高考数学一轮复习等比数列专题训练(含答案)

合集下载

2025年高考数学一轮复习-6.4-数列求和-专项训练【含解析】

2025年高考数学一轮复习-6.4-数列求和-专项训练【含解析】

2025年高考数学一轮复习-6.4-数列求和-专项训练【原卷版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.82.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.93.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.634.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.45.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C.12,D.23,+∞6.(多选)已知数列{a n}满足a1=1,且对任意的n∈N*都有a n+1=a1+a n+n,则下列说法中正确的是()A.a n=n(n+1)2B2020项的和为20202021C2020项的和为40402021D.数列{a n}的第50项为25507.(多选)设数列{a n}的前n项和为S n,若S2nS4n为常数,则称数列{a n}为“吉祥数列”.则下列数列{b n}为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.9.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .202011.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n n 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +1412.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.2025年高考数学一轮复习-6.4-数列求和-专项训练【解析版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.8解析:A设{a n}的公差为d,根据题意得a23=a2·a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2,所以数列{a n}的前6项和为S6=6a1+6×52d=1×6+6×52×(-2)=-24.2.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.9解析:C∵1+2+22+…+2n-1为公比为2,首项为1的等比数列的前n项和S n,∴S n=12-1(2n-1)=2n-1>128=27,∴n≥8,∴n的最小值为8.故选C.3.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.63解析:D因为log2a n+1=1+log2a n,所以log2a n+1=log22a n,即a n+1=2a n,即数列{a n}是以2为公比的等比数列,又a3=4,所以a1=a34=1,因此S6=a1(1-26)1-2=26-1=63.故选D.4.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.4解析:A显然数列{a n}的公比不等于1,所以S n=a1·(q n-1)q-1=a1q-1·q n-a1q-1=4n+b,所以b=-1.5.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C .12,D .23,+∞解析:D设等比数列{a n }的公比为q ,q ≠0,则q 3=a 4a 1=18,解得q =12,所以a n =12n -1,所以a n a n +1=12n -1×12n =122n -1,所以数列{a n a n +1}是首项为12,公比为14的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=21-14=<23.因为a 1a 2+a 2a 3+…+a n a n +1<k ,所以k ≥23.故k 的取值范围是23,+D .6.(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是()A .a n =n (n +1)2B2020项的和为20202021C2020项的和为40402021D .数列{a n }的第50项为2550解析:AC因为a n +1=a 1+a n +n ,a 1=1,所以a n +1-a n =1+n ,即a n -a n -1=n (n ≥2),所以n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,a 1=1也适合此式,所以a n =n (n +1)2,a 50=1275,A 正确,D 错误;1a n =2n(n +1)=2020项和S 2020=-12+12-13+…+12020-=40402021,B 错误,C 正确.故选A 、C .7.(多选)设数列{a n }的前n 项和为S n ,若S2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n解析:BC对于A ,S n =(1+n )n 2,S 2n =n (1+2n ),S 4n =2n (1+4n ),所以S2n S 4n =n (1+2n )2n (1+4n )=1+2n 2(1+4n )不为常数,故A 错误;对于B ,由并项求和法知:S 2n =n ,S 4n =2n ,S 2n S 4n =n 2n =12,故B 正确;对于C ,S n =2+4n -22×n =2n 2,S 2n =8n 2,S 4n =32n 2,所以S 2n S 4n =14,故C 正确;对于D ,S n =2(1-2n )1-2=2(2n -1),S 2n =2(4n -1),S 4n =2(16n -1),所以S2n S 4n =4n -116n -1=14n +1不为常数,故D 错误.故选B 、C .8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析:S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n ,∴S n-na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案:59.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d a 1+10d =20,1+2d )2=(a 1+d )(a 1+4d ),化简得1+2d =4,1d =0,因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *,因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n n -n 2,n 为偶数,a n ,n 为奇数,n 为偶数,n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2)=n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .2020解析:D设{a n }的公差为da 1+6d =a 1+3d +7,1+9d =19,1=1,=2,∴a n =2n-1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2019+b 2020)=2×20202=2020.11.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A nn 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +14解析:ABD由a n =a 2n -1+a n -1,得a 2n -1=a n -a n -1≥0,所以a n ≥a n -1≥32,A n =a 21+a 22+…+a 2n =a 2-a 1+a 3-a 2+…+a n +1-a n =a n +1-a 1=a n +1-32,故A 正确;由a n =a 2n -1+a n -1=a n-1(a n -1+1),得1a n =1a n -1(a n -1+1)=1a n -1-1a n -1+1,即1a n -1+1=1a n -1-1a n ,所以B n =1a 1+1+1a 2+1+…+1a n +1=1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=23-1a n +1,故B 正确;易知A n ≠0,B n ≠0,所以A nB n =a n +1-3223-1a n +1=32a n +1,故C 不正确;易知a n =a 2n -1+a n -1<2a 2n -1,所以a n +1<2a 2n <23a 4n -1<…<22n -1a 2n 1=22n-1n =12×32n ,所以A n B n=32an +1<32×12×32n =32n +14,故D 正确.故选A 、B 、D .12.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2,两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2,即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1),则数列{a n -1}是首项为1,公比为3的等比数列,则a n -1=3n -1,故a n =1+3n -1.(2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1),设M n =1·30+2·31+3·32+…+n ·3n -1,3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n=1-3n 1-3-n ·3n ,化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.证明:二项展开式的通项为T k +1=C -k=C -k x12-3k,令12-3k =0,得k =4,得展开式的常数项为a 1=12.可选择的条件为①或②或③:若选择①:在S n =-a n +t 中,令n =1,得t =1,所以S n =-a n +1,当n ≥2时,S n -1=-a n -1+1.两式相减得a n =12a n -1,故{a n }是以12为首项,12为公比的等比数列,所以S n =a 1(1-q n )1-q =1<1.所以S n <1对任意的n ∈N *恒成立.若选择②:由(n +1)b n +1=nb n 得b n +1b n =nn +1,所以b n =b n b n -1·b n -1b n -2·…·b 2b 1b 1=1n (n ≥2),n =1时也满足,则a n =1n (n +1)=1n -1n +1,S n …1-1n +1<1.所以S n <1对任意的n ∈N *恒成立.若选择③:由题意得3a 2n +1-3a 2n =-(a n +1+a n ),得a n +1-a n =-13或a n +1+a n =0,又a 1=12,当a n +1+a n =0时,有S n n 为偶数,n 为奇数,所以S n <1,当a n +1-a n =-13时,有S n =n 2-n (n -1)6=-16(n 2-4n )=-16(n -2)2+23,当n =2时,S n 有最大值,为23<1.所以S n <1对任意的n ∈N *恒成立.。

高考数学《无穷等比数列各项的和》一轮复习练习题(含答案)

高考数学《无穷等比数列各项的和》一轮复习练习题(含答案)

高考数学《无穷等比数列各项的和》一轮复习练习题(含答案)一、单选题1.已知无穷等比数列{}n a 的首项为1,公比为13,则{}n a 各项的和为( )A .23B .34 C .43D .322.设无穷等比数列所有奇数项之和为15,所有偶数项之和为3-,1a 为其首项,则1a =( ) A .685B .785C .725D .8453.无穷数列4 ,2-,1,12-,14,的各项和为( )A .83B .53C .43D .734.已知数列{}n a 是等比数列,()121lim 4n n a a a →∞++⋯+=,则1a 的取值范围是( )A .102⎛⎫ ⎪⎝⎭,B .104⎛⎫ ⎪⎝⎭,C .1142⎛⎫ ⎪⎝⎭,D .1110442⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭,,5.已知无穷等比数列{}n a 的公比为2,且13211112lim()3n n a a a →∞-++⋅⋅⋅+=,则242111lim()n na a a →∞++⋅⋅⋅+=( ) A .13B .23C .1D .436.已知无穷等比数列{}n a 的前n 项和()*13n n S a n N =+∈,且a 是常数,则此无穷等比数列各项的和是( ) A .13B .13-C .1D .-17.若数列{}n b 的每一项都是数列{}n a 中的项,则称{}n b 是{}n a 的子数列.已知两个无穷数列{}n a 、{}n b 的各项均为正数,其中321n a n =+,{}n b 是各项和为12的等比数列,且{}n b 是{}n a 的子数列,则满足条件的数列{}n b 的个数为 A .0个B .1个C .2个D .无穷多个8.设无穷等比数列{}n a 的各项和为S ,若数列{}n b 满足32313n n n n b a a a --=++,则数列{}n b 的各项和为( ) A .3SB .2SC .SD .3S9.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得()*3n S S n N <∈恒成立的是( )A .10a >,0.80.9q <<B .10a <,0.90.8q -<<-C .10a >,0.70.8q <<D .10a <,0.80.7q -<<-10.无穷数列12,13,14,16,⋅⋅⋅,12n ,1132n -⋅,⋅⋅⋅的各项和为( ) A .83B .53C .43D .7311.已知121,20151,20152n n n n a n --<⎧⎪=⎨⎛⎫-≥ ⎪⎪⎝⎭⎩,n S 是数列{}n a 的前n 项和( )A .lim n n a →∞和lim n n S →∞都存在B .lim n n a →∞和lim n n S →∞都不存在C .lim n n a →∞存在,lim n n S →∞不存在 D .lim n n a →∞不存在,lim n n S →∞存在 12.已知两点 O (0,0)、 Q (a , b ) ,点 P 1是线段 OQ 的中点,点 P 2是线段 QP 1的中点, P 3 是线段 P 1P 2的中点,……,Pn + 2是线段 Pn Pn +1的中点,则点 Pn 的极限位置应是( ) A .(,)22a bB .(,)33a bC .22(,)33a b D .33(,)44a b二、填空题13.首项为1,公比为12-的无穷等比数列{}n a 的各项和为______.14.若{}n a 是无穷等比数列,且12lim()2n n a a a →∞+++⋅⋅⋅=,则1a 的取值范围为___________. 15.已知数列{}n a 是公比为q 无穷等比数列,若12i i a q +∞==∑,则1a 的取值范围是____.16.无穷等比数列{}()*,n n a n a ∈∈N R 的前n 项和为n S ,且lim 2n n S →+∞=,则首项1a 的取值范围是_______.三、解答题17.一个无穷等比数列前n 项和的极限存在,记作S ,首项为12a =,公比0q <,求S 的取值范围.18.一个无穷等比数列的公比q 满足1q <,它的各项和等于6,这个数列的各项平方和等于18,求这个数列的首项1a 与公比q .19.已知数列{}n a 的首项1(0)a b b =≠,它的前n 项之和n S 组成的数列{}()*n S n N ∈是一个公比为(||1)q q <的等比数列.(1)求证:234,,a a a ,…是一个等比数列; (2)设1122n n n W a S a S a S =+++,求lim n n W →∞,(用,b q 表示)20.已知6614=⎛⎫+= ⎪⎝⎭∑i i i x a x .(1)等比数列{}n b 的首项11b a =,公比4=q a ,求1∞=∑i i b 的值;(2)等差数列{}n c 首项15=c a ,公差6=d a ,求{}n c 通项公式和它的前2022项和2022S .21.数列{}n a 中,11a =,22a =,数列{}1n n a a +⋅是公比为(0)q q >的等比数列. (1)求使11223()n n n n n n a a a a a a n N ++++++>∈成立的q 的取值范围; (2)若212()n n n b a a n N -=+∈,求n b 的表达式; (3)若12n n S b b b =+++,求1lim→∞n nS .22.设a b ∈R 、,已知函数2()3bf x ax x=++满足(1)(1)10f f +-=. (1)求a 的值,并讨论函数()f x 的奇偶性(只需写出结论);(2)若函数()f x 在区间,⎛-∞ ⎝上单调递减,求b 的最小值; (3)在(2)的条件下,当b 取最小值时,证明:函数()f x 有且仅有一个零点q ,且存在递增的正整数列{}n a ,使得31223n a a a a q q q q =+++⋅⋅⋅++⋅⋅⋅成立.23.正三棱锥012P A A A -中,01A PA α∠=,侧棱0PA 长为2,点0B 是棱PA 的中点,定义集合{}12,,B B ⋅⋅⋅如下:点n B 是棱n PA 上异于P 的一点,使得11n n n B B PB --=(1n ≥),我们约定:若n除以3的余数r ,则r n A A =(例如:30A A =、20152A A =等等) (1)若3πα=,求三棱锥012P B B B -的体积;(2)若{}12,,B B ⋅⋅⋅是一个只有两个元素的有限集,求α的范围; (3)若{}12,,B B ⋅⋅⋅是一个无限集,求各线段0PB ,1PB ,2PB ,…的长度之和(用α表示).(提示:无穷等比数列各项和公式为11a S q =-(01q <<)参考答案1.D2.C3.A4.D5.A6.D7.C8.C9.D10.B11.A12.C 13.2314.(0,2)(2,4) 15.1(4,0)(0,)2-16.()()0,22,4;17.解:因为无穷等比数列前n 项和的极限存在, 所以()11lim1nn a q q∞→--1211a q q==--,且1q <, 又0q <,所以10q -<<, 又21S q=-在()1,0-上单调递增, 所以()1,2S ∈18.由题意可知:这个数列的各项平方后,依然构成一个等比数列,且公比为2,q 首项为21a ,故112126114,3181a q a q a q⎧=⎪-⎪⇒==⎨⎪=⎪-⎩, 19.(1)由题知11S a b ==,所以1n n S bq -=,当2n ≥时,()12211n n n n n n a S S bq bq bq q ----=-=-=-, 所以()()()112121n n n n bq q a q n a bq q -+--==≥-, 所以234,,a a a ,…是一个等比数列;(2)由(1)知,()2,11,2n n b n a bq q n -=⎧=⎨-≥⎩,所以()2223,11,2n n n b n a S b q q n -⎧=⎪=⎨-≥⎪⎩,则()()22323lim lim 1n n n n W b b q q q q -→∞→∞=+-+++⎡⎤⎣⎦… ()()23232lim lim 1n n n b q q q b q -→∞→∞=+-+++…()2222111q b b b q q q=+-⋅=-+.20.(1)解:614x ⎛⎫+ ⎪⎝⎭的展开式通项为()6161C 6,N 4kk kk T x k k -*+⎛⎫=⋅⋅≤∈ ⎪⎝⎭,则661C 4kk k a -⎛⎫=⋅ ⎪⎝⎭,所以,1151364512b a ==⨯=,2446115C 416q a ⎛⎫==⋅= ⎪⎝⎭,则01q <<, 所以,()111313512lim151132116ni n i b q b b qq ∞→∞=-====---∑.(2)解:1513642c a ==⨯=,61d a ==,则()1112n c c n d n =+-=+, 所以,202212022202132022202210112021204626422d S c ⨯⨯=+=⨯+⨯=.21.(1){}1n n a a +⋅是公比为(0)q q >的等比数列,且12122a a ⋅=⋅=112n n n a a q -+∴⋅=由11223(n n n n n n a a a a a a n +++++⋅+⋅>⋅∈N ),有11222(0)n n n q q q q -++>> 210q q ∴--<解得0q <<(2)121n n n n a a q a a +++=,2n n a q a +∴=,2121,222n n n n a qa a qa +-+∴==212n n n b a a -=+,1123b a a ∴=+=,又12122212212212n n n n nn n n n nb a a qa qa q b a a a a +++---++===++ {}n b ∴是首项为13b =,公比为q 的等比数列,13n n b q -∴=(3)当1q =时,3n S n =,11lim lim 03n n n S n→∞→∞==; 当1q >时,3(1)1n n q S q -=-,11111lim lim lim 03(1)131n n n n n n nn q q q S q q -→∞→∞→∞--===-⎛⎫- ⎪⎝⎭; 当01q <<时,1111lim3lim 31n n n n qS S q→∞→∞-===-即1lim →∞n n S 13q -=. 综上,0,11lim 1,013n n q q S q →∞≥⎧⎪=-⎨<<⎪⎩. 22.(1)(1)(1)10(3)(3)102f f a b a b a +-=⇒+++-+=⇒=2()23bf x x x=++的定义域为(,0)(0,)x ∈-∞⋃+∞ 当20,()()23,()b f x f x x f x =-==+为偶函数; 当0,(1)(1)100,(1)(1),(1)(1)b f f f f f f ≠-+=≠-≠-≠- ∴()f x 既不是偶函数也不是奇函数;(2)由(1)得:2()25bf x x x=++则2()4bf x x x '=-, 若()f x在区间(,-∞上单调递减, 则2()40bf x x x'=-在区间(,-∞上恒成立, 即34b x在区间(,-∞上恒成立,当x =342x =-, 故b 的最小值为2-;(3)22()23,0,()0f x x x f x x -=++<>恒成立, 所以函数22()23f x x x -=++在(,0)-∞上无零点, 当0x >时,22()40f x x x '=+>,所以函数22()23f x x x-=++在(0,)+∞上单调递增, 2112(1)2230,2301444f f -⎛⎫⎛⎫=-+>=⨯++< ⎪ ⎪⎝⎭⎝⎭, 函数()f x 在1,14⎛⎫⎪⎝⎭上有且仅有一个零点q ,23322()230223013q f q q q q q q -=++=⇒-+=⇒=-47323213n q q q q q q -==+++⋅⋅⋅++⋅⋅⋅- 所以存在递增的正整数列{},32n n a a n =-,使得31223n a a a a q q q q =+++⋅⋅⋅++⋅⋅⋅成立. 23.点n B 是正三棱锥012P A A A -棱n PA 上异于P 的一点,且11n n n B B PB --=(1n ≥)1n n PB B -∴是等腰三角形,且1n n B B -、1n PB -为两腰 又正三棱锥012P A A A -中,01A PA α∠=, 01121n n A PA B PB B PB α-∴∠=∠==∠=,()1112cos 2cos 1n n n n n PB PB B PB PB n α---=⋅∠=⋅≥,则数列{}()n PB n N ∈是一个以01PB =为首项,2cos α为公比的等比数列,(1)当3πα=时,2101PB PB PB ===,且011220B PB B PB B PB ∠=∠=∠,则三棱锥012P B B B -为正四面体,其高h ==,底面积01221B B B S ==,故其体积01213P B B B V -==(2){}12,,B B ⋅⋅⋅是一个只有两个元素的有限集,2230,B PA B PA ∴∈∉,即223022PB PA PB PA ≤=⎧⎨>=⎩由()12cos 1n n PB PB n α-=⋅≥,得()2222cos 4cos PB αα==,()3332cos 8cos PB αα==,∴由234cos 28cos 2αα⎧≤⎨>⎩解得213211()cos ()22α<≤ 213211arccos(),arccos()22α⎫⎡∴∈⎪⎢⎣⎭;(3){}12,,B B ⋅⋅⋅是一个无限集,且()12cos 1n n PB PB n α-=⋅≥,则数列{}()n PB n N ∈是一个以01PB =为首项,2cos α为公比的无穷等比数列,01112cos n PB +PB +PB α∴++=-.。

高考数学(理)一轮复习考点训练:考点23等比数列及其前n项和

高考数学(理)一轮复习考点训练:考点23等比数列及其前n项和

2020高三一轮基础达标 考点23等比数列及其前n 项和一、选择题1.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .135 B .100 C .95D .802.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .243.在等比数列{a n }中,已知a 1=1,a 4=8,则a 5=( ) A .16 B .16或-16 C .32 D .32或-324.等比数列{a n }的各项为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 355.在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A .-2 B .- 2 C .±2D. 26.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11=( ) A .10 B .25 C .50 D .757.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .108.已知等比数列{a n }的公比为正数,且a 2a 6=9a 4,a 2=1,则a 1的值为( ) A .3 B .-3 C .-13 D .139.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n -1C .2n -1D .2n -110.已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b =( )A .-3B .-1C .1D .3 11.若等比数列{a n }满足a n a n +1=16n ,则公比为( )A .2B .4C .8D .16 12.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2B .73C .310D .1或213.设{a n }是由正数组成的等比数列,公比q =2,且a 1a 2a 3·…·a 30=230,则a 3a 6a 9·…·a 30=( )A .210B .220C .216D .215 二、填空题14.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1)(n ≥2,n ∈N *),则这个数列的前4项和S 4=________.15.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=________. 16.等比数列的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.三、解答题17.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.18.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n -a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.参考答案1. 答案:A解析:由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32,所以a 7+a 8=40×⎝⎛⎭⎫323=135. 2. 答案:A解析:由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.3. 答案: A解析: 由a 4=a 1q 3,则q =2,所以a 5=a 4q =16.故选A . 4. 答案:B解析:由题a 5a 6+a 4a 7=18,所以a 5a 6=9,log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=5log 39=10.5. 答案:B解析: 根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,因为a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0.又a 3a 7=a 25,所以a 5=-a 3a 7=- 2.6. 答案: B解析: 因为a 7a 12=a 8a 11=a 9a 10=5, 所以a 8a 9a 10a 11=52=25.故选B . 7. 答案: B解析:设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2· a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n ,即7292=3n ,所以n =12. 8. 答案: D解析: 设数列{a n }的公比为q ,由a 2·a 6=9a 4,得a 2·a 2q 4=9a 2q 2,解得q 2=9,所以q =3或q =-3(舍去),所以a 1=a 2q =13.故选D .9. 答案: D解析: 因为⎩⎨⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q3=2,解得q =12,代入①得a 1=2,所以a n =2×⎝⎛⎭⎫12n -1=42n ,S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n , 所以S n a n =4⎝⎛⎭⎫1-12n 42n =2n -1.故选D.10. 答案: A解析: ∵等比数列{a n }的前n 项和S n =a ·3n -1+b ,∴a 1=S 1=a +b ,a 2=S 2-S 1=3a +b -a -b =2a ,a 3=S 3-S 2=9a +b -3a -b =6a ,∵等比数列{a n }中,a 22=a 1a 3,∴(2a )2=(a +b )×6a ,解得a b=-3.故选A . 11. 答案: B 解析: 由a n a n +1=a 2n q =16n >0知q >0,又a n +1a n +2a n a n +1=q 2=16n +116n =16,所以q =4.故选B .12. 答案: B解析: 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k3k =73,故选B . 13. 答案: B解析: 因为a 1a 2a 3=a 32,a 4a 5a 6=a 35,a 7a 8a 9=a 38,…,a 28a 29a 30=a 329,所以a 1a 2a 3a 4a 5a 6a 7a 8a 9…a 28a 29a 30=(a 2a 5a 8…a 29)3=230.所以a 2a 5a 8…a 29=210.则a 3a 6a 9…a 30=(a 2q )(a 5q )(a 8q )…(a 29q )=(a 2a 5a 8·…·a 29)q 10=210×210=220,故选B .14. 答案: 27解析: 由已知n ≥2时,a n =2S n -1,a n +1=2S n ,∴a n +1-a n =2a n ,即a n +1=3a n (n ≥2),∴a n =⎩⎪⎨⎪⎧1,n =1,2×3n -2,n ≥2, ∴S 4=1+2+6+18=27. 15. 答案:18解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.16. 答案: 5解析: 由等比数列的性质可知a 1a 5=a 2a 4=a 23,于是由a 1a 5=4得a 3=2,故a 1a 2a 3a 4a 5=32,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 232=5.17.解析:(1)由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.18. 解析:(1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.。

高考数学第一轮复习:《等比数列》

高考数学第一轮复习:《等比数列》

高考数学第一轮复习:《等比数列》最新考纲1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.【教材导读】1.如何推导等比数列的通项公式?采用什么方法?提示:可采用累积法推导.2.b2=ac是a,b,c成等比数列的什么条件?提示:必要而不充分条件,因为b2=ac时,不一定有a,b,c成等比数列(如a=0,b=0,c=1),而a,b,c成等比数列,则必有b2=ac.3.如何推导等比数列的前n项和公式?采用了什么方法?提示:可用错位相减法推导.1.等比数列的相关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.符号表示为a na n-1=q(n≥2),q为常数.(2)等比中项:如果三个数a,G,b成等比数列,则G叫做a和b的等比中项,那么Ga=bG,即G2=ab.2.等比数列的通项公式(1)设等比数列{a n}的首项为a1,公比为q,q≠0,则它的通项公式a n=a1q n-1.(2)通项公式的推广a n=a m·q n-m.3.等比数列的前n 项和公式S n =⎩⎨⎧na 1, q =1,a 1(1-q n )1-q =a 1-a n q1-q , q ≠1.4.等比数列的常见性质(1)在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍然是等比数列.(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.5.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 6.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.1.等比数列x,3x +3,6x +6,…的第四项等于( ) (A)-24 (B)0 (C)12(D)24A 解析:由等比数列的性质和定义进行解题,由等比中项性质得(3x +3)2=x ·(6x +6),因x +1≠0,得x =-3.所以a 4=(6x +6)·3x +3x =18·(x +1)2x =-24.故选A.2.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A)1盏(B)3盏(C)5盏(D)9盏B解析:每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q=2,依题意,得a1(1-27)1-2=381,解得a1=3,选择B.3.已知a1,a2,…,a n,…为各项均大于零的等比数列,公比q≠1,则()(A)a1+a8>a4+a5(B)a1+a8<a4+a5(C)a1+a8=a4+a5(D)a1+a8与a4+a5的大小关系不能由已知条件确定A解析:(a1+a8)-(a4+a5)=a1(1+q7)-a1(q3+q4)=a1(1+q7-q3-q4)=a1(1-q3)(1-q4).q=a na n-1>0且q≠1,当q>1时,q3>1,q4>1,1-q3<0,1-q4<0;当0<q<1时,q3<1,q4<1,1-q3>0,1-q4>0.总之a1(1-q3)(1-q4)>0.∴a1+a8>a4+a5.4.若正项等比数列{a n}满足a n+2=a n+1+2a n,则其公比为()(A)12(B)2或-1(C)2 (D)-1C解析:根据题意,设等比数列{a n}的公比为q,若a n+2=a n+1+2a n,则有a n q2=a n q+2a n,即q2-q-2=0,解可得q=2或-1,由数列{a n}为正项等比数列,可得q=2,故选C.5.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 为________. 解析:若q =1,则S n =na 1,∴{S n }是等差数列; 若q ≠1,则当{S n }是等差数列时,一定有2S 2=S 1+S 3, ∴2·a 1(1-q 2)1-q =a 1+a 1(1-q 3)1-q ,即q 3-2q 2+q =0,故q (q -1)2=0, ∴q =0或q =1,而q ≠0,q ≠1,∴此时不成立. 答案:1考点一 等比数列的基本运算(1)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) (A)31 (B)36 (C)42(D)48解析:(1)解法一 由题意知a 1+4a 1+16a 1=21, 解得a 1=1,所以等比数列{a n }的通项公式为a n =a 1q n -1=4n -1.解法二 由题意可设等比数列{a n }的前3项分别为x 4,x,4x ,则x4+x +4x =21,解得x =4,所以等比数列{a n }的通项公式为a n =a 2q n -2=4×4n -2=4n -1.(2)a 3a 5=a 2a 6=64,因为a 3+a 5=20,所以a 3和a 5为方程x 2-20x +64=0的两根,因为a n >0,q >1,所以a 3<a 5,所以a 5=16,a 3=4,所以q =a 5a 3=164=2,所以a 1=a 3q 2=44=1,所以S 5=1-q 51-q=31.【反思归纳】 等比数列基本运算的方法策略(1)将条件用a 1,q 表示,在表示S n 时要注意判断q 是否为1; (2)解方程(组)求出a 1,q ,消元时要注意两式相除和整体代入; (3)利用a 1,q 研究结论.【即时训练】 (1)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N ).(2)若S n 为数列{a n }的前n 项和,且S n =2a n -2,则S 8等于( ) (A)255 (B)256 (C)510(D)511解析:(1)很明显等比数列的公比q ≠1,则由题意可得:S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=89,解得:q =12,则:a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.(2)当n =1时,a 1=2a 1-2,据此可得:a 1=2, 当n ≥2时:S n =2a n -2,S n -1=2a n -1-2, 两式作差可得:a n =2a n -2a n -1,则:a n =2a n -1, 据此可得数列{a n }是首项为2,公比为2的等比数列, 其前8项和为:S 8=2×(1-28)1-2=29-2=510-2=510.故选C.答案:(1)-12 (2)C考点二 等比数列的判定与证明已知数列{a n }的前n 项和为S n ,且对任意的n ∈N *有a n +S n =n . (1)设b n =a n -1,求证:数列{b n }是等比数列; (2)设c 1=a 1且c n =a n -a n -1(n ≥2),求{c n }的通项公式.(1)证明:由a 1+S 1=1及a 1=S 1得a 1=12. 又由a n +S n =n 及a n +1+S n +1=n +1得 a n +1-a n +a n +1=1,∴2a n +1=a n +1. ∴2(a n +1-1)=a n -1,即2b n +1=b n .∴数列{b n }是以b 1=a 1-1=-12为首项,12为公比的等比数列. (2)解:方法一:由(1)知2a n +1=a n +1. ∴2a n =a n -1+1(n ≥2), ∴2a n +1-2a n =a n -a n -1, ∴2c n +1=c n (n ≥2).又c 1=a 1=12,a 2+a 1+a 2=2,∴a 2=34. ∴c 2=34-12=14,c 2=12c 1.∴数列{c n }是首项为12,公比为12的等比数列. ∴c n =12·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n . 方法二:由(1)b n =-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =⎝ ⎛⎭⎪⎫12n+1.∴c n =-⎝ ⎛⎭⎪⎫12n +1-⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫12n -1+1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n -1⎝ ⎛⎭⎪⎫1-12=⎝ ⎛⎭⎪⎫12n (n ≥2). 又c 1=a 1=12也适合上式,∴c n =⎝ ⎛⎭⎪⎫12n .【反思归纳】 等比数列的判定方法(1)定义法:若a n +1a n=q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则数列{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式写成a n =c ·q n (c 、q 均是不为0的常数,n ∈N *),则数列{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则数列{a n }是等比数列.如果判定某数列不是等比数列,只需判定其任意的连续三项不成等比数列即可. 【即时训练】 已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.解析:(1)假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,这与事实相矛盾.所以对任意实数λ,数列{a n }都不是等比数列.(2)因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1·⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n (a n -3n +21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b 1=0(n ∈N *),此时{b n }不是等比数列; 当λ≠-18时,b 1=-(λ+18)≠0, 则b n ≠0,所以b n +1b n=-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列. 考点三 等比数列的性质及应用(1)等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( ) (A)1 (B)2 (C)3(D)5(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:(1)因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2;同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项,所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3.(2)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:(1)C (2)-12【反思归纳】 在等比数列的基本运算问题中,一般是利用通项公式与前n 项和公式,建立方程(组)求解,但如果灵活运用等比数列的性质,可减少运算量,提高解题速度.【即时训练】 (1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )(A)18 (B)-18 (C)578(D)558(2)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. 解析:(1)因为a 7+a 8+a 9=S 9-S 6,在等比数列中S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=1,即S 9-S 6=18.故选A.(2)利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝ ⎛⎭⎪⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n . 记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:(1)A (2)64等比数列的基本运算教材源题:在等比数列{a n }中: (1)已知a 1=-1,a 4=64,求q 与S 4; (2)已知a 3=32,S 3=92,求a 1与q . 解:(1)由q 3=a 4a 1=-64,解得q =-4,所以S 4=a 1-a 4q 1-q =-1+64×41+4=51.(2)因为S 3=a 1+a 2+a 3=a 3(q -2+q -1+1), 所以q -2+q -1+1=3, 即2q 2-q -1=0,解这个方程得q =1或q =-12. 当q =1时,a 1=32; 当q =-12时,a 1=6.【规律总结】 解决等比数列的基本计算问题主要是利用方程思想,建立方程(组)求解.注意两式相除、整体代换、分类讨论等技巧的应用.【源题变式】 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:因为a 5-a 1=15,a 4-a 2=6.所以⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1)两者相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0,所以q =2或q =12, 当q =2时,a 1=1, 当q =12时,a 1=-16(舍去).所以a 3=1×22=4.答案:4课时作业基础对点练(时间:30分钟)1.已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件B 解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B.2.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( ) (A)(-2)n -1 (B)-(-2)n -1 (C)(-2)n(D)-(-2)nA 解析:∵|a 1|=1,∴a 1=1或a 1=-1.∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2.又a 5>a 2,即a 2q 3>a 2,∴a 2<0.而a 2=a 1q =a 1·(-2)<0,∴a 1=1.故a n =a 1·(-2)n -1=(-2)n -1.故选A.3.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( ) (A)16(1-4-n )(B)16(1-2-n )(C)323()1-4-n (D)323(1-2-n )C 解析:∵a 2=2,a 5=14,∴a 1=4,q =12.a 1a 2+a 2a 3+…+a n a n +1=323(1-4-n ).故选C. 4.在等比数列{a n }中,若a 1=19,a 4=3,则该数列前5项的积为( ) (A)±3 (B)3 (C)±1(D)1D 解析:因为a 4=3,所以3=19×q 3(q 为公比),得q =3,所以a 1a 2a 3a 4a 5=a 53=(a 1q 2)5=⎝ ⎛⎭⎪⎫19×95=1,故选D. 5.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn 等于( )(A)32 (B)32或23 (C)23(D)以上都不对B 解析:设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到:c =1,d =2,则m =a +b =92,n =c +d =3或m =c +d =3,n =a +b =92,则m n =32或m n =23.故选B.6.已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n ,若b 10b 11=2,则a 21=( )(A)29 (B)210 (C)211(D)212C 解析:由b n =a n +1a n,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211.故选C.7.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=________.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ①,∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n-1②,∵①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2016=1-210081-2+2×(1-21008)1-2=3×21008-3.答案:3×21008-38.如图,“杨辉三角”中从上往下共有n (n >7,n ∈N )行,设第k (k ≤n ,k ∈N *)行中不是1的数字之和为a k ,由a 1,a 2,a 3,…组成的数列{a n }的前n 项和是S n ,现有下面四个结论:①a 8=254;②a n =a n -1+2n ;③S 3=22;④S n =2n +1-2-2n .其中正确的结论序号为________.1 1 12 1 13 3 1 14 6 4 1 …… ……解析:a n =2n -2,S n =21+22+…+2n -2n =2(1-2n )1-2-2n =2n +1-2-2n ,故只有①④正确.答案:①④9.设数列{a n },{b n }都是正项等比数列,S n ,T n 分别为数列{lg a n }与{lg b n }的前n 项和,且S n T n =n 2n +1,则log b 5a 5=________.解析:设正项数列{a n }的公比为q ,正项数列{b n }的公比为p ,则数列{lg a n }是公差为lg q 的等差数列,{lg b n }是公差为lg p 的等差数列. 故S n =n lg a 1+n (n -1)2lg q . T n =n lg b 1+n (n -1)2lg p .又S n T n=n 2n +1=lg a 1+n -12lg q lg b 1+n -12lg p.所以log b 5a 5=lg a 5lg b 5=lg a 1+4lg q lg b 1+4lg p =S 9T 9=919.答案:91910.设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大项为27,求数列的第2n 项.解:若q =1,则na 1=40,2na 1=3 280,矛盾. ∴q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q=40 ①a 1(1-q 2n)1-q=3 280 ②①②得1+q n =82,∴q n =81③将③代入①得q =1+2a 1④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列. ∴a n =a 1q n -1=27由③④⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.能力提升练(时间:20分钟)11.已知等比数列{a n }的公比q =2,前100项和为S 100=90,则其偶数项a 2+a 4+…+a 100为( )(A)15 (B)30 (C)45(D)60D 解析:S 100=a 1+a 2+…+a 100=90,设S =a 1+a 3+…+a 99,则2S =a 2+a 4+…+a 100, 所以S +2S =90,S =30,故a 2+a 4+…+a 100=2S =60,故选D.12.已知{a n }是首项为1的等比数列,若S n 是{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )(A)158或4 (B)4027或4 (C)4027(D)158C 解析:设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.而S 6=6,两者不相等,因此不合题意.当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q .解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为1+13+19+127=4027.故选C.13.已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为{a n }的前n 项和,则S 3a 3=( )(A)139 (B)79 (C)3(D)1A 解析:4a 3=3a 2+a 4, 4a 1q 2=3a 1q +a 1q 3, ∴q 2-4q +3=0, q =3或q =1(舍).∴S 3a 3=a 1(1-q 3)1-q a 1q 2 =1-q 3q 2(1-q )=1-279×(-2)=139.故选A.14.已知数列{a n }的各项均为正数,且前n 项和S n 满足S n =16(a n +1)(a n +2).若a 2,a 4,a 9成等比数列,求数列{a n }的通项公式.解析:因为S n =16(a n +1)(a n +2),所以当n =1时,有S 1=a 1=16(a 1+1)(a 1+2), 解得a 1=1或a 1=2;当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2).①-②并整理,得(a n +a n -1)(a n -a n -1-3)=0(n ≥2).因为数列{a n }的各项均为正数,所以a n -a n -1=3(n ≥2).当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立.当a 1=2时,a n =2+3(n -1)=3n -1,此时a 24=a 2a 9不成立.所以a 1=2舍去.故a n =3n -2.15.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }和通项公式.(2)证明:1a 1+1a 2+…+1a n<32.解析:证明:(1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32, 所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1,因为当n ≥1时,23n -1<2+13n -1+1=13n -1,所以1a 1+1a 2+…+1a n <1+13+…+13n -1=⎝⎛⎭⎪⎫1-13n ×32,所以1a 1+1a 2+…+1a n <32.。

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。

高考数学一轮复习《数列》练习题(含答案)

高考数学一轮复习《数列》练习题(含答案)

高考数学一轮复习《数列》练习题(含答案)一、单选题1.已知数列{}n a 为等差数列,n S 为其n 前项和,若4511a a +=,则8S =( ) A .36B .40C .44D .472.8,2的等差中项是( ) A .±5B .±4C .5D .43.已知等比数列{}n a 中,3464,32a a a ==,则101268a a a a --的值为( )A .2B .4C .8D .164.若2(23n a n tn t =++为常数)*n N ∈,且数列{}n a 为单调递增数列,则实数t 的取值范围为( ) A .2t <-B .2t >-C .6t <-D .6t >-5.记n S 为数列{}n a 的前n 项和.若(8)(1,2,)n a n n n =-=,则( ) A .{}n a 有最大项,{}n S 有最大项 B .{}n a 有最大项,{}n S 有最小项 C .{}n a 有最小项,{}n S 有最大项D .{}n a 有最小项,{}n S 有最小项6.数列{}n a 满足:12a =,()111n n a a +-=,n S 是{}n a 的前n 项和,则2021S =( ) A .4042 B .2021 C .20232D .202127.在等差数列{}n a 中,若6a ,7a 是方程2320x x ++=的两根,则{}n a 的前12项的和为( ) A .6B .18C .-18D .-68.早在3000年前,中华民族的祖先就已经开始用数字来表达这个世界.在《乾坤谱》中,作者对易传“大衍之数五十”进行了一系列推论,用来解释中国传统文化中的太极衍生原理,如图.该数列从第一项起依次是0,2,4,8,12,18,24,32,40,50,60,72,…,若记该数列为{}n a ,则20212020a a -=( )A .2018B .2020C .2022D .20249.已知数列{}n a 的前n 项和27n S n n =-,若35<<k a ,则k =( ) A .8B .7C .6D .510.等比数列{}n b 的前n 项之积为n T ,若456b b b =,则5T =( ) A .1B .2C .3D .411.数列{}n a 满足1a m =,2212114,4(2)2,4n n n n n a n a n a a n ---⎧<=≥⎨≥⎩,若{}n a 为等比数列,则m 的取值范围是( ) A .(1,9]B .9,2⎡⎫+∞⎪⎢⎣⎭C .[2,9]D .[18,)+∞12.在等差数列{}n a 中,满足4737a a =,且10,n a S >,是{}n a 前n 项的和,若n S 取得最大值,则n =( ) A .7 B .8C .9D .10二、填空题13.已知数列{}n a 为等差数列,10a <且1231990a a a a ++++=,设()12n n n n b a a a n *++=∈N ,当{}n b 的前n 项和n S 最小时,n 的值组成的集合为______.14.已知数列{}n a 中各项是从1、0、-1这三个整数中取值的数列,n S 为其前n 项和,定义()21n n b a =+,且数列{}n b 的前n 项和为n T ,若30301,51S T =-=,则数列{}n a 的前30项中0的个数为_______个.15.已知等比数列{}n a 的各项均为正数,且1212222016,log log log n n n a a a a a +⋅=+++=______.16.n S 是等比数列{}n a 的前n 项和,若131n n S a -=⋅+(*n N ∈),则a =______.17.已知数列{}n a 满足11a =,21n nn a a a +=+,数列{}n b 的前n 项和n S ,1n n n a b a +=.若()100S k k Z <∈,则k 的最小值为_______________.三、解答题18.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2. (1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项; (3){S n }有多少项大于零?19.已知等差数列{}n a 满足37a =,616a =. (1)求{}n a 的通项公式;(2)若当2n ≥时,113n n b b a -=,且13b =,求使0n b >的最大正整数n 的值.20.设{}n a 是各项都为正数的单调递增数列,已知19a =,且n a 满足关系式:19n n a a ++=+*n ∈N .(1)求{}n a 的通项公式; (2)若99n n b a n=+,求数列{}n b 的前n 项和n S .21.已知n S 是公差不为零的等差数列{}n a 的前n 项和,已知1055S =,且2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式; (2)若nn S b n=,求371141n b b b b -+++⋅⋅⋅+的值.22.已知数列{}n a 满足12n n a a +=+,n *∈N ,且2a ,5a ,14a 构成等比数列.(1)求数列{}n a 的通项公式;(2)设12nn n b a +=,求数列{}n b 的前n 项和n S .23.设等差数列{}n a 公差为d ,等比数列{}n b 公比为q ,已知d q =,111a b +=,221a b +=,431a b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(3)求数列211n n n n a a a b +++⎧⎫⎨⎬⎩⎭的前n 项和n T .24.已知数列{}n a 的前n 项和为n S ,0n a >,22=,n n n S a a n N *+∈. (1)求{}n a 的通项公式; (2)记22n n n b a a +=,求数列{}n b 的前n 项和n T .25.已知数列{}n a 的前n 项和为n S ,满足*21()n n S a n =-∈N ,数列{}n b 满足*1(1)(1)()n n nb n b n n n N +-+=+∈,且11b =.(1)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 和{}n b 的通项公式;(2)若12214(1)(1)(32log )(32log )n n n n n c a a -++=-++,求数列{}n c 的前2n 项和2n T ;(3)若n n d a ={}n d的前n 项和为n D ,对任意的*n N ∈,都有n n D nS a ≤-,求实数a 的取值范围。

高考数学一轮复习全套课时作业6-3等比数列

高考数学一轮复习全套课时作业6-3等比数列

题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。

高考等比数列专题及答案doc

高考等比数列专题及答案doc

一、等比数列选择题1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-2.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-3.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n =C .13(1)n a n n =--D .{}3n S 是等比数列5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n6.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>07.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项8.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( )A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f9.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .3210.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .311.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .612.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 13.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9B .10C .11D .1214.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .815.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()*122n n a S n N ++=∈,则满足2100111100010n nS S 的n 的最大值为( ). A .7B .8C .9D .1016.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202017.设等比数列{}n a 的前n 项和为n S ,若425S S =,则等比数列{}n a 的公比为( ) A .2 B .1或2 C .-2或2 D .-2或1或2 18.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定19.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74 D .15820.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 二、多选题21.题目文件丢失!22.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列 23.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列24.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩25.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+26.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T27.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-28.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值29.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 30.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列31.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为n S ,则( )A .2qB .2nn a = C .102047S = D .12n n n a a a +++<32.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <33.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列C .S 8=510D .数列{lga n }是公差为2的等差数列34.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;35.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.A 【分析】由等比数列的通项公式可计算得出()6456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.【详解】由6326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.故选:A. 3.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=,所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nn λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确; 1113S a ==,113S =,公差3d =,所以133(1)3n n n S =+-=,所以13n S n =,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 5.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 7.B 【分析】首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】设等比数列{}n a 为q ,则等比数列的公比414141328a q a -===,所以12q =, 则其通项公式为:116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n=或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B.. 8.B 【分析】根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】解:根据题意得该单音构成公比为因为第六个单音的频率为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =. 所以第八个单音的频率为1262f f =故选:B. 9.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q -=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 10.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 11.C 【分析】根据等比数列的通项公式求解即可.由题意可得等比数列通项5111122n n n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n = 故选:C 12.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 13.C 【分析】根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得121n n a -=+,即求.【详解】因为121n n a a +=-,所以()1121n n a a +-=-,即1121n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.则112n n a --=,即121n n a -=+.因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 14.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=.15.C 【分析】根据()*122n n a S n N ++=∈可求出na的通项公式,然后利用求和公式求出2,n n S S ,结合不等式可求n 的最大值. 【详解】1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,212a =;则{}n a 是首项为1,公比为12的等比数列,100111111000210n⎛⎫<+< ⎪⎝⎭,1111000210n⎛⎫<< ⎪⎝⎭,则n 的最大值为9. 故选:C 16.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.17.C 【分析】设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】设等比数列{}n a 的公比为q , 当1q =时,4121422S a S a ==,不合题意;当1q ≠时,()()41424222111115111a q S q q q S qa q q---===+=---,解得2q =±. 故选:C. 18.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 19.C 【分析】利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】解:因为等比数列的公比为2,所以31312311(12)7712244a S a a a a --===⋅, 故选:C 20.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.二、多选题 21.无22.AD 【分析】利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】对于A ,若{}n a 是等差数列,设公差为d ,则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则11111n n n n n n n n n na q a A a a a qq a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 23.AD 【分析】根据等比数列的定义判断. 【详解】设{}n a 的公比是q ,则11n n a a q -=,A .23513a a q a a ==,1a ,3a ,5a 成等比数列,正确;B ,32a q a =,363aq a =,在1q ≠时,两者不相等,错误;C .242a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .36936a a q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】结论点睛:本题考查等比数列的通项公式.数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,a a a 仍是等比数列,实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,n k k k k a a a a 仍是等比数列. 24.ABD 【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-,可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD.【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 25.CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 26.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 27.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.28.BD 【分析】由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n n a a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确. 【详解】由题意,当1n =时,1122S a =-,解得12a =,当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=,所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n na q a a a q +-⨯--+++===--,故选项C 错误; 6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 29.ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 30.BCD 【分析】根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】当0n S >时,取2111222222n d d dd d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r+->1112222da ra dr rn N d dr -+-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,11n n x x q-=,若1q >,则对任意正数r ,当11log 1q r n x ⎛⎫+>+ ⎪ ⎪⎝⎭时, 1n x r >+,所以不存在正整数N 使得定义式成立,若1q =,显然符合;若1q =-为摆动数列()111n n x x -=-,只有1x ±两个值,不会收敛于一个值,所以舍去;若()1,1q ∈-,取0a =,1log 11q rN x ⎡⎤=++⎢⎥⎣⎦, 当n N >时,11110n n rx x q x r x --=<=,故B 正确; 对于C ,()1sin cos sin 0222n x n n n πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r更大的正数,当n N >=时,110n nr S S -=<,同理0d <,所以D 正确. 故选:BCD 【点睛】关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题.31.ABD【分析】由条件可得32242q q q =+,解出q ,然后依次计算验证每个选项即可. 【详解】由题意32242q q q =+,得220q q --=,解得2q (负值舍去),选项A 正确; 1222n n n a -=⨯=,选项B 正确;()12212221n n n S +⨯-==--,所以102046S =,选项C 错误;13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.故选:ABD【点睛】本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 32.BCD【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12n n a +=,即21n n a =-, 又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212121212121n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确.故选:BCD .【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题.33.BC【分析】先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项.【详解】由题意,根据等比中项的性质,可得a 2a 3=a 1a 4=32>0,a 2+a 3=12>0,故a 2>0,a 3>0.根据根与系数的关系,可知a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根.解得a 2=4,a 3=8,或a 2=8,a 3=4.故必有公比q >0,∴a 12a q=>0. ∵等比数列{a n }是递增数列,∴q >1.∴a 2=4,a 3=8满足题意.∴q =2,a 12a q==2.故选项A 不正确. a n =a 1•q n ﹣1=2n .∵S n ()21212n-==-2n +1﹣2.∴S n +2=2n +1=4•2n ﹣1.∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确.S 8=28+1﹣2=512﹣2=510.故选项C 正确.∵lga n =lg 2n =n .∴数列{lga n }是公差为1的等差数列.故选项D 不正确.故选:BC【点睛】本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.34.ABD【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列,若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.故选:ABD .【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AD【分析】计算到12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案.【详解】 98n a n n =+-,故12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”; 67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”.故选:AD .【点睛】本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.。

专题32 等比数列(解析版)

专题32  等比数列(解析版)
(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为 =q.
(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab.
【小问2详解】由(1)知, ,所以 ,即 ,亦即 ,解得 ,所以满足等式的解 ,故集合 中的元素个数为 .
3.(2022·浙江卷T20)已知等差数列 的首项 ,公差 .记 的前n项和为 .
(1)若 ,求 ;
(2)若对于每个 ,存在实数 ,使 成等比数列,求d的取值范围.
【答案】(1) (2)
【分析】(1)利用等差数列通项公式及前 项和公式化简条件,求出 ,再求 ;
2023高考一轮复习讲与练
专题32等比数列
练高考 明方向
1.(2022·全国乙(理)T8)已知等比数列 的前3项和为168, ,则 ()
A.14B.12C.6D.3
【答案】D
【分析】设等比数列 的公比为 ,易得 ,根据题意求出首项与公比,再根据等比数列的通项即可得解.
【详解】解:设等比数列 的公比为 ,若 ,则 ,与题意矛盾,
基本方法:
等比数列的三种常用判定方法:
定义法:若 =q(q为非零常数,n∈N*),则{an}是等比数列
等比中项法:若数列{an}中,an≠0,且a =an·an+2(n∈N*),则数列{an}是等比数列
通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
【答案】(Ⅰ) ;(Ⅱ) .

2022版高考数学一轮复习第7章第3讲等比数列及其前n项和训练含解析

2022版高考数学一轮复习第7章第3讲等比数列及其前n项和训练含解析

第七章 第3讲[A 级 基础达标]1.(2020年昆明模拟)已知正项等比数列{a n }中,a 2a 3=a 4,若S 3=31,则a n =( ) A .2·5n B .2·5n -1 C .5n D .5n -1【答案】D2.(2020年成都模拟)已知等比数列{a n }的各项均为正数,若log 3a 1+log 3a 2+…+log 3a 12=12,则a 6a 7=( )A .1B .3C .6D .9 【答案】D3.若等比数列{a n }的前n 项和为S n =3·⎝⎛⎭⎫12n +m (n ∈N *),则实数m 的取值为( ) A .-32 B .-1 C .-3 D .一切实数【答案】C4.(2021年吉林模拟)《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A .128127B .44 800127C .700127D .17532【答案】B5.设等比数列{a n }的前n 项和为S n ,若a 1=2,S 6S 2=21,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )A .516或1116B .516或716C .516或1516D .316或716【答案】C 【解析】设等比数列{a n }的公比为q ,则由a 1=2,S 6S 2=21,得2×(1-q 6)1-q 2×(1-q 2)1-q=1-q 61-q2=21,整理得q 4+q 2-20=0,解得q =2或q =-2,所以a n =2n 或a n =2·(-2)n -1.当a n =2n 时,数列⎩⎨⎧⎭⎬⎫1a n 的前4项和S 4=12+14+18+116=1516;当a n =2·(-2)n -1时,数列⎩⎨⎧⎭⎬⎫1a n 的前4项和S 4=12-14+18-116=516.6.记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.【答案】1213 【解析】设等比数列的公比为q ,由已知a 1=13,a 24=a 6,所以⎝⎛⎭⎫13q 32=13q 5,又q ≠0,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.7.等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________.【答案】30 【解析】设等比数列{a n }的公比为q >0,由题意,得⎩⎪⎨⎪⎧2a 1(1+q +q 2)=a 1(8+3q ),a 1q 3=16,解得a 1=q =2,则S 4=2×(24-1)2-1=30.8.(2021年南通二模)在正项等比数列{a n }中,S n 为其前n 项和,已知2a 6=3S 4+1,a 7=3S 5+1,则该数列的公比q 为________.【答案】3 【解析】由2a 6=3S 4+1,a 7=3S 5+1,得a 7-2a 6=3(S 5-S 4)=3a 5,即a 5q 2-2a 5q =3a 5,则q 2-2q -3=0,解得q =-1或q =3.因为{a n }是正项等比数列,所以q =3.9.已知等比数列{a n }中,公比q =2,a 4是a 3+2,a 5-6的等差中项. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)因为等比数列{a n }中,公比q =2,a 4是a 3+2,a 5-6的等差中项,所以2a 4=(a 3+2)+(a 5-6).所以2(a 1×23)=(a 1×22+2)+(a 1×24-6),解得a 1=1. 所以数列{a n }的通项公式a n =2n-1.(2)因为等比数列{a n }中,公比q =2,首项a 1=1, 所以数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n-1.10.已知等比数列{a n },公比q >0,a n +2=a n +1+2a n ,5为a 1,a 3的等差中项.(1)求数列{a n }的通项; (2)求数列{a n }的前n 项和.解:(1)因为等比数列{a n }中,公比q >0,a n +2=a n +1+2a n ,5为a 1,a 3的等差中项, 所以⎩⎪⎨⎪⎧a n ≠0,a n q 2=a n q +2a n,a 1+a 1q 2=10,解得a 1=2,q =2,所以a n =2n .(2)数列{a n }的前n 项和S n =a 1(1-q n )1-q =2×(1-2n )1-2=2n +1-2.[B 级 能力提升]11.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36【答案】B 【解析】因为数列{a n }是等比数列,a 2·a 3=a 1·a 4=2a 1,所以a 4=2.因为a 4与2a 7的等差中项为54,所以12(a 4+2a 7)=54,故有a 7=14.所以q 3=a 7a 4=18,所以q =12,所以a 1=a 4q 3=16.所以S 5=16×⎣⎡⎦⎤1-⎝⎛⎭⎫1251-12=31. 12.(多选)(2020年淮安模拟)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( )A .⎩⎨⎧⎭⎬⎫1a nB .{log 2a n }C .{a n ·a n +1}D .{a n +a n +1+a n +2}【答案】ACD 【解析】由题意,可设等比数列{a n }的公比为q (q ≠0),则a n =a 1·q n -1.对于A ,1a n =1a 1q n -1=1a 1·⎝⎛⎭⎫1q n -1,所以数列⎩⎨⎧⎭⎬⎫1a n 是一个以1a 1为首项,1q 为公比的等比数列;对于B ,log 2a n =log 2(a 1·q n -1)=log 2a 1+(n -1)log 2q ,所以数列{log 2a n }是一个以log 2a 1为首项,log 2q 为公差的等差数列;对于C ,因为a n +1·a n +2a n ·a n +1=a n +2a n =a 1·q n +1a 1·q n -1=q 2,所以数列{a n ·a n +1}是一个以q 2为公比的等比数列;对于D ,因为a n +1+a n +2+a n +3a n +a n +1+a n +2=q (a n +a n +1+a n +2)a n +a n +1+a n +2=q ,所以数列{a n+a n +1+a n +2}是一个以q 为公比的等比数列.13.(2020年仙桃测试)各项均为正数的等比数列{a n }中,若a 1≥1,a 2≤2,a 3≥3,则a 4的取值范围是________.【答案】⎣⎡⎦⎤92,8 【解析】设{a n }的公比为q ,则根据题意得q =a 2a 1=a 3a 2,所以32≤q ≤2,a 4=a 3q ≥92,a 4=a 2q 2≤8,所以a 4∈⎣⎡⎦⎤92,8. 14.(一题两空)(2020年徐州模拟)已知正项等比数列{a n }满足a 2 020=2a 2 018+a 2 019,若存在两项a m ,a n 使得a m ·a n =4a 1,则n +4m mn的最小值是________,此时m 2+n 2=________.【答案】3220 【解析】设正项等比数列{a n }的公比为q ,若{a n }满足a 2 020=2a 2 018+a 2 019,则有q 2=2+q ,解得q =2或q =-1(舍去).由a m ·a n =4a 1,得a m ·a n =16a 21,得2m+n -2=16=24,则m +n =6.所以n +4m mn =1m +4n =16×(m +n )×⎝⎛⎭⎫1m +4n =16×⎝⎛⎭⎫5+n m +4m n .由nm +4m n≥2n m ·4m n =4,当且仅当n =2m ,即n =2m =4时等号成立.所以n +4m mn ≥16×(5+4)=32,此时m 2+n 2=20.15.(2020年北京二模)已知数列{a n }的前n 项和为S n ,a 1=1,________.是否存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列?若存在,求出k 的值;若不存在,说明理由.从①a n +1-2a n =0,②S n =S n -1+n (n ≥2),③S n =n 2这三个条件中任选一个,补充在上面问题中并作答.解:若选①a n +1-2a n =0,则由a 1=1,知a n ≠0,所以a n +1a n=2,所以{a n }是首项为1,公比为2的等比数列.所以a 1=1,a k =2k -1,S k +2=1-2k +21-2=2k +2-1.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(2k +2-1)=2k +2-1.左边为偶数,右边为奇数,即不存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列. 若选②S n =S n -1+n (n ≥2),即S n -S n -1=n ⇒a n =n (n ≥2).又a 1=1适合上式,所以{a n }是首项为1,公差为1的等差数列.所以a 1=1,a k =k ,S k +2=(k +2)(k +3)2.若a 1,a k ,S k +2成等比数列,则k 2=1×(k +2)(k +3)2,解得k =6(k =-1舍去).所以存在正整数k =6,使得a 1,a k ,S k +2成等比数列.若选③S n =n 2,则a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),又a 1=1适合上式, 所以{a n }是首项为1,公差为2的等左数列.所以a =1,a k =2k -1,S k +2=(k +2)2. 若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(k +2)2,解得k =3⎝⎛⎭⎫k =-13舍去. 所以存在正整数k =3,使得a 1,a k ,S k +2成等比数列.[C 级 创新突破]16.(2020年驻马店期末)若数列{a n }满足1a n +1-3a n =0(n ∈N *),则称{a n }为“梦想数列”,已知数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1+b 2+b 3=2,则b 3+b 4+b 5=( )A .18B .16C .32D .36【答案】A 【解析】若⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,则由题意得11b n +1-31b n=0,即b n +1-3b n =0,b n +1b n =3,即{b n }为公比为3的等比数列.由b 1+b 2+b 3=2,得b 3+b 4+b 5=32(b 1+b 2+b 3)=18.17.(2020年北京)已知{a n }是无穷数列.给出两个性质:①对于{a n }中任意两项a i ,a j (i >j ),在{a n }中都存在一项a m ,使得a 2ia j =a m ;②对于{a n }中任意一项a n (n ≥3),在{a n }中都存在两项a k ,a l (k >l ),使得a n =a 2ka l .(1)若a n =n (n =1,2,…),判断数列{a n }是否满足性质①,说明理由;(2)若a n =2n -1(n =1,2,…),判断数列{a n }是否同时满足性质①和性质②,说明理由; (3)若{a n }是递增数列,且同时满足性质①和性质②,求证:{a n }为等比数列. 解:(1)不满足,理由:a 23a 2=92∉N *,所以不存在一项a m ,使得a 23a 2=a m .(2)数列{a n }同时满足性质①和性质②,理由:a 2ia j =(2i -1)22j -1=22i -22j -1=22i -j -1,因为a 2i -j =22i-j -1,所以满足性质①.对于任意的n ≥3,欲满足a n =2n -1=a 2k a l=22k -l -1,只需满足n =2k -l 即可. 令l =n -2,则k =n -1,且符合k >l ≥1,所以满足性质②.所以{a n }同时满足性质①和性质②.(3)对于a 1>0,因为{a n }递增,所以a n >0.由性质②,取n =3,则存在a k ,a l (k >l ),使a 3=a 2ka l =a k a l ·a k >a k ,所以k <3.所以k =2,l =1. 所以a 3=a 22a 1.所以{a n }中a 1,a 2,a 3三项成等比.对于a 1<0,由性质①,取i =2,j =1,则存在a m ,使a m =a 22a 1.易证a m ≠a 2,即m ≠2.若a m =a 1,则只能a 21=a 22,此时a 2=-a 1>0.所以当n ≥2时,a n >0.取i >2,j =1,因为{a n }递增,a i >a 2>0,所以a m =a 2i a j =a 2i a 1<a 22a 1=a 1,显然不存在满足不等式的m ,矛盾.a m =a 1也不成立,所以m ≥3.而a m a 1=a 22>0,所以a m 与a 1同号,所以a m<0. 所以a 3<0,a 2<0.所以a 1,a 2,a 3同号. 如下证明,对任意k ≥2,a k <0时,则a k +1<0. 由性质①,取i =k ,j =k -1,则存在m ,使a m =a 2ka k -1.首先a m 与a k -1同号,由递增数列,知a k -1<a k <0,所以a m <0. 假设m ≤k ,则a m ≤a k <0.所以|a m |≥|a k |>0,结合a k -1<a k <0,有|a k -1|≥|a k |>0,显然|a m ||a k -1|>|a k |2与a m a k -1=a 2k矛盾,所以m ≥k +1,a m ≥a k +1.又a m <0,所以a k +1<0.所以{a n }同号且均为负数.所以对于{a n },a m >a 2ka l =a k a l ·a k >a k 恒成立.所以a 3=a 2ka l =a k a l ·a k >a k ,得3>k >1.所以k =2,l =1.所以a 3=a 22a 1.综上,当n ≤3时,{a n }为等比数列.假设当n ≤k (显然k ≥3)时,a 1,a 2,…,a m 成等比,设其通项公式为a n =a 1q n -1(n ≤k ),下证a k +1=a 1q k .由性质①,取i =k ,j =k -1,则存在m ,使a m =a 2ia j =(a 1q k -1)2a 1q k -2=a 1q k . 假设m ≠k +1,此时必有m ≥k +2. 由递增数列知,a k <a k +1<a m , 即a 1q k -1<a k +1<a 1q k .令a k +1=a 1q s ,此时k -1<s <k ,所以s ∈N *.另一方面,由性质②,对a k +1,存在u ,v (u >v ),使a k +1=a 2u a v =a ua v ·a u >a u,所以u <k +1,即u ≤k 且v ≤k .所以a k +1=a 2u a v =a 21q 2u -2a 1qv -1=a 1q 2u -v -1.而2u -v -1∈N *,s ∈N * ,a 1≠0, 所以a 1q 2u-v-1≠a 1q s .而这两个都是a k +1的表达式,矛盾. 所以m =k +1.所以a k +1=a 1q k .所以当n ≤k +1时,a 1,a 2,…,a k +1也成等比. 综上,{a n }为等比数列.。

2024_2025学年高三数学新高考一轮复习专题等比数列含解析

2024_2025学年高三数学新高考一轮复习专题等比数列含解析

等比数列学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共7小题,共35.0分。

在每小题列出的选项中,选出符合题目的一项)1.等比数列{a n}的前n项和为S n,若a n>0,q>1,a3+a5=20,a2a6=64,则S4=()A. 15B. 20C. 31D. 322.记S n为等比数列{a n}的前n项和,若数列{S n-2a1}也为等比数列,则=()A. B. 1 C. D. 23.等比数列的各项均为正数,且,则A. 12B. 10C. 8D.4.设是等比数列的前项和,已知,则()A. -512B. -8C. -2D. -15.等比数列{}的前n 项和为,=1,=3,则=()A. 1B. 5C. 1或31D. 5或116.已知正项等比数列{a n}中,a1a5a9=27,a6与a7的等差中项为9,则a10=()A. 729B. 332C. 181D. 967.把数列的各项排列成如下的三角形态:依据其排列规律,则第7行的全部项之和为()A. -1B. (-1)C.D.二、多选题(本大题共2小题,共10.0分。

在每小题有多项符合题目要求)8.设{a n}(n∈N*)是各项为正数的等比数列,q是其公比,K n是其前n项的积,且K5<K6,K6=K7>K8,则下列选项中成立的是()A. 0<q<1B. a7=1C. K9>K5D. K6与K7均为K n的最大值9.数列{}的前n 项为,已知=++1,下列说法中正确的是()1A. {}为等差数列B. {}可能为等比数列C. {}为等差数列或等比数列D. {}可能既不是等差数列也不是等比数列三、填空题(本大题共3小题,共15.0分)10.已知正项等比数列{a n}的公比为q,其前n项和为S n,若对一切n∈N*都有a n+1≥2S n,则q的取值范围是.11.已知函数f(x)=log2x,给出三个条件:①f(a n)=2n;②f(a n)=n;③.从中选出一个能使数列{a n}成等比数列的条件,在这个条件下,数列{a n}的前n项和S n=.12.已知等比数列{a n}的前n项和为S n,满意a1=1,S3=3,则S9-S5=.四、解答题(本大题共2小题,共24.0分。

2023年高考数学一轮复习(新高考地区专用)4-2 等比数列(精讲)(含详解)

2023年高考数学一轮复习(新高考地区专用)4-2 等比数列(精讲)(含详解)

4.2 等比数列(精讲)(基础版)思维导图考点一 等比数列基本量的计算【例1】(1)(2022·北京丰台·一模)若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于( )考点呈现例题剖析A .15B .14C .158 D .78(2)(2022·重庆·模拟预测)已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( ) A .13B .43C .3D .4【一隅三反】1.(2022·江西·新余四中)已知n S 为等比数列{}n a 的前n 项和,若38a =,324S =,则公比q =( ) A .12-B .13-C .12-或1D .13-或12.(2022·河北廊坊·高三阶段练习)已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2022·全国·高三专题练习)已知{}n a 为等比数列,n S 为其前n 项和,若213S a =,223a a =,则4S =( )A .7B .8C .15D .314.(2022·河北石家庄·高三期末)等比数列{}n a 的前n 项和为n S ,33S =,69S =,则公比q =( )A .3B .2C .33D .325(2022·四川·三模(理))已知n S 是各项均为正数的等比数列{}n a 的前n 项和,若2481a a ⋅=,313S =,则6a =( ).A .21B .81C .243D .729考点二 等比中项【例2-1】(2022·江西·上饶市第一中学二模)等比数列{}n a 中,若59a =,则3436log log a a +=( ) A .2B .3C .4D .91.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.温馨提示【例2-2】(2022·福建·模拟预测)已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【一隅三反】1.(2022·安徽黄山·一模)在等比数列{}n a 中,1a ,13a 是方程21390x x -+=的两根,则2127a a a 的值为( ) AB .3 C.D .3±2.(2022·吉林吉林)已知各项均为正数的等比数列{}n a 中,23a =,93453a a a =,则3a =( ) A .6B .9C .27D .813.(2022·全国·高三专题练习)设a ,b ,c ,d 是非零实数,则“a ,b ,c ,d 成等比数列”是“ad bc =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.(2022·广西柳州)在等比数列{}n a 中,已知22a =,8462a a =,则公比q =( ) A .2-BC .2D .2±考点三 等比数列前n 项和的性质【例3-1】(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,S 10=1,S 30=13,S 40=( ) A .﹣51B .﹣20C .27D .40【例3-2】(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为n S ,若121n n S t -=⋅-,则t =( )A .2B .-2C .1D .-1【例3-3】(2022·全国·高三专题练习)已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( ) A .12B .2C .172341D .341172【例3-4】(2022·全国·高三专题练习)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=-,则 k =( )A .2B .3C .4D .5【例3-5】(2022·全国·高三专题练习)各项均为正数的等比数列{}n a 的前n 项和n S ,若264a a =,31a =,则29()42n n S a +的最小值为( )A .4B .6C .8D .12【一隅三反】1.(2022·湖南·长沙一中)一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75D .632.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( ) A .2B .4C .8D .163.(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为213n n S r -=+,则r 的值为 A .13B .13-C .19D .19-4.(2021·全国·高三专题练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2B .3C .4D .55.(2022·四川绵阳·一模)已知正项等比数列{}n a 的前n 项和为n S ,若5-,3S ,6S 成等差数列,则96S S -的最小值为( )A .25B .20C .15D .10考点四 等比数列定义及其运用【例4】(2022·全国·高三专题练习)已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( )A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列 D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列 【一隅三反】1.(2021·江苏盐城)(多选)设等比数列{}n a 的前n 项和为n S ,则下列数列一定是等比数列的有( )A .12a a +,23a a +,34a a +,…B .13a a ,35a a +,57a a +,…C .2S ,42S S -,64S S -,…D .3S ,63S S -,96S S -,…2.(2022·广东·佛山一中)已知数列{n a }满足:11232n n a a a +==+, (1)求证:数列{1n a +}是等比数列;(2)()3log 1n n b a =+,求数列{n a ·n b }的前n 项和n S .3.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且112a =,11()*2n n n a a N n n ++=∈. (1)证明数列{}n an为等比数列,并求数列{}n a 的通项公式;(2)设(2)n n b n S =-,求数列32{}nn b -前n 项和n T . 考点五 等比数列的实际应用【例5-1】(2022·浙江省义乌中学模拟预测)我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问日织几何?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,问第五天织布的尺数是多少你的答案是( ) A .531B .1C .52D .8031【例5-2】(2022·江苏·沭阳如东中学模拟预测)著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于1415,则需要操作的次数n 的最小值为( ) 参考数据:lg2=0.3010,lg3=0.4771 A .6B .7C .8D .9【一隅三反】1.(2022·全国·模拟预测)在适宜的环境中,一种细菌的一部分不断分裂产生新的细菌,另一部分则死亡.为研究这种细菌的分裂情况,在培养皿中放入m 个细菌,在1小时内,有34的细菌分裂为原来的2倍,14的细菌死亡,此时记为第一小时的记录数据.若每隔一小时记录一次细菌个数,则细菌数超过原来的10倍的记录时间为第( )A .6小时末B .7小时末C .8小时末D .9小时末2.(2022·湖南湖南·二模)在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数02R =,平均感染周期为7天,那么感染人数由1(初始感染者)增加到999大约需要的天数为( )(初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……参考数据:lg20.3010≈) A .42B .56C .63D .703.(2022·云南·高三阶段练习(理))为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元 B .40000元C .42500元D .50000元4.2 等比数列(精讲)(基础版)思维导图考点一 等比数列基本量的计算【例1】(1)(2022·北京丰台·一模)若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于( )考点呈现例题剖析A .15B .14C .158 D .78(2)(2022·重庆·模拟预测)已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( ) A .13B .43C .3D .4【答案】(1)C (2)B【解析】(1)因为12n n a a +=,且41a =,所以数列{}n a 是以2为公比的等比数列,又3411a a q ==,得118a =,所以44141(12)(1)1581128a q S q --===--.故选:C (2)设等比数列公比为q ,由2a ,53a ,89a 成等差数列可得,47111239a q a q a q ⨯⋅=⋅+⋅,化简得639610q q -+=,解得313q =,()()61363311411311a q S q q S a q q--==+=--.故选:B. 【一隅三反】1.(2022·江西·新余四中)已知n S 为等比数列{}n a 的前n 项和,若38a =,324S =,则公比q =( )A .12-B .13-C .12-或1D .13-或1【答案】C【解析】设等比数列{}n a 的公比为q .因为38a =,324S =,所以38a =,1216a a +=,即218a q =,()1116a q +=,所以212q q +=,解得12q =-或1q =.故选:C.2.(2022·河北廊坊·高三阶段练习)已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )1.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.温馨提示A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由40S >,得1514011a a a a q q q--=>--,因为1q >,所以510a a ->,即51a a >.故必要性满足; 1514411a a a a q S q q--==--.因为1q >,51a a >,所以40S >.故充分性满足.所以“51a a >”是“40S >”的充要条件.故选:C3.(2022·全国·高三专题练习)已知{}n a 为等比数列,n S 为其前n 项和,若213S a =,223a a =,则4S =( )A .7B .8C .15D .31【答案】C【解析】设等比数列{}n a 的公比为q ,则21213S a a a =+=,则212a a =,所以,212a q a ==, 因为223a a =,即()21124a a =,10a ≠,解得11a =,因此,()441411215112a q S q--===--.故选:C.4.(2022·河北石家庄·高三期末)等比数列{}n a 的前n 项和为n S ,33S =,69S =,则公比q =( ) ABCD【答案】D【解析】依题意,等比数列{}n a 满足,33S =,69S =,则1q ≠,()()3611113,911a q a q qq--==--,两式相除得()()3363331113,1311q q q q q q-+-==+=--,32,q q ==故选:D 5(2022·四川·三模(理))已知n S 是各项均为正数的等比数列{}n a 的前n 项和,若2481a a ⋅=,313S =,则6a =( ).A .21B .81C .243D .729【答案】C【解析】224381a a a ⋅==,因为0n a >,所以0q >,39a =,又313S =,故124a a +=,设公比是q ,则()121149a q a q ⎧+=⎨=⎩,两式相除得:2149q q +=,解得:3q =或34q =-(舍去),故336393243a a q ==⨯=.故选:C 考点二 等比中项【例2-1】(2022·江西·上饶市第一中学二模)等比数列{}n a 中,若59a =,则3436log log a a +=( )A .2B .3C .4D .9【答案】C【解析】根据等比中项得2546a a a =,所以()2434334353663log log log log log 81log 34a a a a a +=====.故选:C.【例2-2】(2022·福建·模拟预测)已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】在等比数列中,若5a ,7a 是方程2202210x x ++=的两实根,571a a ∴=,5720220a a +=-<,则50a <,70a <,则57661a a a a ==,则61a =或61a =-,即充分性成立,当61a =,或61a =-时,能推出57661a a a a ==,但无法推出572022a a +=-,即必要性不成立, 即“5a ,7a 是方程2202210x x ++=的两实根”是“61a =,或61a =-”的充分不必要条件,故选:A . 【一隅三反】1.(2022·安徽黄山·一模)在等比数列{}n a 中,1a ,13a 是方程21390x x -+=的两根,则2127a a a 的值为( ) AB .3 C.D .3±【答案】B【解析】因为1a 、13a 是方程21390x x -+=的两根,所以3119=a a ,11313+=a a ,所以10a >,130a >,又{}n a 为等比数列,则6710=>a q a ,所以213212719===a a a a a ,所以73a =或73a =-(舍去),所以212773==a a a a .故选:B. 2.(2022·吉林吉林)已知各项均为正数的等比数列{}n a 中,23a =,93453a a a =,则3a =( )A .6B .9C .27D .81【答案】B【解析】()3239335444,,3327a a a a a =∴==∴=,39a ∴=.故选:B 3.(2022·全国·高三专题练习)设a ,b ,c ,d 是非零实数,则“a ,b ,c ,d 成等比数列”是“ad bc =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】由a b c d ,,,成等比数列可得ad bc =,但当14,1,1,4a b c d ====时,a b c d ,,,不是等比数列,所以“a ,b ,c ,d 成等比数列”是“ad=bc ”的充分而不必要条件,故选:A.4.(2022·广西柳州)在等比数列{}n a 中,已知22a =,8462a a =,则公比q =( ) A.2- B C .2 D .2±【答案】D【解析】由等比数列284652a a a ==,解得452a =±,所以33522a q a ==±,所以2q =±,故选:D. 考点三 等比数列前n 项和的性质【例3-1】(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,S 10=1,S 30=13,S 40=( ) A .﹣51 B .﹣20 C .27 D .40【答案】D【解析】由{an }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13 所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列, 即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .【例3-2】(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为n S ,若121n n S t -=⋅-,则t =( )A .2B .-2C .1D .-1【答案】A【解析】设等比数列的公比为q ,当1q =时,1n S na =,不合题意; 当1q ≠时,等比数列前n 项和公式()1111111n n n a q a aS q qq q-==-⋅+---, 依题意()111212110,222n nn S t t t t -=⋅-=⋅-⇒+-==.故选:A【例3-3】(2022·全国·高三专题练习)已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( ) A .12 B .2 C .172341D .341172【答案】C【解析】当2n ≥时,212n n n n a S S --=-=,又112a S ==,即前10项分别为2,1,2,4,8,16,32,64,128,256,所以数列}{n a 的前10项中5141023341143S -===-偶,)(421451022172143S -=+=+=-奇,所以172341S S =奇偶, 故选:C .【例3-4】(2022·全国·高三专题练习)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=-,则 k =( )A .2B .3C .4D .5【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=, 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C.【例3-5】(2022·全国·高三专题练习)各项均为正数的等比数列{}n a 的前n 项和n S ,若264a a =,31a =,则29()42n n S a +的最小值为( )A .4B .6C .8D .12【答案】C【解析】因为264a a =,且等比数列{}n a 各项均为正数,所以2444,2a a ==,公比432,a q a ==首项114a =, 所以1(1)2114n n n a q S q --==- ,通项11124n n n a a q --==,所以29()2164448242n nn n S a +=++≥=,当且仅当216,342n n n =∴=,所以当3n =时,29()42n nS a+的最小值为8.故选:C.【一隅三反】1.(2022·湖南·长沙一中)一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75D .63【答案】D【解析】由题意得S 7,S 14-S 7,S 21-S 14组成等比数列48,12,3,即S 21-S 14=3,∴S 21=63. 故选:D2.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( ) A .2 B .4 C .8 D .16【答案】C【解析】设这个等比数列{}n a 共有()2k k N *∈项,公比为q ,则奇数项之和为132185k S a a a -=+++=奇,偶数项之和为()2421321170n n S a a a q a a a qS -=+++=+++==奇偶,170285S q S ∴===偶奇, 等比数列{}n a 的所有项之和为()212212211708525512kkk a S -==-=+=-,则22256k=,解得4k =,因此,这个等比数列的项数为8.故选:C.3.(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为213n n S r -=+,则r 的值为A .13B .13-C .19D .19-【答案】B【解析】当1n =时,113a S r ==+,当2n ≥时,212323223221118333(31)8383393n n n n n n n n n a S S --------=-=-=-=⋅=⋅⋅=⋅ 所以81333r r +=∴=-,故选B. 4.(2021·全国·高三专题练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2 B .3 C .4 D .5【答案】B【解析】设等比数列{}n a 的公比为q ,则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =,故选:B.5.(2022·四川绵阳·一模)已知正项等比数列{}n a 的前n 项和为n S ,若5-,3S ,6S 成等差数列,则96S S -的最小值为( ) A .25 B .20 C .15 D .10【答案】B【解析】因为{}n a 是正项等比数列,所以3S ,63S S -,96S S -仍然构成等比数列,所以263396()()S S S S S -=-.又5-,3S ,6S 成等差数列,所以6352S S -=,6335S S S -=+,所以()()2263396333352510S S S S S S S S S -+-===++. 又{}n a 是正项等比数列,所以30S >,3325101020S S ++≥=,当且仅当35S =时取等号.故选:B.考点四 等比数列定义及其运用【例4】(2022·全国·高三专题练习)已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( )A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列 D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列【答案】C 【解析】∴121n n n a a a +=+,∴111111222n n n n a a a a ++==⋅+,1n a ⎧⎫∴⎨⎬⎩⎭既不是等比数列也不是等差数列; ∴1111112n n a a +⎛⎫-=- ⎪⎝⎭,∴数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列.故选:C【一隅三反】1.(2021·江苏盐城)(多选)设等比数列{}n a 的前n 项和为n S ,则下列数列一定是等比数列的有( ) A .12a a +,23a a +,34a a +,… B .13a a ,35a a +,57a a +,… C .2S ,42S S -,64S S -,… D .3S ,63S S -,96S S -,…【答案】BD【解析】设数列{}n a 的公比为q ,0q ≠,对于A 和C ,都有首项121(1)a a a q +=+,当1q =-时,120a a +=,不满足等比数列,故AC 错误;对于B ,2131(1)0a a a q +=+≠,且2235131313()a a q a a q a a a a ++==++, 同理25735a a q a a +=+,故数列13a a ,35a a +,57a a +,…为等比数列,B 正确; 对于D ,231231(1)0S a a a a q q =++=++≠,且3633S S q S -=,39663S S q S S -=-, 故数列3S ,63S S -,96S S -,…为等比数列,D 正确;故选:BD 2.(2022·广东·佛山一中)已知数列{n a }满足:11232n n a a a +==+, (1)求证:数列{1n a +}是等比数列;(2)()3log 1n n b a =+,求数列{n a ·n b }的前n 项和n S . 【答案】(1)证明见解析(2)()()12133142n nn n n S +-⨯++=-【解析】(1)因为11232n n a a a +==+,,所以1131n n a a ++=+(). 而113a +=,所以数列{1n a +}是以113a +=为首项,以3为公比的等比数列,所以13nn a +=,即31n n a =-.(2)由(1)可得()3log 1n n b a n =+=∴()31nn n a b n ⋅=-记1213233n n T n =⨯+⨯++⨯……∴所以()23131323133n n n T n n +=⨯+⨯++-⨯+⨯……∴∴-∴得:12123333nn n T n +-=+++-⨯ ()1313313n n n +-=-⨯-∴()121334n nn T +-⨯+=∴()()()1213311242n nn n n n S T n +-⨯++=-+++=-. 3.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且112a =,11()*2n n n a a N n n ++=∈. (1)证明数列{}n an为等比数列,并求数列{}n a 的通项公式;(2)设(2)n n b n S =-,求数列32{}n n b -前n 项和n T . 【答案】(1)证明见解析;2n n na =;(2) 1(34)24(1)(2)n n n T n n ++=-++.【解析】(1)因为112n n n a a n ++=,所以1112n n a n a n++=,又因为11112a a ==,所以数列{}n a n是以首项为12,公比为12的等比数列,从而1111()()222n n n a n -=⨯=,故2n n n a =. (2)由(1)中结论可知,2311111112()3()(1)()()22222n n n S n n -=⨯+⨯+⨯++-+ ∴,所以23411111111()2()3()(1)()()222222n n n S n n +=⨯+⨯+⨯++-+ ∴,由∴-∴得,231111111()()()()222222n n n S n +=++++- 111[1()]122()1212n n n +-=-- 化简整理得,222n nn S +=-,所以222n n nn n b n S ()(), 故2232(32)22222()(2)22n n n n n n n n b n n n n n n ++--==-=--+++, 所以324351122222222222[()()()()()]132435112n n n n n T n n n n -++=--+-+-++-+--++,故1(34)24(1)(2)n n n T n n ++=-++. 考点五 等比数列的实际应用【例5-1】(2022·浙江省义乌中学模拟预测)我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问日织几何其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,问第五天织布的尺数是多少你的答案是( ) A .531B .1C .52D .8031【答案】D【解析】根据题意可知该女子每天织布的尺数成等比数列,设该等比数列为{}n a ,公比q =2, 则第1天织布的尺数为1a ,第5天织布的尺数为5a ,前5天共织布为55S =, 则()51112551231a a-=⇒=-,∴445158023131a a q =⋅=⨯=.故选:D.【例5-2】(2022·江苏·沭阳如东中学模拟预测)著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于1415,则需要操作的次数n 的最小值为( ) 参考数据:lg2=0.3010,lg3=0.4771 A .6 B .7 C .8 D .9【答案】B【解析】第一次操作去掉13,设为1a ;第二次操作去掉29,设为2a ;第三次操作去掉427,设为3a , 依次类推,11233n n a -⎛⎫=⋅ ⎪⎝⎭.故0111222[()()()]3333n n S -=⨯+++ 2113121412331513n n⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=⨯=-≥ ⎪⎝⎭-, 整理,得12153n⎛⎫≥ ⎪⎝⎭,()21lg lg lg2lg3lg15315nn ⎛⎫∴≤∴-≤- ⎪⎝⎭,,()lg3lg5lg3lg5lg31lg211 6.7lg2lg3lg3lg2lg3lg2lg3lg2n -+++-∴≥===+≈----,故n 的最小值为7. 故选:B. 【一隅三反】1.(2022·全国·模拟预测)在适宜的环境中,一种细菌的一部分不断分裂产生新的细菌,另一部分则死亡.为研究这种细菌的分裂情况,在培养皿中放入m 个细菌,在1小时内,有34的细菌分裂为原来的2倍,14的细菌死亡,此时记为第一小时的记录数据.若每隔一小时记录一次细菌个数,则细菌数超过原来的10倍的记录时间为第( ) A .6小时末 B .7小时末C .8小时末D .9小时末【答案】A【解析】设n a 表示第n 小时末的细菌数,依题意有()11332242n n n a a a n --=⨯=≥,133242a m m =⨯=,则{}n a 是等比数列,首项为32m ,公比32q =,所以32nn a m ⎛⎫= ⎪⎝⎭.依题意,10n a m >,即3102n m m ⎛⎫> ⎪⎝⎭,所以3102n⎛⎫> ⎪⎝⎭, 由于563310,24372932102642⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝=⎭=<,又*N n ∈,所以6n ≥,所以第6小时末记录的细菌数超过原来的10倍, 故选:A.2.(2022·湖南湖南·二模)在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数02R =,平均感染周期为7天,那么感染人数由1(初始感染者)增加到999大约需要的天数为( )(初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……参考数据:lg20.3010≈) A .42 B .56 C .63 D .70【答案】C【解析】设第n 轮感染的人数为n a ,则数列{}n a 是12a =,公比2q的等比数列,由()2121199912nn S ⨯-+=+=-,可得121000n +=,解得2500n =,两边取对数得lg 2lg500n =,则lg 23lg 2n =-,所以33118.979lg 20.3010n =-=-≈=, 故需要的天数约为9763⨯=. 故选:C3.(2022·云南·高三阶段练习(理))为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=)A .32500元B .40000元C .42500元D .50000元【答案】B 【解析】设010000a =,从6月份起每月底用于下月进货的资金依次记为1a ,2a ,…,12a ,()100120%1000 1.21000a a a =⨯+-=-,同理可得1 1.21000n n a a +=-, 所以()15000 1.25000n n a a +-=-, 而050005000a -=,所以数列{}5000n a -是等比数列,公比为1.2,所以50005000 1.2n n a -=⨯,12125000 1.2500050009500050000a =⨯+=⨯+=,∴总利润为500001000040000-=,故选:B .。

2023年高考数学一轮复习第六章数列3等比数列练习含解析

2023年高考数学一轮复习第六章数列3等比数列练习含解析

等比数列考试要求 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系.知识梳理1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m ·qn -m(m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外). (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k. (5)若⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1,则等比数列{a n }递增.若⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1,则等比数列{a n }递减.常用结论1.若数列{a n },{b n }(项数相同)是等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 也是等比数列. 2.等比数列{a n }的通项公式可以写成a n =cq n,这里c ≠0,q ≠0. 3.等比数列{a n }的前n 项和S n 可以写成S n =Aq n-A (A ≠0,q ≠1,0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.( × ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( × )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a.( × )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 教材改编题1.已知{a n }是等比数列,a 2=2,a 4=12,则公比q 等于( )A .-12B .-2C .2D .±12答案 D解析 设等比数列的公比为q , ∵{a n }是等比数列,a 2=2,a 4=12,∴a 4=a 2q 2,∴q 2=a 4a 2=14,∴q =±12.2.在各项均为正数的等比数列{a n }中,a 1a 11+2a 6a 8+a 3a 13=25,则a 6+a 8=______. 答案 5解析 ∵{a n }是等比数列, 且a 1a 11+2a 6a 8+a 3a 13=25, ∴a 26+2a 6a 8+a 28=(a 6+a 8)2=25. 又∵a n >0,∴a 6+a 8=5.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________. 答案 1,3,9或9,3,1解析 设这三个数为a q,a ,aq ,则⎩⎪⎨⎪⎧a +aq +aq =13,a ·aq ·aq =27,解得⎩⎪⎨⎪⎧a =3,q =13或⎩⎪⎨⎪⎧a =3,q =3,∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n等于( ) A .2n-1 B .2-21-nC .2-2n -1D .21-n-1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12,得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 11-q n 1-q =2n-1,所以S n a n =2n -12n -1=2-21-n.方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12,①a 4q 2-a 4=24,②②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.(2)(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q , 因为a 24=a 6,所以(a 1q 3)2=a 1q 5, 所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 11-q 51-q=13×1-351-3=1213. 教师备选1.已知数列{a n }为等比数列,a 2=6,6a 1+a 3=30,则a 4=________. 答案 54或24解析 由⎩⎪⎨⎪⎧ a 1·q =6,6a 1+a 1·q 2=30,解得⎩⎪⎨⎪⎧q =3,a 1=2或⎩⎪⎨⎪⎧q =2,a 1=3,a 4=a 1·q 3=2×33=54或a 4=3×23=3×8=24.2.已知数列{a n }为等比数列,其前n 项和为S n ,若a 2a 6=-2a 7,S 3=-6,则a 6等于( ) A .-2或32 B .-2或64 C .2或-32 D .2或-64答案 B解析 ∵数列{a n }为等比数列,a 2a 6=-2a 7=a 1a 7,解得a 1=-2,设数列的公比为q ,S 3=-6=-2-2q -2q 2, 解得q =-2或q =1,当q =-2时,则a 6=(-2)6=64, 当q =1时,则a 6=-2.思维升华 (1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q 1-q.跟踪训练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( )A .2B .3C .4D .5 答案 C解析 a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,q =2为公比的等比数列, ∴a n =2×2n -1=2n.又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +11-2101-2=215-25,即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. ①求{a n }的通项公式; ②求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.解 ①设{a n }的公比为q (q >1).由题设得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32(舍去).所以{a n }的通项公式为a n =2n,n ∈N *. ②由于(-1)n -1a n a n +1=(-1)n -1×2n ×2n +1=(-1)n -122n +1,故a 1a 2-a 2a 3+…+(-1)n -1a n a n +1=23-25+27-29+…+(-1)n -1·22n +1=23[1--22n]1--22=85-(-1)n 22n +35. 题型二 等比数列的判定与证明例2 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. 解 (1)由条件可得a n +1=2n +1na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列, 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a nn=2n -1,所以a n =n ·2n -1.教师备选已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n . (1)证明:数列{a n +a n +1}为等比数列; (2)若a 1=12,a 2=32,求{a n }的通项公式.(1)证明 a n +2=2a n +1+3a n , 所以a n +2+a n +1=3(a n +1+a n ), 因为{a n }中各项均为正数, 所以a n +1+a n >0,所以a n +2+a n +1a n +1+a n=3,所以数列{a n +a n +1}是公比为3的等比数列. (2)解 由题意知a n +a n +1=(a 1+a 2)3n -1=2×3n -1,因为a n +2=2a n +1+3a n ,所以a n +2-3a n +1=-(a n +1-3a n ),a 2=3a 1, 所以a 2-3a 1=0,所以a n +1-3a n =0, 故a n +1=3a n , 所以4a n =2×3n -1,a n =12×3n -1.思维升华 等比数列的三种常用判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则{a n }是等比数列. (3)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2 S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 11-q31-q=13,q >0,解得a 1=1,q =3, ∴a n =3n -1,S n =1-3n 1-3=3n-12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, ∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13), 解得λ=12,此时S n +12=12×3n,则S n +1+12S n +12=12×3n +112×3n=3,故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是以32为首项,3为公比的等比数列.题型三 等比数列的性质例3 (1)若等比数列{a n }中的a 5,a 2019是方程x 2-4x +3=0的两个根,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023等于( ) A.20243 B .1011 C.20232D .1012答案 C解析 由题意得a 5a 2019=3, 根据等比数列性质知,a 1a 2023=a 2a 2022=…=a 1011a 1013=a 1012a 1012=3,于是a 1012=123,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023 =log 3(a 1a 2a 3…a 2023)11011232023=l 3·og 3.2⎛⎫= ⎪⎝⎭(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50 答案 B解析 数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列, 即4,8,S 9-S 6,S 12-S 9是等比数列, ∴S 12=4+8+16+32=60. 教师备选1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=__________. 答案 73解析 设等比数列{a n }的公比为q ,易知q ≠-1,由等比数列前n 项和的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,∴S 6-S 3S 3=S 9-S 6S 6-S 3, 又由已知得S 6=3S 3, ∴S 9-S 6=4S 3, ∴S 9=7S 3,∴S 9S 6=73. 2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. 答案 2解析 由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. 思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2022·安康模拟)等比数列{a n }的前n 项和为S n ,若S 10=1,S 30=7,则S 40等于( )A .5B .10C .15D .-20 答案 C解析 易知等比数列{a n }的前n 项和S n 满足S 10,S 20-S 10,S 30-S 20,S 40-S 30,…成等比数列.设{a n }的公比为q ,则S 20-S 10S 10=q 10>0,故S 10,S 20-S 10,S 30-S 20,S 40-S 30,…均大于0. 故(S 20-S 10)2=S 10·(S 30-S 20),即(S 20-1)2=1·(7-S 20)⇒S 220-S 20-6=0. 因为S 20>0,所以S 20=3.又(S 30-S 20)2=(S 20-S 10)(S 40-S 30), 所以(7-3)2=(3-1)(S 40-7),故S 40=15.(2)在等比数列{a n }中,a n >0,a 1+a 2+a 3+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8 D .16答案 A解析 ∵a 1a 2…a 8=16, ∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=2,∴1a 1+1a 2+…+1a 8=⎝ ⎛⎭⎪⎫1a 1+1a 8+⎝ ⎛⎭⎪⎫1a 2+1a 7+⎝ ⎛⎭⎪⎫1a 3+1a 6+⎝ ⎛⎭⎪⎫1a 4+1a 5=12(a 1+a 8)+12(a 2+a 7)+12(a 3+a 6)+12(a 4+a 5) =12(a 1+a 2+…+a 8)=2. 课时精练1.(2022·合肥市第六中学模拟)若等比数列{a n }满足a 1+a 2=1,a 4+a 5=8,则a 7等于( ) A.643B .-643C.323 D .-323答案 A解析 设等比数列{a n }的公比为q , 则a 4+a 5a 1+a 2=q 3=8, 所以q =2,又a 1+a 2=a 1(1+q )=1, 所以a 1=13,所以a 7=a 1×q 6=13×26=643.2.已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A .2B .4C.92D .6答案 B解析 根据等比数列的性质得a 3a 5=a 24, ∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.3.(2022·开封模拟)等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( )A.13B .-13C.19D .-19 答案 B解析 由等比数列前n 项和的性质知,S n =32n -1+r =13×9n +r ,∴r =-13.4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( ) A .6里 B .12里 C .24里 D .48里答案 C解析 由题意可知,该人所走路程形成等比数列{a n },其中q =12,因为S 6=a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=a 1·q 3=192×18=24.5.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 2的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q的等比数列答案 AD 解析 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列; 对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列; 对于C ,当q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q, 所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列.6.(多选)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有( ) A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2答案 ABD解析 由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *), 当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n , 可得a n +1=3a n ,即a n +1a n=3(n ≥2), 又a 1=1,则a 2=2S 1=2a 1=2,所以a 2a 1=2, 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2.当n ≥2时,S n =a n +12=2·3n -12=3n -1,又S 1=a 1=1,适合上式, 所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n3n -1=3, 所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.7.(2022·嘉兴联考)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 1=________. 答案 1解析 由于S 3=7,S 6=63知公比q ≠1, 又S 6=S 3+q 3S 3, 得63=7+7q 3. ∴q 3=8,q =2.由S 3=a 11-q 31-q =a 11-81-2=7,得a 1=1.8.已知{a n }是等比数列,且a 3a 5a 7a 9a 11=243,则a 7=________;若公比q =13,则a 4=________.答案 3 81解析 由{a n }是等比数列, 得a 3a 5a 7a 9a 11=a 57=243, 故a 7=3,a 4=a 7q3=81.9.(2022·徐州模拟)已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n ,n ∈N *. (1)求实数p 的值及数列{a n }的通项公式;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫T n +16为等比数列. (1)解 S n =na 1+n n -12d =na 1+n (n -1)=n 2+(a 1-1)n , 又S n =pn 2+2n ,n ∈N *, 所以p =1,a 1-1=2,即a 1=3, 所以a n =3+2(n -1)=2n +1.(2)证明 因为b 3=a 1=3,b 4=a 2+4=9, 所以q =3, 所以b n =b 3·q n -3=3n -2,所以b 1=13,所以T n =131-3n1-3=3n-16,所以T n +16=3n 6,又T 1+16=12,所以T n +16T n -1+16=3n 63n -16=3(n ≥2),所以数列⎩⎨⎧⎭⎬⎫T n +16是以12为首项,3为公比的等比数列.10.(2022·威海模拟)记数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +1.设b n =a n +1-2a n .(1)求证:数列{b n }为等比数列;(2)设c n =|b n -100|,T n 为数列{c n }的前n 项和.求T 10. (1)证明 由S n +1=4a n +1, 得S n =4a n -1+1(n ≥2,n ∈N *), 两式相减得a n +1=4a n -4a n -1(n ≥2), 所以a n +1-2a n =2(a n -2a n -1), 所以b n b n -1=a n +1-2a na n -2a n -1=2a n -2a n -1a n -2a n -1=2(n ≥2),又a 1=1,S 2=4a 1+1, 故a 2=4,a 2-2a 1=2=b 1≠0,所以数列{b n }为首项与公比均为2的等比数列. (2)解 由(1)可得b n =2·2n -1=2n,所以c n =|2n-100|=⎩⎪⎨⎪⎧100-2n,n ≤6,2n-100,n >6,所以T 10=600-(21+22+…+26)+27+28+29+210-400 =200-21-261-2+27+28+29+210=200+2+28+29+210=1 994.11.(多选)(2022·滨州模拟)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( )A .数列{a n +1+a n }为等比数列B .数列{a n +1-2a n }为等比数列C .a n =2n +1+-1n3D .S 20=23(410-1)答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3), 所以a n +a n -1=2a n -1+2a n -2=2(a n -1+a n -2), 又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确; 若a n =2n +1+-1n3,则a 2=23+-123=3,但a 2=1≠3,C 错误;由A 知{a n +a n -1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4, 所以S 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=21-4101-4=23(410-1),D 正确. 12.(多选)(2022·黄冈模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( ) A .0<q <1B .a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7答案 AD解析 ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0, ∴a 7>1,0<a 8<1, ∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为各项为正的递减数列, ∴S n 无最大值,故C 错误; 又a 7>1,0<a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.13.(2022·衡阳八中模拟)设T n 为正项等比数列{a n }(公比q ≠1)前n 项的积,若T 2015=T 2021,则log 3a 2019log 3a 2021=________.答案 15解析 由题意得,T 2015=T 2021=T 2015·a 2016a 2017a 2018a 2019a 2020a 2021, 所以a 2016a 2017a 2018a 2019a 2020a 2021=1, 根据等比数列的性质,可得a 2016a 2021=a 2017a 2020=a 2018a 2019=1, 设等比数列的公比为q ,所以a 2016a 2021=a 20212q 5=1⇒a 2021=52,qa 2018a 2019=a 20192q=1⇒a 2019=12,q所以log 3a 2019log 3a 2021=123523log 1.5log q q14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案132解析 由题意,得正方形的边长构成以22为首项,22为公比的等比数列,现已知共含有1023个正方形,则有1+2+…+2n -1=1023,所以n =10,所以最小正方形的边长为⎝⎛⎭⎪⎫2210=132.15.(多选)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列关于“等差比数列”的判断正确的是( ) A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0 答案 AD解析 对于A ,k 不可能为0,正确;对于B ,当a n =1时,{a n }为等差数列,但不是“等差比数列”,错误;对于C ,当等比数列的公比q =1时,a n +1-a n =0,分式无意义,所以{a n }不是“等差比数列”,错误;对于D ,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确. 16.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n 项和为2n -1·3n+12.(1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,∀n ∈N *,S n ≤m 恒成立,求实数m 的最小值.解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列, 所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3, 所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =2n -1·3n+12,所以a 1b 1+a 2b 2+…+a n -1b n -1=2n -3·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2),因为a n =2·3n -1,所以b n =n (n ≥2),当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式),所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n <34.因为∀n ∈N *,S n ≤m 恒成立, 所以m ≥34,即实数m 的最小值为34.。

广东新高考数学理科一轮总复习课时练习9.3等比数列(含答案详析)

广东新高考数学理科一轮总复习课时练习9.3等比数列(含答案详析)

第3讲 等比数列1.(2012年广东)等比数列{a n }满足a 2a 4=12,则a 1a 23a 5=________. 2.(2012年安徽)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B .2 C .4 D .83.在公差d ≠0的等差数列{a n }中,a 1,a 3,a 9成等比数列,则a 1+a 3+a 5a 2+a 4+a 6=( )A.75B.57C.34D.434.设S n 为等比数列{a n }的前n 项和,若8a 2+a 5=0,则S 5S 2=( )A .11B .5C .-8D .-11 5.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)( )A .26B .29C .212D .2156.(2013年大纲)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310) C .3(1-3-10)D .3(1+3-10)7.(2012年新课标)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.8.(2013年新课标Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =__________.9.(2012年陕西)已知等比数列{a n }的公比为q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N *,a k ,a k +2,a k +1成等差数列.10.(2012年山东)在等差数列{a n}中,a3+a4+a5=84,a9=73.(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.第3讲 等比数列1.142.A3.C4.D 5.C 解析:考虑到求导中,含有x 项均取0,则f ′(0)只与函数f (x )的一次项有关; 得a 1·a 2·a 3…a 8=(a 1a 8)4=212.6.C 解析:∵3a n +1+a n =0,∴a n +1=-13a n .∴数列{a n }是以-13为公比的等比数列.∵a 2=-43,∴a 1=4.∴S 10=4⎣⎡⎦⎤1-⎝⎛⎭⎫-13101+13=3(1-3-10).故选C.7.-2 解析:当q =1时,S 3=3a 1,S 2=2a 1.由S 3+3S 2=0,得9a 1=0,∴a 1=0,与{a n }是等比数列矛盾,故q ≠1.由S 3+3S 2=0,得a 1(1-q 3)1-q +3a 1(1-q 2)1-q=0,解得q =-2.8.(-2)n -1 解析:∵S n =23a n +13,①∴当n ≥2时,S n -1=23a n -1+13.②①-②,得a n =23a n -23a n -1,∴a na n -1=-2.∵a 1=S 1=23a 1+13,∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 9.(1)解:由通项公式,得a 3=a 1⎝⎛⎭⎫-122=14,则a 1=1. 由等比数列求和公式,得S n =1×⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=2+⎝⎛⎭⎫-12n -13.(2)证明:∵k ∈N *,∴2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1)=a 1q k -1·⎣⎡⎦⎤2⎝⎛⎭⎫-122-⎝⎛⎭⎫-12-1=0, ∴2a k +2-(a k +a k +1)=0,∴a k ,a k +2,a k +1成等差数列. 10.解:(1)由a 3+a 4+a 5=84,得3a 4=84,a 4=28. 而a 9=73,则5d =a 9-a 4=45,d =9. a 1=a 4-3d =28-27=1,于是a n =1+(n -1)×9=9n -8,即a n =9n -8.(2)对任意m ∈N *,9m <9n -8<92m ,则9m +8<9n <92m +8,即9m -1+89<n <92m -1+89,而n ∈N *,由题意可知b m =92m -1-9m -1. 于是S m =b 1+b 2+…+b m=91+93+…+92m -1-(90+91+…+9m -1)=9-92m +11-92-1-9m 1-9=92m +1-980-9m -18=92m +1+180-9m 8,即S m =92m +1+180-9m8.。

高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和配套课时作业 理(含解析)新人教A版-新

高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和配套课时作业 理(含解析)新人教A版-新

第3讲 等比数列及其前n 项和配套课时作业1.(2019·某某某某模拟)已知等比数列{a n }中,a 2=2,a 6=8,则a 3a 4a 5=( ) A .±64 B .64 C .32 D .16答案 B解析 因为a 2=2,a 6=8,所以由等比数列的性质可知a 2·a 6=a 24=16,而a 2,a 4,a 6同号,所以a 4=4,所以a 3a 4a 5=a 34=64.故选B.2.(2019·某某调研)设等比数列{a n }的前n 项和为S n ,若a 1=3,a 4=24,则S 6=( ) A .93 B .189 C .99 D .195答案 B解析 ∵a 4=a 1q 3=3q 3=24,∴q =2,∴S 6=a 11-q 61-q=189.故选B.3.已知正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7=( ) A.56 B.65 C.23 D.32答案 D解析 由等比数列性质可知a 2a 8=a 4a 6=6,故a 4,a 6分别是方程x 2-5x +6=0的两根.因为a n +1<a n ,所以a 4=3,a 6=2,故a 5a 7=a 4a 6=32.故选D.4.(2019·某某模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5 D .159.5答案 C解析 因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12. a 6=5×24-12=5×16-12=80-12=79.5.5.(2019·某某某某中学调研)等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36答案 B解析 由a 2a 5=a 3a 4=2a 3,得a 4= 2.又a 4+2a 7=2×54,所以a 7=14,又因为a 7=a 4q 3,所以q =12,所以a 1=16,所以S 5=16×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选B.6.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84答案 B解析 设等比数列{a n }的公比为q ,a 1+a 3+a 5=a 1(1+q 2+q 4)=21,即q 4+q 2+1=7,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)×q 2=21×2=42.故选B.7.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64(n >2),且前n 项和S n =42,则n =( )A .3B .4C .5D .6答案 A解析 由a 1+a n =34,a 1a n =a 3a n -2=64及{a n }为递增数列,得a 1=2,a n =32=a 1qn -1,又S n =a 11-q n1-q=42,∴q =4,n =3.故选A.8.(2019·某某模拟)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B .73 C .310 D .1或2答案 B解析 设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,S 4=3k ,∴S 6S 4=7k 3k =73.故选B.9.(2019·延庆模拟)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C .n n +12D .n n -12答案 A解析 ∵a 2,a 4,a 8成等比数列,∴a 24=a 2·a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ), 将d =2代入上式,解得a 1=2, ∴S n =2n +n n -1·22=n (n +1).故选A.10.(2019·北大附中模拟)若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案 A解析 ∵a 2n +1-3a n +1a n -4a 2n =(a n +1-4a n )(a n +1+a n )=0,又a n +1+a n >0,∴a n +1=4a n ,∴a n =2×4n -1=22n -1.故选A.11.设等比数列{a n }的前n 项和为S n ,若a 8=2a 4,S 4=4,则S 8的值为( ) A .4 B .8 C .10 D .12答案 D解析 设等比数列{a n }的公比为q ,由题意知q ≠1.因为a 8=2a 4,S 4=4,所以⎩⎪⎨⎪⎧a 1q 7a 1q 3=2,a 11-q 41-q=4,解得q 4=2,a 1=-4(1-q ),所以S 8=a 11-q 81-q=-41-q 1-221-q=12.故选D.12.记等比数列{a n }的前n 项积为T n (n ∈N *),已知a m -1·a m +1-2a m =0,且T 2m -1=128,则m 的值为( )A .4B .7C .10D .12答案 A解析 因为{a n }是等比数列,所以a m -1a m +1=a 2m .又a m -1a m +1-2a m =0,则a 2m -2a m =0,所以a m =2.由等比数列的性质可知前2m -1项积T 2m -1=a 2m -1m ,即22m -1=128,故m =4.故选A.13.(2019·某某模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +3,则S 4=________.答案 66解析 依题意有a n =2S n -1+3(n ≥2),与原式作差,得a n +1-a n =2a n ,n ≥2,即a n +1=3a n ,n ≥2,可见,数列{a n }从第二项起是公比为3的等比数列,a 2=5,所以S 4=1+5×1-331-3=66.14.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 3n -1解析 由3S 1,2S 2,S 3成等差数列可得4S 2=3S 1+S 3,所以3(S 2-S 1)=S 3-S 2,即3a 2=a 3,a 3a 2=3.所以q =3,所以a n =3n -1. 15.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________.答案 2n解析 ∵a 25=a 10,∴(a 1q 4)2=a 1q 9,∴a 1=q ,∴a n =q n.∵2(a n +a n +2)=5a n +1,∴2a n (1+q 2)=5a n q ,∴2(1+q 2)=5q ,解得q =2或q =12(舍去).∴a n =2n.16.(2019·启东模拟)已知等比数列{a n }中,a 2>a 3=1,则使不等式⎝ ⎛⎭⎪⎫a 1-1a 1+⎝ ⎛⎭⎪⎫a 2-1a 2+⎝ ⎛⎭⎪⎫a 3-1a 3+…+⎝ ⎛⎭⎪⎫a n -1a n ≥0成立的最大自然数n 是________.答案 5解析 设公比为q ,由a 2>a 3=1知0<q <1,a n =q n -3,∴不等式的左端=q -21-q n1-q-q 21-q -n 1-q -1=1-q n1-q q2·(1-q 5-n)≥0,∵0<q <1,∴n ≤5. 17.(2018·高考)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e an . 解 (1)设{a n }的公差为d .因为a 2+a 3=5ln 2,所以2a 1+3d =5ln 2. 又a 1=ln 2,所以d =ln 2. 所以a n =a 1+(n -1)d =n ln 2. (2)因为ea 1=eln 2=2,eane a n -1=e an -an -1=eln 2=2,所以{e an }是首项为2,公比为2的等比数列. 所以ea 1+ea 2+…+e an =2×1-2n1-2=2(2n-1).18.已知数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2,n ∈N *).设b n =a n +1-a n . (1)证明:数列{b n }是等比数列; (2)设=b n4n 2-12n,求数列{}的前n 项和S n .解 (1)证明:因为a n +1=3a n -2a n -1(n ≥2,n ∈N *),b n =a n +1-a n , 所以b n +1b n =a n +2-a n +1a n +1-a n =3a n +1-2a n -a n +1a n +1-a n =2a n +1-a na n +1-a n=2, 又b 1=a 2-a 1=2-1=1,所以数列{b n }是以1为首项,以2为公比的等比数列. (2)由(1)知b n =1×2n -1=2n -1,因为=b n4n 2-12n,所以=122n +12n -1=14⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =c 1+c 2+…+=14⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=14⎝ ⎛⎭⎪⎫1-12n +1=n4n +2.19.(2019·某某省实验中学模拟)已知等比数列{a n }的前n 项和为S n ,公比q >0,S 2=2a 2-2,S 3=a 4-2.(1)求数列{a n }的通项公式; (2)设b n =n a n,求{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q , 因为S 2=2a 2-2,①S 3=a 4-2,②所以由①②两式相减得a 3=a 4-2a 2,即q 2-q -2=0. 又因为q >0,所以q =2.又因为S 2=2a 2-2,所以a 1+a 2=2a 2-2,所以a 1+a 1q =2a 1q -2, 代入q =2,解得a 1=2,所以a n =2n. (2)由(1)得b n =n2n ,所以T n =12+222+323+…+n -12n -1+n2n ,①将①式两边同乘12,得12T n =122+223+324+…+n -12n +n2n +1,②由①②两式错位相减得12T n =12+122+123+124+…+12n -n 2n +1=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n 2n +1=1-12n -n2n +1,整理得T n =2-n +22n.20.(2019·正定模拟)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n ∈N *). (1)求数列{a n }的通项公式;(2)若对任意n ∈N *,k ≤S n 恒成立,某某数k 的最大值. 解 (1)因为3a n +1+2S n =3,① 所以当n ≥2时,3a n +2S n -1=3.②由①-②,得3a n +1-3a n +2a n =0(n ≥2),所以a n +1a n =13(n ≥2). 因为a 1=1,3a 2+2a 1=3,解得a 2=13,所以a 2a 1=13.所以数列{a n }是首项为1,公比为13的等比数列.所以a n =⎝ ⎛⎭⎪⎫13n -1.(2)由(1)知S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .由题意,可知对于任意n ∈N *,恒有k ≤32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 成立.因为数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 单调递增,所以数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 中的最小项为23,所以k ≤32×23=1,故实数k 的最大值为1.。

高考数学一轮复习《等比数列》综合练习题(含答案)

高考数学一轮复习《等比数列》综合练习题(含答案)

高考数学一轮复习《等比数列》综合练习题(含答案)一、单项选择题1.在等比数列{}n a 中,13524610,18a a a a a a -==,则{}n a 的公比q 为( )A .2-B .12-C .12D .22.等比数列{an }中,若a 5=9,则log 3a 4+log 3a 6=( ) A .2B .3C .4D .93.数列{}n a 满足()*331log 1log N n n a a n ++=∈,且1359a a a ++=,则()13579log a a a ++=( )A .4B .14C .2-D .12-4.已知各项均为正数的等比数列{}n a 满足,24a =,3424a a +=,则12233445910a a a a a a a a a a -+-+⋅⋅⋅+=( )A .188(21)5+B .188(21)5-C .208(21)5+D .208(21)5-5.已知数列{}n a 是等比数列,数列{}n b是等差数列,若76103a b π=,则210311sin 1b b a a +=-( ) AB. C .12D .12-6.已知数列满足212323n a a a na n ++++=,设n n b na =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前2022项和为( ) A .40424043B .20214043C .40444045D .202240457.在适宜的环境中,一种细菌的一部分不断分裂产生新的细菌,另一部分则死亡.为研究这种细菌的分裂情况,在培养皿中放入m 个细菌,在1小时内,有34的细菌分裂为原来的2倍,14的细菌死亡,此时记为第一小时的记录数据.若每隔一小时记录一次细菌个数,则细菌数超过原来的10倍的记录时间为第( ) A .6小时末B .7小时末C .8小时末D .9小时末8.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-9.若数列{}n a 为等差数列,数列{}n b 为等比数列,则下列不等式一定成立的是( ) A .1423b b b b +≤+ B .4132b b b b ≤-- C .3124a a a a ≥D .3124a a a a ≤10.已知等比数列{}n a 各项均为正数,且满足:101a <<,1718171812a a a a +<+<,记12n n T a a a =,则使得1n T >的最小正数n 为( )A .36B .35C .34D .3311.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .55112.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.用他的名字定义的函数称为高斯函数()[]f x x =,其中[]x 表示不超过x 的最大整数,已知数列{}n a 满足12a =,26a =,2156n n n a a a +++=,若[]51log n n b a +=,为数列11000n n b b +⎧⎫⎨⎬⎩⎭的前n 项和,则[]2024S =( ) A .999B .749C .499D .249二、填空题13.设等比数列{}n a 的前n 项和为n S ,已知3614,126S S ==,则1a =___.14.在各项均为正数的等比数列{}n a 中,若74a =,则678a a a ++的最小值为______.15.已知数列{}n a 的首项为-1,12,nn n a a +=-则数列{}n a 的前10项之和等于________.16.已知数列{}n a 满足:11a =,()*112+1n nn N a a +=∈若()1111n n b n a λ+⎛⎫=+-+ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为______.三、解答题17.在等比数列{}n a 中,已知320a =,6160a =, (1)求5a ; (2)求8S .18.设{}n a 是等差数列,2d =,且312,,4a a a +成等比数列. (1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,求n S 的最小值.19.已知等比数列{}n a 的首项为1a ,公比为q ,且关于x 的不等式21120a x qx -->的解集为()(),26,-∞-⋃+∞.(1)求n a ;(2)设4log n n n b a a =+,求数列{}n b 的前n 项和n T .20.已知数列{}n a 是等差数列,首项12a =,且3a 是2a 与41a +的等比中项. (1)求数列{}n a 的通项公式; (2)设14n n n b a a +=,求数列{}n b 的前n 项和n S .21.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.22.已知正项等比数列{}n a 满足21372,32a a a ==,数列{}n b 的前n 项和2n S n n =-.(1)求{}n a ,{}n b 的通项公式;(2)设,,n n na n cb n ⎧=⎨⎩为奇数为偶数求数列{}nc 的前2n 项和2n T .23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n nb n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<参考答案1.D2.C3.C4.A5.A6.D7.A8.D9.D10.B11.C12.A 13.2 14.1215.31 16.4λ<17.(1)设等比数列{}n a 的公比为q ,则3638aq a ==,所以2q,所以25320480a a q ==⨯=;(2)由(1)可得3125a a q ==, 所以818(1)5(1256)127511a q S q -⨯-===--. 18.(1)因为132+4a a a ,,成等比数列,所以2312(+4)a a a =,即1112()4(6)a a a ++=,解得18a =-,所以82(1)210n a n n =-+-=-(2)由(1)知210n a n =-, 所以2282109819()224n n S n n n n -+-=⨯=-=--; 因为N n +∈所以当4n =或者5n =时,n S 取到最小值20-19.(1)等比数列{}n a 的首项为1a ,公比为q ,且关于x 的不等式21120a x qx -->的解集为()(),26,-∞-⋃+∞.则-2和6为21120a x qx --=的两根,所以()126qa -+=,()11226a -⨯=-, 解得11a =,4q =.所以1114n n n a a q --==.(2)由(1)得14log 41n n n n b a a n -=+=+-,所以()1144121n n T n -=++⋅⋅⋅++++⋅⋅⋅+-,()141412n n n --=+-, 24132n n n--=+. 20.()23241a a a =+,()()()2111231a d a d a d +=+++, ()()()222233d d d +=++,()()()241312d d d +=++,()()144360d d d ++--=, ()()120d d +-=,∴1d =-,此时3220a d =+=, 舍,2d =,∴2n a n =; (2)()()411122111n b n n n n n n ===-⋅+++,11111122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 21.(1)易知{}n a 各项均为正, 对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010.22.解:(1)由题意,设正项等比数列{}n a 的公比为()0q q >,则2237532a a a ==,故532a =.∴ 4451162a q a ===.解得2q .∴ 数列{}n a 的通项公式为1*222,n n n a n N -=⨯=∈ .当1n =时,110b S ==,当2n ≥时,()()()2211122n n n b S S n n n n n -⎡⎤=-=-----=-⎣⎦. ∴ 数列{}n b 的通项公式为*22,n b n n N =-∈(2)由(1)知,,2,,22,n n n n a n n c b n n n ⎧⎧==⎨⎨-⎩⎩为奇数为奇数为偶数为偶数.∴21234212n n n T c c c c c c -=++++++()132********n n -=++++++-()()132********n n -=+++++++-⎡⎤⎣⎦=2122222[2(42)]122n n n --⋅⋅+--212122233n n +=⋅+- 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212nT n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<。

2023版高考数学一轮总复习6-3等比数列习题

2023版高考数学一轮总复习6-3等比数列习题

6.3 等比数列基础篇固本夯基考点一等比数列及其前n项和1.(2019课标Ⅲ,5,5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( )A.16B.8C.4D.2答案 C2.(2021安徽安庆一模,6)数列{a n}是各项均为正数的等比数列,3a2是a3与2a4的等差中项,则{a n}的公比等于( )A.2B.32C.3D.√2答案 B3.(2021黑龙江齐齐哈尔一模,6)已知等比数列{a n}中,a n a n+1=4n,则公比为( )A.√2B.2C.±2D.±√2答案 B4.(2020课标Ⅱ,6,5分)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k= ( )A.2B.3C.4D.5答案 C5.(2022届河北衡水一中调研一,7)在公差不为0的等差数列{a n}中,a1,a2,a a1,a a2,a a3成公比为4的等比数列,则k3=( )A.84B.86C.88D.96答案 B6.(2021哈尔滨六中期中,3)已知{a n}为等比数列,若a2a3=2a1,且a4与2a7的等差中项为54,则a1=( )A.35B.33C.16D.29答案 C7.(2022届四川绵阳第一次诊断,9)已知首项为1的数列{a n}的前n项和为S n,4a n a n+1=16n,则下列说法不正确的是( )A.数列{a n}是等比数列B.数列{S n }为单调递增数列C.a 5=256D.4a n =3S n +4n-1答案 D8.(2022届太原期中,9)已知{a n }为等比数列,且首项为31,公比为12,则数列的前n 项积取得最大值时,n=( )A.15B.16C.5D.6 答案 C9.(2021陕西渭南一模,10)已知等比数列{a n }的前n 项和为S n ,若a 2a a a =3332,a a +3a 3=a -45a +7,则数列{a n }的公比q=( )A.2B.-2C.12 D.-12 答案 C10.(2019课标Ⅰ,14,5分)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= . 答案121311.(2021陕西宝鸡一模,15)记S n 为等比数列{a n }的前n 项和.若S 3=6,S 4=a 1-3,则S 6= . 答案21412.(2021河南、湖南名校联考,15)已知等比数列{a n }满足a 1-a 3=-827,a 2-a 4=-89,则使a 1a 2…a n取得最小值的n 为 . 答案 3或413.(2018课标Ⅲ,17,12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m.解析 (1)设{a n }的公比为q,由题设得a n =q n-1.由已知得q 4=4q 2,解得q=0(舍去)或q=-2或q=2.故a n =(-2)n-1或a n =2n-1. (2)若a n =(-2)n-1,则S n =1-(-2)a3.由S m =63得(-2)m =-188.此方程没有正整数解.若a n =2n-1,则S n =2n-1.由S m =63得2m=64,解得m=6.综上,m=6.14.(2020新高考Ⅰ,Ⅱ,18,12分)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)(新高考Ⅰ)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100. (新高考Ⅱ)求a1a2-a2a3+…+(-1)n-1a n a n+1.解析(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q1=12(舍去),q2=2.由题设得a1=2.所以{a n}的通项公式为a n=2n.(2)(新高考Ⅰ)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×2 4+5×25+6×(100-63)=480.(新高考Ⅱ)a1a2-a2a3+…+(-1)n-1a n a n+1=23-25+27-29+…+(-1)n-1·22n+1=23[1-(-22)a]1-(-22)=85-(-1)n22a+35.考点二等比数列的性质1.(2021江西红色七校联考,6)在各项均为正数的等比数列{a n}中,a1a11+2a6a8+a3a13=25,则a1a13的最大值是( )A.25B.254C.5 D.25答案 B2.(2021云南名校检测,3)设等比数列{a n}的前n项和为S n,若S2=4,S4=16,则S6= ( )A.52B.75C.60D.70答案 A3.(2020南昌模拟,4)在公比不为1的等比数列{a n}中,若a1a5=a m a n,则mn不可能...为( ) A.5 B.6 C.8 D.9答案 B4.(2021河南名校联考,6)已知等比数列{a n}的前n项和S n=2λ+(λ-3)·2n(λ为常数),则λ=()A.-2B.-1C.1D.2答案 C5.(2021全国甲,7,5分)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 答案 B6.(2022届吉林东北师范大学附属中学摸底,8)若正项等比数列{a n }中的a 5,a 2017是方程x 2-4x+2=0的两根,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 2021=( ) A.20223B.1010C.20212D.1011答案 C7.(2022届河南重点中学模拟一,8)已知公比不等于1的等比数列{a n }的前n 项乘积为T n ,若a 2a 82=a 62,则( )A.T 5=T 7B.T 3=T 6C.T 4=T 7D.T 3=T 9 答案 C8.(2021安徽黄山重点高中月考,10)已知函数f(x)=21+a 2(x∈R),若等比数列{a n }满足a 1a 2019=1,则f(a 1)+f(a 2)+f(a 3)+…+f(a 2019)= ( ) A.2019 B.20192C.2D.12答案 A9.(2021宁夏名校月考,7)已知数列{x n }满足lgx n+1=1+lgx n (n∈N *),且x 1+x 2+x 3+…+x 100=1,则lg(x 101+x 102+…+x 200)= . 答案 100综合篇 知能转换考法 等比数列的判定与证明 1.(2021皖江名校联盟考试,4)若数列{a n }的各项均为正数,满足a a 2a a +1=a n-1(n∈N *,n≥2),且a 2020=215,a 2022=25,则a 2021=( )A.25B.65C.2√315D.2√35答案 C2.(2021安徽安庆重点高中月考,16)已知数列{a n }是等比数列,有下列四个命题: ①数列{|a n |}是等比数列;②数列{1a a}是等比数列;③数列{lg a a 2}是等比数列; ④数列{a n ·a n+1}是等比数列. 其中正确命题的序号为 . 答案 ①②④3.(2022届河北衡水一中调研一,18)设数列{a n }的前n 项和为S n ,已知2S n =a n+1-2n+1+1(n∈N *),且a 2=5. (1)证明{a a 2a+1}为等比数列,并求数列{a n }的通项公式;(2)设b n =log 3(a n +2n),若对于任意的n∈N *,不等式b n (1+n)-λn(b n +2)-6<0恒成立,求实数λ的取值范围.解析 (1)由题可得2S n-1=a n -2n+1(n≥2),则2a n =2S n -2S n-1=a n+1-2n+1+1-(a n -2n+1)=a n+1-a n -2n,则a n+1=3a n +2n,从而有a a +12a +1+1=32(aa2a +1),n≥2,又当n=1时,2a 1=2S 1=a 2-22+1=5-4+1=2,所以a 1=1,且满足a 222+1=32(a 121+1),则a a +12a +1+1=32(aa 2a +1),n∈N *,故{a a2a +1}是以32为首项,32为公比的等比数列,则a a2a +1=(32)a,故a n =3n-2n.(2)由(1)知,b n =log 3(a n +2n)=n,则∀n∈N *,n(1+n)-λn(n+2)-6<0恒成立,即λ>a (1+a )-6a (a +2)=a 2+n -6a 2+2n =1-a +6a 2+2n =1-a +6(a +6)2-10(n +6)+24=1-1a +6-10+24a +6,令f(t)=1-1a -10+24a,t=n+6≥7,易知f(t)在[7,+∞)上单调递增,且t→+∞时,f(t)→1,则λ≥1. 4.(2021云南曲靖第二中学二模,17)已知数列{a n }的前n 项和为S n .(1)请从①2S n =3a n -3-4n,②a 1=-3,a n+1=-a n -4这两个条件中任选一个,证明数列{a n +2}是等比数列;(2)数列{b n }为等差数列,b 3=5,b 5=9,记c n =(a n +2)b n ,求数列{c n }的前n 项和T n .解析 (1)选条件①.当n=1时,2a 1=2S 1=3a 1-3-4,解得a 1=7.当n≥2时,由2S n =3a n -3-4n,可得2S n-1=3a n-1-3-4(n-1),两式相减,可得2a n =3a n -3a n-1-4,即a n =3a n-1+4,∴a n +2=3(a n-1+2),∴数列{a n +2}是以9为首项,3为公比的等比数列.选条件②.当n=1时,a 1+2=-3+2=-1,当n≥2时,a n+1+2=-a n -4+2=-(a n +2),∴数列{a n +2}是以-1为首项,-1为公比的等比数列. (2)设等差数列{b n }的公差为d,则d=a 5-a 35-3=2,b 1=b 3-2d=1,∴b n =1+2(n-1)=2n-1,n∈N *.选条件①.由(1)可得a n +2=9·3n-1=3n+1,则c n =(a n +2)b n =(2n-1)·3n+1,∴T n =c 1+c 2+c 3+…+c n , 即T n =1×32+3×33+5×34+…+(2n -1)·3n+1,3T n =1×33+3×34+…+(2n -3)·3n+1+(2n-1)·3n+2,两式相减,可得-2T n =1×32+2×33+2×34+…+2·3n+1-(2n-1)·3n+2=9+2×33-3a +21-3-(2n-1)·3n+2=-18-2(n-1)·3n+2,∴T n =(n-1)·3n+2+9,n∈N *.选条件②.由(1)可得a n +2=-1·(-1)n-1=(-1)n,则c n =(a n +2)b n =(2n-1)·(-1)n,∴T n =c 1+c 2+c 3+…+c n =-1+3-5+…+(2n -1)·(-1)n,当n 为偶数时,T n =-1+3-5+…+(2n -1)=2+2+…+2=2×a2=n,当n 为奇数时,T n =-1+3-5+…-(2n-1)=2+2+…+2-(2n-1)=2×a -12-(2n-1)=-n,∴T n ={-a ,a 为奇数,a ,a 为偶数.。

高考数学(理科)一轮复习等比数列及其前n项和学案含答案

高考数学(理科)一轮复习等比数列及其前n项和学案含答案

高考数学(理科)一轮复习等比数列及其前n项和学案含答案本资料为woRD文档,请点击下载地址下载全文下载地址学案30 等比数列及其前n项和导学目标:1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.4.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.自主梳理.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母________表示.2.等比数列的通项公式设等比数列{an}的首项为a1,公比为q,则它的通项an =______________.3.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.4.等比数列的常用性质通项公式的推广:an=am&#8226;________.若{an}为等比数列,且k+l=m+n,则__________________________.若{an},{bn}是等比数列,则{λan},1an,{a2n},{an&#8226;bn},anbn仍是等比数列.单调性:a1&gt;0,q&gt;1或a1&lt;00&lt;q&lt;1&#8660;{an}是________数列;a1&gt;0,0&lt;q&lt;1或a1&lt;0q&gt;1&#8660;{an}是________数列;q=1&#8660;{an}是____数列;q&lt;0&#8660;{an}是________数列.5.等比数列的前n项和公式等比数列{an}的公比为q,其前n项和为Sn,当q=1时,Sn=na1;当q≠1时,Sn=a1&#61480;1-qn&#61481;1-q=a1&#61480;qn-1&#61481;q-1=a1qnq-1-a1q-1.6.等比数列前n项和的性质公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为______.自我检测.“b=ac”是“a、b、c成等比数列”的A.充分不必要条件B.必要不充分条件c.充要条件D.既不充分也不必要条件2.若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,则实数a的值是A.3B.1c.0D.-13.设f=2+24+27+…+23n+1,则f等于A.27B.27c.27D.274.已知等比数列{an}的前三项依次为a-2,a+2,a +8,则an等于A.8&#8226;32nB.8&#8226;23nc.8&#8226;32n-1D.8&#8226;23n-15.设{an}是公比为q的等比数列,|q|&gt;1,令bn=an+1,若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.探究点一等比数列的基本量运算例 1 已知正项等比数列{an}中,a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,求数列{an}的通项an和前n项和Sn.变式迁移1在等比数列{an}中,a1+an=66,a2&#8226;an-1=128,Sn=126,求n和q.探究点二等比数列的判定例2 已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5,n∈N*.证明数列{an+1}是等比数列;求{an}的通项公式以及Sn.变式迁移2 设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=Sn+2n.求a2,a3的值;求证:数列{Sn+2}是等比数列.探究点三等比数列性质的应用例3 在等比数列{an}中,a1+a2+a3+a4+a5=8,且1a1+1a2+1a3+1a4+1a5=2,求a3.变式迁移3 已知等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,求b5+b9的值;在等比数列{an}中,若a1a2a3a4=1,a13a14a15a16=8,求a41a42a43a44.分类讨论思想与整体思想的应用例设首项为正数的等比数列{an}的前n项和为80,它的前2n项和为6560,且前n项中数值最大的项为54,求此数列的第2n项.【答题模板】解设数列{an}的公比为q,若q=1,则Sn=na1,S2n=2na1=2Sn.∵S2n=6560≠2Sn=160,∴q≠1,[2分]由题意得a1&#61480;1-qn&#61481;1-q=80,①a1&#61480;1-q2n&#61481;1-q=6560.②[4分]将①整体代入②得80=6560,∴qn=81.[6分]将qn=81代入①得a1=80,∴a1=q-1,由a1&gt;0,得q&gt;1,∴数列{an}为递增数列.[8分]∴an=a1qn-1=a1q&#8226;qn=81&#8226;a1q=54.∴a1q=23.[10分]与a1=q-1联立可得a1=2,q=3,∴a2n=2×32n-1.[12分]【突破思维障碍】分类讨论的思想:①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论;②研究等比数列的单调性时应进行讨论:当a1&gt;0,q&gt;1或a1&lt;0,0&lt;q&lt;1时为递增数列;当a1&lt;0,q&gt;1或a1&gt;0,0&lt;q&lt;1时为递减数列;当q&lt;0时为摆动数列;当q=1时为常数列.函数的思想:等比数列的通项公式an=a1qn-1=a1q&#8226;qn常和指数函数相联系.整体思想:应用等比数列前n项和时,常把qn,a11-q当成整体求解.本题条件前n项中数值最大的项为54的利用是解决本题的关键,同时将qn和a1&#61480;1-qn&#61481;1-q的值整体代入求解,简化了运算,体现了整体代换的思想,在解决有关数列求和的题目时应灵活运用..等比数列的通项公式、前n项公式分别为an=a1qn -1,Sn=na1,q=1,a1&#61480;1-qn&#61481;1-q,q≠1.2.等比数列的判定方法:定义法:即证明an+1an=q.中项法:证明一个数列满足a2n+1=an&#8226;an+2.3.等比数列的性质:an=am&#8226;qn-m;若{an}为等比数列,且k+l=m+n,则ak&#8226;al=am&#8226;an;设公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn.4.在利用等比数列前n项和公式时,一定要对公比q =1或q≠1作出判断;计算过程中要注意整体代入的思想方法.5.等差数列与等比数列的关系是:若一个数列既是等差数列,又是等比数列,则此数列是非零常数列;若{an}是等比数列,且an&gt;0,则{lgan}构成等差数列.一、选择题.设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5等于A.152B.314c.334D.1722.设Sn为等比数列{an}的前n项和,8a2+a5=0,则S5S2等于A.-11B.-8c.5D.113.在各项都为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a5等于A.33B.72c.84D.1894.等比数列{an}前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是A.T10B.T13c.T17D.T255.记等比数列{an}的前n项和为Sn,若S3=2,S6=18,则S10S5等于A.-3B.5c.-31D.33题号2345答案二、填空题6.设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为________.7.在等比数列{an}中,公比q=2,前99项的和S99=30,则a3+a6+a9+…+a99=________.8.在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=________.三、解答题9.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.求数列{an}的通项;求数列{2an}的前n项和Sn.0.已知数列{log2}为等差数列,且a1=3,a2=5.求证:数列{an-1}是等比数列;求1a2-a1+1a3-a2+…+1an+1-an的值.1.已知等差数列{an}的首项a1=1,公差d&gt;0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.求数列{an}与{bn}的通项公式;设数列{cn}对n∈N*均有c1b1+c2b2+…+cnbn=an+1成立,求c1+c2+c3+…+cXX.答案自主梳理.公比q 2.a1&#8226;qn-1 4.qn-m ak&#8226;al=am&#8226;an递增递减常摆动 6.qn自我检测.D 2.B 3.B 4.c 5.-9课堂活动区例1 解题导引在等比数列的通项公式和前n项和公式中共有a1,an,q,n,Sn五个量,知道其中任意三个量,都可以求出其余两个量.解题时,将已知条件转化为基本量间的关系,然后利用方程组的思想求解;本例可将所有项都用a1和q表示,转化为关于a1和q 的方程组求解;也可利用等比数列的性质来转化,两种方法目的都是消元转化.解方法一由已知得:a21q4+2a21q6+a21q8=100,a21q4-2a21q6+a21q8=36.①②①-②,得4a21q6=64,∴a21q6=16.③代入①,得16q2+2×16+16q2=100.解得q2=4或q2=14.又数列{an}为正项数列,∴q=2或12.当q=2时,可得a1=12,∴an=12×2n-1=2n-2,Sn=121-2=2n-1-12;当q=12时,可得a1=32.∴an=32×12n-1=26-n.Sn=321-12n1-12=64-26-n.方法二∵a1a5=a2a4=a23,a2a6=a3a5,a3a7=a4a6=a25,由a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,可得a23+2a3a5+a25=100,a23-2a3a5+a25=36,即2=100,2=36.∴a3+a5=10,a3-a5=±6.解得a3=8,a5=2,或a3=2,a5=8.当a3=8,a5=2时,q2=a5a3=28=14.∵q&gt;0,∴q=12,由a3=a1q2=8,得a1=32,∴an=32×12n-1=26-n.Sn=32-26-n×121-12=64-26-n.当a3=2,a5=8时,q2=82=4,且q&gt;0,∴q=2.由a3=a1q2,得a1=24=12.∴an=12×2n-1=2n-2.Sn=122-1=2n-1-12.变式迁移1 解由题意得a2&#8226;an-1=a1&#8226;an=128,a1+an=66,解得a1=64,an=2或a1=2,an=64.若a1=64,an=2,则Sn=a1-anq1-q=64-2q1-q =126,解得q=12,此时,an=2=64&#8226;12n-1,∴n=6.若a1=2,an=64,则Sn=2-64q1-q=126,∴q=2.∴an=64=2&#8226;2n-1.∴n=6.综上n=6,q=2或12.例2 解题导引证明数列是等比数列的两个基本方法:①an+1an=q.②a2n+1=anan+2.证明数列不是等比数列,可以通过具体的三个连续项不成等比数列来证明,也可用反证法.证明由已知Sn+1=2Sn+n+5,n∈N*,可得n≥2时,Sn=2Sn-1+n+4,两式相减得Sn+1-Sn=2+1,即an+1=2an+1,从而an+1+1=2,当n=1时,S2=2S1+1+5,所以a2+a1=2a1+6,又a1=5,所以a2=11,从而a2+1=2,故总有an+1+1=2,n∈N*,又a1=5,a1+1≠0,从而an+1+1an+1=2,即数列{an+1}是首项为6,公比为2的等比数列.解由得an+1=6&#8226;2n-1,所以an=6&#8226;2n-1-1,于是Sn=6&#8226;1-2-n=6&#8226;2n-n-6.变式迁移2 解∵a1+2a2+3a3+…+nan=Sn+2n,∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=+4,∴a2=4;当n=3时,a1+2a2+3a3=2+6,∴a3=8.证明∵a1+2a2+3a3+…+nan=Sn+2n,①∴当n≥2时,a1+2a2+3a3+…+an-1=Sn-1+2.②①-②得nan=Sn-Sn-1+2=n-Sn+2Sn-1+2=nan-Sn+2Sn-1+2.∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,∴Sn+2=2.∵S1+2=4≠0,∴Sn-1+2≠0,∴Sn+2Sn-1+2=2,故{Sn+2}是以4为首项,2为公比的等比数列.例3 解题导引在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am&#8226;an=ap&#8226;aq”,可以减少运算量,提高解题速度.解由已知得a1+1a2+1a3+1a4+1a5=a1+a5a1a5+a2+a4a2a4+a3a23=a1+a2+a3+a4+a5a23=8a23=2,∴a23=4,∴a3=±2.若a3=-2,设数列的公比为q,则-2q2+-2q-2-2q-2q2=8,即1q2+1q+1+q+q2=1q+122+q+122+12=-4.此式显然不成立,经验证,a3=2符合题意,故a3=2.变式迁移3 解∵a3a11=a27=4a7,∵a7≠0,∴a7=4,∴b7=4,∵{bn}为等差数列,∴b5+b9=2b7=8.a1a2a3a4=a1&#8226;a1q&#8226;a1q2&#8226;a1q3=a41q6=1.①a13a14a15a16=a1q12&#8226;a1q13&#8226;a1q14&#8226;a1q15=a41&#8226;q54=8.②②÷①:a41&#8226;q54a41&#8226;q6=q48=8&#8658;q16=2,又a41a42a43a44=a1q40&#8226;a1q41&#8226;a1q42&#8226;a1q43=a41&#8226;q166=a41&#8226;q6&#8226;q160=&#8226;10=1&#8226;210=1024.课后练习区.B [∵{an}是由正数组成的等比数列,且a2a4=1,∴设{an}的公比为q,则q&gt;0,且a23=1,即a3=1.∵S3=7,∴a1+a2+a3=1q2+1q+1=7,即6q2-q -1=0.故q=12或q=-13,∴a1=1q2=4.∴S5=41-12=8=314.]2.A [由8a2+a5=0,得8a1q+a1q4=0,所以q=-2,则S5S2=a1a1=-11.]3.c [由题可设等比数列的公比为q,则31-q=21&#8658;1+q+q2=7&#8658;q2+q-6=0 &#8658;=0,根据题意可知q&gt;0,故q=2.所以a3+a4+a5=q2S3=4×21=84.]4.c [a3a6a18=a31q2+5+17=3=a39,即a9为定值,所以下标和为9的倍数的积为定值,可知T17为定值.] 5.D [因为等比数列{an}中有S3=2,S6=18,即S6S3=a11-qa11-q=1+q3=182=9,故q=2,从而S10S5=a11-qa11-q=1+q5=1+25=33.]6.127解析∵公比q4=a5a1=16,且q&gt;0,∴q=2,∴S7=1-271-2=127.7.1207解析∵S99=30,即a1=30,∵数列a3,a6,a9,…,a99也成等比数列且公比为8,∴a3+a6+a9+…+a99=4a11-8=4a17=47×30=1207.8.4n-1解析∵等比数列{an}的前3项之和为21,公比q=4,不妨设首项为a1,则a1+a1q+a1q2=a1=21a1=21,∴a1=1,∴an=1×4n-1=4n-1.9.解由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列,得1+2d1=1+8d1+2d,…………………………………………………………………………解得d=1或d=0.故{an}的通项an=1+×1=n.……………………………………………………由知2an=2n,由等比数列前n项和公式,得Sn=2+22+23+…+2n=21-2=2n+1-2.………………………………………………………………………………0.证明设log2-log2=d,因为a1=3,a2=5,所以d=log2-log2=log24-log22=1,…………………………………………………………所以log2=n,所以an-1=2n,所以an-1an-1-1=2,所以{an-1}是以2为首项,2为公比的等比数列.………解由可得an-1=&#8226;2n-1,所以an=2n+1,…………………………………………………………………………所以1a2-a1+1a3-a2+…+1an+1-an=122-2+123-22+…+12n+1-2n=12+122+…+12n=1-12n.………………………………………………………………1.解由已知有a2=1+d,a5=1+4d,a14=1+13d,∴2=.解得d=2.……………………………………………………………………∴an=1+&#8226;2=2n-1.………………………………………………………………又b2=a2=3,b3=a5=9,∴数列{bn}的公比为3,∴bn=3&#8226;3n-2=3n-1.………………………………………………………………………由c1b1+c2b2+…+cnbn=an+1得当n≥2时,c1b1+c2b2+…+cn-1bn-1=an.两式相减得:当n≥2时,cnbn=an+1-an=2.……………………………………………∴cn=2bn=2&#8226;3n-1.又当n=1时,c1b1=a2,∴c1=3.∴cn=3 2&#8226;3n-1.……………………………………………………………∴c1+c2+c3+…+cXX=3+6-2×3XX1-3=3+=3XX.…………………………………………。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习等比数列专题训练(含答
案)
等比数列是说如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数。

查字典数学网为考生整理了等比数列专题训练,请考生认真做题。

一、填空题
1.(2019盐城期中检测)在等比数列{an}中,a2=2,a5=16,则a10=________.
[解析] 由=q3得q3=8即q=2,a10=a5q5=1632=512.
[答案] 512
2.已知等比数列{an}的前三项依次为:a-1,a+1,a+4,则an=________.
[解析] 由题意知(a+1)2=(a-1)(a+4),解得a=5,
==,又a-1=4.
数列{an}是公比为,首项为4的等比数列,
an=4n-1.
[答案] 4n-1
3.(2019金陵中学检测)在各项均为正数的等比数列{an}中,已知a1+a2+a3=2,a3+a4+a5=8,则a4+a5+a6=________. [解析] 设此数列公比为q,由a3+a4+a5=8,
得a1q2+a2q2+a3q2=8,而a1+a2+a3=2,
q2=4,q=2,a4+a5+a6=q(a3+a4+a5)=28=16.
[答案] 16
4.(2019连云港调研)若等比数列{an}满足a2a4=,则
a1aa5=________.
[解析] 数列{an}为等比数列,a2a4=a=,a1a5=a.
a1aa5=a=.
[答案]
5.(2019镇江期末测试)在等比数列{an}中,Sn为其前n项和,已知a5=2S4+3,a6=2S5+3,则此数列的公比q为________. [解析] 由a5=2S4+3,与a6=2S5+3相减,
得a5-a6=2(S4-S5),3a5=a6,
公比q=3.
[答案] 3
6.已知等比数列{an}的前n项和为Sn=3n+1+a,nN*,则实数a的=________.
[解析] 当n2时,an=Sn-Sn-1=3n+1-3n=23n,当n=1时,
a1=S1=9+a,因为{an}是等比数列,所以有9+a=23,解得a=-3. [答案] -3
7.等比数列{an}的前n项和为Sn,若a1+a2+a3+a4=1,
a5+a6+a7+a8=2,Sn=15,则项数n=________.
[解析] a5+a6+a7+a8=(a1+a2+a3+a4)q4,
q4=2.
a1+a2+a3+a4===1,=-1.
又Sn=15,即=15,则qn=16.
又q4=2,从而n=16.
[答案] 16
8.(2019苏州模拟)在等比数列{an}中,a1=,a4=-4,则公比q=________;Tn=|a1|+|a2|+|a3|++|an|=________.
[解析] 在等比数列中,a4=a1q3=q3=-4,
所以q3=-8,即q=-2.
所以|an|==2n-2,即数{|an|}是一个公比为2的等比数列,
所以Tn==2n-1-.
[答案] -2 2n-1-
二、解答题
9.已知数列{an}满足:a1=1,a2=a(a0),数列{bn}满足
bn=anan+1(nN*).
(1)若{an}是等比数列,求{bn}的前n项和;
(2)当{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.
[解] (1){an}是等比数列,a1=1,a2=a(a0),
q=a,从而an=an-1,
所以bn=anan+1=a2n-1,
{bn}是首项为a,公比为a2的等比数列.
当a=1时,Sn=n,
当a1时,Sn==.
(2)数列{an}不能是等比数列.
bn=anan+1,=,
依题设=a-1,则a3=a1(a-1)=a-1.
假设{an}是等比数列,则a=a1a3,
a2=1(a-1),但方程无实根.
从而数列{an}不能为等比数列.
10.(2019南通调研)设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,nN*.
(1)求a1的值;
(2)求数列{an}的通项公式.
[解] (1)当n=1时,T1=2S1-12.
因为T1=S1=a1,所以a1=2a1-1,解得a1=1.
(2)当n2时,Sn=Tn-Tn-1
=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+1,
所以Sn=2Sn-1+2n-1,
所以Sn+1=2Sn+2n+1,
②-得an+1=2an+2.
所以an+1+2=2(an+2),即=2(n2).
当n=1时,a1+2=3,a2+2=6,则=2,所以当n=1时也满足上式.
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有
注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

所以{an+2}是以3为首项,2为公比的等比数列,
因此an+2=32n-1,所以an=32n-1-2.
等比数列专题训练的全部内容就是这些,查字典数学网希望考生可以考上自己理想的大学。

死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

相关文档
最新文档