核磁共振 PPT
合集下载
光谱学-核磁共振课件(共86张PPT)
第二页,共八十六页。
从核磁共振氢谱、核磁共振碳谱到核磁共振二维谱,从永久 磁铁仪器、电磁铁仪器到超导磁体仪器,从连续波仪器到脉冲付 里叶变换仪器,从低磁场仪器(40兆赫、60兆赫、80兆赫、90兆 赫、100兆赫)到高磁场仪器(200兆赫、300兆赫、400兆赫、500 兆赫、800兆赫、900兆赫),核磁共振技术正以迅猛发展之势日 新月异。核磁共振在有机化学、植物化学、药物化学、生物化学 (shēnɡ wù huà xué)和化学工业、石油工业、橡胶工业、食品工业、医药 工业等方面应用越来越广泛。
核磁共振 (NMR) (hé cí ɡònɡ zhèn)
Nuclear magnetic resonance(NMR)
第一页,共八十六页。
一. 简 介 1. 发展概况
核磁共振(NMR)是根据有磁矩的原子 核
(如1H、13C、19F、31P等),在磁场的作用下,能够
(nénggòu)产生能级间的跃迁的原理,而采用的一种新技 术。这种新技术自1946年发现,中经50年代末高分辨 核磁共振仪问世以来,现已有很大发展。
第十页,共八十六页。
核磁矩在外磁场方向(fāngxiàng)上的分量μz亦量子化:
z
Pz
mh 2
第十一页,共八十六页。
3、核的进动(jìn dònɡ)
将自旋核放在外磁场H0中时,自旋核的行为就像一 个在重力场中做旋转(xuánzhuǎn)的陀螺,即一方面自旋, 一方面由于磁场作用而围绕磁场方向旋转(xuánzhuǎn),这 种运动方式称为进动,又称为Larmor进动。其进动频 率称为Larmor频率υ0, υ0∞H0
低场
向左
向右 磁场强度
( 增大(zēnɡ dà))
( 减小)
从核磁共振氢谱、核磁共振碳谱到核磁共振二维谱,从永久 磁铁仪器、电磁铁仪器到超导磁体仪器,从连续波仪器到脉冲付 里叶变换仪器,从低磁场仪器(40兆赫、60兆赫、80兆赫、90兆 赫、100兆赫)到高磁场仪器(200兆赫、300兆赫、400兆赫、500 兆赫、800兆赫、900兆赫),核磁共振技术正以迅猛发展之势日 新月异。核磁共振在有机化学、植物化学、药物化学、生物化学 (shēnɡ wù huà xué)和化学工业、石油工业、橡胶工业、食品工业、医药 工业等方面应用越来越广泛。
核磁共振 (NMR) (hé cí ɡònɡ zhèn)
Nuclear magnetic resonance(NMR)
第一页,共八十六页。
一. 简 介 1. 发展概况
核磁共振(NMR)是根据有磁矩的原子 核
(如1H、13C、19F、31P等),在磁场的作用下,能够
(nénggòu)产生能级间的跃迁的原理,而采用的一种新技 术。这种新技术自1946年发现,中经50年代末高分辨 核磁共振仪问世以来,现已有很大发展。
第十页,共八十六页。
核磁矩在外磁场方向(fāngxiàng)上的分量μz亦量子化:
z
Pz
mh 2
第十一页,共八十六页。
3、核的进动(jìn dònɡ)
将自旋核放在外磁场H0中时,自旋核的行为就像一 个在重力场中做旋转(xuánzhuǎn)的陀螺,即一方面自旋, 一方面由于磁场作用而围绕磁场方向旋转(xuánzhuǎn),这 种运动方式称为进动,又称为Larmor进动。其进动频 率称为Larmor频率υ0, υ0∞H0
低场
向左
向右 磁场强度
( 增大(zēnɡ dà))
( 减小)
核磁共振讲义核磁共振(共59张PPT)
形成的分子内氢键。
R ROHO
H OO
R
R'
H
1. 有两个电负性基团靠近形成氢键的质子,分别通过共价键和氢键产生吸电子 诱导作用,造成较大的去屏蔽效应,使共振发生在低场。
2. 分子间氢键形成的程度与样品浓度、测定时的温度以及溶剂类型等有关,因 此相应的质子化学位移值不固定。在非极性溶剂中,浓度越稀,越不利于形 成氢键。因此随着浓度逐渐减小,能形成氢键的质子共振向高场移动,但分 子内氢键的生成与浓度无关。所以可以用改变浓度的办法区分这两种氢键。
对质子的屏蔽作用较小。 • sp3、sp2和 sp杂化轨道中的 s成分依次增加,成键电子对质子的屏蔽作用依
次减小,δ值应该依次增大。实际测得的乙烷、乙烯和乙炔的质子δ值 分别为 0.88、5.23 和 2.88。
各向异性效应
环电流效应
环外氢受到强的去屏蔽作用: 8.9 环内H 在受到高度的屏蔽作用,: -1.8
耦合种类较少。 • 在 sp3杂化体系中由于单键能自由旋转,同碳上的质子许多是磁等价的
,但是在构象固定等条件下它们不再磁等价、同碳耦合就会发生。 • 在 sp2杂化体系中双键不能自由旋转,同碳质子耦合是常见的。
3J与Karplus公式
3J 是两面角的函数。它们之间的关系可以用 Karplus公式表示: 3JH,H=J0cos2-C (0 90 ) 3JH,H=J180cos2-C (90 180 )
大,共振发生在较低场,值较大。
• 电负性基团越多,吸电子诱导效应的影响越大,相应的质子化学位移 值越大
• 电负性基团的吸电子诱导效应沿化学键延伸,相隔的化学键越多,影响 越小。
相连碳原子的杂化态
• 碳碳单键是碳原子 sp3杂化轨道重叠而成的,而碳碳双键和三键分别是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近,而离氢原子较 远。所以杂化轨道中 s成分越多,成键电子越靠近碳核,而离质子较远,
R ROHO
H OO
R
R'
H
1. 有两个电负性基团靠近形成氢键的质子,分别通过共价键和氢键产生吸电子 诱导作用,造成较大的去屏蔽效应,使共振发生在低场。
2. 分子间氢键形成的程度与样品浓度、测定时的温度以及溶剂类型等有关,因 此相应的质子化学位移值不固定。在非极性溶剂中,浓度越稀,越不利于形 成氢键。因此随着浓度逐渐减小,能形成氢键的质子共振向高场移动,但分 子内氢键的生成与浓度无关。所以可以用改变浓度的办法区分这两种氢键。
对质子的屏蔽作用较小。 • sp3、sp2和 sp杂化轨道中的 s成分依次增加,成键电子对质子的屏蔽作用依
次减小,δ值应该依次增大。实际测得的乙烷、乙烯和乙炔的质子δ值 分别为 0.88、5.23 和 2.88。
各向异性效应
环电流效应
环外氢受到强的去屏蔽作用: 8.9 环内H 在受到高度的屏蔽作用,: -1.8
耦合种类较少。 • 在 sp3杂化体系中由于单键能自由旋转,同碳上的质子许多是磁等价的
,但是在构象固定等条件下它们不再磁等价、同碳耦合就会发生。 • 在 sp2杂化体系中双键不能自由旋转,同碳质子耦合是常见的。
3J与Karplus公式
3J 是两面角的函数。它们之间的关系可以用 Karplus公式表示: 3JH,H=J0cos2-C (0 90 ) 3JH,H=J180cos2-C (90 180 )
大,共振发生在较低场,值较大。
• 电负性基团越多,吸电子诱导效应的影响越大,相应的质子化学位移 值越大
• 电负性基团的吸电子诱导效应沿化学键延伸,相隔的化学键越多,影响 越小。
相连碳原子的杂化态
• 碳碳单键是碳原子 sp3杂化轨道重叠而成的,而碳碳双键和三键分别是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近,而离氢原子较 远。所以杂化轨道中 s成分越多,成键电子越靠近碳核,而离质子较远,
仪器分析第8章核磁共振PPT
24
8.2 理论核磁共振的产生 8.2.3 经典力学-进动模型(precession)
•当带正电荷的、且具有自旋量子数的核会产 生磁场,该自旋磁场与外加磁场相互作用, 将会产生回旋,称为进动(Procession),如下 图.进动频率与自旋核角速度及外加磁场的 关系可用Larmor方程表示:
0 2 0 B0
18
➢对氢核来说,I=1/2,其m值只能有 21/2+1=2个取向: +1/2和-1/2.也即表示H 核在磁场中,自旋轴只有两种取向: 与外加磁场方向相同,m=+1/2,磁能级 较低; 与外加磁场方向相反,m=-1/2,磁能级 较高.
19
自旋量子数为1/2的核的能级分裂:
20
8.2.2 量子力学处理核磁共振的产生
➢总之,无论从何种模型看,核在 磁场中都将发生分裂,可以吸收一 定频率的辐射而发生能级跃迁.
27
8.2.4 不同核的NMR
核
天然同位素
存在比(%)
1H
99.98
13C
1.1*
19F
100
31P
100
14N
99.63
15N
0.37*
17O
0.037*
*天然丰度越低,测定越困难。
B0 = 2.35T E (J) (MHz)
第8章 核磁共振波谱法 (NMR)
Nuclear Magnetic Resonance Spectroscopy
8.1 概述 8.1.1 什么是核磁共振 8.1.2 NMR发展简介
1
第8章 核磁共振波谱法 (NMR) 8.1 概述
Nuclear Magnetic Resonance Spectroscopy 8.1.1 什么是核磁共振
8.2 理论核磁共振的产生 8.2.3 经典力学-进动模型(precession)
•当带正电荷的、且具有自旋量子数的核会产 生磁场,该自旋磁场与外加磁场相互作用, 将会产生回旋,称为进动(Procession),如下 图.进动频率与自旋核角速度及外加磁场的 关系可用Larmor方程表示:
0 2 0 B0
18
➢对氢核来说,I=1/2,其m值只能有 21/2+1=2个取向: +1/2和-1/2.也即表示H 核在磁场中,自旋轴只有两种取向: 与外加磁场方向相同,m=+1/2,磁能级 较低; 与外加磁场方向相反,m=-1/2,磁能级 较高.
19
自旋量子数为1/2的核的能级分裂:
20
8.2.2 量子力学处理核磁共振的产生
➢总之,无论从何种模型看,核在 磁场中都将发生分裂,可以吸收一 定频率的辐射而发生能级跃迁.
27
8.2.4 不同核的NMR
核
天然同位素
存在比(%)
1H
99.98
13C
1.1*
19F
100
31P
100
14N
99.63
15N
0.37*
17O
0.037*
*天然丰度越低,测定越困难。
B0 = 2.35T E (J) (MHz)
第8章 核磁共振波谱法 (NMR)
Nuclear Magnetic Resonance Spectroscopy
8.1 概述 8.1.1 什么是核磁共振 8.1.2 NMR发展简介
1
第8章 核磁共振波谱法 (NMR) 8.1 概述
Nuclear Magnetic Resonance Spectroscopy 8.1.1 什么是核磁共振
《核磁共振》PPT课件.ppt
时间表示;T2 气、液的T2与其T1相似,约为1秒;
固体试样中的各核的相对位置比较固定,利于自旋-自旋间的能量交换,T2很小, 弛豫过程的速度很快,一般为10-4~10-5秒。
弛豫时间虽然有T1、T2之分,但对于一个自旋核来说,它在高能态所停 留的平均时间只取决于T1、T2中较小的一个。因T2很小,似乎应该采用 固体试样,但由于共振吸收峰的宽度与T成反比,所以,固体试样的共振 吸收峰很宽。为得到高分辨的图谱,且自旋-自旋弛豫并非为有效弛豫, 因此,仍通常采用液体试样。
z
pz
hm 2
核磁矩的能级
EZH 2hmH
*
(二) 磁性原子核在外磁场中的行为特性
1、自旋取向与核磁能级
无外加磁场时,核磁矩的取向是任意的,自旋能级相同; 有外加磁场时,核磁矩共有2I+1个取向,用磁量子数(m
)表示每一种取向 m=I,I-1,I-2 … -I+1,-I 核磁矩在外磁场空间的取向不是任意的,是量子化的, 不同
高能态核寿命的量度。 T1取决于样品中磁核的运动,样品流动性降低时,T1增
大。气、液(溶液)体的T1较小,一般在1秒至几秒左右; 固体或粘度大的液体,T1很大,可达数十、数百甚至上千 秒。 因此,在测定核磁共振波谱时,通常采用液体试样。
*
2) 自旋-自旋驰豫(横向驰豫)
指两个进动频率相同而进动取向不同(即能级不同)的性核, 在一定距离内,发生能量交换而改变各自的自旋取向。交换能量 后,高、低能态的核数目未变,总能量未变(能量只是在磁核之 间转移),所以也称为横向弛豫。
取向具有不同自旋能级, 这种现象称为能级分裂.
*
当置于外磁场H0中时,相对于外磁场,有(2I+1)种 取向: m为磁量子数,取值范围:I,I-1,…,-I, 共(2I+1)种取向。
固体试样中的各核的相对位置比较固定,利于自旋-自旋间的能量交换,T2很小, 弛豫过程的速度很快,一般为10-4~10-5秒。
弛豫时间虽然有T1、T2之分,但对于一个自旋核来说,它在高能态所停 留的平均时间只取决于T1、T2中较小的一个。因T2很小,似乎应该采用 固体试样,但由于共振吸收峰的宽度与T成反比,所以,固体试样的共振 吸收峰很宽。为得到高分辨的图谱,且自旋-自旋弛豫并非为有效弛豫, 因此,仍通常采用液体试样。
z
pz
hm 2
核磁矩的能级
EZH 2hmH
*
(二) 磁性原子核在外磁场中的行为特性
1、自旋取向与核磁能级
无外加磁场时,核磁矩的取向是任意的,自旋能级相同; 有外加磁场时,核磁矩共有2I+1个取向,用磁量子数(m
)表示每一种取向 m=I,I-1,I-2 … -I+1,-I 核磁矩在外磁场空间的取向不是任意的,是量子化的, 不同
高能态核寿命的量度。 T1取决于样品中磁核的运动,样品流动性降低时,T1增
大。气、液(溶液)体的T1较小,一般在1秒至几秒左右; 固体或粘度大的液体,T1很大,可达数十、数百甚至上千 秒。 因此,在测定核磁共振波谱时,通常采用液体试样。
*
2) 自旋-自旋驰豫(横向驰豫)
指两个进动频率相同而进动取向不同(即能级不同)的性核, 在一定距离内,发生能量交换而改变各自的自旋取向。交换能量 后,高、低能态的核数目未变,总能量未变(能量只是在磁核之 间转移),所以也称为横向弛豫。
取向具有不同自旋能级, 这种现象称为能级分裂.
*
当置于外磁场H0中时,相对于外磁场,有(2I+1)种 取向: m为磁量子数,取值范围:I,I-1,…,-I, 共(2I+1)种取向。
磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。
核磁共振PPT
三、各类有机化合物的化学位移
1、饱和烃
-CH3: -CH2: -CH:
CH3=0.791.10ppm CH2 =0.981.54ppm CH= CH3 +(0.5 0.6)ppm
O CH3 N CH3
C C CH3 O C CH3
CH3
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm H=2.1ppm H=2~3ppm
2.68
1.65
1.04
0.90
H3C Cl 3.05
Cl H2C Cl
5.33Cl HC ClCl Nhomakorabea..24
2、磁各向异性效应
具有多重键或共轭多重键分子,在外磁场作用下, 电子会沿分子某一方向流动,产生感应磁场。此感应 磁场与外加磁场方向在环内相反(抗磁),在环外相同 (顺磁),即对分子各部位的磁屏蔽不相同。
偶数
偶数
0
偶数
奇数
1,2,3….
奇数
奇数或偶数 1/2;3/2;5/2….
(1) I=0 的原子核O(16);C(12);S(32) 等 ,无自旋,没有磁矩,不产生共振吸收。
(2) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2:11B,35Cl,79Br,81Br I=5/2:17O,127I
由拉莫进动方程:0 = 2 0 = H0 ; 共振条件: 0 = H0 / (2 )
电磁波辐射
共振条件:
(1) 核有自旋(磁性核) ;
(2)外磁场H0,能级裂分;
(3)照射频率与外磁场的比值0 / H0 = / (2 )
信号
共振条件: 0 = H0 / (2 )
吸 收 能
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3提供必要的病史及相关检查信息 (化验及历史资料等)
4检查项目要清晰
平扫(MRI)动脉血管成像(MRA)静脉血管 成像(MRV)、弥散像(DWI)、胆道水成 像(MRCP),泌尿系水成像(MRU),水成像检 查必需先做平扫。波谱 (MRS )磁敏感成像 (SWAN)lAVA动态增强等。
两项、三项检查时一定写清楚。
功能成像--DWI (diffusion-weighted imaging)
DWI:弥散(扩散)加权成像 DWI 是目前唯一能够检测活体组
织内水分子扩散运动的无创 性方法。
是诊断脑梗塞最敏感的序列。 对超急性脑梗塞(<6h,细 胞毒性水肿)可明确诊断。
水抑制成像—T2 FLAIR
特点: 自由水为低信号
磁共振成像基本结构
2会看MRI胶片信息
重要信息姓名年龄、左、右;部 位,序列
仪器名称 系统检查号 扫描系列号 扫描层号 扫描方位 显示重复时间
回波时间/
有效回波
90
回波数/带宽 返转时间 使用线圈名称 视野/梯度选择
扫扫距描描阵层层/采厚数集//层 扫次间数描距时间
4、磁共振脑功能成像(fMRI) 广泛用于视觉、运动、感 觉、听觉以及语言中枢的研究。为术中保护脑功能区及 偏瘫患者的功能恢复提供参考证据。 5、磁共振波谱成像(MRS) 用于正常或病变脑组织代 谢及生理生化改变的定量分析方法。主要用于颅脑肿瘤、 出血、感染性疾病、白质病变、代谢性疾病、系统性疾 病、新生儿脑病以及AIDS等疾病的诊断及鉴别诊断。利 用不同病变代谢产物的不同,用于病变的诊断尤其是鉴 别诊断,如前列腺的查体和前列腺增生和前列腺癌的鉴 别。 6、灌注加权成像(PWI) 通过显示组织毛细血管水平的 血流灌注情况,评价局部组织的活动及功能状况。对于 脑梗后的再灌注和侧枝循环的建立和开放很敏感,并用 于鉴别肿瘤复发和放疗后组织坏死的早期改变,并能间 接判断肿瘤的分化程度。 尤其适用于对术后或治疗后肿 瘤是否复发的判断。
(二)类PET成像技术,与PET/CT具有相等的临床价值, 不但对早期恶性肿瘤检查具有非常高的敏感性,而且能 够检出早期的肿瘤转移。对于全身转移灶筛查、淋巴结 转移筛查、寻找原发灶、术后放化疗后的疗效观察、恶 性血液肿瘤的病情监控以及对全身性疾病的筛查有较大 的科研和临床价值
(三)腹部实质器官方面应用:
GRE(MRA) 高
高
新鲜出血 等或低 高
陈旧出血 高
高
水、脂肪和骨髓信号、肌肉组织、骨骼组织、气体
4熟知影像解剖 5如何判读T1WI像和T2WI像?
看脑脊液:T1WI脑脊液为黑 的, T2WI脑脊液为白的亮的。
颅骨内、外板为致密 骨板,T1WI、T2WI均 为低信号,板障因含 脂肪及造血组织, T1WI及T2WI皆为高信 号,故颅骨表现为 “夹心饼”样三层结 构
1项目要填全(包括电话和日期) 2严格掌握适应症禁忌症 3提供必要病史及相关检查 4检查项目要明晰
二如何阅读核磁 共振(MRI)片?
如何阅读MRI片?
1什么是磁共振成像? 利用人体内固有的原子核,在外加 磁场作用下产生共振现象,吸收能 量并释放MR信号,将其采集并作为 成像源,经计算机处理,形成人体 MR图像。
鼻窦及乳突气腔内无 信号
如何判断SE序列的T1WI与T2WI
显示组织结构;T2显示病
理改变
1看水 2看脂肪 3看脑灰白质 4看序列:
T1WI:短TR、短TE T2WI:长TR、长TE
6一些特殊序列的应用
7判读的顺序?可以从外向内、从 上到下,从前到后的顺序,一般 先病变后正常。
8病变的掌握情况
一核磁共振的申请单如何填写?
二如何阅读核磁共振片?
三我院超导核磁可以做的检查项 目?
一 核磁共振的 申请单如何填写?
1申请单的项 目要填写全 面准确
2严格掌握适应症、禁忌症
核磁共振检查适应症
1 中枢神经系统各种病变(炎症、 肿瘤、 畸形、血管性病变等)优于CT
2 五官及颈部软组织病变 3 纵隔及心脏大血管病变 4 腹内实质器官及腹膜后病变 5 脊柱及四肢骨关节病变
医院名称 姓名 性别,年龄 M号检R查I编时间 放大率 图像翻转 图像旋转
比率尺
频率编码方向
窗宽/窗位
3掌握MRI信号特点
MR基本图像
组织信号特点
T1WI T2WI
水
低信号 高信号
脂肪
高信号 高信号
软组织
等信号 等偏低
骨皮质
低信号 低信号
骨松质
等偏高 等偏低
流动血液(SE) 低(无) 低(无)
三我院超导核磁 能做的检查项目 及相关病例?
(一)神经系统方面应用:
1、弥散成像(DWI) 主要用于急性脑缺血性 病变、脑内肿瘤的诊断和鉴别诊断,还可用于评 价脑白质的发育及解剖。
2、磁敏感成像(SWAN):用于对脑出血、 海绵状血管瘤、淀粉样脑病等疾病的诊断有极大 的意义。
3、弥散张量成像(DTI) 利用水分子的各向异 性来间接反映神经纤维组织的结构是否完整,常 用于判断病变对白质纤维的破坏,指导手术范围 的制定。
减轻水信号 干扰 显示病理改 变 鉴别是否为 自由水
脂肪抑制成 像
特点:脂肪为 低信号
减少脂肪影响 显示病理改变 鉴别是否脂肪
T1
T2
T2压
脂
脂肪抑制成像可更好的显示各种病理改变,有助于进 一步明确诊断
左 肾 上 腺 皮 质 腺 瘤
细心加耐心
1 熟练掌握影像解剖 2熟知MRI信号特点 3熟知病变特点正确判读 4细心加耐心
危
1有心脏起搏器的患者。
险
2手术后动脉夹存留患者。
3铁磁性异物患者,如体内存留有弹片、眼内 存留有金属异物等。
4换有人工金属心脏瓣膜患者。
5金属假肢、金属关节患者。
6体内置有胰岛素泵或神经刺激器者。
7妊娠不足3个月。(幽闭恐惧症者注意)
如果您能掌握禁忌症,严格按操 作规程操作,核磁共振是很安全 的,立体成像,无损伤,无辐射, 所以请您放心检查!
除常规序列外,主要有容积加速肝脏采集 (LAVA)技
术,特点是大范围、高时间、空间分辨率,压脂均匀。
能实现多动脉期扫描,精细分辨微小病变。可用于肝脏、
胰腺、肾脏、肾上腺等实质脏器的增强,也可用于胃肠