是()A .综合法B .反证法C .举反例法D .数学归纳法10.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2二、填空题(每题3分,共15分)。
2017年山西省数学中考试卷及参考答案PDF
2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【解答】解:﹣1+2=1.故选:C.2.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.3.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.6.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【解答】解:原式=﹣==﹣故选(C)8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【解答】解:186亿吨=1.86×1010吨.故选:C .9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下: 假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2=()2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m )2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法【解答】解:由题意可得:这种证明“是无理数”的方法是反证法. 故选:B .10.(3分)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B.二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=3.【解答】解:原式=12=3,故答案为:3.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a元.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.315.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.【解答】解:过点A作AG⊥DC于G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是2038亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△MFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:MF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.【解答】解:(1)由y=0得﹣x2+x+3=0,解得:x1=﹣3,x2=9,∴B(9,0),由x=0得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,∴,∴,∴直线BC的解析式为y=﹣x+3;(2)①过P作PG⊥x轴于G,∵A(﹣3,0),C(0,3),∴OA=3.OC=3,∴tan∠CAO=,∴∠CAO=60°,∵AP=t,∴PG=t,AG=t,∴OG=3﹣t,∴P(t﹣3,t),∵DQ⊥x轴,BQ=2t,∴OQ=9﹣2t,∴D(9﹣2t,﹣t2+t),②过P作PH⊥QD于H,则四边形PGQH是矩形,∴HQ=PG,∵PQ=PD,PH⊥QD,∴DQ=2HQ=2PG,∵P(t﹣3,t),D(9﹣2t,﹣t2+t),∴﹣t2+t=2×t,解得:t1=0(舍去),t2=,∴当PQ=PD时,t的值是;(3)∵点F为PD的中点,∴F的横坐标为:(t﹣3+9﹣2t)=﹣t+3,F的纵坐标为(t﹣t2+t)=﹣t2+t,∴F(﹣t+3,﹣t2+t),∵点F在直线BC上,∴﹣t2+t=﹣(﹣t+3)+3,∴t=3,∴F(,).。
山西省2017年中考数学真题试卷和答案
省2017年中考数学真题试卷和答案一、选择题(每小题3分,共30分)。
1.计算﹣1+2的结果是( )A .﹣3B .﹣1C .1D .32.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠43.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差4.将不等式组{2x −6≤0x +4>0的解集表示在数轴上,下面表示正确的是( ) A . B .C .D .5.下列运算错误的是( )A .(√3﹣1)0=1B .(﹣3)2÷94=14C .5x 2﹣6x 2=﹣x 2D .(2m 3)2÷(2m )2=m 4 6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC′D ,C′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20°B .30°C .35°D .55°7.化简4x x 2−4﹣x x−2的结果是( ) A .﹣x 2+2x B .﹣x 2+6x C .﹣x x+2 D .x x−28.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .186×108吨B .18.6×109吨C .1.86×1010吨D .0.186×1011吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数√2,导致了第一次数学危机,√2是无理数的证明如下:假设√2是有理数,那么它可以表示成q p(p 与q 是互质的两个正整数).于是(q p)2=(√2)2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m )2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾.从而可知“√2是有理数”的假设不成立,所以,√2是无理数. 这种证明“√2是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法10.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(每题3分,共15分)。