罗斯公司理财第九版课后习题第四章答案
罗斯公司理财第九版第四章课后答案
23题:This question is asking for the present value of an annuity, but the interest rate changes during the life of the annuity. We need to find the present value of the cash flows for the last eight years first. The PV of these cash flows is:PVA2 = $1,500 [{1 – 1 / [1 + (.09/12)]⌒96} / (.09/12)] = $102,387.66Note that this is the PV of this annuity exactly seven years from today. Now, we can discount this lump sum to today. The value of this cash flow today is:PV = $102,387.66 / [1 + (.13/12)]⌒84 = $41,415.70Now, we need to find the PV of the annuity for the first seven years. The value of these cash flows today is:PVA1 = $1,500 [{1 – 1 / [1 + (.13/12)]⌒84} / (.13/12)] = $82,453.99The value of the cash flows today is the sum of these two cash flows, so:PV = $82,453.99 + 41,415.70 = $123,869.9924题The monthly interest rate is the annual interest rate divided by 12, or:Monthly interest rate = .104 / 12 Monthly interest rate = .00867Now we can set the present value of the lease payments equal to the cost of the equipment, or $3,500. The lease payments are in the form of an annuity due, so:PV Adue = (1 + r) C({1 – [1/(1 + r)]⌒t } / r )$3,500 = (1 + .00867) C({1 – [1/(1 + .00867)]⌒24 } / .00867 ) C = $160.7625题Here, we need to compare to options. In order to do so, we must get the value of the two cash flow streams to the same time, so we will find the value of each today. We must also make sure to use the aftertax cash flows, since it is more relevant. For Option A, the aftertax cash flows are:Aftertax cash flows = Pretax cash flows(1 – tax rate)Aftertax cash flows = $175,000(1 – .28)Aftertax cash flows = $126,000The aftertax cash flows from Option A are in the form of an annuity due, so the present value of the cash flow today is:PV Adue = (1 + r) C({1 – [1/(1 + r)]⌒t } / r )PV Adue = (1 + .10)$126,000({1 – [1/(1 + .10)]⌒31 } / .10 )PV Adue = $1,313,791.22For Option B, the aftertax cash flows are:Aftertax cash flows = Pretax cash flows(1 – tax rate)Aftertax cash flows = $125,000(1 – .28)Aftertax cash flows = $90,000The aftertax cash flows from Option B are an ordinary annuity, plus the cash flow today, so the present value:PV = C({1 – [1/(1 + r)]⌒t } / r ) + CF0PV = $90,000{1 – [1/(1 + .10)]⌒30 } / .10 ) + $530,000PV = $1,378,422.3026题The cash flows for this problem occur monthly, and the interest rate given is the EAR. Since the cash flows occur monthly, we must get the effective monthly rate. One way to do this is to find the APR based on monthly compounding, and then divide by 12. So, the pre-retirement APR is: EAR = .11 = [1 + (APR / 12)]⌒12– 1; APR = 12[(1.11)1/12 – 1] = 10.48%And the post-retirement APR is:EAR = .08 = [1 + (APR / 12)]⌒12 – 1; APR = 12[(1.08)1/12 – 1] = 7.72%First, we will calculate how much he needs at retirement. The amount needed at retirement is the PV of the monthly spending plus the PV of the inheritance. The PV of these two cash flows is:PV A = $20,000{1 – [1 / (1 + .0772/12)⌒12*20]} / (.0772/12) = $2,441,554.61PV = $1,000,000 / (1 + .08)20 = $214,548.21So, at retirement, he needs: $2,441,554.61 + 214,548.21 = $2,656.102.81He will be saving $1,900 per month for the next 10 years until he purchases the cabin. The value of his savings after 10 years will be:FV A = $1,900[{[ 1 + (.1048/12)]⌒12*10– 1} / (.1048/12)] = $400,121.62After he purchases the cabin, the amount he will have left is: $400,121.62 – 320,000 = $80,121.62 He still has 20 years until retirement. When he is ready to retire, this amount will have grown to: FV = $80,121.62[1 + (.1048/12)]⌒12*20 = $646,965.50So, when he is ready to retire, based on his current savings, he will be short:$2,656,102.81 – 645,965.50 = $2,010,137.31This amount is the FV of the monthly savings he must make between years 10 and 30. So, finding the annuity payment using the FVA equation, we find his monthly savings will need to be: FVA = $2,010,137.31 = C[{[ 1 + (.1048/12)]⌒12*20 – 1} / (.1048/12)]C = $2,486.1227题To answer this question, we should find the PV of both options, and compare them. Since we are purchasing the car, the lowest PV is the best option. The PV of the leasing is simply the PV of the lease payments, plus the $1. The interest rate we would use for the leasing option is the same as the interest rate of the loan. The PV of leasing is:PV = $1 + $520{1 – [1 / (1 + .08/12)⌒12*3]} / (.08/12) = $16,595.14The PV of purchasing the car is the current price of the car minus the PV of the resale price. The PV of the resale price is:PV = $26,000 / [1 + (.08/12)]⌒12*3 = $20,468.62The PV of the decision to purchase is:$38,000 – 20,468.62 = $17,531.38In this case, it is cheaper to lease the car than buy it since the PV of the leasing cash flows is lower. To find the breakeven resale price, we need to find the resale price that makes the PV of the tw o options the same. In other words, the PV of the decision to buy should be:$38,000 – PV of resale price = $16,595.14PV of resale price = $21,404.86The resale price that would make the PV of the lease versus buy decision is the FV of this value, so:Breakeven resale price = $21,404.86[1 + (.08/12)]⌒12*3 = $27,189.2528题First, we will find the APR and EAR for the loan with the refundable fee. Remember, we need to use the actual cash flows of the loan to find the interest rate. With the $2,100 application fee, you will need to borrow $202,100 to have $200,000 after deducting the fee. Solving for the payment under these circumstances, we get:PV A = $202,100 = C {[1 – 1/(1.00567)⌒360]/.00567} where .00567 = .068/12 C = $1,317.54 We can now use this amount in the PV A equation with the original amount we wished to borrow, $200,000. Solving for r, we find:PV A = $200,000 = $1,317.54[{1 – [1 / (1 + r)]⌒360}/ r]Solving for r with a spreadsheet, on a financial calculator, or by trial and error, gives:r = 0.5752% per monthAPR = 12(0.5752%) = 6.90% EAR = (1 + .005752)⌒12– 1 = .0713 or 7.13%With the nonrefundable fee, the APR of the loan is simply the quoted APR since the fee is not considered part of the loan. So:APR = 6.80% EAR = [1 + (0.068/12)]⌒12– 1 = .0702 or 7.02%29题Here, we need to find the interest rate that makes us indifferent between an annuity and a perpetuity. To solve this problem, we need to find the PV of the two options and set them equal to each other. The PV of the perpetuity is:PV = $20,000 / rAnd the PV of the annuity is:PVA = $35,000[{1 – [1 / (1 + r)]⌒10 } / r ]Setting them equal and solving for r, we get:$20,000 / r = $35,000[{1 – [1 / (1 + r)]⌒10 } / r ]$20,000 / $35,000 = 1 – [1 / (1 + r)]⌒10 .057141/10 = 1 / (1 + r)r = 1 / .5714⌒1/10 – 1 r = .0576 or 5.76%30题。
Cha04 罗斯公司理财第九版原版书课后习题
The present value of the four new outlets is only $954,316.78. The outlets are worth less than they cost. The Trojan Pizza Company should not make the investment because the NPV is –$45,683.22. If the Trojan Pizza Company requires a 15 percent rate of return, the new outlets are not a good investment.SPREADSHEET APPLICATIONSHow to Calculate Present Values with Multiple Future Cash Flows Using a SpreadsheetWe can set up a basic spreadsheet to calculate the present values of the individual cash flows as follows. Notice that we have simply calculated the present values one at a time and added them up:Summary and Conclusions1. Two basic concepts, future value and present value, were introduced in the beginning of thischapter. With a 10 percent interest rate, an investor with $1 today can generate a future value of $1.10 in a year, $1.21 [=$1 × (1.10)2] in two years, and so on. Conversely, present value analysis places a current value on a future cash flow. With the same 10 percent interest rate, a dollar to be received in one year has a present value of $.909 (=$1/1.10) in year 0. A dollar to be received in two years has a present value of $.826 [=$1/(1.10)2].2. We commonly express an interest rate as, say, 12 percent per year. However, we can speak ofthe interest rate as 3 percent per quarter. Although the stated annual interest rate remains 12 percent (=3 percent × 4), the effective annual interest rate is 12.55 percent [=(1.03)4 – 1]. In other words, the compounding process increases the future value of an investment. The limiting case is continuous compounding, where funds are assumed to be reinvested every infinitesimal instant.3. A basic quantitative technique for financial decision making is net present value analysis. Thenet present value formula for an investment that generates cash flows (C i) in future periods is:The formula assumes that the cash flow at date 0 is the initial investment (a cash outflow).4. Frequently, the actual calculation of present value is long and tedious. The computation of thepresent value of a long-term mortgage with monthly payments is a good example of this. We presented four simplifying formulas:5. We stressed a few practical considerations in the application of these formulas:1. The numerator in each of the formulas, C, is the cash flow to be received one full periodhence.2. Cash flows are generally irregular in practice. To avoid unwieldy problems, assumptions tocreate more regular cash flows are made both in this textbook and in the real world.3. A number of present value problems involve annuities (or perpetuities) beginning a fewperiods hence. Students should practice combining the annuity (or perpetuity) formula withthe discounting formula to solve these problems.4. Annuities and perpetuities may have periods of every two or every n years, rather thanonce a year. The annuity and perpetuity formulas can easily handle such circumstances.5. We frequently encounter problems where the present value of one annuity must beequated with the present value of another annuity.Concept Questions1. Compounding and Period As you increase the length of time involved, what happens tofuture values? What happens to present values?2. Interest Rates What happens to the future value of an annuity if you increase the rate r?What happens to the present value?3. Present Value Suppose two athletes sign 10-year contracts for $80 million. In one case, we’retold that the $80 million will be paid in 10 equal installments. In the other case, we’re told that the $80 million will be paid in 10 installments, but the installments will increase by 5 percent per year.Who got the better deal?4. APR and EAR Should lending laws be changed to require lenders to report EARs instead ofAPRs? Why or why not?5. Time Value On subsidized Stafford loans, a common source of financial aid for collegestudents, interest does not begin to accrue until repayment begins. Who receives a bigger subsidy,a freshman or a senior? Explain.Use the following information to answer the next five questions:Toyota Motor Credit Corporation (TMCC), a subsidiary of Toyota Motor Corporation, offered some securities for sale to the public on March 28, 2008. Under the terms of the deal, TMCC promised to repay the owner of one of these securities $100,000 on March 28, 2038, but investors would receive nothing until then. Investors paid TMCC $24,099 for each of these securities; so they gave up $24,099 on March 28, 2008, for the promise of a $100,000 payment 30 years later.6. Time Value of Money Why would TMCC be willing to accept such a small amount today($24,099) in exchange for a promise to repay about four times that amount ($100,000) in the future?7. Call Provisions TMCC has the right to buy back the securities on the anniversary date at aprice established when the securities were issued (this feature is a term of this particular deal).What impact does this feature have on the desirability of this security as an investment?8. Time Value of Money Would you be willing to pay $24,099 today in exchange for $100,000 in30 years? What would be the key considerations in answering yes or no? Would your answerdepend on who is making the promise to repay?9. Investment Comparison Suppose that when TMCC offered the security for $24,099 the U.S.Treasury had offered an essentially identical security. Do you think it would have had a higher or lower price? Why?10. Length of Investment The TMCC security is bought and sold on the New York StockExchange. If you looked at the price today, do you think the price would exceed the $24,099 original price? Why? If you looked in the year 2019, do you think the price would be higher or lower than today’s price? Why?Questions and Problems: connect™BASIC (Questions 1–20)1. Simple Interest versus Compound Interest First City Bank pays 9 percent simple intereston its savings account balances, whereas Second City Bank pays 9 percent interest compounded annually. If you made a $5,000 deposit in each bank, how much more money would you earn from your Second City Bank account at the end of 10 years?2. Calculating Future Values Compute the future value of $1,000 compounded annually for1. 10 years at 6 percent.2. 10 years at 9 percent.3. 20 years at 6 percent.4. Why is the interest earned in part (c) not twice the amount earned in part (a)?3. Calculating Present Values For each of the following, compute the present value:4. Calculating Interest Rates Solve for the unknown interest rate in each of the following:5. Calculating the Number of Periods Solve for the unknown number of years in each of thefollowing:6. Calculating the Number of Periods At 9 percent interest, how long does it take to doubleyour money? To quadruple it?7. Calculating Present Values Imprudential, Inc., has an unfunded pension liability of $750million that must be paid in 20 years. To assess the value of the firm’s stock, financial analysts want to discount this liability back to the present. If the relevant discount rate is 8.2 percent, what is the present value of this liability?8. Calculating Rates of Return Although appealing to more refined tastes, art as a collectiblehas not always performed so profitably. During 2003, Sotheby’s sold the Edgar Degas bronze sculpture Petite Danseuse de Quartorze Ans at auction for a price of $10,311,500. Unfortunately for the previous owner, he had purchased it in 1999 at a price of $12,377,500. What was his annual rate of return on this sculpture?9. Perpetuities An investor purchasing a British consol is entitled to receive annual paymentsfrom the British government forever. What is the price of a consol that pays $120 annually if the next payment occurs one year from today? The market interest rate is 5.7 percent.10. Continuous Compounding Compute the future value of $1,900 continuously compounded for1. 5 years at a stated annual interest rate of 12 percent.2. 3 years at a stated annual interest rate of 10 percent.3. 10 years at a stated annual interest rate of 5 percent.4. 8 years at a stated annual interest rate of 7 percent.11. Present Value and Multiple Cash Flows Conoly Co. has identified an investment projectwith the following cash flows. If the discount rate is 10 percent, what is the present value of these cash flows? What is the present value at 18 percent? At 24 percent?12. Present Value and Multiple Cash Flows Investment X offers to pay you $5,500 per year fornine years, whereas Investment Y offers to pay you $8,000 per year for five years. Which of these cash flow streams has the higher present value if the discount rate is 5 percent? If the discount rate is 22 percent?13. Calculating Annuity Present Value An investment offers $4,300 per year for 15 years, withthe first payment occurring one year from now. If the required return is 9 percent, what is the value of the investment? What would the value be if the payments occurred for 40 years? For 75 years? Forever?14. Calculating Perpetuity Values The Perpetual Life Insurance Co. is trying to sell you aninvestment policy that will pay you and your heirs $20,000 per year forever. If the required return on this investment is 6.5 percent, how much will you pay for the policy? Suppose the Perpetual Life Insurance Co. told you the policy costs $340,000. At what interest rate would this be a fair deal? 15. Calculating EAR Find the EAR in each of the following cases:16. Calculating APR Find the APR, or stated rate, in each of the following cases:17. Calculating EAR First National Bank charges 10.1 percent compounded monthly on itsbusiness loans. First United Bank charges 10.4 percent compounded semiannually. As a potential borrower, to which bank would you go for a new loan?18. Interest Rates Well-known financial writer Andrew Tobias argues that he can earn 177percent per year buying wine by the case. Specifically, he assumes that he will consume one $10 bottle of fine Bordeaux per week for the next 12 weeks. He can either pay $10 per week or buy a case of 12 bottles today. If he buys the case, he receives a 10 percent discount and, by doing so, earns the 177 percent. Assume he buys the wine and consumes the first bottle today. Do you agree with his analysis? Do you see a problem with his numbers?19. Calculating Number of Periods One of your customers is delinquent on his accounts payablebalance. You’ve mutually agreed to a repayment schedule of $600 per month. You will charge .9 percent per month interest on the overdue balance. If the current balance is $18,400, how long will it take for the account to be paid off?20. Calculating EAR Friendly’s Quick Loans, Inc., offers you “three for four or I knock on yourdoor.” This means you get $3 today and repay $4 when you get your paycheck in one week (orelse). What’s the effective annual return Friendly’s earns on this lending business? If you were brave enough to ask, what APR would Friendly’s say you were paying?INTERMEDIATE (Questions 21–50)21. Future Value What is the future value in seven years of $1,000 invested in an account with astated annual interest rate of 8 percent,1. Compounded annually?2. Compounded semiannually?3. Compounded monthly?4. Compounded continuously?5. Why does the future value increase as the compounding period shortens?22. Simple Interest versus Compound Interest First Simple Bank pays 6 percent simpleinterest on its investment accounts. If First Complex Bank pays interest on its accounts compounded annually, what rate should the bank set if it wants to match First Simple Bank over an investment horizon of 10 years?23. Calculating Annuities You are planning to save for retirement over the next 30 years. To dothis, you will invest $700 a month in a stock account and $300 a month in a bond account. The return of the stock account is expected to be 10 percent, and the bond account will pay 6 percent.When you retire, you will combine your money into an account with an 8 percent return. How much can you withdraw each month from your account assuming a 25-year withdrawal period?24. Calculating Rates of Return Suppose an investment offers to quadruple your money in 12months (don’t believe it). What rate of return per quarter are you being offered?25. Calculating Rates of Return You’re trying to choose between two different investments, bothof which have up-front costs of $75,000. Investment G returns $135,000 in six years. Investment H returns $195,000 in 10 years. Which of these investments has the higher return?26. Growing Perpetuities Mark Weinstein has been working on an advanced technology in lasereye surgery. His technology will be available in the near term. He anticipates his first annual cash flow from the technology to be $215,000, received two years from today. Subsequent annual cash flows will grow at 4 percent in perpetuity. What is the present value of the technology if the discount rate is 10 percent?27. Perpetuities A prestigious investment bank designed a new security that pays a quarterlydividend of $5 in perpetuity. The first dividend occurs one quarter from today. What is the price of the security if the stated annual interest rate is 7 percent, compounded quarterly?28. Annuity Present Values What is the present value of an annuity of $5,000 per year, with thefirst cash flow received three years from today and the last one received 25 years from today? Usea discount rate of 8 percent.29. Annuity Present Values What is the value today of a 15-year annuity that pays $750 a year?The annuity’s first payment occurs six years from today. The annual interest rate is 12 percent for years 1 through 5, and 15 percent thereafter.30. Balloon Payments Audrey Sanborn has just arranged to purchase a $450,000 vacation homein the Bahamas with a 20 percent down payment. The mortgage has a 7.5 percent stated annualinterest rate, compounded monthly, and calls for equal monthly payments over the next 30 years.Her first payment will be due one month from now. However, the mortgage has an eight-year balloon payment, meaning that the balance of the loan must be paid off at the end of year 8. There were no other transaction costs or finance charges. How much will Audrey’s balloon payment be in eight years?31. Calculating Interest Expense You receive a credit card application from Shady BanksSavings and Loan offering an introductory rate of 2.40 percent per year, compounded monthly for the first six months, increasing thereafter to 18 percent compounded monthly. Assuming you transfer the $6,000 balance from your existing credit card and make no subsequent payments, how much interest will you owe at the end of the first year?32. Perpetuities Barrett Pharmaceuticals is considering a drug project that costs $150,000 todayand is expected to generate end-of-year annual cash flows of $13,000, forever. At what discount rate would Barrett be indifferent between accepting or rejecting the project?33. Growing Annuity Southern California Publishing Company is trying to decide whether to reviseits popular textbook, Financial Psychoanalysis Made Simple. The company has estimated that the revision will cost $65,000. Cash flows from increased sales will be $18,000 the first year. These cash flows will increase by 4 percent per year. The book will go out of print five years from now.Assume that the initial cost is paid now and revenues are received at the end of each year. If the company requires an 11 percent return for such an investment, should it undertake the revision? 34. Growing Annuity Your job pays you only once a year for all the work you did over theprevious 12 months. Today, December 31, you just received your salary of $60,000, and you plan to spend all of it. However, you want to start saving for retirement beginning next year. You have decided that one year from today you will begin depositing 5 percent of your annual salary in an account that will earn 9 percent per year. Your salary will increase at 4 percent per year throughout your career. How much money will you have on the date of your retirement 40 years from today?35. Present Value and Interest Rates What is the relationship between the value of an annuityand the level of interest rates? Suppose you just bought a 12-year annuity of $7,500 per year at the current interest rate of 10 percent per year. What happens to the value of your investment if interest rates suddenly drop to 5 percent? What if interest rates suddenly rise to 15 percent?36. Calculating the Number of Payments You’re prepared to make monthly payments of $250,beginning at the end of this month, into an account that pays 10 percent interest compounded monthly. How many payments will you have made when your account balance reaches $30,000? 37. Calculating Annuity Present Values You want to borrow $80,000 from your local bank tobuy a new sailboat. You can afford to make monthly payments of $1,650, but no more. Assuming monthly compounding, what is the highest APR you can afford on a 60-month loan?38. Calculating Loan Payments You need a 30-year, fixed-rate mortgage to buy a new home for$250,000. Your mortgage bank will lend you the money at a 6.8 percent APR for this 360-month loan. However, you can only afford monthly payments of $1,200, so you offer to pay off any remaining loan balance at the end of the loan in the form of a single balloon payment. How large will this balloon payment have to be for you to keep your monthly payments at $1,200?39. Present and Future Values The present value of the following cash flow stream is $6,453when discounted at 10 percent annually. What is the value of the missing cash flow?40. Calculating Present Values You just won the TVM Lottery. You will receive $1 million todayplus another 10 annual payments that increase by $350,000 per year. Thus, in one year you receive $1.35 million. In two years, you get $1.7 million, and so on. If the appropriate interest rate is 9 percent, what is the present value of your winnings?41. EAR versus APR You have just purchased a new warehouse. To finance the purchase, you’vearranged for a 30-year mortgage for 80 percent of the $2,600,000 purchase price. The monthly payment on this loan will be $14,000. What is the APR on this loan? The EAR?42. Present Value and Break-Even Interest Consider a firm with a contract to sell an asset for$135,000 three years from now. The asset costs $96,000 to produce today. Given a relevant discount rate on this asset of 13 percent per year, will the firm make a profit on this asset? At what rate does the firm just break even?43. Present Value and Multiple Cash Flows What is the present value of $4,000 per year, at adiscount rate of 7 percent, if the first payment is received 9 years from now and the last payment is received 25 years from now?44. Variable Interest Rates A 15-year annuity pays $1,500 per month, and payments are madeat the end of each month. If the interest rate is 13 percent compounded monthly for the first seven years, and 9 percent compounded monthly thereafter, what is the present value of the annuity? 45. Comparing Cash Flow Streams You have your choice of two investment accounts.Investment A is a 15-year annuity that features end-of-month $1,200 payments and has an interest rate of 9.8 percent compounded monthly. Investment B is a 9 percent continuously compounded lump-sum investment, also good for 15 years. How much money would you need to invest in B today for it to be worth as much as Investment A 15 years from now?46. Calculating Present Value of a Perpetuity Given an interest rate of 7.3 percent per year,what is the value at date t = 7 of a perpetual stream of $2,100 annual payments that begins at date t = 15?47. Calculating EAR A local finance company quotes a 15 percent interest rate on one-year loans.So, if you borrow $26,000, the interest for the year will be $3,900. Because you must repay a total of $29,900 in one year, the finance company requires you to pay $29,900/12, or $2,491.67, per month over the next 12 months. Is this a 15 percent loan? What rate would legally have to be quoted? What is the effective annual rate?48. Calculating Present Values A 5-year annuity of ten $4,500 semiannual payments will begin 9years from now, with the first payment coming 9.5 years from now. If the discount rate is 12 percent compounded monthly, what is the value of this annuity five years from now? What is the value three years from now? What is the current value of the annuity?49. Calculating Annuities Due Suppose you are going to receive $10,000 per year for five years.The appropriate interest rate is 11 percent.1. What is the present value of the payments if they are in the form of an ordinary annuity?What is the present value if the payments are an annuity due?2. Suppose you plan to invest the payments for five years. What is the future value if thepayments are an ordinary annuity? What if the payments are an annuity due?3. Which has the highest present value, the ordinary annuity or annuity due? Which has thehighest future value? Will this always be true?50. Calculating Annuities Due You want to buy a new sports car from Muscle Motors for$65,000. The contract is in the form of a 48-month annuity due at a 6.45 percent APR. What will your monthly payment be?CHALLENGE (Questions 51–76)51. Calculating Annuities Due You want to lease a set of golf clubs from Pings Ltd. The leasecontract is in the form of 24 equal monthly payments at a 10.4 percent stated annual interest rate, compounded monthly. Because the clubs cost $3,500 retail, Pings wants the PV of the lease payments to equal $3,500. Suppose that your first payment is due immediately. What will your monthly lease payments be?52. Annuities You are saving for the college education of your two children. They are two yearsapart in age; one will begin college 15 years from today and the other will begin 17 years from today. You estimate your children’s college expenses to be $35,000 per year per child, payable at the beginning of each school year. The annual interest rate is 8.5 percent. How much money must you deposit in an account each year to fund your children’s education? Your deposits begin one year from today. You will make your last deposit when your oldest child enters college. Assume four years of college.53. Growing Annuities Tom Adams has received a job offer from a large investment bank as aclerk to an associate banker. His base salary will be $45,000. He will receive his first annual salary payment one year from the day he begins to work. In addition, he will get an immediate $10,000 bonus for joining the company. His salary will grow at 3.5 percent each year. Each year he will receive a bonus equal to 10 percent of his salary. Mr. Adams is expected to work for 25 years.What is the present value of the offer if the discount rate is 12 percent?54. Calculating Annuities You have recently won the super jackpot in the Washington StateLottery. On reading the fine print, you discover that you have the following two options:1. You will receive 31 annual payments of $175,000, with the first payment being deliveredtoday. The income will be taxed at a rate of 28 percent. Taxes will be withheld when the checks are issued.2. You will receive $530,000 now, and you will not have to pay taxes on this amount. Inaddition, beginning one year from today, you will receive $125,000 each year for 30 years.The cash flows from this annuity will be taxed at 28 percent.Using a discount rate of 10 percent, which option should you select?55. Calculating Growing Annuities You have 30 years left until retirement and want to retirewith $1.5 million. Your salary is paid annually, and you will receive $70,000 at the end of the current year. Your salary will increase at 3 percent per year, and you can earn a 10 percent return on the money you invest. If you save a constant percentage of your salary, what percentage of your salary must you save each year?56. Balloon Payments On September 1, 2007, Susan Chao bought a motorcycle for $25,000. Shepaid $1,000 down and financed the balance with a five-year loan at a stated annual interest rate of8.4 percent, compounded monthly. She started the monthly payments exactly one month after thepurchase (i.e., October 1, 2007). Two years later, at the end of October 2009, Susan got a new job and decided to pay off the loan. If the bank charges her a 1 percent prepayment penalty based on the loan balance, how much must she pay the bank on November 1, 2009?57. Calculating Annuity Values Bilbo Baggins wants to save money to meet three objectives.First, he would like to be able to retire 30 years from now with a retirement income of $20,000 per month for 20 years, with the first payment received 30 years and 1 month from now. Second, he would like to purchase a cabin in Rivendell in 10 years at an estimated cost of $320,000. Third, after he passes on at the end of the 20 years of withdrawals, he would like to leave an inheritance of $1,000,000 to his nephew Frodo. He can afford to save $1,900 per month for the next 10 years.If he can earn an 11 percent EAR before he retires and an 8 percent EAR after he retires, how much will he have to save each month in years 11 through 30?58. Calculating Annuity Values After deciding to buy a new car, you can either lease the car orpurchase it with a three-year loan. The car you wish to buy costs $38,000. The dealer has a special leasing arrangement where you pay $1 today and $520 per month for the next three years. If you purchase the car, you will pay it off in monthly payments over the next three years at an 8 percent APR. You believe that you will be able to sell the car for $26,000 in three years. Should you buy or lease the car? What break-even resale price in three years would make you indifferent between buying and leasing?59. Calculating Annuity Values An All-Pro defensive lineman is in contract negotiations. Theteam has offered the following salary structure:All salaries are to be paid in a lump sum. The player has asked you as his agent to renegotiate the terms. He wants a $9 million signing bonus payable today and a contract value increase of $750,000. He also wants an equal salary paid every three months, with the first paycheck three months from now. If the interest rate is 5 percent compounded daily, what is the amount of his quarterly check? Assume 365 days in a year.60. Discount Interest Loans This question illustrates what is known as discount interest. Imagineyou are discussing a loan with a somewhat unscrupulous lender. You want to borrow $20,000 for one year. The interest rate is 14 percent. You and the lender agree that the interest on the loan will be .14 × $20,000 = $2,800. So, the lender deducts this interest amount from the loan up front and gives you $17,200. In this case, we say that the discount is $2,800. What’s wrong here?61. Calculating Annuity Values You are serving on a jury. A plaintiff is suing the city for injuriessustained after a freak street sweeper accident. In the trial, doctors testified that it will be five years before the plaintiff is able to return to work. The jury has already decided in favor of the plaintiff. You are the foreperson of the jury and propose that the jury give the plaintiff an award to cover the following: (1) The present value of two years’ back pay. The plaintiff’s annual salary for the last two years would have been $42,000 and $45,000, respectively. (2) The present value of five years’ future salary. You assume the salary will be $49,000 per year. (3) $150,000 for pain and suffering. (4) $25,000 for court costs. Assume that the salary payments are equal amounts paid at the end of each month. If the interest rate you choose is a 9 percent EAR, what is the size of the settlement? If you were the plaintiff, would you like to see a higher or lower interest rate?62. Calculating EAR with Points You are looking at a one-year loan of $10,000. The interest rateis quoted as 9 percent plus three points. A point on a loan is simply 1 percent (one percentage point) of the loan amount. Quotes similar to this one are very common with home mortgages. The interest rate quotation in this example requires the borrower to pay three points to the lender up front and repay the loan later with 9 percent interest. What rate would you actually be paying here? What is the EAR for a one-year loan with a quoted interest rate of 12 percent plus two points? Is your answer affected by the loan amount?63. EAR versus APR Two banks in the area offer 30-year, $200,000 mortgages at 6.8 percent andcharge a $2,100 loan application fee. However, the application fee charged by Insecurity Bank and Trust is refundable if the loan application is denied, whereas that charged by I. M. Greedy and Sons Mortgage Bank is not. The current disclosure law requires that any fees that will be refunded if the applicant is rejected be included in calculating the APR, but this is not required with nonrefundable。
罗斯《公司理财》第9版笔记和课后习题(含考研真题)详解[视频详解](折现现金流量估价)【圣才出品】
罗斯《公司理财》第9版笔记和课后习题(含考研真题)详解[视频详解]第4章折现现金流量估价[视频讲解]4.1复习笔记当前的1美元与未来的1美元的价值是不同的,因为当前1美元用于投资,在未来可以得到更多,而且未来的1美元具有不确定性。
这种区别正是“货币的时间价值”。
货币的时间价值概念是金融投资和融资的基石之一,资本预算、项目决策、融资管理和兼并等领域均有涉及。
因此有必要理解和掌握相关的现值、终值、年金和永续年金的概念和计算公式。
1.现值与净现值现值是未来资金在当前的价值,是把未来的现金流按照一定的贴现率贴现到当前的价值。
以单期为例,一期后的现金流的现值:其中,C1是一期后的现金流,r是适当贴现率。
在多期的情况下,求解PV的公式可写为:其中,C T是在T期的现金流,r是适当贴现率。
净现值的计算公式为:NPV=-成本+PV。
也就是说,净现值NPV是这项投资未来现金流的现值减去成本的现值所得的结果。
一种定量的财务决策方法是净现值分析法。
产生N期现金流的投资项目的净现值为:NPV=其中,-C0是初始现金流,由于它代表了一笔投资,即现金流出,因而是负值。
2.终值一笔投资在多期以后终值的一般计算公式可以写为:FV=C0×(1+r)T其中,C0是期初投资的金额,r是利息率,T是资金投资持续的期数。
一项投资每年按复利计息m次的年末终值为:其中:C0是投资者的初始投资;r是名义年利率。
当m趋近于无限大时,则是连续复利计息,这时T年后的终值可以表示为:C0×e rT。
连续复利在高级金融中有广泛的应用。
3.名义利率和实际利率名义年利率是不考虑年内复利计息的,不同的银行或金融机构有不同的称谓,比较通用的是年百分比利率(APR);实际利率(EAR)是指在年内考虑复利计息的,然后折算成一年的利率。
名义利率和实际利率之间的差别在于名义利率只有给出计息间隔期下才有意义。
4.年金年金是指一系列稳定有规律的,持续一段固定时期的现金收付活动,即在一定期间内,每隔相同时期(一年、半年或一季等)收入或支出相等金额的款项。
罗斯《公司理财》英文习题答案DOCchap004
公司理财习题答案第四章Chapter 4: Net Present Value4.1 a. $1,000 ⨯ 1.0510 = $1,628.89b. $1,000 ⨯ 1.0710 = $1,967.15c. $1,000 ⨯ 1.0520 = $2,653.30d. Interest compounds on the I nterest already earned. Therefore, the interest earnedin part c, $1,653.30, is more than double the amount earned in part a, $628.89.4.2 a. $1,000 / 1.17 = $513.16b. $2,000 / 1.1 = $1,818.18c. $500 / 1.18 = $233.254.3 You can make your decision by computing either the present value of the $2,000 that youcan receive in ten years, or the future value of the $1,000 that you can receive now.Present value: $2,000 / 1.0810 = $926.39Future value: $1,000 ⨯ 1.0810 = $2,158.93Either calculation indicates you should take the $1,000 now.4.4 Since this bond has no interim coupon payments, its present value is simply the presentvalue of the $1,000 that will be received in 25 years. Note: As will be discussed in the next chapter, the present value of the payments associated with a bond is the price of that bond.PV = $1,000 /1.125 = $92.304.5 PV = $1,500,000 / 1.0827 = $187,780.234.6 a. At a discount rate of zero, the future value and present value are always the same.Remember, FV = PV (1 + r) t. If r = 0, then the formula reduces to FV = PV.Therefore, the values of the options are $10,000 and $20,000, respectively. Youshould choose the second option.b. Option one: $10,000 / 1.1 = $9,090.91Option two: $20,000 / 1.15 = $12,418.43Choose the second option.c. Option one: $10,000 / 1.2 = $8,333.33Option two: $20,000 / 1.25 = $8,037.55Choose the first option.d. You are indifferent at the rate that equates the PVs of the two alternatives. Youknow that rate must fall between 10% and 20% because the option you wouldchoose differs at these rates. Let r be the discount rate that makes you indifferentbetween the options.$10,000 / (1 + r) = $20,000 / (1 + r)5(1 + r)4 = $20,000 / $10,000 = 21 + r = 1.18921r = 0.18921 = 18.921%4.7 PV of Joneses’ offer = $150,000 / (1.1)3 = $112,697.22Since the PV of Joneses’ offer is less than Smiths’ offer, $115,000, you should chooseSmiths’ offer.4.8 a. P0 = $1,000 / 1.0820 = $214.55b. P10 = P0 (1.08)10 = $463.20c. P15 = P0 (1.08)15 = $680.594.9 The $1,000 that you place in the account at the end of the first year will earn interest for sixyears. The $1,000 that you place in the account at the end of the second year will earninterest for five years, etc. Thus, the account will have a balance of$1,000 (1.12)6 + $1,000 (1.12)5 + $1,000 (1.12)4 + $1,000 (1.12)3= $6,714.614.10 PV = $5,000,000 / 1.1210 = $1,609,866.184.11 a. The cost of investment is $900,000.PV of cash inflows = $120,000 / 1.12 + $250,000 / 1.122 + $800,000 / 1.123= $875,865.52Since the PV of cash inflows is less than the cost of investment, you should notmake the investment.b. NPV = -$900,000 + $875,865.52= -$24,134.48c. NPV = -$900,000 + $120,000 / 1.11 + $250,000 / 1.112 + $800,000 / 1.113= $-4,033.18Since the NPV is still negative, you should not make the investment.4.12 NPV = -($340,000 + $10,000) + ($100,000 - $10,000) / 1.1+ $90,000 / 1.12 + $90,000 / 1.13 + $90,000 / 1.14 + $100,000 / 1.15= -$2,619.98Since the NPV is negative, you should not buy it.If the relevant cost of capital is 9 percent,NPV = -$350,000 + $90,000 / 1.09 + $90,000 / 1.092 + $90,000 / 1.093+ $90,000 / 1.094 + $100,000 / 1.095= $6,567.93Since the NPV is positive, you should buy it.4.13 a. Profit = PV of revenue - Cost = NPVNPV = $90,000 / 1.15 - $60,000 = -$4,117.08No, the firm will not make a profit.b. Find r that makes zero NPV.$90,000 / (1+r)5 - $60,000 = $0(1+r)5 = 1.5r = 0.08447 = 8.447%4.14 The future value of the decision to own your car for one year is the sum of the trade-invalue and the benefit from owning the car. Therefore, the PV of the decision to own thecar for one year is$3,000 / 1.12 + $1,000 / 1.12 = $3,571.43Since the PV of the roommate’s offer, $3,500, is lower than the aunt’s offer, you shouldaccept aunt’s offer.4.15 a. $1.000 (1.08)3 = $1,259.71b. $1,000 [1 + (0.08 / 2)]2 ⨯ 3 = $1,000 (1.04)6 = $1,265.32c. $1,000 [1 + (0.08 / 12)]12 ⨯ 3 = $1,000 (1.00667)36 = $1,270.24d. $1,000 e0.08 ⨯ 3 = $1,271.25公司理财习题答案第四章e. The future value increases because of the compounding. The account is earninginterest on interest. Essentially, the interest is added to the account balance at theend of every compounding period. During the next period, the account earnsinterest on the new balance. When the compounding period shortens, the balancethat earns interest is rising faster.4.16 a. $1,000 e0.12 ⨯ 5 = $1,822.12b. $1,000 e0.1 ⨯ 3 = $1,349.86c. $1,000 e0.05 ⨯ 10 = $1,648.72d. $1,000 e0.07 ⨯ 8 = $1,750.674.17 PV = $5,000 / [1+ (0.1 / 4)]4 ⨯ 12 = $1,528.364.18 Effective annual interest rate of Bank America= [1 + (0.041 / 4)]4 - 1 = 0.0416 = 4.16%Effective annual interest rate of Bank USA= [1 + (0.0405 / 12)]12 - 1 = 0.0413 = 4.13%You should deposit your money in Bank America.4.19 The price of the consol bond is the present value of the coupon payments. Apply theperpetuity formula to find the present value. PV = $120 / 0.15 = $8004.20 Quarterly interest rate = 12% / 4 = 3% = 0.03Therefore, the price of the security = $10 / 0.03 = $333.334.21 The price at the end of 19 quarters (or 4.75 years) from today = $1 / (0.15 ÷ 4) = $26.67The current price = $26.67 / [1+ (.15 / 4)]19 = $13.254.22 a. $1,000 / 0.1 = $10,000b. $500 / 0.1 = $5,000 is the value one year from now of the perpetual stream. Thus,the value of the perpetuity is $5,000 / 1.1 = $4,545.45.c. $2,420 / 0.1 = $24,200 is the value two years from now of the perpetual stream.Thus, the value of the perpetuity is $24,200 / 1.12 = $20,000.4.23 The value at t = 8 is $120 / 0.1 = $1,200.Thus, the value at t = 5 is $1,200 / 1.13 = $901.58.4.24 P = $3 (1.05) / (0.12 - 0.05) = $45.004.25 P = $1 / (0.1 - 0.04) = $16.674.26 The first cash flow will be generated 2 years from today.The value at the end of 1 year from today = $200,000 / (0.1 - 0.05) = $4,000,000.Thus, PV = $4,000,000 / 1.1 = $3,636,363.64.4.27 A zero NPV-$100,000 + $50,000 / r = 0-r = 0.54.28 Apply the NPV technique. Since the inflows are an annuity you can use the present valueof an annuity factor.NPV = -$6,200 + $1,200 8A1.0= -$6,200 + $1,200 (5.3349)= $201.88Yes, you should buy the asset.4.29 Use an annuity factor to compute the value two years from today of the twenty payments.Remember, the annuity formula gives you the value of the stream one year before the first payment. Hence, the annuity factor will give you the value at the end of year two of the stream of payments. Value at the end of year two = $2,000 20A08.0= $2,000 (9.8181)= $19,636.20The present value is simply that amount discounted back two years.PV = $19,636.20 / 1.082 = $16,834.884.30 The value of annuity at the end of year five= $500 15A = $500 (5.84737) = $2,923.6915.0The present value = $2,923.69 / 1.125 = $1,658.984.31 The easiest way to do this problem is to use the annuity factor. The annuity factor must beequal to $12,800 / $2,000 = 6.4; remember PV =C A t r. The annuity factors are in theappendix to the text. To use the factor table to solve this problem, scan across the rowlabeled 10 years until you find 6.4. It is close to the factor for 9%, 6.4177. Thus, the rate you will receive on this note is slightly more than 9%.You can find a more precise answer by interpolating between nine and ten percent.10% ⎤ 6.1446 ⎤a ⎡ r ⎥bc ⎡ 6.4 ⎪ d⎣ 9% ⎦⎣ 6.4177 ⎦By interpolating, you are presuming that the ratio of a to b is equal to the ratio of c to d.(9 - r ) / (9 - 10) = (6.4177 - 6.4 ) / (6.4177 - 6.1446)r = 9.0648%The exact value could be obtained by solving the annuity formula for the interest rate.Sophisticated calculators can compute the rate directly as 9.0626%.公司理财习题答案第四章4.32 a. The annuity amount can be computed by first calculating the PV of the $25,000which you need in five years. That amount is $17,824.65 [= $25,000 / 1.075].Next compute the annuity which has the same present value.$17,824.65 = C 5A.007$17,824.65 = C (4.1002)C = $4,347.26Thus, putting $4,347.26 into the 7% account each year will provide $25,000 fiveyears from today.b. The lump sum payment must be the present value of the $25,000, i.e., $25,000 /1.075 = $17,824.65The formula for future value of any annuity can be used to solve the problem (seefootnote 14 of the text).4.33The amount of loan is $120,000 ⨯ 0.85 = $102,000.20C A= $102,000.010The amount of equal installments isC = $102,000 / 20A = $102,000 / 8.513564 = $11,980.8810.04.34 The present value of salary is $5,000 36A = $150,537.53.001The present value of bonus is $10,000 3A = $23,740.42 (EAR = 12.68% is used since.01268bonuses are paid annually.)The present value of the contract = $150,537.53 + $23,740.42 = $174,277.944.35 The amount of loan is $15,000 ⨯ 0.8 = $12,000.C 48A = $12,0000067.0The amount of monthly installments isC = $12,000 / 48A = $12,000 / 40.96191 = $292.960067.04.36 Option one: This cash flow is an annuity due. To value it, you must use the after-taxamounts. The after-tax payment is $160,000 (1 - 0.28) = $115,200. Value all except the first payment using the standard annuity formula, then add back the first payment of$115,200 to obtain the value of this option.Value = $115,200 + $115,200 30A10.0= $115,200 + $115,200 (9.4269)= $1,201,178.88Option two: This option is valued similarly. You are able to have $446,000 now; this is already on an after-tax basis. You will receive an annuity of $101,055 for each of the next thirty years. Those payments are taxable when you receive them, so your after-taxpayment is $72,759.60 [= $101,055 (1 - 0.28)].Value = $446,000 + $72,759.60 30A.010= $446,000 + $72,759.60 (9.4269)= $1,131,897.47Since option one has a higher PV, you should choose it.4.37 The amount of loan is $9,000. The monthly payment C is given by solving the equation: C 60008.0A = $9,000 C = $9,000 / 47.5042 = $189.46In October 2000, Susan Chao has 35 (= 12 ⨯ 5 - 25) monthly payments left, including the one due in October 2000.Therefore, the balance of the loan on November 1, 2000 = $189.46 + $189.46 34008.0A = $189.46 + $189.46 (29.6651) = $5,809.81Thus, the total amount of payoff = 1.01 ($5,809.81) = $5,867.91 4.38 Let r be the rate of interest you must earn. $10,000(1 + r)12 = $80,000 (1 + r)12 = 8 r = 0.18921 = 18.921%4.39 First compute the present value of all the payments you must make for your children’s education. The value as of one year before matriculation of one child’s education is$21,000 415.0A= $21,000 (2.8550) = $59,955. This is the value of the elder child’s education fourteen years from now. It is the value of the younger child’s education sixteen years from today. The present value of these is PV = $59,955 / 1.1514 + $59,955 / 1.1516 = $14,880.44You want to make fifteen equal payments into an account that yields 15% so that the present value of the equal payments is $14,880.44. Payment = $14,880.44 / 1515.0A = $14,880.44 / 5.8474 = $2,544.804.40 The NPV of the policy isNPV = -$750 306.0A - $800306.0A / 1.063 + $250,000 / [(1.066) (1.0759)] = -$2,004.76 - $1,795.45 + $3,254.33= -$545.88 Therefore, you should not buy the policy.4.41 The NPV of the lease offer isNPV = $120,000 - $15,000 - $15,000 908.0A - $25,000 / 1.0810= $105,000 - $93,703.32 - $11,579.84 = -$283.16 Therefore, you should not accept the offer.4.42 This problem applies the growing annuity formula. The first payment is $50,000(1.04)2(0.02) = $1,081.60. PV = $1,081.60 [1 / (0.08 - 0.04) - {1 / (0.08 - 0.04)}{1.04 / 1.08}40]= $21,064.28 This is the present value of the payments, so the value forty years from today is $21,064.28 (1.0840) = $457,611.46公司理财习题答案第四章4.43 Use the discount factors to discount the individual cash flows. Then compute the NPV ofthe project. Notice that the four $1,000 cash flows form an annuity. You can still use the factor tables to compute their PV. Essentially, they form cash flows that are a six year annuity less a two year annuity. Thus, the appropriate annuity factor to use with them is 2.6198 (= 4.3553 - 1.7355).Year Cash Flow Factor PV 1 $700 0.9091 $636.37 2 900 0.8264 743.76 3 1,000 ⎤ 4 1,000 ⎥ 2.6198 2,619.80 5 1,000 ⎥ 6 1,000 ⎦ 7 1,250 0.5132 641.50 8 1,375 0.4665 641.44 Total $5,282.87NPV = -$5,000 + $5,282.87 = $282.87 Purchase the machine.4.44 Weekly inflation rate = 0.039 / 52 = 0.00075 Weekly interest rate = 0.104 / 52 = 0.002 PV = $5 [1 / (0.002 - 0.00075)] {1 – [(1 + 0.00075) / (1 + 0.002)]52 ⨯ 30} = $3,429.384.45 Engineer:NPV = -$12,000 405.0A + $20,000 / 1.055 + $25,000 / 1.056 - $15,000 / 1.057- $15,000 / 1.058 + $40,000 2505.0A / 1.058= $352,533.35 Accountant:NPV = -$13,000 405.0A + $31,000 3005.0A / 1.054= $345,958.81 Become an engineer.After your brother announces that the appropriate discount rate is 6%, you can recalculate the NPVs. Calculate them the same way as above except using the 6% discount rate. Engineer NPV = $292,419.47 Accountant NPV = $292,947.04Your brother made a poor decision. At a 6% rate, he should study accounting.4.46 Since Goose receives his first payment on July 1 and all payments in one year intervalsfrom July 1, the easiest approach to this problem is to discount the cash flows to July 1 then use the six month discount rate (0.044) to discount them the additional six months. PV = $875,000 / (1.044) + $650,000 / (1.044)(1.09) + $800,000 / (1.044)(1.092) + $1,000,000 / (1.044)(1.093) + $1,000,000/(1.044)(1.094) + $300,000 / (1.044)(1.095)+ $240,000 1709.0A / (1.044)(1.095) + $125,000 1009.0A / (1.044)(1.0922) = $5,051,150Remember that the use of annuity factors to discount the deferred payments yields the value of the annuity stream one period prior to the first payment. Thus, the annuity factor applied to the first set of deferred payments gives the value of those payments on July 1 of 1989. Discounting by 9% for five years brings the value to July 1, 1984. The use of the six month discount rate (4.4%) brings the value of the payments to January 1, 1984. Similarly, the annuity factor applied to the second set of deferred payments yields the value of those payments in 2006. Discounting for 22 years at 9% and for six months at 4.4% provides the value at January 1, 1984.The equivalent five-year, annual salary is the annuity that solves: $5,051,150 = C 509.0A C = $5,051,150/3.8897C = $1,298,596The student must be aware of possible rounding errors in this problem. The differencebetween 4.4% semiannual and 9.0% and for six months at 4.4% provides the value at January 1, 1984. 4.47 PV = $10,000 + ($35,000 + $3,500) [1 / (0.12 - 0.04)] [1 - (1.04 / 1.12) 25 ]= $415,783.604.48 NPV = -$40,000 + $10,000 [1 / (0.10 - 0.07)] [1 - (1.07 / 1.10)5 ] = $3,041.91 Revise the textbook.4.49The amount of the loan is $400,000 (0.8) = $320,000 The monthly payment is C = $320,000 / 3600067.0.0A = $ 2,348.10 Thirty years of payments $ 2,348.10 (360) = $ 845,316.00 Eight years of payments $2,348.10 (96) = $225,417.60 The difference is the balloon payment of $619,898.404.50 The lease payment is an annuity in advanceC + C 2301.0A = $4,000 C (1 + 20.4558) = $4,000 C = $186.424.51 The effective annual interest rate is[ 1 + (0.08 / 4) ] 4 – 1 = 0.0824The present value of the ten-year annuity is PV = 900 100824.0A = $5,974.24 Four remaining discount periodsPV = $5,974.24 / (1.0824) 4 = $4,352.43公司理财习题答案第四章4.52The present value of Ernie’s retirement incomePV = $300,000 20A / (1.07) 30 = $417,511.5407.0The present value of the cabinPV = $350,000 / (1.07) 10 = $177,922.25The present value of his savingsPV = $40,000 10A = $280,943.26.007In present value terms he must save an additional $313,490.53 In future value termsFV = $313,490.53 (1.07) 10 = $616,683.32He must saveC = $616.683.32 / 20A = $58,210.5407.0。
ROSS公司理财第九版第4章课后案例作业
所需成本现值=65000+3000+
(
+
=140952.90
所得报酬的现值= =1669675.47 因此,Ben 选择到 Wilton 大学去读 MBA 的净现值为 1528722.57 美元。 (3)Ben 选择到 Mount Perry 大学去读 MBA
学费/年
保险费
书费等
食宿费
签约费
薪酬/年
第4章
折现现金流量估价习题参考答案
小案例
有关取得 MBA 学位的决定 P89
Ben Bates 6 年前大学毕业并获得理财学学士学位, 尽管对目前的工作很满意, 但他的目标是成为一名投资银行家。他认为一个 MBA 学位将使他达到该目标。 经过考试,其可选学校有 Wilton 大学和 Mount Perry 大学。尽管两所学校均鼓 励通过实习拿到学分,但实习是没有薪酬的。除了实习,两所学校都不允许学生 在 MBA 期间工作。 Ben 目前在 Dewey and Louis 投资管理公司工作。他每年的薪酬为 60000 美 元,并且预期薪酬会以每年 3%的比例增长直到其退休。他目前是 28 岁,估计还 可以工作 35 年。他目前的工作还包括一个完全支付的健康保险计划,并且其目 前平均税率为 26%。Ben 的储蓄账户有足够的钱来完成 MBA 学业。 Wilton 大学 Ritter 商学院是该国顶尖的商学院之一。要获取该学院的 MBA 学位,需要在学校里全脱产学习 2 年。每学年的学费为 65000 美元,这些学费需 要在该年年初支付。书与其他用品花费估计每年需要 3000 美元。Ben 估计从该 学校毕业后, 他将找到一份新的工作, 其每年可以给他带来 110000 美元的薪酬, 并且还有 20000 美元的签约酬金,该工作的薪酬将以每年 4%的增长率增长。由 于薪酬较高,其平均首付税率将增至 31%。 Mount Perry 大学 Bradley 商学院从 16 年前开始设 MBA 课程。与 Ritter 学院 相比,Bradley 学院显得很小而且不出名。Bradley 商学院提供了一个速成的、1 年期的课程。 在被录取入学时要叫学费 80000 美元。 书与其他用品花费估计需要 4500 美元。 Ben 估计毕业后, 他将找到一份新的工作, 其每年可以给他带来 92000 美元的薪酬,并且还有 18000 美元的签约薪酬,该工作的薪酬将以每年 3.5%的 增长率增长。其平均税率将增至 29%。 两所大学均提供了一份健康保险计划,其花费为每年 3000 美元,在每年年 初支付。Ben 估计在任一所大学的食宿花费每年需 2000 美元。适当的折现率是 6.5%。源自学费/年保险费书费等
Cha07罗斯公司理财第九版原版书课后习题
Cha07罗斯公司理财第九版原版书课后习题to abandon, and timing options.4. Decision trees represent an approach for valuing projects with these hidden, or real, options.Concept Questions1. Forecasting Risk What is forecasting risk? In general, would the degree of forecasting risk begreater for a new product or a cost-cutting proposal? Why?2. Sensitivity Analysis and Scenario Analysis What is the essential difference betweensensitivity analysis and scenario analysis?3. Marginal Cash Flows A coworker claims that looking at all this marginal this and incrementalthat is just a bunch of nonsense, and states, “Listen, if our average revenue doesn’t exceed our average cost, then we will have a negative cash flow, and we will go broke!” How do you respond?4. Break-Even Point As a shareholder of a firm that is contemplating a new project, would yoube more concerned with the accounting break-even point, the cash break-even point (the point at which operating cash flow is zero), or the financial break-even point? Why?5. Break-Even Point Assume a firm is considering a new project that requires an initialinvestment and has equal sales and costs over its life. Will the project reach the accounting, cash, or financial break-even point first? Which will it reach next? Last? Will this order always apply?6. Real Options Why does traditional NPV analysis tend to underestimate the true value of acapital budgeting project?7. Real Options The Mango Republic has just liberalized its markets and is now permittingforeign investors. Tesla Manufacturing has analyzed starting a project in the country and has determined that the project hasa negative NPV. Why might the company go ahead with the project? What type of option is most likely to add value to this project?8. Sensitivity Analysis and Breakeven How does sensitivity analysis interact with break-evenanalysis?9. Option to Wait An option can often have more than one source of value. Consider a loggingcompany. The company can log the timber today or wait another year (or more) to log the timber.What advantages would waiting one year potentially have?10. Project Analysis You are discussing a project analysis witha coworker. The project involvesreal options, such as expanding the project if successful, or abandoning the project if it fails. Your coworker makes the following statement: “This analysis is ridiculous. We looked at expanding or abandoning the project in two years, but there are many other options we should consider. For example, we could expand in one year, and expand further in two years. Or we could expand in one year, and abandon the project in two years. There are too many options for us to examine.Because of this, anything this analysis would give us is worthless.” How would you evaluate this statement? Considering that with any capital budgeting project there are an infinite number of real options, when do you stop the option analysis on an individual project?Questions and Problems: connect?BASIC (Questions 1–10)1. Sensitivity Analysis and Break-Even Point We are evaluating a project that costs$724,000, has an eight-year life, and has no salvage value. Assume that depreciation is straight-line to zero over the life of the project. Sales are projected at 75,000 units per year. Price per unit is $39, variable cost per unit is $23, and fixed costs are $850,000 per year. The tax rate is 35 percent, and we require a 15 percent return on this project.1. Calculate the accounting break-even point.2. Calculate the base-case cash flow and NPV. What is the sensitivity of NPV to changes inthe sales figure? Explain what your answer tells you about a 500-unit decrease in projected sales.3. What is the sensitivity of OCF to changes in the variable cost figure? Explain what youranswer tells you about a $1 decrease in estimated variable costs.2. Scenario Analysis In the previous problem, suppose the projections given for price, quantity,variable costs, and fixed costs are all accurate to w ithin ±10 percent. Calculate the best-case and worst-case NPV figures.3. Calculating Breakeven In each of the following cases, find the unknown variable. Ignoretaxes.4. Financial Breakeven L.J.’s Toys Inc. just purchased a $250,000 machine to produce toy cars.The machine will be fully depreciated by the straight-line method over its five-year economic life.Each toy sells for $25. The variable cost per toy is $6, and the firm incurs fixed costs of $360,000 each year. The corporate tax rate for the company is 34 percent. The appropriate discount rate is12 percent. What is the financial break-even point for the project?5. Option to Wait Your company is deciding whether to invest in a new machine. The newmachine will increase cash flow by $340,000 per year. You believe the technology used in the machine has a 10-year life; in other words, no matter when you purchase the machine, it will be obsolete 10 years from today. The machine is currently priced at $1,800,000. The cost of the machine will decline by $130,000 per year until it reaches $1,150,000, where it will remain. If your required return is 12 percent, should you purchase the machine? If so, when should you purchase it?6. Decision Trees Ang Electronics, Inc., has developed a new DVDR. If the DVDR is successful,the present value of the payoff (when the product is brought to market) is $22 million. If the DVDR fails, the present value of the payoff is $9 million. If the product goes directly to market, there is a50 percent chance of success. Alternatively, Ang can delay the launch by one year and spend $1.5million to test market the DVDR. Test marketing would allow the firm to improve the product and increase the probability of success to 80 percent. The appropriate discount rate is 11 percent.Should the firm conduct test marketing?7. Decision Trees The manager for a growing firm is considering the launch of a new product. Ifthe product goes directly to market, there is a 50 percent chance of success. For $135,000 the manager can conduct a focus group that will increase the product’s chance of success to 65 percent. Alternatively, the manager has the option to pay a consulting firm $400,000 to research the market and refine the product. The consulting firm successfully launches new products 85 percent of the time. If the firm successfully launches the product, the payoff will be $1.5 million. If the product is a failure, the NPV is zero. Which action will result in the highest expected payoff to the firm?8. Decision Trees B&B has a new baby powder ready to market. If the firm goes directly to themarket with the product, there is only a 55 percent chance of success. However, the firm can conduct customer segment research, which will take a year and cost $1.8 million. By going through research, B&B will be able to better target potential customers and will increase the probability of success to 70 percent. If successful, the baby powder will bring a present value profit (at time of initial selling) of $28 million. If unsuccessful, the present value payoff is only $4 million. Should the firm conduct customer segment research or go directly to market? The appropriate discount rate is15 percent.9. Financial Break-Even Analysis You are considering investing in a company that cultivatesabalone for sale to local restaurants. Use the following information:The discount rate for the company is 15 percent, the initial investment in equipment is $360,000, and the project’s economic life is seven years. Assume the equipment is depreciated on a straight-line basis over the project’s life.1. What is the accounting break-even level for the project?2. What is the financial break-even level for the project?10. Financial Breakeven Niko has purchased a brand new machine to produce its High Flight lineof shoes. The machine has an economic life of five years. The depreciation schedule for the machine is straight-line with no salvage value. The machine costs $390,000. The sales price per pair of shoes is $60, while the variable cost is $14. $185,000 of fixed costs per year are attributed to the machine. Assume that the corporate tax rate is 34 percent and the appropriate discount rate is 8 percent. What is the financial break-even point?INTERMEDIATE (Questions 11–25)11. Break-Even Intuition Consider a project with a required return of R percent that costs $I andwill last for N years. The project uses straight-line depreciation to zero over the N-year life; there are neither salvage value nor net working capital requirements.1. At the accounting break-even level of output, what is the IRR of this project? The paybackperiod? The NPV?2. At the cash break-even level of output, what is the IRR of this project? The paybackperiod? The NPV?3. At the financial break-even level of output, what is the IRR of this project? The paybackperiod? The NPV?12. Sensitivity Analysis Consider a four-year project with the following information: Initial fixedasset investment = $380,000; straight-line depreciation to zero over the four-year life; zero salvage value; price = $54; variable costs = $42; fixed costs = $185,000; quantity sold = 90,000 units; tax rate = 34 percent. How sensitive is OCF to changes in quantity sold?13. Project Analysis You are considering a new product launch. The project will cost $960,000,have a four-year life, and have no salvage value; depreciation is straight-line to zero. Sales are projected at 240 units per year; price per unit will be $25,000; variable cost per unit will be $19,500; and fixed costs will be $830,000 per year. The required return on the project is 15 percent, and the relevant tax rate is 35 percent.1. Based on your experience, you think the unit sales, variable cost, and fixed costprojections given here are probably accurate to within ±10 percent. What are the upper and lower bounds for these projections? What is the base-case NPV? What are the best-case and worst-case scenarios?2. Evaluate the sensitivity of your base-case NPV to changes in fixed costs.3. What is the accounting break-even level of output for this project?14. Project Analysis McGilla Golf has decided to sell a newline of golf clubs. The clubs will sell for$750 per set and have a variable cost of $390 per set. The company has spent $150,000 for a marketing study that determined the company will sell 55,000 sets per year for seven years. The marketing study also determined that the company will lose sales of 12,000 sets of its high-priced clubs. The high-priced clubs sell at $1,100 and have variable costs of $620. The company will also increase sales of its cheap clubs by 15,000 sets. The cheap clubs sell for $400 and have variable costs of $210 per set. The fixed costs each year will be $8,100,000. The company has also spent $1,000,000 on research and development for the new clubs. The plant and equipment required will cost $18,900,000 and will be depreciated on a straight-line basis. The new clubs will also require an increase in net working capital of $1,400,000 that will be returned at the end of the project. The tax rate is 40 percent, and the cost of capital is 14 percent. Calculate the payback period, the NPV, and the IRR.15. Scenario Analysis In the previous problem, you feel that the values are accurate to withinonly ±10 percent. What are the best-case and worst-case NPVs? (Hint: The price and variable costs for the two existing sets of clubs are known with certainty; only the sales gained or lost are uncertain.)16. Sensitivity Analysis McGilla Golf would like to know the sensitivity of NPV to changes in theprice of the new clubs and the quantity of new clubs sold. What is the sensitivity of the NPV to each of these variables?17. Abandonment Value We are examining a new project. We expect to sell 9,000 units per yearat $50 net cash flow apiece for the next 10 years. In otherwords, the annual operating cash flow is projected to be $50 × 9,000 = $450,000. The relevant discount rate is 16 percent, and the initial investment required is $1,900,000.1. What is the base-case NPV?2. After the first year, the project can be dismantled and sold for $1,300,000. If expectedsales are revised based on the first year’s performance, when would it make sense to abandon the investment? In other words, at what level of expected sales would it make sense to abandon the project?3. Explain how the $1,300,000 abandonment value can be viewed as the opportunity cost ofkeeping the project in one year.18. Abandonment In the previous problem, suppose you think it is likely that expected sales willbe revised upward to 11,000 units if the first year is a success and revised downward to 4,000 units if the first year is not a success.1. If success and failure are equally likely, what is the NPV of the project? Consider thepossibility of abandonment in answering.2. What is the value of the option to abandon?19. Abandonment and Expansion In the previous problem, suppose the scale of the project canbe doubled in one year in the sense that twice as many units can be produced and sold. Naturally, expansion would be desirable only if the project were a success. This implies that if the project is a success, projected sales after expansion will be 22,000. Again assuming that success and failure are equally likely,what is the NPV of the project? Note that abandonment is still an option if the project is a failure. What is the value of the option to expand?20. Break-Even Analysis Your buddy comes to you with a sure-fire way to make some quickmoney and help pay off your student loans. His idea is to sell T-shirts with the words “I get” on them. “You get it?” He says, “You see all those bumper stickers and T-shirts that say ‘got milk’ or ‘got surf.’ So this says, ‘I get.’ It’s funn y! All we have to do is buy a used silk screen press for $3,200 and we are in business!” Assume there are no fixed costs, and you depreciate the $3,200 in the first period. Taxes are 30 percent.1. What is the accounting break-even point if each shirt costs $7 to make and you can sellthem for $10 apiece?Now assume one year has passed and you have sold 5,000 shirts! You find out that the Dairy Farmers of America have copyrighted the “got milk” slogan and are requiring you to pay $12,000 to continue operations. You expect this craze will last for another three years and that your discount rate is 12 percent.2. What is the financial break-even point for your enterprise now?21. Decision Trees Young screenwriter Carl Draper has just finished his first script. It has action,drama, and humor, and he thinks it will be a blockbuster. He takes the script to every motion picture studio in town and tries to sell it but to no avail. Finally, ACME studios offers to buy the script for either (a) $12,000 or (b) 1 pe rcent of the movie’s profits. There are two decisions the studio will have to make. First is to decide if the script is good or bad, and second if the movieis good or bad. First, there is a 90 percent chance that the script is bad. If it is bad, the studio does nothing more and throws the script out. If the script is good, they will shoot the movie. After the movie is shot, the studio will review it, and there is a 70 percent chance that the movie is bad. If the movie is bad, the movie will not be promoted and will not turn a profit. If the movie is good, the studio will promote heavily; the average profit for this type of movie is $20 million. Carl rejects the $12,000 and says he wants the 1 percent of profits. Was this a good decision by Carl?22. Option to Wait Hickock Mining is evaluating when to open a gold mine. The mine has 60,000ounces of gold left that can be mined, and mining operations will produce 7,500 ounces per year.The required return on the gold mine is 12 percent, and it will cost $14 million to open the mine.When the mine is opened, the company will sign a contract that will guarantee the price of gold for the remaining life of the mine. If the mine is opened today, each ounce of gold will generate an aftertax cash flow of $450 per ounce. If the company waits one year, there is a 60 percent probability that the contract price will generate an aftertax cash flow of $500 per ounce and a 40 percent probability that the aftertax cash flow will be $410 per ounce. What is the value of the option to wait?23. Abandonment Decisions Allied Products, Inc., is considering a new product launch. The firmexpects to have an annual operating cash flow of $22 million for the next 10 years. Allied Products uses a discount rate of 19 percent for new product launches. The initial investment is $84 million.Assume that the project has no salvage value at the end of its economic life.1. What is the NPV of the new product?2. After the first year, the project can be dismantled and sold for $30 million. If theestimates of remaining cash flows are revised based on the first year’s experience, at what level of expected cash flows does it make sense to abandon the project?24. Expansion Decisions Applied Nanotech is thinking about introducing a new surface cleaningmachine. The marketing department has come up with the estimate that Applied Nanotech can sell15 units per year at $410,000 net cash flow per unit for the next five years. The engineeringdepartment has come up with the estimate that developing the machine will take a $17 million initial investment. The finance department has estimated that a 25 percent discount rate should beused.1. What is the base-case NPV?2. If unsuccessful, after the first year the project can be dismantled and will have an aftertaxsalvage value of $11 million. Also, after the first year, expected cash flows will be revised up to 20 units per year or to 0 units, with equal probability. What is the revised NPV?25. Scenario Analysis You are the financial analyst for a tennis racket manufacturer. Thecompany is considering using a graphitelike material in its tennis rackets. The company has estimated the information in the following table about the market for a racket with the newmaterial. The company expects to sell the racket for six years. The equipment required for the project has no salvage value. The required return for projects of this type is 13 percent, and the company has a 40 percent tax rate. Should you recommend the project?CHALLENGE (Questions 26–30)26. Scenario Analysis Consider a project to supply Detroit with 55,000 tons of machine screwsannually for automobile production. You will need an initial $1,700,000 investment in threading equipment to get the project started; the project will last for five years. The accounting department estimates that annual fixed costs will be $520,000 and that variable costs should be $220 per ton;accounting will depreciate the initial fixed asset investment straight-line to zero over the five-year project life. It also estimates a salvage value of $300,000 after dismantling costs. The marketing department estimates that the automakers will let the contract at a selling price of $245 per ton.The engineering department estimates you will need an initial net working capital investment of $600,000. You require a 13 percent return and face a marginal tax rate of 38 percent on this project.1. What is the estimated OCF for this project? The NPV? Should you pursue this project?2. Suppose you believe that the accounting department’sinitial cost and salvage valueprojections are accurate only to within ±15 percent; the marketing department’s price estimate is accurate only to within ±10 percent; and the engineering department’s net working capital estimate is accurate only to within ±5 p ercent. What is your worst-case scenario for this project? Your best-case scenario? Do you still want to pursue the project? 27. Sensitivity Analysis In Problem 26, suppose you’re confident about your own projections, butyou’re a little unsure about Detroit’s actual machine screw requirements. What is the sensitivity of the project OCF to changes in the quantity supplied? What about the sensitivity of NPV to changes in quantity supplied? Given the sensitivity number you calculated, is there some minimum level of output below which you wouldn’t want to operate? Why?28. Abandonment Decisions Consider the following project for Hand Clapper, Inc. The companyis considering a four-year project to manufacture clap-command garage door openers. This project requires an initial investment of $10 million that will be depreciated straight-line to zero over the project’s life. An initial investment in net working capital of $1.3 million is required to support spare parts inventory; this cost is fully recoverable whenever the project ends. The company believes it can generate $7.35 million in pretax revenues with $2.4 million in total pretax operating costs. The tax rate is 38 percent, and the discount rate is 16 percent. The market value of the equipment over the life of the project is as follows:Lumber is sold by the company for its “pond value.” Pond value is the amount a mill will pay for a log delivered to the mill location. The price paid for logs delivered to a mill is quoted in dollars per thousands of board feet (MBF), and the price depends on the grade of the logs. The forest Bunyan Lumber is evaluatingwas planted by the company 20 years ago and is made up entirely of Douglas fir trees. The table here shows the current price per MBF for the three grades of timber the company feels will come from the stand:Steve believes that the pond value of lumber will increase at the inflation rate. The company is planning to thin the forest today, and it expects to realize a positive cash flow of $1,000 per acre from thinning. The thinning is done to increase the growth rate of the remaining trees, and it is always done 20 years following a planting.The major decision the company faces is when to log the forest. When the company logs the forest, it will immediately replant saplings, which will allow for a future harvest. The longer the forest is allowed to grow, the larger the harvest becomes per acre. Additionally, an older forest has a higher grade of timber. Steve has compiled the following table with the expected harvest per acre in thousands of board feet, along with the breakdown of the timber grades:The company expects to lose 5 percent of the timber it cuts due to defects and breakage.The forest will be clear-cut when the company harvests the timber. This method of harvesting allows for faster growth of replanted trees. All of the harvesting, processing, replanting, andtransportation are to be handled by subcontractors hired by Bunyan Lumber. The cost of the logging is expected to be $140 per MBF. A road system has to be constructed and is expected to cost $50 per MBF on average. Sales preparation and administrative costs, excluding office overhead costs, are expected to be $18 per MBF.As soon as the harvesting is complete, the company will reforest the land. Reforesting costs include the following:All costs are expected to increase at the inflation rate.Assume all cash flows occur at the year of harvest. For example, if the company begins harvesting the timber 20 years from today, the cash flow from the harvest will be received 20 years from today. When the company logs the land, it will immediately replant the land with new saplings. The harvest period chosen will be repeated for the foreseeable future. The company’s nominal required return is 10 percent, and the inflation rate is expected to be 3.7 percent per year. Bunyan Lumber has a 35 percent tax rate.Clear-cutting is a controversial method of forest management. To obtain the necessary permits, Bunyan Lumber has agreed to contribute to a conservation fund every time it harvests the lumber. If the company harvested the forest today, the required contribution would be $250,000. The company has agreed that the required contribution will grow by 3.2 percent per year. When should the company harvest the forest?。
公司理财第九版课后习题答案(英文-Word)
1Solutions ManualCorporate FinanceRoss, Westerfield, and Jaffe9th editionCHAPTER 1INTRODUCTION TO CORPORATE FINANCEAnswers to Concept Questions1. In the corporate form of ownership, the shareholders are the owners of the firm. The shareholders elec t the directors of the corporation, who in turn appoint the firm‘s management. This separation of ownership from control in the corporate form of organization is what causes agency problems to exist. Management may act in its own or someone else‘s best interests, rather than those of the shareholders. If such events occur, they may contradict the goal of maximizing the share price of the equity of the firm.22. Such organizations frequently pursue social or political missions, so many different goals are conceivable. One goal that is often cited is revenue minimization; i.e., provide whatever goods and services are offered at the lowest possible cost to society. A better approach might be to observe that even a not-for-profit business has equity. Thus, one answer is that the appropriate goal is to maximize the value of the equity.3. Presumably, the current stock value reflects the risk, timing, and magnitude of all future cash flows, both short-term and long-term. If this is correct, then the statement is false.4. An argument can be made either way. At the one extreme, we could argue that in a market economy, all of these things are priced. There is thus an optimal level of, for example, ethical and/or illegal behavior, and the framework of stock valuation explicitly includes these. At the other extreme, we could argue that these are non-economic phenomena and are best handled through the political process. A classic (and highly relevant) thought question that illustrates this debate goes something like this: ―A firm has estimated that the cost of improving the safety of one of its products is $30 million. However, the firm believes that improving the safety of the product will only save $20 million in product liability claims. What should the firm do?‖5. The goal will be the same, but the best course of action toward that goal may be different because of differing social, political, and economic institutions.6. The goal of management should be to maximize the share price for the current shareholders. If management believes that it can improve the profitability of the firm so that the share price will exceed $35, then they should fight the offer from the outside company. If managementbelieves that this bidder or other unidentified bidders will actually pay more than $35 per share to acquire the company, then they should still fight the offer. However, if the current management cannot increase the value of the firm beyond the bid price, and no other higher bids come in, then management is not acting in the interests of the shareholders by fighting the offer. Since current managers often lose their jobs when the corporation is acquired, poorly monitored managers have an incentive to fight corporate takeovers in situations such as this.37. We would expect agency problems to be less severe in other countries, primarily due to the relatively small percentage of individual ownership. Fewer individual owners should reduce the number of diverse opinions concerning corporate goals. The high percentage of institutional ownership might lead to a higher degree of agreement between owners and managers on decisions concerning risky projects. In addition, institutions may be better ableto implement effective monitoring mechanisms on managers than can individual owners, base d on the institutions‘ deeper resources and experiences with their own management.8. The increase in institutional ownership of stock in the United States and the growing activism of these large shareholder groups may lead to a reduction in agency problems for U.S. corporations and a more efficient market for corporate control. However, this may not always be the case. If the managers of the mutual fund or pension plan are not concerned with the interests of the investors, the agency problem could potentially remain the same, or even increase since there is the possibility of agency problems between the fund and its investors.9. How much is too much? Who is worth more, Ray Irani or Tiger Woods? The simplest answer is that there is a market for executives just as there is for all types of labor. Executive compensation is the price that clears the market. The same is true for athletes and performers. Having said that, one aspect of executive compensation deserves comment. A primary reason executive compensation has grown so dramatically is that companies have increasingly moved to stock-based compensation. Such movement is obviously consistent with the attempt to better align stockholder and management interests. In recent years, stock prices have soared, so management has cleaned up. It is sometimes argued that much of this reward is simply due to rising stock prices in general, not managerial performance. Perhaps in the future, executive compensation will be designed to reward only differential performance, i.e., stock price increases in excess of general market increases.10. Maximizing the current share price is the same as maximizing the future share price at any future period. The value of a share of stock depends on all of the future cash flows of company. Another way to look at this is that, barring large cash payments to shareholders, the expected price of the stock must be higher in the future than it is today. Who would buy a stock for $100 today when the share price in one year is expected to be $80?4CHAPTER 2FINANCIAL STATEMENTS AND CASH FLOWAnswers to Concepts Review and Critical Thinking Questions1. True. Every asset can be converted to cash at some price. However, when we are referring to a liquid asset, the added assumption that the asset can be quickly converted to cash at or near market value is important.2. The recognition and matching principles in financial accounting call for revenues, and the costs associated with producing those revenues, to be ―booked‖ when the revenue process is essentially complete, not necessarily when the cash is collected or bills are paid. Note that this way is not necessarily correct; it‘s the way accountants have chosen to do it.3. The bottom line number shows the change in the cash balance on the balance sheet. As such, it is not a useful number for analyzing a company.4. The major difference is the treatment of interest expense. The accounting statement of cash flows treats interest as an operating cash flow, while the financial cash flows treat interest as a financing cash flow. The logic of the accounting statement of cash flows is that since interest appears on the income statement, which shows the operations for the period, it is an operating cash flow. In reality, interest is a financing expense, which results from the company‘s choice of debt and equity. We will have more to say about this in a later chapter. When comparing the two cash flow statements, the financial statement of cash flows is a more appropriate measure of the company‘s performance beca use of its treatment of interest.5. Market values can never be negative. Imagine a share of stock selling for –$20. This would mean that if you placed an order for 100 shares, you would get the stock along with a check for $2,000. How many shares do you want to buy? More generally, because of corporate and individual bankruptcy laws, net worth for a person or a corporation cannot be negative, implying that liabilities cannot exceed assets in market value.6. For a successful company that is rapidly expanding, for example, capital outlays will be large, possibly leading to negative cash flow from assets. In general, what matters is whether the money is spent wisely, not whether cash flow from assets is positive or negative.7. It‘s probably not a good sign f or an established company to have negative cash flow from operations, but it would be fairly ordinary for a start-up, so it depends.8. For example, if a company were to become more efficient in inventory management, the amount of inventory needed would decline. The same might be true if the company becomes better at collecting its receivables. In general, anything that leads to a decline in ending NWC relative to beginning would have this effect. Negative net capital spending would mean more long-lived assets were liquidated than purchased.59. If a company raises more money from selling stock than it pays in dividends in a particular period, its cash flow to stockholders will be negative. If a company borrows more than it pays in interest and principal, its cash flow to creditors will be negative.10. The adjustments discussed were purely accounting changes; they had no cash flow or market value consequences unless the new accounting information caused stockholders to revalue the derivatives.Solutions to Questions and ProblemsNOTE: All end-of-chapter problems were solved using a spreadsheet. Many problems require multiple steps. Due to space and readability constraints, when these intermediate steps are included in this solutions manual, rounding may appear to have occurred. However, the finalanswer for each problem is found without rounding during any step in the problem.Basic1. To find owners‘ equity, we must construct a balance sheet as follows:Balance SheetCA $ 5,300 CL $ 3,900NFA 26,000 LTD 14,200OE ??TA $31,300 TL & OE $31,300We know that total liabilities and owners‘ equity (TL & OE) must equal total assets of $31,300. We also know that TL & OE is equal to current liabilities plus long-term debt plus owner‘s equity, so owner‘s equity is:OE = $31,300 –14,200 – 3,900 = $13,200NWC = CA – CL = $5,300 – 3,900 = $1,4002. The income statement for the company is:Income StatementSales $493,000Costs 210,000Depreciation 35,000EBIT $248,000Interest 19,000EBT $229,000Taxes 80,150Net income $148,8506One equation for net income is:Net income = Dividends + Addition to retained earningsRearranging, we get:Addition to retained earnings = Net income – DividendsAddition to retained earnings = $148,850 – 50,000Addition to retained earnings = $98,8503. To find the book value of current assets, we use: NWC = CA – CL. Rearranging to solve for current assets, we get:CA = NWC + CL = $800,000 + 2,100,000 = $2,900,000The market value of current assets and net fixed assets is given, so:Book value CA = $2,900,000 Market value CA = $2,800,000Book value NFA = $5,000,000 Market value NFA = $6,300,000Book value assets = $7,900,000 Market value assets = $9,100,0004. Taxes = 0.15($50K) + 0.25($25K) + 0.34($25K) + 0.39($246K – 100K)Taxes = $79,190The average tax rate is the total tax paid divided by net income, so:Average tax rate = $79,190 / $246,000Average tax rate = 32.19%The marginal tax rate is the tax rate on the next $1 of earnings, so the marginal tax rate = 39%.5. To calculate OCF, we first need the income statement:Income StatementSales $14,900Costs 5,800Depreciation 1,300EBIT $7,800Interest 780Taxable income $7,020Taxes 2,808Net income $4,212OCF = EBIT + Depreciation – TaxesOCF = $7,800 + 1,300 – 2,808OCF = $6,2926. Net capital spending = NFA end – NFA beg + DepreciationNet capital spending = $1,730,000 – 1,650,000 + 284,000Net capital spending = $364,00077. The long-term debt account will increase by $10 million, the amount of the new long-term debt issue. Since the company sold 10 million new shares of stock with a $1 par value, the common stock account will increase by $10 million. The capital surplus account will increase by $33 million, the value of the new stock sold above its par value. Since the company had a net income of $9 million, and paid $2 million in dividends, the addition to retained earnings was $7 million, which will increase the accumulated retained earnings account. So, the new long-term debt and stockholders‘ equity portion of the balance sheet will be:Long-term debt$ 82,000,000Total long-term debt$ 82,000,000Shareholders equityPreferred stock$ 9,000,000Common stock ($1 par value)30,000,000Accumulated retained earnings104,000,000Capital surplus76,000,000Total equity$ 219,000,000Total Liabilities & Equity$ 301,000,0008. Cash flow to creditors = Interest paid – Net new borrowingCash flow to creditors = $118,000 – (LTD end – LTD beg)Cash flow to creditors = $118,000 – ($1,390,000 – 1,340,000)Cash flow to creditors = $118,000 – 50,000Cash flow to creditors = $68,0009. Cash flow to stockholders = Dividends paid – Net new equityCash flow to stockholders = $385,000 – [(Common end + APIS end) – (Common beg + APIS beg)] Cash flow to stockholders = $385,000 – [($450,000 + 3,050,000) – ($430,000 + 2,600,000)] Cash flow to stockholders = $385,000 – ($3,500,000 – 3,030,000)Cash flow to stockholders = –$85,000Note, APIS is the additional paid-in surplus.10. Cash flow from assets = Cash flow to creditors + Cash flow to stockholders = $68,000 –85,000= –$17,000Cash flow from assets = –$17,000 = OCF – Change in NWC – Net capital spending–$17,000 = OCF – (–$69,000) – 875,000Operating cash flow = –$17,000 – 69,000 + 875,000Operating cash flow = $789,0008Intermediate11. a. The accounting statement of cash flows explains the change in cash during the year. The accounting statement of cash flows will be:Statement of cash flowsOperationsNet income$105Depreciation90Changes in other current assets(55)Accounts payable(10)Total cash flow from operations$170Investing activitiesAcquisition of fixed assets$(140)Total cash flow from investing activities$(140)Financing activitiesProceeds of long-term debt$30Dividends(45)Total cash flow from financing activities($15)Change in cash (on balance sheet)$15b. Change in NWC = NWC end – NWC beg= (CA end – CL end) – (CA beg – CL beg)= [($50 + 155) – 85] – [($35 + 140) – 95)= $120 – 80= $40c. To find the cash flow generated by the firm‘s assets, we need the operating cash flow, and the capital spending. So, calculating each of these, we find:Operating cash flowNet income$105Depreciation90Operating cash flow$195Note that we can calculate OCF in this manner since there are no taxes.9Capital spendingEnding fixed assets$340Beginning fixed assets(290)Depreciation90Capital spending$140Now we can calculate the cash flow generated by the firm‘s assets, which is:Cash flow from assetsOperating cash flow$195Capital spending(140)Change in NWC(40)Cash flow from assets$ 1512. With the information provided, the cash flows from the firm are the capital spending and the change in net working capital, so:Cash flows from the firmCapital spending$(15,000)Additions to NWC(1,500)Cash flows from the firm$(16,500)And the cash flows to the investors of the firm are:Cash flows to investors of the firmSale of long-term debt(19,000)Sale of common stock(3,000)Dividends paid19,500Cash flows to investors of the firm$(2,500)1013. a. The interest expense for the company is the amount of debt times the interest rate on the debt. So, the income statement for the company is:Income StatementSales $1,200,000Cost of goods sold 450,000Selling costs 225,000Depreciation 110,000EBIT $415,000Interest 81,000Taxable income $334,000Taxes 116,900Net income $217,100b. And the operating cash flow is:OCF = EBIT + Depreciation – TaxesOCF = $415,000 + 110,000 – 116,900OCF = $408,10014. To find the OCF, we first calculate net income.Income StatementSales $167,000Costs 91,000Depreciation 8,000Other expenses 5,400EBIT $62,600Interest 11,000Taxable income $51,600Taxes 18,060Net income $33,540Dividends $9,500Additions to RE $24,040a. OCF = EBIT + Depreciation – TaxesOCF = $62,600 + 8,000 – 18,060OCF = $52,540b. CFC = Interest – Net new LTDCFC = $11,000 – (–$7,100)CFC = $18,100Note that the net new long-term debt is negative because the company repaid part of its long- term debt.c. CFS = Dividends – Net new equityCFS = $9,500 – 7,250CFS = $2,25011d. We know that CFA = CFC + CFS, so:CFA = $18,100 + 2,250 = $20,350CFA is also equal to OCF – Net capital spending – Change in NWC. We already know OCF. Net capital spending is equal to:Net capital spending = Increase in NFA + DepreciationNet capital spending = $22,400 + 8,000Net capital spending = $30,400Now we can use:CFA = OCF – Net capital spending – Change in NWC$20,350 = $52,540 – 30,400 – Change in NWC.Solving for the change in NWC gives $1,790, meaning the company increased its NWC by $1,790.15. The solution to this question works the income statement backwards. Starting at the bottom:Net income = Dividends + Addition to ret. earningsNet income = $1,530 + 5,300Net income = $6,830Now, looking at the income statement:EBT – (EBT × Tax rate) = Net incomeRecognize that EBT × tax rate is simply the calculation for taxes. Solving this for EBT yields: EBT = NI / (1– Tax rate)EBT = $6,830 / (1 – 0.65)EBT = $10,507.69Now we can calculate:EBIT = EBT + InterestEBIT = $10,507.69 + 1,900EBIT = $12,407.69The last step is to use:EBIT = Sales – Costs – Depreciation$12,407.69 = $43,000 – 27,500 – DepreciationDepreciation = $3,092.31Solving for depreciation, we find that depreciation = $3,092.311216. The balance sheet for the company looks like this:Balance SheetCash $183,000 Accounts payable $465,000Accounts receivable 138,000 Notes payable 145,000Inventory 297,000 Current liabilities $610,000Current assets $618,000 Long-term debt 1,550,000Total liabilities $2,160,000 Tangible net fixed assets 3,200,000Intangible net fixed assets 695,000 Common stock ??Accumulated ret. earnings 1,960,000Total assets $4,513,000 Total liab. & owners‘ equity $4,513,000Total liabilities and owners‘ equity is:TL & OE = Total debt + Common stock + Accumulated retained earningsSolving for this equation for equity gives us:Common stock = $4,513,000 – 1,960,000 – 2,160,000Common stock = $393,00017. The market value of shareholders‘ equity cannot be negative. A negative market value in this case would imply that the company would pay you to own the stock. The market value of shareholders‘ equity can be stated as: Shareholders‘ equity = Max [(TA – TL), 0]. So, if TA is $9,700, equity is equal to $800, and if TA is $6,800, equity is equal to $0. We should note here that while the market value of equity cannot be negative, the book value of shareholders‘ equity can be negative.18. a. Taxes Growth = 0.15($50K) + 0.25($25K) + 0.34($3K) = $14,770Taxes Income = 0.15($50K) + 0.25($25K) + 0.34($25K) + 0.39($235K) + 0.34($7.465M)= $2,652,000b. Each firm has a marginal tax rate of 34% on the next $10,000 of taxable income, despite their different average tax rates, so both firms will pay an additional $3,400 in taxes.19. Income StatementSales $740,000COGS 610,000A&S expenses 100,000Depreciation 140,000EBIT ($115,000)Interest 70,000Taxable income ($185,000)Taxes (35%) 0a. Net income ($185,000)13b. OCF = EBIT + Depreciation – TaxesOCF = ($115,000) + 140,000 – 0OCF = $25,000c. Net income was negative because of the tax deductibility of depreciation and interest expense. However, the actual cash flow from operations was positive because depreciation isa non-cash expense and interest is a financing expense, not an operating expense.20. A firm can still pay out dividends if net income is negative; it just has to be sure there is sufficient cash flow to make the dividend payments.Change in NWC = Net capital spending = Net new equity = 0. (Given)Cash flow from assets = OCF – Change in NWC – Net capital spending Cash flow from assets = $25,000 – 0 – 0 = $25,000Cash flow to stockholders = Dividends – Net new equityCash flow to stockholders = $30,000 – 0 = $30,000Cash flow to creditors = Cash flow from assets – Cash flow to stockholders Cash flow to creditors = $25,000 – 30,000Cash flow to creditors = –$5,000Cash flow to creditors is also:Cash flow to creditors = Interest – Net new LTDSo:Net new LTD = Interest – Cash flow to creditorsNet new LTD = $70,000 – (–5,000)Net new LTD = $75,00021. a. The income statement is:Income StatementSales$15,300Cost of good sold10,900Depreciation2,100EBIT$ 2,300Interest520Taxable income$ 1,780Taxes712Net income$1,068b. OCF = EBIT + Depreciation – TaxesOCF = $2,300 + 2,100 – 712OCF = $3,68814c. Change in NWC = NWC end – NWC beg= (CA end – CL end) – (CA beg – CL beg)= ($3,950 – 1,950) – ($3,400 – 1,900)= $2,000 – 1,500 = $500Net capital spending = NFA end – NFA beg + Depreciation= $12,900 – 11,800 + 2,100= $3,200CFA = OCF – Change in NWC – Net capital spending= $3,688 – 500 – 3,200= –$12The cash flow from assets can be positive or negative, since it represents whether the firm raised funds or distributed funds on a net basis. In this problem, even though net income and OCF are positive, the firm invested heavily in both fixed assets and net working capital; it had to raise a net $12 in funds from its stockholders and creditors to make these investments.d. Cash flow to creditors = Interest – Net new LTD= $520 – 0= $520Cash flow to stockholders = Cash flow from assets – Cash flow to creditors= –$12 – 520= –$532We can also calculate the cash flow to stockholders as:Cash flow to stockholders = Dividends – Net new equitySolving for net new equity, we get:Net new equity = $500 – (–532)= $1,032The firm had positive earnings in an accounting sense (NI > 0) and had positive cash flow from operations. The firm invested $500 in new net working capital and $3,200 in new fixed assets. The firm had to raise $12 from its stakeholders to support this new investment. It accomplished this by raising $1,032 in the form of new equity. After paying out $500 of this in the form of dividends to shareholders and $520 in the form of interest to creditors, $12 was left to meet the firm‘s cash flow needs for investment.22. a. Total assets 2009 = $780 + 3,480 = $4,260Total liabilities 2009 = $318 + 1,800 = $2,118Owners‘ equity 2009 = $4,260 – 2,118 = $2,142Total assets 2010 = $846 + 4,080 = $4,926Total liabilities 2010 = $348 + 2,064 = $2,412Owners‘ equity 2010 = $4,926 – 2,412 = $2,51415b. NWC 2009 = CA09 – CL09 = $780 – 318 = $462NWC 2010 = CA10 – CL10 = $846 – 348 = $498Change in NWC = NWC10 – NWC09 = $498 – 462 = $36c. We can calculate net capital spending as:Net capital spending = Net fixed assets 2010 – Net fixed assets 2009 + DepreciationNet capital spending = $4,080 – 3,480 + 960Net capital spending = $1,560So, the company had a net capital spending cash flow of $1,560. We also know that net capital spending is:Net capital spending = Fixed assets bought – Fixed assets sold$1,560 = $1,800 – Fixed assets soldFixed assets sold = $1,800 – 1,560 = $240To calculate the cash flow from assets, we must first calculate the operating cash flow. The operating cash flow is calculated as follows (you can also prepare a traditional income statement):EBIT = Sales – Costs – DepreciationEBIT = $10,320 – 4,980 – 960EBIT = $4,380EBT = EBIT – InterestEBT = $4,380 – 259EBT = $4,121Taxes = EBT ⨯ .35Taxes = $4,121 ⨯ .35Taxes = $1,442OCF = EBIT + Depreciation – TaxesOCF = $4,380 + 960 – 1,442OCF = $3,898Cash flow from assets = OCF – Change in NWC – Net capital spending. Cash flow from assets = $3,898 – 36 – 1,560Cash flow from assets = $2,302d. Net new borrowing = LTD10 – LTD09Net new borrowing = $2,064 – 1,800Net new borrowing = $264Cash flow to creditors = Interest – Net new LTDCash flow to creditors = $259 – 264Cash flow to creditors = –$5Net new borrowing = $264 = Debt issued – Debt retiredDebt retired = $360 – 264 = $961623.Balance sheet as of Dec. 31, 2009Cash$2,739Accounts payable$2,877Accounts receivable3,626Notes payable529Inventory6,447Current liabilities$3,406Current assets$12,812Long-term debt$9,173Net fixed assets$22,970Owners' equity$23,203Total assets$35,782Total liab. & equity$35,782Balance sheet as of Dec. 31, 2010Cash$2,802Accounts payable$2,790Accounts receivable4,085Notes payable497Inventory6,625Current liabilities$3,287Current assets$13,512Long-term debt$10,702Net fixed assets$23,518Owners' equity$23,041Total assets$37,030Total liab. & equity$37,0302009 Income Statement 2010 Income Statement Sales$5,223.00Sales$5,606.00COGS1,797.00COGS2,040.00Other expenses426.00Other expenses356.00Depreciation750.00Depreciation751.00EBIT$2,250.00EBIT$2,459.00Interest350.00Interest402.00EBT$1,900.00EBT$2,057.00Taxes646.00Taxes699.38Net income$1,254.00Net income$1,357.62Dividends$637.00Dividends$701.00Additions to RE617.00Additions to RE656.6224. OCF = EBIT + Depreciation – TaxesOCF = $2,459 + 751 – 699.38OCF = $2,510.62Change in NWC = NWC end – NWC beg = (CA – CL) end – (CA – CL) beg Change in NWC = ($13,512 – 3,287) – ($12,812 – 3,406)Change in NWC = $819Net capital spending = NFA end – NFA beg + DepreciationNet capital spending = $23,518 – 22,970 + 751Net capital spending = $1,29917Cash flow from assets = OCF – Change in NWC – Net capital spending Cash flow from assets = $2,510.62 – 819 – 1,299Cash flow from assets = $396.62Cash flow to creditors = Interest – Net new LTDNet new LTD = LTD end – LTD begCash flow to creditors = $402 – ($10,702 – 9,173)Cash flow to creditors = –$1,127Net new equity = Common stock end – Common stock begCommon stock + Retained earnings = Total owners‘ equityNet new equity = (OE – RE) end – (OE – RE) begNet new equity = OE end – OE beg + RE beg – RE endRE end = RE beg + Additions to RENet new equity = OE end – OE beg + RE beg – (RE beg + Additions to RE)= OE end – OE beg – Additions to RENet new equity = $23,041 – 23,203 – 656.62 = –$818.62Cash flow to stockholders = Dividends – Net new equityCash flow to stockholders = $701 – (–$818.62)Cash flow to stockholders = $1,519.62As a check, cash flow from assets is $396.62.Cash flow from assets = Cash flow from creditors + Cash flow to stockholdersCash flow from assets = –$1,127 + 1,519.62Cash flow from assets = $392.62Challenge25. We will begin by calculating the operating cash flow. First, we need the EBIT, which can be calculated as:EBIT = Net income + Current taxes + Deferred taxes + InterestEBIT = $144 + 82 + 16 + 43EBIT = $380Now we can calculate the operating cash flow as:Operating cash flowEarnings before interest and taxes$285Depreciation78Current taxes(82)Operating cash flow$28118The cash flow from assets is found in the investing activities portion of the accounting statement of cash flows, so:Cash flow from assetsAcquisition of fixed assets$148Sale of fixed assets(19)。
Cha08 罗斯公司理财第九版原版书课后习题
Earlier in the chapter, we saw how bonds were rated based on their credit risk. What you will find if you start looking at bonds of different ratings is that lower-rated bonds have higher yields.We stated earlier in this chapter that a bond’s yield is calculated assuming that all the promised payments will be made. As a result, it is really a promised yield, and it may or may not be what you will earn. In particular, if the issuer defaults, your actual yield will be lower, probably much lower. This fact is particularly important when it comes to junk bonds. Thanks to a clever bit of marketing, such bonds are now commonly called high-yield bonds, which has a much nicer ring to it; but now you recognize that these are really high promised yield bonds.Next, recall that we discussed earlier how municipal bonds are free from most taxes and, as a result, have much lower yields than taxable bonds. Investors demand the extra yield on a taxable bond as compensation for the unfavorable tax treatment. This extra compensation is the taxability premium.Finally, bonds have varying degrees of liquidity. As we discussed earlier, there are an enormous number of bond issues, most of which do not trade on a regular basis. As a result, if you wanted to sell quickly, you would probably not get as good a price as you could otherwise. Investors prefer liquid assets to illiquid ones, so they demand a liquidity premium on top of all the other premiums we have discussed. As a result, all else being the same, less liquid bonds will have higher yields than more liquid bonds.ConclusionIf we combine everything we have discussed, we find that bond yields represent the combined effect of no fewer than six factors. The first is the real rate of interest. On top of the real rate are five premiums representing compensation for (1) expected future inflation, (2) interest rate risk, (3) default risk, (4) taxability, and (5) lack of liquidity. As a result, determining the appropriate yield on a bond requires careful analysis of each of these factors.Summary and ConclusionsThis chapter has explored bonds, bond yields, and interest rates. We saw that:1. Determining bond prices and yields is an application of basic discounted cash flow principles.2. Bond values move in the direction opposite that of interest rates, leading to potential gains orlosses for bond investors.3. Bonds are rated based on their default risk. Some bonds, such as Treasury bonds, have no riskof default, whereas so-called junk bonds have substantial default risk.4. Almost all bond trading is OTC, with little or no market transparency in many cases. As a result,bond price and volume information can be difficult to find for some types of bonds.5. Bond yields and interest rates reflect six different factors: the real interest rate and fivepremiums that investors demand as compensation for inflation, interest rate risk, default risk, taxability, and lack of liquidity.In closing, we note that bonds are a vital source of financing to governments and corporations of all types. Bond prices and yields are a rich subject, and our one chapter, necessarily, touches on only the most important concepts and ideas. There is a great deal more we could say, but, instead, we will move on to stocks in our next chapter.Concept Questions1. Treasury Bonds Is it true that a U.S. Treasury security is risk-free?2. Interest Rate Risk Which has greater interest rate risk, a 30-year Treasury bond or a 30-year21. Using Bond Quotes Suppose the following bond quote for IOU Corporation appears in thefinancial page of today’s newspaper. Assume the bond has a face value of $1,000 and the current date is April 15, 2010. What is the yield to maturity of the bond? What is the current yield?22. Finding the Maturity You’ve just found a 10 percent coupon bond on the market that sells forpar value. What is the maturity on this bond?CHALLENGE (Questions 23–30)23. Components of Bond Returns Bond P is a premium bond with a 9 percent coupon. Bond D isa 5 percent coupon bond currently selling at a discount. Both bonds make annual payments, havea YTM of 7 percent, and have five years to maturity. What is the current yield for Bond P? For BondD? If interest rates remain unchanged, what is the expected capital gains yield over the next year for Bond P? For Bond D? Explain your answers and the interrelationship among the various types of yields.24. Holding Period Yield The YTM on a bond is the interest rate you earn on your investment ifinterest rates don’t change. If you actually sell the bond before it matures, your realized return is known as the holding period yield (HPY).1. Suppose that today you buy a 9 percent annual coupon bond for $1,140. The bond has 10years to maturity. What rate of return do you expect to earn on your investment?2. Two years from now, the YTM on your bond has declined by 1 percent, and you decide tosell. What price will your bond sell for? What is the HPY on your investment? Compare this yield to the YTM when you first bought the bond. Why are they different?25. Valuing Bonds The Morgan Corporation has two different bonds currently outstanding. Bond Mhas a face value of $20,000 and matures in 20 years. The bond makes no payments for the first six years, then pays $800 every six months over the subsequent eight years, and finally pays $1,000 every six months over the last six years. Bond N also has a face value of $20,000 and a maturity of20 years; it makes no coupon payments over the life of the bond. If the required return on boththese bonds is 8 percent compounded semiannually, what is the current price of Bond M? Of Bond N?26. R eal Cash Flows When Marilyn Monroe died, ex-husband Joe DiMaggio vowed to place freshflowers on her grave every Sunday as long as he lived. The week after she died in 1962, a bunch of fresh flowers that the former baseball player thought appropriate for the star cost about $8.Based on actuarial tables, “Joltin’ Joe” could expect to live for 30 years after the actress died.Assume that the EAR is 10.7 percent. Also, assume that the price of the flowers will increase at 3.5 percent per year, when expressed as an EAR. Assuming that each year has exactly 52 weeks, what is the present value of this commitment? Joe began purchasing flowers the week after Marilyn died.27. Real Cash Flows You are planning to save for retirement over the next 30 years. To save forretirement, you will invest $800 a month in a stock account in real dollars and $400 a month in a bond account in real dollars. The effective annual return of the stock account is expected to be 12 percent, and the bond account will earn 7 percent. When you retire, you will combine your money into an account with an 8 percent effective return. The inflation rate over this period is expected to be 4 percent. How much can you withdraw each month from your account in real terms assuminga 25-year withdrawal period? What is the nominal dollar amount of your last withdrawal?28. Real Cash Flows Paul Adams owns a health club in downtown Los Angeles. He charges hiscustomers an annual fee of $500 and has an existing customer base of 500. Paul plans to raise the annual fee by 6 percent every year and expects the club membership to grow at a constant rate of3 percent for the next five years. The overall expenses of running the health club are $75,000 ayear and are expected to grow at the inflation rate of 2 percent annually. After five years, Paul2. How many of the coupon bonds must East Coast Yachts issue to raise the $40 million? Howmany of the zeroes must it issue?3. In 20 years, what will be the principal repayment due if East Coast Yachts issues the couponbonds? What if it issues the zeroes?4. What are the company’s considerations in issuing a coupon bond compared to a zero couponbond?5. Suppose East Coast Yachts issues the coupon bonds with a make-whole call provision. Themake-whole call rate is the Treasury rate plus .40 percent. If East Coast calls the bonds in 7 years when the Treasury rate is 5.6 percent, what is the call price of the bond? What if it is 9.1 percent?6. Are investors really made whole with a make-whole call provision?7. After considering all the relevant factors, would you recommend a zero coupon issue or aregular coupon issue? Why? Would you recommend an ordinary call feature or a make-whole call feature? Why?。
公司理财第九版罗斯课后案例答案 Case Solutions Corporate Finance
公司理财第九版罗斯课后案例答案 Case Solutions CorporateFinance1. 案例一:公司资金需求分析问题:一家公司需要资金支持其新项目。
通过分析现金流量,推断该公司是否需要向外部借款或筹集其他资金。
解答:为了确定公司是否需要外部资金,我们需要分析公司的现金流量状况。
首先,我们需要计算公司的净现金流量(净收入加上非现金项目)。
然后,我们需要将净现金流量与项目的投资现金流量进行对比。
假设公司预计在项目开始时投资100万美元,并在项目运营期为5年。
预计该项目每年将产生50万美元的净现金流量。
现在,我们需要进行以下计算:净现金流量 = 年度现金流量 - 年度投资现金流量年度投资现金流量 = 100万美元年度现金流量 = 50万美元净现金流量 = 50万美元 - 100万美元 = -50万美元根据计算结果,公司的净现金流量为负数(即净现金流出),意味着公司每年都会亏损50万美元。
因此,公司需要从外部筹集资金以支持项目的运营。
2. 案例二:公司股权融资问题:一家公司正在考虑通过股权融资来筹集资金。
根据公司的财务数据和资本结构分析,我们需要确定公司最佳的股权融资方案。
解答:为了确定最佳的股权融资方案,我们需要参考公司的财务数据和资本结构分析。
首先,我们需要计算公司的资本结构比例,即股本占总资本的比例。
然后,我们将不同的股权融资方案与资本结构比例进行对比,选择最佳的方案。
假设公司当前的资本结构比例为60%的股本和40%的债务,在当前的资本结构下,公司的加权平均资本成本(WACC)为10%。
现在,我们需要进行以下计算:•方案一:以新股发行筹集1000万美元,并将其用于项目投资。
在这种方案下,公司的资本结构比例将发生变化。
假设公司的股本增加至80%,债务比例减少至20%。
根据资本结构比例的变化,WACC也将发生变化。
新的WACC可以通过以下公式计算得出:新的WACC = (股本比例 * 股本成本) + (债务比例 * 债务成本)假设公司的股本成本为12%,债务成本为8%:新的WACC = (0.8 * 12%) + (0.2 * 8%) = 9.6%•方案二:以新股发行筹集5000万美元,并将其用于项目投资。
罗斯《公司理财》第9版英文原书课后部分章节答案
罗斯《公司理财》第9版精要版英文原书课后部分章节答案详细»1 / 17 CH5 11,13,18,19,20 11. To find the PV of a lump sum, we use: PV = FV / (1 + r) t PV = $1,000,000 / (1.10) 80 = $488.19 13. To answer this question, we can use either the FV or the PV formula. Both will give the same answer since they are the inverse of each other. We will use the FV formula, that is: FV = PV(1 + r) t Solving for r, we get: r = (FV / PV) 1 / t –1 r = ($1,260,000 / $150) 1/112 – 1 = .0840 or 8.40% To find the FV of the first prize, we use: FV = PV(1 + r) t FV = $1,260,000(1.0840) 33 = $18,056,409.94 18. To find the FV of a lump sum, we use: FV = PV(1 + r) t FV = $4,000(1.11) 45 = $438,120.97 FV = $4,000(1.11) 35 = $154,299.40 Better start early! 19. We need to find the FV of a lump sum. However, the money will only be invested for six years, so the number of periods is six. FV = PV(1 + r) t FV = $20,000(1.084)6 = $32,449.33 20. To answer this question, we can use either the FV or the PV formula. Both will give the same answer since they are the inverse of each other. We will use the FV formula, that is: FV = PV(1 + r) t Solving for t, we get: t = ln(FV / PV) / ln(1 + r) t = ln($75,000 / $10,000) / ln(1.11) = 19.31 So, the money must be invested for 19.31 years. However, you will not receive the money for another two years. From now, you’ll wait: 2 years + 19.31 years = 21.31 years CH6 16,24,27,42,58 16. For this problem, we simply need to find the FV of a lump sum using the equation: FV = PV(1 + r) t 2 / 17 It is important to note that compounding occurs semiannually. To account for this, we will divide the interest rate by two (the number of compounding periods in a year), and multiply the number of periods by two. Doing so, we get: FV = $2,100[1 + (.084/2)] 34 = $8,505.93 24. This problem requires us to find the FV A. The equation to find the FV A is: FV A = C{[(1 + r) t – 1] / r} FV A = $300[{[1 + (.10/12) ] 360 – 1} / (.10/12)] = $678,146.38 27. The cash flows are annual and the compounding period is quarterly, so we need to calculate the EAR to make the interest rate comparable with the timing of the cash flows. Using the equation for the EAR, we get: EAR = [1 + (APR / m)] m – 1 EAR = [1 + (.11/4)] 4 – 1 = .1146 or 11.46% And now we use the EAR to find the PV of each cash flow as a lump sum and add them together: PV = $725 / 1.1146 + $980 / 1.1146 2 + $1,360 / 1.1146 4 = $2,320.36 42. The amount of principal paid on the loan is the PV of the monthly payments you make. So, the present value of the $1,150 monthly payments is: PV A = $1,150[(1 – {1 / [1 + (.0635/12)]} 360 ) / (.0635/12)] = $184,817.42 The monthly payments of $1,150 will amount to a principal payment of $184,817.42. The amount of principal you will still owe is: $240,000 – 184,817.42 = $55,182.58 This remaining principal amount will increase at the interest rate on the loan until the end of the loan period. So the balloon payment in 30 years, which is the FV of the remaining principal will be: Balloon payment = $55,182.58[1 + (.0635/12)] 360 = $368,936.54 58. To answer this question, we should find the PV of both options, and compare them. Since we are purchasing the car, the lowest PV is the best option. The PV of the leasing is simply the PV of the lease payments, plus the $99. The interest rate we would use for the leasing option is the same as the interest rate of the loan. The PV of leasing is: PV = $99 + $450{1 –[1 / (1 + .07/12) 12(3) ]} / (.07/12) = $14,672.91 The PV of purchasing the car is the current price of the car minus the PV of the resale price. The PV of the resale price is: PV = $23,000 / [1 + (.07/12)] 12(3) = $18,654.82 The PV of the decision to purchase is: $32,000 – 18,654.82 = $13,345.18 3 / 17 In this case, it is cheaper to buy the car than leasing it since the PV of the purchase cash flows is lower. To find the breakeven resale price, we need to find the resale price that makes the PV of the two options the same. In other words, the PV of the decision to buy should be: $32,000 – PV of resale price = $14,672.91 PV of resale price = $17,327.09 The resale price that would make the PV of the lease versus buy decision is the FV ofthis value, so: Breakeven resale price = $17,327.09[1 + (.07/12)] 12(3) = $21,363.01 CH7 3,18,21,22,31 3. The price of any bond is the PV of the interest payment, plus the PV of the par value. Notice this problem assumes an annual coupon. The price of the bond will be: P = $75({1 – [1/(1 + .0875)] 10 } / .0875) + $1,000[1 / (1 + .0875) 10 ] = $918.89 We would like to introduce shorthand notation here. Rather than write (or type, as the case may be) the entire equation for the PV of a lump sum, or the PV A equation, it is common to abbreviate the equations as: PVIF R,t = 1 / (1 + r) t which stands for Present V alue Interest Factor PVIFA R,t = ({1 – [1/(1 + r)] t } / r ) which stands for Present V alue Interest Factor of an Annuity These abbreviations are short hand notation for the equations in which the interest rate and the number of periods are substituted into the equation and solved. We will use this shorthand notation in remainder of the solutions key. 18. The bond price equation for this bond is: P 0 = $1,068 = $46(PVIFA R%,18 ) + $1,000(PVIF R%,18 ) Using a spreadsheet, financial calculator, or trial and error we find: R = 4.06% This is thesemiannual interest rate, so the YTM is: YTM = 2 4.06% = 8.12% The current yield is:Current yield = Annual coupon payment / Price = $92 / $1,068 = .0861 or 8.61% The effective annual yield is the same as the EAR, so using the EAR equation from the previous chapter: Effective annual yield = (1 + 0.0406) 2 – 1 = .0829 or 8.29% 20. Accrued interest is the coupon payment for the period times the fraction of the period that has passed since the last coupon payment. Since we have a semiannual coupon bond, the coupon payment per six months is one-half of the annual coupon payment. There are four months until the next coupon payment, so two months have passed since the last coupon payment. The accrued interest for the bond is: Accrued interest = $74/2 × 2/6 = $12.33 And we calculate the clean price as: 4 / 17 Clean price = Dirty price –Accrued interest = $968 –12.33 = $955.67 21. Accrued interest is the coupon payment for the period times the fraction of the period that has passed since the last coupon payment. Since we have a semiannual coupon bond, the coupon payment per six months is one-half of the annual coupon payment. There are two months until the next coupon payment, so four months have passed since the last coupon payment. The accrued interest for the bond is: Accrued interest = $68/2 × 4/6 = $22.67 And we calculate the dirty price as: Dirty price = Clean price + Accrued interest = $1,073 + 22.67 = $1,095.67 22. To find the number of years to maturity for the bond, we need to find the price of the bond. Since we already have the coupon rate, we can use the bond price equation, and solve for the number of years to maturity. We are given the current yield of the bond, so we can calculate the price as: Current yield = .0755 = $80/P 0 P 0 = $80/.0755 = $1,059.60 Now that we have the price of the bond, the bond price equation is: P = $1,059.60 = $80[(1 – (1/1.072) t ) / .072 ] + $1,000/1.072 t We can solve this equation for t as follows: $1,059.60(1.072) t = $1,111.11(1.072) t –1,111.11 + 1,000 111.11 = 51.51(1.072) t2.1570 = 1.072 t t = log 2.1570 / log 1.072 = 11.06 11 years The bond has 11 years to maturity.31. The price of any bond (or financial instrument) is the PV of the future cash flows. Even though Bond M makes different coupons payments, to find the price of the bond, we just find the PV of the cash flows. The PV of the cash flows for Bond M is: P M = $1,100(PVIFA 3.5%,16 )(PVIF 3.5%,12 ) + $1,400(PVIFA3.5%,12 )(PVIF 3.5%,28 ) + $20,000(PVIF 3.5%,40 ) P M = $19,018.78 Notice that for the coupon payments of $1,400, we found the PV A for the coupon payments, and then discounted the lump sum back to today. Bond N is a zero coupon bond with a $20,000 par value, therefore, the price of the bond is the PV of the par, or: P N = $20,000(PVIF3.5%,40 ) = $5,051.45 CH8 4,18,20,22,244. Using the constant growth model, we find the price of the stock today is: P 0 = D 1 / (R – g) = $3.04 / (.11 – .038) = $42.22 5 / 17 18. The price of a share of preferred stock is the dividend payment divided by the required return. We know the dividend payment in Year 20, so we can find the price of the stock in Y ear 19, one year before the first dividend payment. Doing so, we get: P 19 = $20.00 / .064 P 19 = $312.50 The price of the stock today is the PV of the stock price in the future, so the price today will be: P 0 = $312.50 / (1.064) 19 P 0 = $96.15 20. We can use the two-stage dividend growth model for this problem, which is: P 0 = [D 0 (1 + g 1 )/(R – g 1 )]{1 – [(1 + g 1 )/(1 + R)] T }+ [(1 + g 1 )/(1 + R)] T [D 0 (1 + g 2 )/(R –g 2 )] P0 = [$1.25(1.28)/(.13 –.28)][1 –(1.28/1.13) 8 ] + [(1.28)/(1.13)] 8 [$1.25(1.06)/(.13 – .06)] P 0 = $69.55 22. We are asked to find the dividend yield and capital gains yield for each of the stocks. All of the stocks have a 15 percent required return, which is the sum of the dividend yield and the capital gains yield. To find the components of the total return, we need to find the stock price for each stock. Using this stock price and the dividend, we can calculate the dividend yield. The capital gains yield for the stock will be the total return (required return) minus the dividend yield. W: P 0 = D 0 (1 + g) / (R – g) = $4.50(1.10)/(.19 – .10) = $55.00 Dividend yield = D 1 /P 0 = $4.50(1.10)/$55.00 = .09 or 9% Capital gains yield = .19 – .09 = .10 or 10% X: P 0 = D 0 (1 + g) / (R – g) = $4.50/(.19 – 0) = $23.68 Dividend yield = D 1 /P 0 = $4.50/$23.68 = .19 or 19% Capital gains yield = .19 – .19 = 0% Y: P 0 = D 0 (1 + g) / (R – g) = $4.50(1 – .05)/(.19 + .05) = $17.81 Dividend yield = D 1 /P 0 = $4.50(0.95)/$17.81 = .24 or 24% Capital gains yield = .19 – .24 = –.05 or –5% Z: P 2 = D 2 (1 + g) / (R – g) = D 0 (1 + g 1 ) 2 (1 +g 2 )/(R – g 2 ) = $4.50(1.20) 2 (1.12)/(.19 – .12) = $103.68 P 0 = $4.50 (1.20) / (1.19) + $4.50(1.20) 2 / (1.19) 2 + $103.68 / (1.19) 2 = $82.33 Dividend yield = D 1 /P 0 = $4.50(1.20)/$82.33 = .066 or 6.6% Capital gains yield = .19 – .066 = .124 or 12.4% In all cases, the required return is 19%, but the return is distributed differently between current income and capital gains. High growth stocks have an appreciable capital gains component but a relatively small current income yield; conversely, mature, negative-growth stocks provide a high current income but also price depreciation over time. 24. Here we have a stock with supernormal growth, but the dividend growth changes every year for the first four years. We can find the price of the stock in Y ear 3 since the dividend growth rate is constant after the third dividend. The price of the stock in Y ear 3 will be the dividend in Y ear 4, divided by the required return minus the constant dividend growth rate. So, the price in Y ear 3 will be: 6 / 17 P3 = $2.45(1.20)(1.15)(1.10)(1.05) / (.11 – .05) = $65.08 The price of the stock today will be the PV of the first three dividends, plus the PV of the stock price in Y ear 3, so: P 0 = $2.45(1.20)/(1.11) + $2.45(1.20)(1.15)/1.11 2 + $2.45(1.20)(1.15)(1.10)/1.11 3 + $65.08/1.11 3 P 0 = $55.70 CH9 3,4,6,9,15 3. Project A has cash flows of $19,000 in Y ear 1, so the cash flows are short by $21,000 of recapturing the initial investment, so the payback for Project A is: Payback = 1 + ($21,000 / $25,000) = 1.84 years Project B has cash flows of: Cash flows = $14,000 + 17,000 + 24,000 = $55,000 during this first three years. The cash flows are still short by $5,000 of recapturing the initial investment, so the payback for Project B is: B: Payback = 3 + ($5,000 / $270,000) = 3.019 years Using the payback criterion and a cutoff of 3 years, accept project A and reject project B. 4. When we use discounted payback, we need to find the value of all cash flows today. The value today of the project cash flows for the first four years is: V alue today of Y ear 1 cash flow = $4,200/1.14 = $3,684.21 V alue today of Y ear 2 cash flow = $5,300/1.14 2 = $4,078.18 V alue today of Y ear 3 cash flow = $6,100/1.14 3 = $4,117.33 V alue today of Y ear 4 cash flow = $7,400/1.14 4 = $4,381.39 To findthe discounted payback, we use these values to find the payback period. The discounted first year cash flow is $3,684.21, so the discounted payback for a $7,000 initial cost is: Discounted payback = 1 + ($7,000 – 3,684.21)/$4,078.18 = 1.81 years For an initial cost of $10,000, the discounted payback is: Discounted payback = 2 + ($10,000 –3,684.21 –4,078.18)/$4,117.33 = 2.54 years Notice the calculation of discounted payback. We know the payback period is between two and three years, so we subtract the discounted values of the Y ear 1 and Y ear 2 cash flows from the initial cost. This is the numerator, which is the discounted amount we still need to make to recover our initial investment. We divide this amount by the discounted amount we will earn in Y ear 3 to get the fractional portion of the discounted payback. If the initial cost is $13,000, the discounted payback is: Discounted payback = 3 + ($13,000 – 3,684.21 – 4,078.18 – 4,117.33) / $4,381.39 = 3.26 years 7 / 17 6. Our definition of AAR is the average net income divided by the average book value. The average net income for this project is: A verage net income = ($1,938,200 + 2,201,600 + 1,876,000 + 1,329,500) / 4 = $1,836,325 And the average book value is: A verage book value = ($15,000,000 + 0) / 2 = $7,500,000 So, the AAR for this project is: AAR = A verage net income / A verage book value = $1,836,325 / $7,500,000 = .2448 or 24.48% 9. The NPV of a project is the PV of the outflows minus the PV of the inflows. Since the cash inflows are an annuity, the equation for the NPV of this project at an 8 percent required return is: NPV = –$138,000 + $28,500(PVIFA 8%, 9 ) = $40,036.31 At an 8 percent required return, the NPV is positive, so we would accept the project. The equation for the NPV of the project at a 20 percent required return is: NPV = –$138,000 + $28,500(PVIFA 20%, 9 ) = –$23,117.45 At a 20 percent required return, the NPV is negative, so we would reject the project. We would be indifferent to the project if the required return was equal to the IRR of the project, since at that required return the NPV is zero. The IRR of the project is: 0 = –$138,000 + $28,500(PVIFA IRR, 9 ) IRR = 14.59% 15. The profitability index is defined as the PV of the cash inflows divided by the PV of the cash outflows. The equation for the profitability index at a required return of 10 percent is: PI = [$7,300/1.1 + $6,900/1.1 2 + $5,700/1.1 3 ] / $14,000 = 1.187 The equation for the profitability index at a required return of 15 percent is: PI = [$7,300/1.15 + $6,900/1.15 2 + $5,700/1.15 3 ] / $14,000 = 1.094 The equation for the profitability index at a required return of 22 percent is: PI = [$7,300/1.22 + $6,900/1.22 2 + $5,700/1.22 3 ] / $14,000 = 0.983 8 / 17 We would accept the project if the required return were 10 percent or 15 percent since the PI is greater than one. We would reject the project if the required return were 22 percent since the PI。
罗斯公司理财第九版课后习题答案中文版
第一章1.在所有权形式的公司中,股东是公司的所有者。
股东选举公司的董事会,董事会任命该公司的管理层。
企业的所有权和控制权分离的组织形式是导致的代理关系存在的主要原因。
管理者可能追求自身或别人的利益最大化,而不是股东的利益最大化。
在这种环境下,他们可能因为目标不一致而存在代理问题2.非营利公司经常追求社会或政治任务等各种目标。
非营利公司财务管理的目标是获取并有效使用资金以最大限度地实现组织的社会使命。
3.这句话是不正确的。
管理者实施财务管理的目标就是最大化现有股票的每股价值,当前的股票价值反映了短期和长期的风险、时间以及未来现金流量。
4.有两种结论。
一种极端,在市场经济中所有的东西都被定价。
因此所有目标都有一个最优水平,包括避免不道德或非法的行为,股票价值最大化。
另一种极端,我们可以认为这是非经济现象,最好的处理方式是通过政治手段。
一个经典的思考问题给出了这种争论的答案:公司估计提高某种产品安全性的成本是30美元万。
然而,该公司认为提高产品的安全性只会节省20美元万。
请问公司应该怎么做呢?”5.财务管理的目标都是相同的,但实现目标的最好方式可能是不同的,因为不同的国家有不同的社会、政治环境和经济制度。
6.管理层的目标是最大化股东现有股票的每股价值。
如果管理层认为能提高公司利润,使股价超过35美元,那么他们应该展开对恶意收购的斗争。
如果管理层认为该投标人或其它未知的投标人将支付超过每股35美元的价格收购公司,那么他们也应该展开斗争。
然而,如果管理层不能增加企业的价值,并且没有其他更高的投标价格,那么管理层不是在为股东的最大化权益行事。
现在的管理层经常在公司面临这些恶意收购的情况时迷失自己的方向。
7.其他国家的代理问题并不严重,主要取决于其他国家的私人投资者占比重较小。
较少的私人投资者能减少不同的企业目标。
高比重的机构所有权导致高学历的股东和管理层讨论决策风险项目。
此外,机构投资者比私人投资者可以根据自己的资源和经验更好地对管理层实施有效的监督机制。
罗斯公司理财第九版课后习题第四章答案
1. 当你增加时间的长度时,终值会发生什么变化,现值会发生什么变化?答:当增加时间长度时根据公司PV=C/(1+r)A t得到现值会减少(dwindle,diminish),而终值FV=C*(1+r)At会增加。
2. 如果利率增加,年金的终值会有什么变化?现值会有什么变化?答:当利率增加时,终值增大,现值FV=C(1/r-1/(r*(1+rFt))得现值会减小分析这两道题都考察了对终值和现值的概念的理解:终值:一笔资金经过一个时期或者多个时期的以后的价值,如果考察终值就是在现在或将来我得到一笔资金C那么这笔资金在更远的未来将会价值多少,如果考察现值则是将来我得到一笔钱那么它现在的价值是多少(在某个固定的折现率下)3. 假设有两名运动员签署了一份10年8000万的合同,一份是每年支付800万,一份是8000万分十次,支付金额每年递增 5% ,哪种情况最好答:计算过程如下图:u12. 5T733354舉一忡t*况*■二沖耆况63S. <4e>3& 04年1667. M Oflfc-蠹ML D虽百嘶fiOQi m.sa49& 97sao TSh.294沮0鼻1115m.^6髯& 29SzaSr 钿亍晒L弊TT E颐 d 72監BL EB审60496th 70191. 23IQ 旦计9CW0, 003H 也69由上图的应该选第一种4. 贷款法是否应该要求贷款者报告实际利率而不是名义利率?为什么?答:他们应该报告实际利率,名义利率的优势只是在于它们方便计算,可是在计算机技术发达的今天,计算已经不再是一个问题5. 有津贴的斯坦福联邦贷款是为大学生提供帮助的一种普遍来源,直到偿还贷款才开始付息。
谁将收到更多的津贴,新生还是高年级的学生?请解释答:新生将获得跟多的津贴,因为新生使用无息贷款的时间比高年级学生长。
详细数据如下:输入变童APR 6. 25%备朗金额5000期限<1) 4期眼(2) 3实師利率8. 57%借款总瓠< 1 >20000借款总颔< 2 > 15000输出变崖终值(1) 贮厶235. 67终值(2)¥1® 089. 51由此可见新生的津贴=22235-20000=2235 ;而高年级的学生为1089根据下面的信息回答接下去的5个题:6. 由计算得到如果500美金若在30年后要变成10000则实际年利率是10.5%,我想应该是GMAC的决策者认为公司的投资收益率大于10.5%7. 如果公司可以在 30年内的任意时间内以 10000元的价格购买该债券的话,将会使得该债券更具有吸引力8. 1)这500元不能影响我后面 30年的正常生活,也就是我说我是否有 500元的多余资金;2)该公司是否能够保证在30年后我能收到10000元3)当前我认为的投资收益率是否高于10.5%,若高于10.5%则不应该考虑投资该债券我的回答是:是取决的承诺偿还的人9. 财政部的发行该种债券的价格较高因为财政部在所有的债券发行者中信用最好10•价格会超过之前的500美元,因为如果随着时间的推移,该债券的价值就越接近10000 美元,如果在2010年的看价格有可能会更高,但不能确定,因为GMAC有财务恶化的可能或者资本市场上的投资收益率提高。
(完整版)公司理财-罗斯课后习题答案
(完整版)公司理财-罗斯课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章1.在所有权形式的公司中,股东是公司的所有者。
股东选举公司的董事会,董事会任命该公司的管理层。
企业的所有权和控制权分离的组织形式是导致的代理关系存在的主要原因。
管理者可能追求自身或别人的利益最大化,而不是股东的利益最大化。
在这种环境下,他们可能因为目标不一致而存在代理问题。
2.非营利公司经常追求社会或政治任务等各种目标。
非营利公司财务管理的目标是获取并有效使用资金以最大限度地实现组织的社会使命。
3.这句话是不正确的。
管理者实施财务管理的目标就是最大化现有股票的每股价值,当前的股票价值反映了短期和长期的风险、时间以及未来现金流量。
4.有两种结论。
一种极端,在市场经济中所有的东西都被定价。
因此所有目标都有一个最优水平,包括避免不道德或非法的行为,股票价值最大化。
另一种极端,我们可以认为这是非经济现象,最好的处理方式是通过政治手段。
一个经典的思考问题给出了这种争论的答案:公司估计提高某种产品安全性的成本是30美元万。
然而,该公司认为提高产品的安全性只会节省20美元万。
请问公司应该怎么做呢?”5.财务管理的目标都是相同的,但实现目标的最好方式可能是不同的,因为不同的国家有不同的社会、政治环境和经济制度。
6.管理层的目标是最大化股东现有股票的每股价值。
如果管理层认为能提高公司利润,使股价超过35美元,那么他们应该展开对恶意收购的斗争。
如果管理层认为该投标人或其它未知的投标人将支付超过每股35美元的价格收购公司,那么他们也应该展开斗争。
然而,如果管理层不能增加企业的价值,并且没有其他更高的投标价格,那么管理层不是在为股东的最大化权益行事。
现在的管理层经常在公司面临这些恶意收购的情况时迷失自己的方向。
7.其他国家的代理问题并不严重,主要取决于其他国家的私人投资者占比重较小。
较少的私人投资者能减少不同的企业目标。
公司理财第九版课后练习04
资产和成本与销售收入成比例。债务和权益则不。公司保持30%的固定的股利支付率。没有任何可用的外部权益筹资。内 部增长率是多少?
7. 计算可持续增长率 上一道题中,该公司的可持续增长率是多少? 8. 销售收入和增长 Fontenot公司最近年度的财务报表如下所示:
第32第第第附 录
销售收入 成本 应税所得额 所得税(34%) 净利润
3. 计算EFN Zoso公司最近年度的财务报表如下所示(假设没有所得税): (单位:美元)
销售收入 成本净利润来自资产总计利润表
18 300 18 300
资产负债表
债务 权益 总计
6 300 3 890 2 410
12 400 5 900
18 300
资产和成本与销售收入成比例。负债和权益则不。没有支付股利。下一年度的预计销售收入为7 434美元。所需的外部筹 资是多少?
第4 章 长期财务计划与增长
CHAPTER
4
第28第第第附 录
本章复习与自测题
4.1 计算EFN 根据斯堪迪亚采矿公司(Skandia Mining Company)的下列信息,如果预计销售收入增长10%,EFN 是多少?运用销售收入百分比法,并且假设该公司利用了全部生产能力。支付率是固定的。
概念复习和重要的思考题
1. 销售收入预测 你认为为什么大多数长期财务计划的制定都从销售收入预测开始?换句话说,为什么未来的销售 收入是关键的输入因素?
2. 可持续增长 在本章中,我们利用Rosengarten公司来展示如何计算EFN。Rosengarten公司的ROE大约是7.3%,再 投资率大约是67%。如果你计算Rosengarten公司的可持续增长率,你将会发现它只有5.14%。我们在计算EFN时,采用的 增长率是25%。这可能吗?(提示:是。怎么做?)
罗斯公司理财课后习题答案
罗斯公司理财课后习题答案罗斯公司是一家知名的金融公司,以其专业的理财知识和服务著称。
他们的理财课程是广受欢迎的,许多人都希望通过学习这些课程来提高自己的理财能力。
在课程结束后,学生们通常会被要求完成一些习题,以检验他们对所学知识的理解和应用能力。
在本文中,我们将为您提供罗斯公司理财课后习题的答案,帮助您更好地掌握理财知识。
第一题:什么是复利?请用一个例子说明其计算方法。
答案:复利是指利息再投资所产生的利息。
简单来说,就是将利息加入到本金中,下一期的利息就会基于新的本金计算。
例如,假设您有1000元的本金,年利率为5%。
在第一年,您将获得50元的利息,总金额为1050元。
在第二年,您将获得52.5元的利息(1050 * 5%),总金额为1102.5元。
以此类推,每年的利息都会基于新的本金计算,从而实现利息的复利效应。
第二题:什么是风险与回报的关系?为什么高风险往往伴随着高回报?答案:风险与回报是金融领域中一个重要的概念。
一般来说,高风险往往伴随着高回报。
这是因为高风险意味着投资的不确定性增加,可能面临较大的损失。
为了鼓励人们承担高风险,市场通常会提供较高的回报。
投资者可以通过承担更高的风险来获得更高的回报,但同时也要承担更大的潜在损失风险。
第三题:什么是资产配置?为什么资产配置对投资者来说很重要?答案:资产配置是指将投资组合中的资金分配到不同的资产类别中,以实现最佳的风险和回报平衡。
资产类别可以包括股票、债券、房地产等。
资产配置对投资者来说非常重要,因为它可以有效地分散投资风险。
通过将资金分散投资于不同的资产类别,投资者可以降低整个投资组合的风险。
此外,资产配置还可以根据投资者的风险承受能力和投资目标,实现最佳的回报。
第四题:什么是指数基金?与主动基金相比,它有哪些优势?答案:指数基金是一种基金产品,其目标是跟踪特定的指数,如标普500指数或道琼斯工业平均指数。
与主动基金相比,指数基金有以下优势:1. 低费用:指数基金通常具有较低的管理费用和交易成本,因为它们不需要进行频繁的交易和研究。
罗斯公司理财精要版9光盘各章习题
====Word行业资料分享--可编辑版本--双击可删====附录B各章习题及部分习题答案APPENDIX B目录Contents第一部分公司理财概览第三部分未来现金流量估价第1章公司理财导论3 第5章估价导论:货币的时间价值39 概念复习和重要的思考题 4 本章复习与自测题40微型案例麦吉糕点公司 5 本章复习与自测题解答40第2章财务报表、税和现金流量6 概念复习和重要的思考题40 本章复习与自测题7 思考和练习题41本章复习与自测题解答7 第6章贴现现金流量估价43概念复习和重要的思考题8 本章复习与自测题44思考和练习题9 本章复习与自测题解答44微型案例Sunset Boards公司的现金流量和概念复习和重要的思考题46财务报表13 思考和练习题4652第二部分财务报表与长期财务计划微型案例读MBA的决策第7章利率和债券估价54第3章利用财务报表17 本章复习与自测题55本章复习与自测题18 本章复习与自测题解答55本章复习与自测题解答19 概念复习和重要的思考题55概念复习和重要的思考题20 思考和练习题56思考和练习题21 微型案例基于债券发行的S&S飞机公司的微型案例针对S&S飞机公司的财务比率扩张计划59分析24 第8章股票估价60第4章长期财务计划与增长27 本章复习与自测题61本章复习与自测题28 本章复习与自测题解答61本章复习与自测题解答28 概念复习和重要的思考题61概念复习和重要的思考题29 思考和练习题62思考和练习题30 微型案例Ragan公司的股票估价64微型案例S&S飞机公司的比率与财务计划35III第四部分资本预算第9章净现值与其他投资准绳69 第六部分资本成本与长期财务政策第14章资本成本111本章复习与自测题70 本章复习与自测题112本章复习与自测题解答概念复习和重要的思考题7071本章复习与自测题解答概念复习和重要的思考题112112思考和练习题73 思考和练习题113第10章资本性投资决策77 第15章筹集资本117 本章复习与自测题78 本章复习与自测题118本章复习与自测题解答概念复习和重要的思考题7880本章复习与自测题解答概念复习和重要的思考题118118思考和练习题80 思考和练习题120微型案例贝壳共和电子公司(一)85 微型案例S&S飞机公司的上市121 第11章项目分析与评估86 第16章财务杠杆和资本结构政策123 本章复习与自测题87 本章复习与自测题124本章复习与自测题解答概念复习和重要的思考题8787本章复习与自测题解答概念复习和重要的思考题124124思考和练习题88 思考和练习题125微型案例贝壳共和电子公司(二)第五部分风险与报酬第12章资本市场历史的一些启示95 91 微型案例斯蒂芬森房地产公司的资本重组127第17章股利和股利政策129概念复习和重要的思考题130本章复习与自测题96 思考和练习题130本章复习与自测题解答概念复习和重要的思考题思考和练习题97 9696微型案例电子计时公司133第七部分短期财务计划与管理微型案例S&S飞机公司的职位99 第18章短期财务与计划137第13章报酬、风险与证券市场线101 本章复习与自测题138 本章复习与自测题102 本章复习与自测题解答138本章复习与自测题解答概念复习和重要的思考题102103概念复习和重要的思考题139思考和练习题140思考和练习题104 微型案例Piepkorn制造公司的营运成本管微型案例高露洁棕榄公司的 值108 理145IV第19章现金和流动性管理147本章复习与自测题148本章复习与自测题解答148概念复习和重要的思考题148思考和练习题149微型案例Webb公司的现金管理150 第20章信用和存货管理151本章复习与自测题152本章复习与自测题解答152概念复习和重要的思考题152思考和练习题153微型案例豪利特实业公司的信用政策155第八部分公司理财专题第21章国际公司理财159本章复习与自测题160本章复习与自测题解答160概念复习和重要的思考题160思考和练习题161微型案例S&S飞机公司的国际化经营163 部分习题答案165PART 1第一部分公司理财概览====Word行业资料分享--可编辑版本--双击可删====第1章公司理财导论CHAPTER 14附录概念复习和重要的思考题1.财务管理决策过程财务管理决策有哪三种类型?就每一种类型,举出一个相关的企业交易实例。
罗斯公司理财第九版课后习题第四章答案
1.当你增加时间的长度时,终值会发生什么变化,现值会发生什么变化?答:当增加时间长度时根据公司PV=C/(1+r)^t得到现值会减少(dwindle,diminish),而终值FV=C*(1+r)^t会增加。
2.如果利率增加,年金的终值会有什么变化?现值会有什么变化?答:当利率增加时,终值增大,现值FV=C(1/r-1/(r*(1+r)^t))得现值会减小分析这两道题都考察了对终值和现值的概念的理解:终值:一笔资金经过一个时期或者多个时期的以后的价值,如果考察终值就是在现在或将来我得到一笔资金C那么这笔资金在更远的未来将会价值多少,如果考察现值则是将来我得到一笔钱那么它现在的价值是多少(在某个固定的折现率下)3.假设有两名运动员签署了一份10年8000万的合同,一份是每年支付800万,一份是8000万分十次,支付金额每年递增5%,哪种情况最好答:计算过程如下图:u由上图的应该选第一种4.贷款法是否应该要求贷款者报告实际利率而不是名义利率?为什么?答:他们应该报告实际利率,名义利率的优势只是在于它们方便计算,可是在计算机技术发达的今天,计算已经不再是一个问题5.有津贴的斯坦福联邦贷款是为大学生提供帮助的一种普遍来源,直到偿还贷款才开始付息。
谁将收到更多的津贴,新生还是高年级的学生?请解释答:新生将获得跟多的津贴,因为新生使用无息贷款的时间比高年级学生长。
详细数据如下:由此可见新生的津贴=22235-20000=2235;而高年级的学生为1089根据下面的信息回答接下去的5个题:6.由计算得到如果500美金若在30年后要变成10000则实际年利率是10.5%,我想应该是GMAC的决策者认为公司的投资收益率大于10.5%7.如果公司可以在30年内的任意时间内以10000元的价格购买该债券的话,将会使得该债券更具有吸引力8.1)这500元不能影响我后面30年的正常生活,也就是我说我是否有500元的多余资金;2)该公司是否能够保证在30年后我能收到10000元3)当前我认为的投资收益率是否高于10.5%,若高于10.5%则不应该考虑投资该债券我的回答是:是取决的承诺偿还的人9.财政部的发行该种债券的价格较高因为财政部在所有的债券发行者中信用最好10.价格会超过之前的500美元,因为如果随着时间的推移,该债券的价值就越接近10000美元,如果在2010年的看价格有可能会更高,但不能确定,因为GMAC有财务恶化的可能或者资本市场上的投资收益率提高。
罗斯《公司理财》(第9版)笔记和课后习题(含考研真题)详解[视频讲解]
罗斯《公司理财》(第9版)笔记和课后习题详解第1章公司理财导论1.1复习笔记公司的首要目标——股东财富最大化决定了公司理财的目标。
公司理财研究的是稀缺资金如何在企业和市场内进行有效配置,它是在股份有限公司已成为现代企业制度最主要组织形式的时代背景下,就公司经营过程中的资金运动进行预测、组织、协调、分析和控制的一种决策与管理活动。
从决策角度来讲,公司理财的决策内容包括投资决策、筹资决策、股利决策和净流动资金决策;从管理角度来讲,公司理财的管理职能主要是指对资金筹集和资金投放的管理。
公司理财的基本内容包括:投资决策(资本预算)、融资决策(资本结构)、短期财务管理(营运资本)。
1.资产负债表资产负债表是总括反映企业某一特定日期财务状况的会计报表,它是根据资产、负债和所有者权益之间的相互关系,按照一定的分类标准和一定的顺序,把企业一定日期的资产、负债和所有者权益各项目予以适当排列,并对日常工作中形成的大量数据进行高度浓缩整理后编制而成的。
资产负债表可以反映资本预算、资本支出、资本结构以及经营中的现金流量管理等方面的内容。
2.资本结构资本结构是指企业各种资本的构成及其比例关系,它有广义和狭义之分。
广义资本结构,亦称财务结构,指企业全部资本的构成,既包括长期资本,也包括短期资本(主要指短期债务资本)。
狭义资本结构,主要指企业长期资本的构成,而不包括短期资本。
通常人们将资本结构表示为债务资本与权益资本的比例关系(D/E)或债务资本在总资本的构成(D/A)。
准确地讲,企业的资本结构应定义为有偿负债与所有者权益的比例。
资本结构是由企业采用各种筹资方式筹集资本形成的。
筹资方式的选择及组合决定着企业资本结构及其变化。
资本结构是企业筹资决策的核心问题。
企业应综合考虑影响资本结构的因素,运用适当方法优化资本结构,从而实现最佳资本结构。
资本结构优化有利于降低资本成本,获取财务杠杆利益。
3.财务经理财务经理是公司管理团队中的重要成员,其主要职责是通过资本预算、融资和资产流动性管理为公司创造价值。
第九版-公司理财-罗斯-中文答案-
1、如果项目带来的是常规的现金流,而且其回收期短于该项目的生命周期,还不能准备判断其净现值的正负。
仍需要其采用的折现率和其内部收益率IRR 做对比。
当折现率小于IRRA 时,净现值为正值,当折现率大于IRRA时,净现值为负值,两者相等时,净现值为零。
如果一个项目的折现回收期短于该项目的生命周期,则净现值一定为正值。
2、项目有常规的现金流,且NPV为正值,则各期流入的现金流折现总和一定大于期初项目资金流出。
而各期流入的现金流总和肯定大于折现总和,所以该项目的回收期一定短于其生命周期。
同时折现回收期是用和净现值同样的NPV计算出来的,所以折现回收期也一定短于其生命周期。
同样净现值为正值,说明初始投资所带来的后续现金流的现值大于初始投资,所以盈利指数PI 一定大于1。
如果使用内部收益率折现各期现金流量时,净现值为零。
而以折现率折现各期现金流量时,净现值为正,说明折现率小于内部收益率。
3、a 回收期是指投资引起的现金流入累计到与投资相等所需要的时间。
它代表收回投资所需要的年限。
回收年限越短,方案越有利。
其缺陷就是忽略了回收期内现金流量的时间序列,也忽略了回收期以后的现金支付,同时对于回收期的选择也存在主观臆断。
选择一个具体的回收期决策标准,当项目的回收期小于标准的就可行,大于标准的则拒绝。
b 平均会计收益率是指为扣除所得税和折旧之后的项目平均收益除以整个项目期限内的平均账面投资额。
其缺陷是使用账面收益而非现金流量,忽略了折旧对现金流量的影响,忽视了净收益的时间分布对项目经济价值的影响。
当项目的平均会计收益率小于目标平均会计收益率时,则拒绝项目,反之接受。
c 内部收益率就是令项目净现值为0的折现率。
其缺点是对于特殊项目无法用一般原则进行判断,并且有些项目可能会出现多个收益率的现象。
同时对于互斥项目容易忽视其规模问题和时间序列问题。
一般原则是当折现率小于IRR时,接受该项目,反之则拒绝。
d 盈利指数是初始投资所带来的后续现金流的现值和初始投资的比值。
公司理财-罗斯 (第9版) 第4章 折现现金流量估价
…
0
1
15 PV 150 .10
永续增长年金
能始终以某固定的增长率保持增长的一系列现金流。
C 0 1
C×(1+g) C ×(1+g)2 2 3
…
C C (1 g ) C (1 g ) PV 2 3 (1 r ) (1 r ) (1 r )
如果你打算按揭买车,你每月能承担的月供额为 400美元,则在利率为7%,贷款期为36个月的条件 下,你所能购买的最高车价不能超过多少? $400 0 1 $400 2
$400
$400
3 36
$400 1 PV $12,954.59 1 36 .07 / 12 (1 .07 12)
年金 一系列稳定有规律的、持续一段固定时期的现金收
付活动。 C 1 C 2 C C
0 3 T
C C C C PV 2 3 (1 r ) (1 r ) (1 r ) (1 r )T
C 1 PV 1 T r (1 r )
年金: 例
为了能在1年后偿还10 000美元的债务,债务人在 今天就需要存起来的钱,就是现值(Present Value,PV)。
请注意, 10 000美元 =9 523.81美元×1.05
净现值
某个项目的净现值(Net Present Value,NPV) 等于 该项目的预期现金流量的现值与项目投资成本之差。 假定某项投资承诺将在一年后归还10 000美元,现在 需要的出资金额为9 500美元。你的资金利息率为5%。 这项投资可行吗?
10 000×1.05 = 10 500美元 该投资在期末的本息合计金额被称为终值 (Future Value,FV),或复利值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.当你增加时间的长度时,终值会发生什么变化,现值会发生什么变化?
答:当增加时间长度时根据公司PV=C/(1+r)^t得到现值会减少(dwindle,diminish),而终值FV=C*(1+r)^t会增加。
2.如果利率增加,年金的终值会有什么变化?现值会有什么变化?
答:当利率增加时,终值增大,现值FV=C(1/r-1/(r*(1+r)^t))得现值会减小分析这两道题都考察了对终值和现值的概念的理解:终值:一笔资金经过一个时期或者多个时期的以后的价值,如果考察终值就是在现在或将来我得到一笔资金C那么这笔资金在更远的未来将会价值多少,如果考察现值则是将来我得到一笔钱那么它现在的价值是多少(在某个固定的折现率下)
3.假设有两名运动员签署了一份10年8000万的合同,一份是每年支付800万,一份是
答:计算过程如下图:
u
由上图的应该选第一种
4.贷款法是否应该要求贷款者报告实际利率而不是名义利率?为什么?
答:他们应该报告实际利率,名义利率的优势只是在于它们方便计算,可是在计算机技术发达的今天,计算已经不再是一个问题
5.有津贴的斯坦福联邦贷款是为大学生提供帮助的一种普遍来源,直到偿还贷款才开始付
息。
谁将收到更多的津贴,新生还是高年级的学生?请解释
答:新生将获得跟多的津贴,因为新生使用无息贷款的时间比高年级学生长。
详细数据如下:
由此可见新生的津贴=22235-20000=2235;而高年级的学生为1089
根据下面的信息回答接下去的5个题:
6.由计算得到如果500美金若在30年后要变成10000则实际年利率是10.5%,我想应该
是GMAC的决策者认为公司的投资收益率大于10.5%
7.如果公司可以在30年内的任意时间内以10000元的价格购买该债券的话,将会使得该
债券更具有吸引力
8.1)这500元不能影响我后面30年的正常生活,也就是我说我是否有500元的多余资
金;
2)该公司是否能够保证在30年后我能收到10000元
3)当前我认为的投资收益率是否高于10.5%,若高于10.5%则不应该考虑投资该债券我的回答是:是取决的承诺偿还的人
9.财政部的发行该种债券的价格较高因为财政部在所有的债券发行者中信用最好
10.价格会超过之前的500美元,因为如果随着时间的推移,该债券的价值就越接近10000
美元,如果在2010年的看价格有可能会更高,但不能确定,因为GMAC有财务恶化
的可能或者资本市场上的投资收益率提高。
11.计算结果如下:
4)对于结果三为什么不是结果一的两倍,是因为利息也会产生利息
12. 略(太简单了,直接套公式)
13. 略(太简单,直接套公式)
14. 计算结果如下:
15. 计算结果如下图所示:
16. 计算结果如下图所示:
17.计算结果下图所示:
需要注意一下公式:
EAR=(1+APR/m)^m-1
EAR=e^APR-1
18. 参考了本书的英文原版答案,本题应该是G投资在5年后产生135000的回报,H在10年后产生195000的回报。
计算结果如下图所示:
19. 本题考查了永续年金的计算:FV=C/(r-g),计算结果如下
要注意的是直接利用永续年的现值计算公式所得结果是技术产生后一年的现值,应当将结果再折现一年
20. 计算结果如下:
需要注意的是初始年金=62400*5%,将3210当做C再带入书中公式,得到了最终数额的现值,现在我们在将他计算终值=52861.98*(1+9%)^40=1660364.12
21. 计算过程如下图所示
22. 计算结果如下图:
从终值和现值两个方面计算都得出了该公司会亏损2438.23,当折现率=12.04时平衡23. 对比了英文版发现中文版题目有错,应该改为前7年采用APR=13%进行月度复利支付也就是说实际利率=APR/12,具体分析如下图
24. 注意点:1)因为马上就要支付所以第一个月不会折现,及等式左边是3500-C
2)实际折现期数为23期 同样注意折现期数
方案一 方案二
显然应该选择方案二
26. 本题很简单就是很麻烦,主要折现的时间点与期限,计算如下
27. 比较两种方案的最终花费的现值,如图
平衡点:如图,汽车残值应为27189.25
28. 归还费用类型的银行
最后得出APR=6.90% EAR=7.13%
不归还费用的银行:由于费用不计入利率,所以EAR=6.80%,EAR=(1+6.8%)^12-1 29. 参考了英文原版答案发现答案最后一步计算出现错误
真确答案:
30.略
31. 72法则:1)计算离散复利下,一项投资翻倍的时间;2)期数确定的情况下投资反翻倍所需的利率。
假设本金为1,FV=2,利率为R,所需期数为T
根据72法则:2=1*(1+R)^T,对两边同时去对数得:ln(2)=T*ln(1+R),由(1)得T=72/R 其中R是利率的100倍(也就是不带百分号的数),若R为百分数则72法则转变为.72/R 用Excel解得结果如图
求得R=7.845%
注:本题中既不知道利率也不知道期数完全由72法则得出相应的期数和利率即未知数为R再用72法则求出期数,其实我也不知道为什么在这种利率下72法则就能求出准确的周期╮(╯▽╰)╭,可能因为在这道题的实际中T=.72/R吧
案例题:
1.Ben的年龄越大,取得的MBA学位的价值就越小。
2.其他可能无法量化的因素有:社会环境,政治环境等。
例如,金融危机可能影响就业
率和工资薪酬,从而影响他的决定。
3.a.ben继续工作
所得报酬的现值=50000{1/(0.065-0.03)-[(1+0.03)/(1+0.065)35]/(0.065-0.03)}
(1-0.26)
=728896.23
b.到wilton大学读MBA
所需成本现值=63000+63000/(1+0.065)+2500=124654.93
所得报酬现值=15000+95000{1/(0.065-0.04)-[(1+0.04)/(1+0.065)33]/(0.065-0.04)}
(1-0.31)/(1+0.065)2
=1271117.37
c.到mount perry大学读MBA
所需成本现值=75000+3000+3500+3000/(1+0.065)=84316.9
所得报酬现值=10000+78000{1/(0.065-0.035)-[(1+0.035)/(1+0.065)34]/(0.065-0.035)}
(1-0.29)/(1+0.065)
=1241829.64
站在理财的立场,最好的选择是去Wilton大学读取MBA
4.我认为最适宜的方法是计算各个选择权的现值,终值的数额较大,计算更复杂,但是现值等于终值的折现,意义是一样的。
5.72889
6.23=15000+C{1/(0.065-0.04)-[(1+0.04)/(1+0.065)33]/(0.065-0.04)}
(1-0.31)/(1+0.065)2-124654.93
C=47257
Ben收到47257的初始薪酬才与现在的职位没什么区别
6.如果要借钱,就要考虑利息成本,利息成本的大小会影响他的决策。