核磁共振PPT.

合集下载

光谱学-核磁共振课件(共86张PPT)

光谱学-核磁共振课件(共86张PPT)
第二页,共八十六页。
从核磁共振氢谱、核磁共振碳谱到核磁共振二维谱,从永久 磁铁仪器、电磁铁仪器到超导磁体仪器,从连续波仪器到脉冲付 里叶变换仪器,从低磁场仪器(40兆赫、60兆赫、80兆赫、90兆 赫、100兆赫)到高磁场仪器(200兆赫、300兆赫、400兆赫、500 兆赫、800兆赫、900兆赫),核磁共振技术正以迅猛发展之势日 新月异。核磁共振在有机化学、植物化学、药物化学、生物化学 (shēnɡ wù huà xué)和化学工业、石油工业、橡胶工业、食品工业、医药 工业等方面应用越来越广泛。
核磁共振 (NMR) (hé cí ɡònɡ zhèn)
Nuclear magnetic resonance(NMR)
第一页,共八十六页。
一. 简 介 1. 发展概况
核磁共振(NMR)是根据有磁矩的原子 核
(如1H、13C、19F、31P等),在磁场的作用下,能够
(nénggòu)产生能级间的跃迁的原理,而采用的一种新技 术。这种新技术自1946年发现,中经50年代末高分辨 核磁共振仪问世以来,现已有很大发展。
第十页,共八十六页。
核磁矩在外磁场方向(fāngxiàng)上的分量μz亦量子化:
z
Pz
mh 2
第十一页,共八十六页。
3、核的进动(jìn dònɡ)
将自旋核放在外磁场H0中时,自旋核的行为就像一 个在重力场中做旋转(xuánzhuǎn)的陀螺,即一方面自旋, 一方面由于磁场作用而围绕磁场方向旋转(xuánzhuǎn),这 种运动方式称为进动,又称为Larmor进动。其进动频 率称为Larmor频率υ0, υ0∞H0
低场
向左
向右 磁场强度
( 增大(zēnɡ dà))
( 减小)

核磁共振讲义核磁共振(共59张PPT)

核磁共振讲义核磁共振(共59张PPT)
形成的分子内氢键。
R ROHO
H OO
R
R'
H
1. 有两个电负性基团靠近形成氢键的质子,分别通过共价键和氢键产生吸电子 诱导作用,造成较大的去屏蔽效应,使共振发生在低场。
2. 分子间氢键形成的程度与样品浓度、测定时的温度以及溶剂类型等有关,因 此相应的质子化学位移值不固定。在非极性溶剂中,浓度越稀,越不利于形 成氢键。因此随着浓度逐渐减小,能形成氢键的质子共振向高场移动,但分 子内氢键的生成与浓度无关。所以可以用改变浓度的办法区分这两种氢键。
对质子的屏蔽作用较小。 • sp3、sp2和 sp杂化轨道中的 s成分依次增加,成键电子对质子的屏蔽作用依
次减小,δ值应该依次增大。实际测得的乙烷、乙烯和乙炔的质子δ值 分别为 0.88、5.23 和 2.88。
各向异性效应
环电流效应
环外氢受到强的去屏蔽作用: 8.9 环内H 在受到高度的屏蔽作用,: -1.8
耦合种类较少。 • 在 sp3杂化体系中由于单键能自由旋转,同碳上的质子许多是磁等价的
,但是在构象固定等条件下它们不再磁等价、同碳耦合就会发生。 • 在 sp2杂化体系中双键不能自由旋转,同碳质子耦合是常见的。
3J与Karplus公式
3J 是两面角的函数。它们之间的关系可以用 Karplus公式表示: 3JH,H=J0cos2-C (0 90 ) 3JH,H=J180cos2-C (90 180 )
大,共振发生在较低场,值较大。
• 电负性基团越多,吸电子诱导效应的影响越大,相应的质子化学位移 值越大
• 电负性基团的吸电子诱导效应沿化学键延伸,相隔的化学键越多,影响 越小。
相连碳原子的杂化态
• 碳碳单键是碳原子 sp3杂化轨道重叠而成的,而碳碳双键和三键分别是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近,而离氢原子较 远。所以杂化轨道中 s成分越多,成键电子越靠近碳核,而离质子较远,

仪器分析第8章核磁共振PPT

仪器分析第8章核磁共振PPT
24
8.2 理论核磁共振的产生 8.2.3 经典力学-进动模型(precession)
•当带正电荷的、且具有自旋量子数的核会产 生磁场,该自旋磁场与外加磁场相互作用, 将会产生回旋,称为进动(Procession),如下 图.进动频率与自旋核角速度及外加磁场的 关系可用Larmor方程表示:
0 2 0 B0
18
➢对氢核来说,I=1/2,其m值只能有 21/2+1=2个取向: +1/2和-1/2.也即表示H 核在磁场中,自旋轴只有两种取向: 与外加磁场方向相同,m=+1/2,磁能级 较低; 与外加磁场方向相反,m=-1/2,磁能级 较高.
19
自旋量子数为1/2的核的能级分裂:
20
8.2.2 量子力学处理核磁共振的产生
➢总之,无论从何种模型看,核在 磁场中都将发生分裂,可以吸收一 定频率的辐射而发生能级跃迁.
27
8.2.4 不同核的NMR

天然同位素
存在比(%)
1H
99.98
13C
1.1*
19F
100
31P
100
14N
99.63
15N
0.37*
17O
0.037*
*天然丰度越低,测定越困难。
B0 = 2.35T E (J) (MHz)
第8章 核磁共振波谱法 (NMR)
Nuclear Magnetic Resonance Spectroscopy
8.1 概述 8.1.1 什么是核磁共振 8.1.2 NMR发展简介
1
第8章 核磁共振波谱法 (NMR) 8.1 概述
Nuclear Magnetic Resonance Spectroscopy 8.1.1 什么是核磁共振

《核磁共振》PPT课件.ppt

《核磁共振》PPT课件.ppt
时间表示;T2 气、液的T2与其T1相似,约为1秒;
固体试样中的各核的相对位置比较固定,利于自旋-自旋间的能量交换,T2很小, 弛豫过程的速度很快,一般为10-4~10-5秒。
弛豫时间虽然有T1、T2之分,但对于一个自旋核来说,它在高能态所停 留的平均时间只取决于T1、T2中较小的一个。因T2很小,似乎应该采用 固体试样,但由于共振吸收峰的宽度与T成反比,所以,固体试样的共振 吸收峰很宽。为得到高分辨的图谱,且自旋-自旋弛豫并非为有效弛豫, 因此,仍通常采用液体试样。
z
pz
hm 2
核磁矩的能级
EZH 2hmH
*
(二) 磁性原子核在外磁场中的行为特性
1、自旋取向与核磁能级
无外加磁场时,核磁矩的取向是任意的,自旋能级相同; 有外加磁场时,核磁矩共有2I+1个取向,用磁量子数(m
)表示每一种取向 m=I,I-1,I-2 … -I+1,-I 核磁矩在外磁场空间的取向不是任意的,是量子化的, 不同
高能态核寿命的量度。 T1取决于样品中磁核的运动,样品流动性降低时,T1增
大。气、液(溶液)体的T1较小,一般在1秒至几秒左右; 固体或粘度大的液体,T1很大,可达数十、数百甚至上千 秒。 因此,在测定核磁共振波谱时,通常采用液体试样。
*
2) 自旋-自旋驰豫(横向驰豫)
指两个进动频率相同而进动取向不同(即能级不同)的性核, 在一定距离内,发生能量交换而改变各自的自旋取向。交换能量 后,高、低能态的核数目未变,总能量未变(能量只是在磁核之 间转移),所以也称为横向弛豫。
取向具有不同自旋能级, 这种现象称为能级分裂.
*
当置于外磁场H0中时,相对于外磁场,有(2I+1)种 取向: m为磁量子数,取值范围:I,I-1,…,-I, 共(2I+1)种取向。

磁共振 ppt课件

磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。

核磁共振PPT

核磁共振PPT

三、各类有机化合物的化学位移
1、饱和烃
-CH3: -CH2: -CH:
CH3=0.791.10ppm CH2 =0.981.54ppm CH= CH3 +(0.5 0.6)ppm
O CH3 N CH3
C C CH3 O C CH3
CH3
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm H=2.1ppm H=2~3ppm
2.68
1.65
1.04
0.90
H3C Cl 3.05
Cl H2C Cl
5.33Cl HC ClCl Nhomakorabea..24
2、磁各向异性效应
具有多重键或共轭多重键分子,在外磁场作用下, 电子会沿分子某一方向流动,产生感应磁场。此感应 磁场与外加磁场方向在环内相反(抗磁),在环外相同 (顺磁),即对分子各部位的磁屏蔽不相同。
偶数
偶数
0
偶数
奇数
1,2,3….
奇数
奇数或偶数 1/2;3/2;5/2….
(1) I=0 的原子核O(16);C(12);S(32) 等 ,无自旋,没有磁矩,不产生共振吸收。
(2) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2:11B,35Cl,79Br,81Br I=5/2:17O,127I
由拉莫进动方程:0 = 2 0 = H0 ; 共振条件: 0 = H0 / (2 )
电磁波辐射
共振条件:
(1) 核有自旋(磁性核) ;
(2)外磁场H0,能级裂分;
(3)照射频率与外磁场的比值0 / H0 = / (2 )
信号
共振条件: 0 = H0 / (2 )
吸 收 能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

g I ( I 1)
自旋量子数(I)不为零的核都具有磁矩,原子的自旋 情况可以用(I)表征: 质量数 偶数 原子序数 偶数 自旋量子数I 0
偶数
奇数
奇数
奇数或偶数
1,2,3….
1/2;3/2;5/2….
(1) I=0 的原子核O(16);C(12);S(32) 等 ,无自旋,没有磁矩,不产生共振吸收。
(2) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2:11B,35Cl,79Br,81Br I=5/2:17O,127I 这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少; (3)I=1/2的原子核
1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自 旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有 机化合物的主要组成元素。
4.样品管:外径5mm的玻璃管, 测量过程中旋转, 磁场作用均匀。
第二节
核磁共振与化学位移
一、核磁共振与化学位移
理想化的、裸露的氢核;满足共振条件: 0 = H0 / (2 ) 产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子影响。在外磁场作 用下,运动着的电子产生相对于外磁场方向的感应磁场,起 到屏蔽作用,使氢核实际受到的外磁场作用减小: H=(1- )H0 :屏蔽常数。 越大,屏蔽效应越大。 = [ / (2 ) ](1- )H0 由于屏蔽作用的存在,氢核产生共振需要更大的外磁场强 度(相对于裸露的氢核),来抵消屏蔽影响。
二、影响化学位移的因素
ห้องสมุดไป่ตู้1、电负性
与质子相连元素的电负性 越强,吸电子作用越强,价 电子偏离质子,屏蔽作用减 弱,信号峰在低场出现。 -CH3 , =1.6~2.0,高场; -CH2I, =3.0~3.5,低场 -O-H, -C-H,
位移的表示方法
与裸露的氢核相比, TMS的化学位移最大,但规 定 TMS=0,其他种类氢核的 位移为负值,负号不加。
小,屏蔽强,共振需
要的磁场强度大,在高场出 现;大,屏蔽弱,共振需 要的磁场强度小,在低场出 现,如右图;
= [( 样 - TMS) / TMS ] 106 (ppm)
1、化学位移:
0 = [ / (2 ) ](1- )H0
由于屏蔽作用的存在,氢核产生共振需 要更大的外磁场强度(相对于裸露的氢 核),来抵消屏蔽影响。 在有机化合物中,各 种氢核周围的电子云密度 不同(结构中不同位置) 共振频率有差异,即引起 共振吸收峰的位移,这种 现象称为化学位移。
2、化学位移的表示方法
(2)不同原子核,磁旋比 不同,产生共振的条件不同,需 要的磁场强度H0和射频频率不同。 (3) 固定H0 ,改变(扫频) ,不同原子核在不同频率处 发生共振(图)。也可固定 ,改变H0 (扫场)。扫场方式 应用较多。 氢核(1H): 1.409 T 共振频率 60 MHz 2.305 T 共振频率 100 MHz 磁场强度H0的单位:1高斯(GS)=10-4 T(特拉斯)
1.位移的标准
没有完全裸露的氢核,没 有绝对的标准。 相对标准:四甲基硅烷 Si(CH3)4 (TMS)(内标)
位移常数 TMS=0
2.为什么用TMS作为基准?
(1)12个氢处于完全相同的化学环境,只产生一个尖峰;
(2)屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; (3)化学惰性;易溶于有机溶剂;沸点低,易回收。
核磁共振现象:
两种取向不完全与外磁场平行,=54°24’ 和 125 °36’ 相互作用, 产生进动(拉莫进动) 进动频率 0; 角速度0;
0 = 2 0 = H0 磁旋比; H0外磁场强度;
两种进动取向不同的氢核之间 的能级差:E= H0 (磁矩) 高能量
低能量
三、核磁共振条件
二、 核磁共振现象
自旋量子数 I=1/2的原子核 (氢核),可当作电荷均匀分 布的球体,绕自旋轴转动时, 产生磁场,类似一个小磁铁。
当置于外加磁场H0中时, 相对于外磁场,可以有 (2I+1)种取向: 氢核(I=1/2),两种 取向(两个能级): (1)与外磁场平行,能量低, 磁量子数m=+1/2; (2)与外磁场相反,能量高, 磁量子数m=-1/2;
核磁共振波谱
第一节 第二节 第三节 第四节 第五节 核磁共振基本原理 核磁共振与化学位移
自旋偶合与自旋裂分
谱图解析与化合物结构确定 碳-13核磁共振
第一节
一、 原子核的自旋
核磁共振基本原理
I:自旋量子数; h:普朗克常数; 核磁子=eh/2M c
若原子核存在自旋,产生核磁矩; h I ( I 1) 自旋角动量: 2 核 磁 矩:
在1950年,Proctor等人研究发现:质子的共振频率与其结 构(化学环境)有关。在高分辨率下,吸收峰产生化学位移 和裂分,如右图所示。
由有机化合物的核磁共振图,可获得质子所处化学环境的 信息,进一步确定化合物结构。
四、核磁共振波谱仪
1.永久磁铁:提供外磁 场,要求稳定性好,均匀, 不均匀性小于六千万分之 一。扫场线圈。 2 .射频振荡器:线圈垂 直于外磁场,发射一定频 率的电磁辐射信号。 60MHz或100MHz。 3 .射频信号接受器(检 测器):当质子的进动频 率与辐射频率相匹配时, 发生能级跃迁,吸收能量, 在感应线圈中产生毫伏级 信号。
电磁波辐射
共振条件:
(1) 核有自旋(磁性核) ; (2)外磁场H0,能级裂分; (3)照射频率与外磁场的比值0 / H0 = / (2 )
信号
共振条件: 0 = H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率变。
吸 收 能 量 0 低 场 H0 高 场
在外磁场中,原子核能 级产生裂分,由低能级向高 能级跃迁,需要吸收能量。 能级量子化。射频振荡 线圈产生电磁波。 对于氢核,能级差: E= H0 (磁 矩)产生共振需吸收的能量:
E= H0 = h 0 由拉莫进动方程:0 = 2 0 = H0 ; 共振条件: 0 = H0 / (2 )
相关文档
最新文档