高三数学第一轮复习——数列

合集下载

新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

所以 an=aan-n 1·aann- -12·…·aa21·a1=n+n 1·n-n 1·nn- -21·…·23=n+2 1.
2,n=1, 所以 an=2nn-1,n≥2.
已知 Sn 求 an 的步骤 (1)利用 a1=S1 求出 a1. (2)用 n-1 替换 Sn 中的 n 得到一个新的关系,利用 an=Sn-Sn- 1(n≥2)求出当 n≥2 时 an 的表达式. (3)检验 n=1 时的值是否符合 n≥2 时的表达式,再写出通项公 式 an.
式 an=59(10n-1).
1.错误地表示符号规律致误:项正负相间的数列可以用(-1)n, (-1)n+1 表示符号,要分清是先负后正还是先正后负.
2.未对项变形致误:若已知的项的形式不统一,则不便求通项 公式,因此可以先将项通过变形统一形式后再观察求通项公式,如题 (3).
3.求通项公式时要注意联想:对于如题(4)这样的数列,可以通 过联想 10,100,1 000,10 000→9,99,999,9 999→1,11,111,1 111 进而得 到通项公式.
考点2 由Sn与an的关系求通项——综合性
(1)若数列{an}的前 n 项和 Sn=n2-10n,则此数列的通项 公式为 an=________.
(2)若数列{an}的前 n 项和 Sn=2n+1,则此数列的通项公式为 an =________.
3,n=1, (1)2n-11 (2)2n-1,n≥2.
解:(1)这个数列的前 4 项的绝对值都等于序号与序号加 1 的乘 积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式 an=(- 1)n·nn1+1.
(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为 1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数 的乘积,故所求数列的一个通项公式 an=2n-12n2n+1.

数列的函数性质-2023届高三数学一轮复习专题

数列的函数性质-2023届高三数学一轮复习专题

2023高考数列专题——数列的函数性质一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; (2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为 跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( )A .2B .-6C .3D .1例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( )A .425B .428C .436D .437跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2三、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn的最小值为( )A .293B .47-1C .485D .274例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第 项. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .63、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 0114、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.四、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( )A .0B .252C .21D .42跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15 2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.3、 (2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.高考数列专题——数列的函数性质(解析版)一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列;(2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( B )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 解: ∵数列{a n }是单调递增数列,∴对任意的n ∈N *,都有a n +1>a n ,∴(n +1)2+b (n +1)>n 2+bn ,即b >-(2n +1)对任意的n ∈N *恒成立,又n =1时,-(2n +1)取得最大值-3,∴b >-3,即实数b 的取值范围为(-3,+∞).例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为(-∞,6).解:解法一:由数列是一个递减数列,得a n +1<a n ,又因为a n =-2n 2+kn -1,所以-2(n +1)2+k (n +1)-1<-2n 2+kn -1,k <4n +2,对n ∈N *,所以k <6.解法二:数列{a n }的通项公式是关于n (n ∈N *)的二次函数,∵数列是递减数列,∴k 4<32,∴k <6.跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列解析:A 由a n =n 3n +1,可得a n +1-a n =n +13n +4-n 3n +1=1(3n +1)(3n +4)>0,∴a n +1>a n ,故选A .2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.解析:因为函数a n =2-1n 的定义域为N *,且a n =2-1n 在N *上单调递增,0<2-1n <2,所以满足3个条件的数列的通项公式可以是a n =2-1n.答案:a n =2-1n(答案不唯一)3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.解:(1)∵a 1+2a 2+3a 3+…+na n =n +12a n +1,∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,两式相减得na n =n +12a n +1-n2a n ,即(n +1)a n +1na n=3(n ≥2),∵a 1=1,∴1=1+12a 2,即a 2=1,∴2·a 21·a 1=2≠3.∴数列{na n }是从第二项开始的等比数列, ∴当n ≥2时,有na n =2×3n -2, ∴a n =⎩⎪⎨⎪⎧1,n =1,2n×3n -2,n ≥2.(2)存在n ∈N *使得a n ≤(n +1)λ成立⇔λ≥a nn +1有解,①当n =1时,a 12=12,则λ≥12,即λmin =12;②当n ≥2时,a nn +1=2×3n -2n (n +1),设f (n )=2×3n -2n (n +1),∴f (n +1)f (n )=3nn +2>1,∴f (n )单调递增,∴f (n )min =f (2)=13,∴实数λ的最小值是13.由①②可知实数λ的最小值是13.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( 3 )A .2B .-6C .3D .1解 因为数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),所以a 2=1+a 11-a 1=1+21-2=-3,同理可得a 3=-12,a 4=13,a 5=2,…所以数列{a n }每四项重复出现,即a n +4=a n ,且a 1·a 2·a 3·a 4=1,而2 023=505×4+3,所以该数列的前2 023项的乘积是a 1·a 2·a 3·a 4·…·a 2 023=1505×a 1×a 2×a 3=3.例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( A )A .425B .428C .436D .437解: 由数列的递推公式可得:a 2=22-a 1=43,a 3=22-a 2=3,a 4=22-a 3=-2,a 5=22-a 4=12=a 1,据此可得数列{a n }是周期为4的周期数列,则:6S 100=6×25×⎝⎛⎭⎫12+43+3-2=425. 跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2解析:B 由a 1=12,a n +1=11-a n得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的周期数列,因此a 2 023=a 3×674+1=a 1=12.五、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn 的最小值为( C )A .293B .47-1C .485D .274解: 由a n +1-a n =2n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=28+2+4+…+2(n -1)=28+n (n -1)=n 2-n +28,∴a n n =n +28n -1,设f (x )=x +28x ,可知f (x )在(0,28 ]上单调递减,在(28,+∞)上单调递增,又n ∈N *,且a 55=485<a 66=293.例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第9、10项.解: 解法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.解法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *,∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.解析:当a n =n -22n -11>0⇒n =1或n ≥6,∴a 2=0,a 3<0,a 4<0,a 5<0,故当S n 取得最小值时n 的值为5.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .6解析:C 因为数列{a n }是递增数列,又t 2-a 2n -3t -3a n =(t -a n -3)(t +a n )≤0,t +a n >0,所以t ≤a n+3恒成立,即t ≤(a n +3)min =a 1+3=3,所以t max =3.3、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 011解析:C 因为S 2 018>0,S 2 019<0,所以a 1+a 2 018=a 1 009+a 1 010>0,a 1+a 2 019=2a 1 010<0,所以a 1 009>0,a 1 010<0,且a 1 009>|a 1 010|,因为对任意正整数n ,都有|a n |≥|a k |,所以k =1 010,故选C .4、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项解析:BCD 当k =12时,a 1=a 2=12,知A 错误;当k =45时,a n +1a n =45·n +1n ,当n <4时,a n +1a n>1,当n >4时,a n +1a n <1,所以可判断{a n }一定有最大项,B 正确;当0<k <12时,a n +1a n =k n +1n <n +12n ≤1,所以数列{a n }为递减数列,C 正确;当k 1-k 为正整数时,1>k ≥12,当k =12时,a 1=a 2>a 3>a 4>…,当1>k >12时,令k 1-k =m ∈N *,解得k =mm +1,则a n +1a n =m (n +1)n (m +1),当n =m 时,a n +1=a n ,结合B ,数列{a n }必有两项相等的最大项,故D 正确.故选B 、C 、D .5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.解析:a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.六、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( C )A .0B .252C .21D .42解: 由函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,可得y =f (x )的图象关于直线x =1对称,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,又{a n }是等差数列,所以a 1+a 21=a 4+a 18=2,可得数列的前21项和S 21=21(a 1+a 21)2=21,则{a n }的前21项之和为21.故选.跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15解析:D f ′(x )=x 2-6x +8,∵a 5,a 6是函数f (x )的极值点,∴a 5,a 6是方程x 2-6x +8=0的两实数根,则a 5·a 6=8,∴log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1·a 2·…·a 10)=log 2(a 5·a 6)5=5log 28=15,故选D .2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列. (1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.[解] (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *). (2)因为数列{a n }是首项为2,公比为3的等比数列,所以1a n +11a n =a n a n +1=13,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34,因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.3、(2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.解析:根据等差数列{a n }的前n 项和S n 满足S n ≤S 8恒成立,可知a 8≥0且a 9≤0,所以1+7d ≥0且1+8d ≤0,解得-17≤d ≤-18.答案:⎣⎡⎦⎤-17,-18。

[精]高三第一轮复习全套课件3数列:数列的综合应用

[精]高三第一轮复习全套课件3数列:数列的综合应用
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)

高三数学一轮复习 数列(解析版)

高三数学一轮复习 数列(解析版)

数 学D 单元 数列D1 数列的概念与简单表示法17.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.17.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 18.、[2014·江西卷] 已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间;(2)若f (x )在区间[1,4]上的最小值为8,求a 的值.18.解:(1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞). 故函数f (x )的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,所以由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝⎛⎭⎫0,-a 10时,f (x )单调递增;当x ∈⎝⎛⎭⎫-a 10,-a2时,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝⎛⎭⎫-a2=0. ①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4时取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.16.[2014·新课标全国卷Ⅱ] 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.16.12 [解析] 由题易知a 8=11-a 7=2,得a 7=12;a 7=11-a 6=12,得a 6=-1;a 6=11-a 5=-1,得a 5=2,于是可知数列{a n }具有周期性,且周期为3,所以a 1=a 7=12.D2 等差数列及等差数列前n 项和 2.[2014·重庆卷] 在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10 D .142.B [解析] 由题意,得a 1+2d +a 1+4d =2a 1+6d =4+6d =10,解得d =1,所以a 7=a 1+6d =2+6=8.5.[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12 D .-125.D [解析] ∵S 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,且S 1,S 2,S 4成等比数列,∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.15.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.15.解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以,数列{b n }的前n 项和为32n (n +1)+2n -1.17.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.16.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 16.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 13.[2014·江西卷] 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.13.⎝⎛⎭⎫-1,-78 [解析] 由题可知a 8>0且a 9<0,即7+7d >0且7+8d <0,所以-1<d <-78. 9.[2014·辽宁卷] 设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d >0 B .d <0 C .a 1d >0 D .a 1d <09.D [解析] 令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以 b n +1b n =2a 1a n +12a 1a n=2a 1(a n+1-a n )=2a 1d <1,所以a 1d <0.17.[2014·全国卷] 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.17.解:(1)由a n +2=2a n +1-a n +2,得 a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1), 即a n +1-a n =2n -1.于是所以a n +1-a 1=n 2, 即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式a n =n 2-2n +2. 5.[2014·新课标全国卷Ⅱ] 等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n (n +1)2D.n (n -1)25.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1).17.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.17.解:(1)方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而得a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1. 19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2. 故数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2, 当n 为奇数时, T n =T n -1+(-b n ) =(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.16.、、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.16.解: (1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)由题设有b 2=ac ,c =2a , ∴b =2a .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43, 所以,S n =(3n -1)4n +1+49.19.[2014·浙江卷] 已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 19.解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1), 所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4. 16.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .16.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n-1).D3 等比数列及等比数列前n 项和12.[2014·安徽卷] 如图1-3,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;….依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.图1-312.14 [解析] 在等腰直角三角形ABC 中,斜边BC =2 2,所以AB =AC =a 1=2,由题易知A 1A 2=a 3=12AB =1,…,A 6A 7=a 7=⎝⎛⎭⎫123·AB =2×⎝⎛⎭⎫123=14.17.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.7.[2014·江苏卷] 在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.7.4 [解析] 由等比数列的定义可得,a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,即a 2q 6=a 2q 4+2a 2q 2.又a n >0,所以q 4-q 2-2=0,解得q 2=2,故a 6=a 2q 4=1×22=4.17.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.17.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 18.、[2014·江西卷] 已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间;(2)若f (x )在区间[1,4]上的最小值为8,求a 的值.18.解:(1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞). 故函数f (x )的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,所以由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝⎛⎭⎫0,-a 10时,f (x )单调递增;当x ∈⎝⎛⎭⎫-a 10,-a2时,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝⎛⎭⎫-a2=0. ①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4时取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10. 8.[2014·全国卷] 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63 D .648.C [解析] 设等比数列{a n }的首项为a ,公比为q ,易知q ≠1,根据题意可得⎩⎪⎨⎪⎧a (1-q 2)1-q=3,a (1-q 4)1-q =15,解得q 2=4,a1-q =-1,所以S 6=a (1-q 6)1-q=(-1)(1-43)=63. 5.[2014·新课标全国卷Ⅱ] 等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n (n +1)2D.n (n -1)25.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1).19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2. 故数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2, 当n 为奇数时, T n =T n -1+(-b n ) =(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.16.、、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.16.解: (1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)由题设有b 2=ac ,c =2a , ∴b =2a .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.20.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数,设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .20.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t . 16.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .16.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n-1).D4 数列求和 15.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.15.解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以,数列{b n }的前n 项和为32n (n +1)+2n -1.16.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 16.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 17.、[2014·全国新课标卷Ⅰ] 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.17.解:(1)方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而得a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2, 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2,所以S n =2-n +42n +1. 19.,,[2014·山东卷] 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2. 故数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2, 当n 为奇数时, T n =T n -1+(-b n ) =(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.D5 单元综合18.[2014·安徽卷] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .18.解: (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a nn =1+(n -1)·1=n ,所以a n =n 2,从而可得b n =n ·3n .S n =1×31+2×32+…+(n -1)×3n -1+n ×3n ,①3S n =1×32+2×33+…+(n -1)3n +n ×3n +1.② ①-②得-2S n =31+32+ (3)-n ·3n +1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32,所以S n =(2n -1)·3n +1+34.19.[2014·广东卷] 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.19.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.19.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 20.[2014·江苏卷] 设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈),证明:{a n }是“H 数列”.(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值. (3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈)成立.20.解: (1)证明:由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m ,所以{a n }是“H 数列”.(2)由已知得,S 2=2a 1+d =2+d .因为{a n }是“H 数列”,所以存在正整数m ,使得S 2=a m ,即2+d =1+(m -1)d ,于是(m -2)d =1.因为d <0,所以m -2<0,故m =1,从而d =-1.当d =-1时,a n =2-n ,S n =n (3-n )2是小于2的整数,n ∈N *.于是对任意的正整数n ,总存在正整数m =2-S n =2-n (3-n )2,使得S n =2-m =a m ,所以{a n }是“H 数列”,因此d 的值为-1.(3)证明:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”. 所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.17.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.17.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 18.、[2014·江西卷] 已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间;(2)若f (x )在区间[1,4]上的最小值为8,求a 的值.18.解:(1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝⎛⎭⎫0,25或x ∈(2,+∞). 故函数f (x )的单调递增区间为⎝⎛⎭⎫0,25和(2,+∞). (2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,所以由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝⎛⎭⎫0,-a 10时,f (x )单调递增;当x ∈⎝⎛⎭⎫-a 10,-a2时,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝⎛⎭⎫-a2=0. ①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]时的最小值为f ⎝⎛⎭⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4时取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去).当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10. 19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43, 所以,S n =(3n -1)4n +1+49.。

数列的概念及简单表示法(高三一轮复习)

数列的概念及简单表示法(高三一轮复习)

所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1

4 2-4
=-2,a3=
4 2-a2

4 2+2
=1,a4=
4 2-a3

4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.

(完整版)高三数学第一轮复习单元测试--数列

(完整版)高三数学第一轮复习单元测试--数列

高三数学第一轮复习单元测试(2)— 《数列》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( )A .4B .2C .-2D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .454.在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为 ( ) A .48 B .54 C .60 D .665.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A .310B .13C .18D .196.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .757.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200= ( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +- B .3n C .2n D .31n -9.设4710310()22222()n f n n N +=+++++∈L ,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有 ( ) A .3 B .4 C .8 D .9 11.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .14.=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1110113112111,244)(f f f f x f xx Λ则设 . 15.在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正 三棱锥”形的展品,其中第一堆只有一层, 就一个乒乓球;第2、3、4、…堆最底层(第 一层)分别按右图所示方式固定摆放.从第一 层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示).16.已知整数对排列如下()()()()()()()()()()()()Λ,4,2,5,1,1,4,2,3,3,2,4,1,1,3,2,23,1,1,2,2,1,1,1, 则第60个整数对是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n 18.(本小题满分12分) 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)19.(本小题满分12分)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分) 某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数. 21.(本小题满分12分)等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==.(Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b 的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由. 22.(本小题满分14分)已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{n b 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列; (2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由; (3)(理做文不做)若211<<a ,试证明:211<<<+n n a a .参考答案(2)1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C . 3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =. ∴45613345a a a a d d d ++=+++=1312a d +=42. 4.B . 因为461912a a a a +=+=,所以1999()2a a S +==54,故选B . 5.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 6.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .7.A . 依题意,a 1+a 200=1,故选A .8.C .因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C .9.D . f (n )=3(1)432[12]2(81)127n n ++-=--,选D . 10.B . 正四面体的特征和题设构造过程,第k 层为k 个连续自然数的和,化简通项再裂项用公式求和.依题设第k层正四面体为(),k k k k k 2213212+=+=++++Λ则前k 层共有()()()()6062121212121222≤++=+++++++k k k k k L ,k 最大为6,剩4,选B .11.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .12.C .由已知4a =2a +2a = -12,8a =4a +4a =-24,10a =8a +2a = -30,选C .13.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3. 14.由()()11=+-x f x f ,整体求和所求值为5.15.2)1()()(111211+==-++-+=⇒+=--+n n a a a a a a n a a n n n n n ΛΛ )(n f 的规律由)2(2)1()1()(≥+==--n n n a n f n f n ,所以22)1()(223)2()3(222)1()2(1)1(222+=--+=-+=-=n n f n f f f f f f Λ所以)]321()321[(21)(222n n n f +++++++++=ΛΛ 6)2)(1(]2)1(6)12)(1([21++=++++=n n n n n n n n 16.观察整数对的特点,整数对和为2的1个,和为3的2个,和为4的3个,和为5的4个,和n 为的 n -1个,于是,借助()21321+=++++n n n Λ估算,取n=10,则第55个整数对为()1,11,注意横坐标递增,纵坐标递减的特点,第60个整数对为()7,517.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥ 又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =, 故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+18.ο1必要性:设数列}{n a 是公差为1d 的等差数列,则:--=-+++)(311n n n n a a b b )(2+-n n a a =--+)(1n n a a )(23++-n n a a =1d -1d =0,∴1+≤n n b b (n =1,2,3,…)成立; 又2)(11+-=-++n n n n a a c c )(12++-n n a a )(323++-+n n a a =61d (常数)(n =1,2,3,…) ∴数列}{n c 为等差数列.ο2充分性:设数列}{n c 是公差为2d 的等差数列,且1+≤n n b b (n =1,2,3,…), ∵2132++++=n n n n a a a c ……① ∴432232++++++=n n n n a a a c ……②①-②得:)(22++-=-n n n n a a c c )(231++-+n n a a )(342++-+n n a a =2132++++n n n b b b ∵+-=-++)(12n n n n c c c c 2212)(d c c n n -=-++∴2132++++n n n b b b 22d -=……③ 从而有32132+++++n n n b b b 22d -=……④ ④-③得:0)(3)(2)(23121=-+-+-+++++n n n n n n b b b b b b ……⑤ ∵0)(1≥-+n n b b ,012≥-++n n b b ,023≥-++n n b b , ∴由⑤得:01=-+n n b b (n =1,2,3,…),由此,不妨设3d b n =(n =1,2,3,…),则2+-n n a a 3d =(常数) 故312132432d a a a a a c n n n n n n -+=++=+++……⑥ 从而3211324d a a c n n n -+=+++31524d a a n n -+=+……⑦ ⑦-⑥得:3112)(2d a a c c n n n n --=-++,故311)(21d c c a a n n n n +-=-++3221d d +=(常数)(n =1,2,3,…), ∴数列}{n a 为等差数列.综上所述:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…). 19.(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a , ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列,当1≥n时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列.研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围. 研究的结论可以是:由()323304011010d d d d a a +++=+=, 依次类推可得 ()⎪⎩⎪⎨⎧=+≠--⨯=+++=++.1),1(10,1,11101101)1(10d n d d d d d a n nn Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.20.设第n 天新患者人数最多,则从n+1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数,构成一个首项为20,公差为50的等差数列的n 项和,()()N n ,n n n n n n S n∈≤≤-=⨯-+=3015255021202,而后30-n 天的流感病毒感染者总人数,构成一个首项为()60503050120-=-⨯-+n n ,公差为30,项数为30-n 的等差数列的和,()()()()(),n n n n n n Tn148502445653026050306050302-+-=-⨯--+--=依题设构建方程有,(),n n n n ,T S n n 867014850244565525867022=-+-+-∴=+化简,120588612=∴=+-n ,n n 或49=n (舍),第12天的新的患者人数为 20+(12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.21.(1)0d =时,{}n a 的项都是{}n b 中的项;(任一非负偶数均可); 1d =时,{}n a 的项不都是{}n b 中的项.(任一正奇数均可); (2) 4d =时,422(21),n a n n =-=-123n n b -=⨯131 2(21)2n m a -+=⨯-=131(2n m -+=为正整数),{}n b 的项一定都是{}n a 中的项 (3)当且仅当d 取2(*)k k ∈N (即非负偶数)时,{}n b 的项都是{}n a 中的项. 理由是:①当2(*)d k k =∈N 时,2(1)22[1(1)],n a n k n k =+-⋅=+-⋅2n >时,11122112(1)2(C C 1)n n n n n n n b k k k k ------=⋅+=++⋅⋅⋅++,其中112211C C n n n n n k k k-----++⋅⋅⋅+ 是k 的非负整数倍,设为Ak (*A ∈N ),只要取1m A =+即(m 为正整数)即可得n m b a =, 即{}n b 的项都是{}n a 中的项;②当21,()d k k =+∈N 时,23(23)2k b +=不是整数,也不可能是{}n a 的项. 22.(1)1111111121n n n n n a b a a a ---===----,而1111-=--n n a b ,∴11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴{n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有nn b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴5.311-=-n a n .对于函数5.31-=x y ,在x >3.5时,y >0,0)5.3(12<--=x y',在(3.5,∞+) 上为减函数. 故当n =4时,5.311-+=n a n 取最大值3. 而函数5.31-=x y 在x <3.5时,y <0, 0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)先用数学归纳法证明21<<n a ,再证明n n a a <+1. ①当1=n 时,211<<a 成立; ②假设当k n =时命题成立,即21<<k a ,当1+=k n 时,1121<<ka )23,1(121∈-=⇒+kk a a ⇒211<<+k a 故当1+=k n 时也成立,综合①②有,命题对任意+∈N n 时成立,即21<<n a . (也可设x x f 12)(-=(1≤x ≤2),则01)(2'>=xx f , 故=1)1(f 223)2()(1<=<=<+f a f a k k ).下证: n n a a <+10122)1(21=⋅-<+-=-+kk k k n n a a a a a a ⇒n n a a <+1.。

高三一轮复习 数列的复习

高三一轮复习  数列的复习

数列的复习【知识整理】:一 、等差数列1.等差数列的通项公式:①a n =a 1+____×d②(推广公式)a n =a m +______×d注意:数列{}n a 是等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,特别地,数列{}n a 是公差不为0的等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,且0≠p .2、等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.注意:①b 是a 、c 的等差中项的充要条件是a ,b ,c 成等差数列;②若a ,b ,c 成等差数列,那么c b b a b c a b c a b ca b -=--=-+=+=;;;22都是等价的;③若数列{}n a 是等差数列,则()*-+∈≥-=-N n n a a a a n n n n ,211,整理得211+-+=n n n a a a . 3、等差数列的性质{}n a 是等差数列,d 为公差.(1)1123121,+---+=+==+=+=+k n k n n n n a a a a a a a a a a 即 (2)若m, n, p, q ∈N*,若m +n =p +q ,则_________________若m, n, p ∈N*,若m +n =2p ,则__________________ (3)()mn a a d d m n a a mn m n --=⇔-+= (m, n, ∈N*,且m ≠ n ).(4)序号成等差数列的项又组成一个等差数列,即 ,,,2m k m k k a a a ++仍成等差数列,公差为()*∈Nm k md ,.(5)若{}{}n n b a ,都是等差数列,则数列{}{}{}{}{}2121,,,,,(λλλλλλb k c b a b a b a ka c a n n n n n n n ++++,,,,均为常数)也是等差数列.(6)连续三个或三个以上k 项和依次组成一个等差数列,即)2(,,,232*∈≥--N k k S S S S S k k k k k 且 成等差数列,公差为d k 2.(7)①当项数为奇数()12+n 项时,其中有()1+n 个奇数项,n 个偶数项.1-+=n a S S 偶奇;()112++=+n a n S S 偶奇; ()nn S S na S a n S n n 1,,111+=∴=+=++偶奇偶奇. ②当项数为偶数n 2项时,()11,-,,+++=+===n n n n a a n S S nd S S na S na S 奇偶奇偶偶奇 ∴1+=n na a S S 偶奇. 能力知识清单:1、等差数列{}n a 中,若()0,,=≠==+nm n n a n m n a m a 则. 2、等差数列{}n a 中,若()()n m S n m n S m S n m m n +-=≠==+则,, 3、等差数列{}n a 中,若()0,=≠=+nm m n S n m S S 则; 4、若{}n a 与{}n b ,为等差数列,且前1-21-2m m m m n n T S b a T S n =,则与项和为二、等比数列1. 等比数列的通项公式:①a n =a 1q n -1 ② a n =a m q n -m2、若﹛a n ﹜为等比数列,m, n, p, q ∈N*,若m +n =p +q ,则___________ 3. 等比数列的前n 项和公式: S n = ⎪⎩⎪⎨⎧=≠)1()1(q qS n = _________________()1≠q4、等比数列{a n }的前n 项和S n ,S 2n -S n ,S 3n -S 2n 成 数列,且公比为________ 7.等比中项:如果a ,b ,c 成等比数列,那么b 叫做a 与c 的等比中项,即b²=_____________________三、判断和证明数列是等差(等比)数列常有四种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。

2023届高考数学一轮复习考点训练——求数列的通项公式

2023届高考数学一轮复习考点训练——求数列的通项公式

2023考点专题复习——数列的通项公式考法一:累加法——适用于)(1n f a a n n +=+()(n f 可以求和)例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

例2、已知数列}{n a 中, 0>n a 且)(21nn n a na S +=,求数列}{n a 的通项公式.例3、已知数列{}n a 满足112313n n n a a a ,,求数列{}n a 的通项公式。

练习1、已知数列{}n a 的首项为1,且*12()n n a a n nN 写出数列{}n a 的通项公式.练习2、已知数列}{n a 满足13a ,11(2)(1)n n a a n n n -=+≥-求此数列的通项公式.练习3、已知数列{}n a 满足11211nn a a n a ,,求数列{}n a 的通项公式。

练习4、已知在数列{}n a 中,13a =,112(2)n n n a a n --=+. (1)求数列{}n a 的通项公式; (2)设21log (1)n n b a +=-,求11{}n n b b +的前n 项和n T .练习5、在数列{}n a 中,12a =,122n n n a a +=++. (1)求数列{2}n n a -的通项公式;(2)设数列{}n b 满足2(22)n n b a n =+-,求{}n b 的前n 项和n S .练习6、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

练习7、已知数列{}n a 满足11a =,1n n n a a +-=,则数列{}n a 的通项公式练习8、在数列{}n a 中,12a =,11ln 11n n a a n n n +⎛⎫⎪⎝+++⎭=,则数列{}n a 的通项公式练习9、已知数列{a n }满足11a =-,111+1n n a a n n +=-+,n ∈N *,求数列的通项公式a n .练习10、设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式练习11、已知数列{}n a 满足112a =,121n n a a n n+=++,则数列{}n a 的通项公式考法二:累乘法例1、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n na a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++=Λ21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1Λ--- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即Λ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即Λ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) 4、等差数列{}n a ,{}nb 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

7、已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=L 且13k a =,则k =_________。

8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 .9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a 12、等差数列{}n a 中,已知848161,.3S S S S =求B 、求数列通项公式1) 给出前几项,求通项公式1,0,1,0,……,,21,15,10,6,3,1Λ3,-33,333,-3333,33333……2)给出前n 项和求通项公式1、⑴n n S n 322+=; ⑵13+=n n S .2、设数列{}n a 满足2*12333()3n na a a a n N +++=∈n-1…+3,求数列{}n a 的通项公式3)给出递推公式求通项公式a 、⑴已知关系式)(1n f a a n n +=+,可利用迭加法或迭代法;11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----Λ例:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; b 、已知关系式)(1n f a a n n ⋅=+,可利用迭乘法.1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----Λ例、已知数列{}n a 满足:111(2),21n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; c 、构造新数列1°递推关系形如“q pa a n n +=+1”,利用待定系数法求解例、已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.2°递推关系形如“,两边同除1n p+或待定系数法求解例、n n n a a a 32,111+==+,求数列{}n a 的通项公式.3°递推已知数列{}n a 中,关系形如“n n n a q a p a ⋅+⋅=++12”,利用待定系数法求解 例、已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.4°递推关系形如"11n n n n a pa qa a ---=≠(p,q 0),两边同除以1n n a a -例1、 已知数列{}n a 中,1122n n n n a a a a ---=≥=1(n 2),a ,求数列{}n a 的通项公式.例2、数列{}n a 中,)(42,211++∈+==N n a a a a nnn ,求数列{}n a 的通项公式.d 、给出关于n S 和m a 的关系例1、设数列{}n a 的前n 项和为n S ,已知)(3,11++∈+==N n S a a a n n n ,设nn n S b 3-=,求数列{}n b 的通项公式.例2、设n S 是数列{}n a 的前n 项和,11=a ,)2(212≥⎪⎭⎫⎝⎛-=n S a S n n n . ⑴求{}n a 的通项; ⑵设12+=n S b nn ,求数列{}n b 的前n 项和n T .C 、证明数列是等差或等比数列1)证明数列等差例1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b nn .求证:数列{}n b 是等差数列.例2、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. 求证:{nS 1}是等差数列;2)证明数列等比例1、设{a n }是等差数列,b n =na ⎪⎭⎫⎝⎛21,求证:数列{b n }是等比数列;例2、 数列{a n }的前n 项和为S n ,数列{b n }中,若a n +S n =n .设c n =a n -1,求证:数列{c n }是等比数列;例3、已知n S 为数列{}n a 的前n 项和,11=a ,24+=n n a S .⑴设数列{}n b 中,n n n a a b 21-=+,求证:{}n b 是等比数列; ⑵设数列{}n c 中,n nn a c 2=,求证:{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和.例4、设n S 为数列{}n a 的前n 项和,已知()21nn n ba b S -=-⑴证明:当2b =时,{}12n n a n --⋅是等比数列; ⑵求{}n a 的通项公式例5、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.D 、求数列的前n 项和基本方法: 1)公式法, 2)拆解求和法.例1、求数列n{223}n +-的前n 项和n S . 例2、求数列ΛΛ,,,,,)21(813412211n n +的前n 项和n S . 例3、求和:2×5+3×6+4×7+…+n (n+3)2)裂项相消法,数列的常见拆项有:1111()()n n k k n n k=-++;n n n n -+=++111;例1、求和:S =1+n ++++++++++ΛΛ32113211211 例3、 求和:nn +++++++++11341231121Λ.3)倒序相加法,例、设221)(x x x f +=,求: ⑴)4()3()2()()()(213141f f f f f f +++++;⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ΛΛ4)错位相减法,例、若数列{}n a 的通项nn n a 3)12(⋅-=,求此数列的前n 项和n S .5)对于数列等差和等比混合数列分组求和例、已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .E 、数列单调性最值问题例1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n . 例2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值;例4、 数列{}n a 中,12832+-=n n a n ,求n a 取最小值时n 的值.例5、 数列{}n a 中,22+-=n n a n ,求数列{}n a 的最大项和最小项.例5、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N . (Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.例6、已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n .⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立若存在,求最小的正整数k ,若不存在,说明理由.例7、非等比数列{}n a 中,前n 项和21(1)4n n S a =--, (1)求数列{}n a 的通项公式; (2)设1(3)n n b n a =-(*)n N ∈,12n n T b b b =+++L ,是否存在最大的整数m ,使得对任意的n 均有32n mT >总成立若存在,求出m ;若不存在,请说明理由。

相关文档
最新文档