塑料模具设计教学案例(点浇口、侧浇口知识点讲解)

合集下载

浇口设计ppt课件

浇口设计ppt课件
点浇口流动阻力大,封凝快,不适合用料量大、 补缩要求高的厚壁制品成型。
精选ppt
19
模具
点浇口附近充模剪切速率高,取向度高,固 化残余应力大,为减弱其影响,须适当增加浇口 处的壁厚,图3-3-30。
为脱出浇道凝料, 采用点浇口的普通浇 注系统模具必须专设 脱浇道凝料分型面, 因而模具结构为带顺 序分型机构的三板式。
精选ppt
30
4)圆环形浇口
模具
精选ppt
31
模具
圆环形浇口可看成平缝形浇口的变异形式,图 3-3-25 。
相当于把平缝形浇口的最后一级分流道变成侧 壁与型腔边缘等距的圆环(图3-3-25e )或圆盘 (图3-3-25a、b、c) ,浇口成为圆环形窄缝。
圆环形浇口和盘形浇口主要用于圆筒形或带中 心孔的制品。
材料
POM CA PE
PC PMMA PVC PS
PP PA
材料系数 k 0.6 0.7 0.8 0.9
精选ppt
13
模具
③点浇口
点浇口,又称针点浇口,因形状似针刺小 孔而得名。
点浇口是典型的小浇口(限制性浇口)具 有小浇口的一般特性,如:剪切速率高,切力 变稀和升温作用明显、浇口附近物料取向度高; 流动阻力大,压力降大;封凝快,不倒流;料 把与制品连接强度低,可自行拉断,浇口痕迹 小等等。
精选ppt
25
模具
潜伏式浇口应用实例
精选ppt
26
模具
2)扇形分流道浇口
最后一级分流道呈由窄变宽、 由深变浅的鱼尾形(扇形)。
精选ppt
27
模具
扇形分流道浇口是一种变形的侧浇口,图3-323 。浇口为宽深比w/h较大的窄缝,计算思路及 方法与侧浇口相同,常用尺寸范围为:深度 h=0.25~1.5, 宽 度 b=6~B/4 ( B 进 浇 侧 型 腔 宽 度) 。最后一级分流道由窄变宽、由深变浅,结 构及断面尺寸设计类似于鱼尾形板片膜挤出机头。 这种浇口主要用于较宽的扁平制件或长扁制件。 与一般侧浇口相比扇形浇口物料入模均匀、制品 内应力小、裹入空气的可能性小,但浇口薄、凝 封快,浇口痕长、修饰困难。

注塑模具设计中浇口位置和结构形式的选用

注塑模具设计中浇口位置和结构形式的选用

注塑模具设计中浇口位置和结构形式的选用付 伟 范士娟 张 海(华东交通大学机电工程学院,南昌 330013) 摘要 浇口直接影响注塑制品的外观、变形、成型收缩率及强度,如果选用不当,容易使注塑制品产生缺料、熔接痕、缩孔、浇口白斑、翘曲、变脆及降解等缺陷。

根据注塑制品的不同特点,探讨了11种浇口形式的优缺点,进一步阐述了选用浇口类型与位置的方法及原则。

关键词 浇口 注塑模具 注塑制品 浇口亦称进料口,是连接分流道与型腔熔体的通道。

浇口选择恰当与否直接关系到注塑制品能否完好、高质量地注射成型[1]。

浇口设计包括浇口截面形状与尺寸的确定和浇口位置的选择。

关于浇口截面形状及尺寸的确定,很多教科书都有提及,这里不再重复。

笔者现根据不同注塑制品的特点,比较各种类型浇口的差异,讨论浇口位置及其结构形式的选择方法和原则。

浇口位置对熔体流动前沿的形状和保压压力的效果都起着决定性的作用,因此也决定了注塑制品的强度和其它性能。

对于影响确定浇口位置的因素来说,包括制品的形状、大小、壁厚、尺寸精度、外观质量及力学性能等。

此外,还应考虑浇口的加工、脱模及清除浇口的难易程度。

正确的浇口位置可以避免出现那些可以预见的问题[2-3]。

1 浇口的类型与位置 在注塑模设计中,按浇口的结构形式和特点,常用的浇口形式有下列11种。

1.1 直浇口 即是主流道浇口,属于非限制性浇口,见图1。

图1 直浇口 (1)优点 塑料熔体由主流道的大端直接进入型腔,因此具有流动阻力小、流程短及补给时间长等特点。

这样的浇口有良好的熔体流动状态,熔体从型腔底面中心部位流向分型面,有利于排气;这种浇口形式使注塑制品和浇注系统在分型面上的投影面积最小,模具结构紧凑,注塑机受力均匀。

(2)缺点 进料处有较大的残余应力,容易导致注塑制品翘曲变形,同时浇口较大,去除浇口痕迹较困难且痕迹较大,影响美观,所以这类浇口多用于注射成型大中型长流程、深型腔、筒形或壳形注塑制品,尤其适合于聚碳酸酯、聚砜等高粘度塑料。

塑料件注塑模具的浇口及流道设计

塑料件注塑模具的浇口及流道设计

间接配合
浇口和流道通过其他结构进行间接连 接,这种配合方式可以更好地适应复 杂模具结构的要求。
配合实例
侧浇口与直通式流道的配合
侧浇口与直通式流道配合使用,可以保证塑料熔体的流动顺畅,适用于生产小 型塑料件。
扇形浇口与分流道的配合
扇形浇口与分流道配合使用,可以满足大型塑料件的充填要求,并减少溢料现 象的发生。
根据塑料件的精度要求选择浇口类型,高精度要求的塑料件应选择潜伏式浇口或直 接浇口。
根据塑料件的成型周期和生产效率要求选择浇口类型,生产效率要求高的应选择侧 浇口或扇形浇口。
浇口的尺寸
浇口的尺寸应根据塑料件的尺 寸、形状、精度要求以及塑料 熔体的流动特性来确定。
浇口的尺寸过大会导致塑料件 产生过大的收缩率,尺寸过小 会导致塑料件充填不足或产生 喷射痕。
SolidWorks
一款广泛使用的CAD软件,也适用于注塑模具设 计,提供了丰富的流道设计和分析工具。
3
Moldflow
专业的注塑模具设计软件,提供了流道设计和分 析功能,可以模拟塑料熔体的流动和冷却过程。
PART 05
浇口与流道设计案例分析
案例一:手机壳浇口设计
总结词
手机壳浇口设计需考虑浇口位置、尺寸和数量,以确保塑料能够顺利填充模具并 减少缺陷。
详细描述
根据餐具的形状和尺寸,选择合适的浇口位置和尺寸,以实现均匀填充。同时,流道的走向应与餐具的形状相匹 配,以减少流动阻力。在设计过程中,还需考虑餐具的功能需求,如刀叉的锐利度、碗盘的承重能力等,以确保 设计的实用性和可靠性。
PART 04
设计优化与改进
优化原则
减小浇口截面积
避免死角和滞留
浇口截面积的大小直接影响塑料熔体的流 动速度。减小浇口的截面积可以使熔体的 流动速度增加,从而提高生产效率。

27第二十七课 浇注系统设计 教案

27第二十七课 浇注系统设计  教案

任务四注射模具设计—浇注系统设计教学内容(板书)第二十七课浇注系统的设计1、冷料穴的设计注射成型时,喷嘴前端的熔料温度较低,为防止其进入型腔,通常在流道末端设置用以集存这部分冷料的冷料穴。

设置熔料流动方向的转折处,以便将冷料入穴中存留起来。

1、带钩形拉料杆的冷料穴2、带球头拉料杆的冷料穴应该指出,并非所有注射模都需开设冷料穴,有时由于塑料的工艺性能好和成型工艺条件控制得好,可能很少产生冷料,如果塑件要求不高时可不设冷料穴。

2、浇口的设计1)浇口位置的选择(1)避免引起熔体破裂现象克服上述缺陷的办法通常有两种:一是加大浇口尺寸,以降低流速。

二是采用冲击型浇口。

(2)有利于熔体流动和补缩浇口的位置应开设在塑件截面最厚处。

(3)有利于型腔内气体排出(4)减少熔接痕和增强熔接强度(5)防止料流将型芯或嵌件挤压变形(6)保证流动比在允许范围内2)浇口的设计(1)直接浇口(2)中心浇口中心浇口适用于筒形、环形或中心带孔的塑件成型。

(3)侧浇口侧浇口为限制性浇口,适用于一模多腔,能大大提高生产效率,减少浇注系统耗量,浇口去除也较方便,是一种被广泛采用的浇口形式。

但侧浇口压力损失较大,保压补缩作用比直浇口弱,壳形件排气不便,易产生熔接痕;缩孔及气孔等缺陷。

侧浇口的截面形状通常为矩形。

a)为扇形浇口,常用来成形宽度较大的薄片状塑件。

b)为薄片式浇口,又称平缝式浇口,常用来成型大面积薄片塑件。

(4)点浇口又称针浇口或菱形浇口。

这种浇口有很多优点,几乎可以用于各种形式的塑件。

点浇口一般设在塑件的顶端,去除方便,不影响塑件的外观,浇口可自动拉断,可以实现自动化操作。

这种浇口尤其适用于圆筒形、壳形、盒形的塑件,但是流动性较差的塑料(例如PMMA、PC等)就不适于采用点浇口,而适用于流动性较好的ABS、PP、POM 等塑料。

(5)潜伏式浇口又称遂道式浇口或剪切浇口。

潜伏式浇口呈针点状,开模时流道凝料由推出机构推出,并与塑件从浇口处自动切断,省掉了切除浇口的工程。

模具设计中浇口知识详解

模具设计中浇口知识详解

模具设计中浇口知识详解模具设计中浇口知识详解浇口:连接分流道与型腔之间的一段细短通道。

今天店铺就给大家讲解下模具设计中浇口相关知识。

浇口的.作用:1、调节及控制料流速度,防止倒流;2、熔胶经过浇口时,会因剪切及挤压而升温,有利于填充;浇口设计要点:1、浇口数量尽可能少。

2、浇口位置:A、不能影响制品外观。

B、距型腔各部位距离尽量相等。

C、浇口应对着型腔宽畅部位,便于补缩和走胶;D、应避免冲针或直接冲击薄弱镶件及冲骨位(易粘模)E、应减少熔接痕,或使熔接痕产生于制品的不重要表面及非薄弱部位;F、浇口位置应有利于模具排气。

G、浇口要便于切除.浇口的分类:1、侧浇口(又叫大水口,普通浇口)优点:加工易,修正易;缺点:(1)去除浇口麻烦且留下明显痕迹。

(2)位置受到一定的限制。

2、潜伏式浇口:(1)优点:①位置较灵活;②浇口可自动脱落;③既可以潜前模,又可以潜后模。

(2)缺点:适合弹性好的塑料,质脆的塑料不宜选用。

(3)潜伏式浇口重要参数:(见图)(4)圆弧形(牛角)潜浇口。

见图。

3、点浇口(又叫细水口):常用于三板模和无流道模.熔胶可由型腔任何位置,一点或多点地进入型腔。

优点:(1)位置有较大的自由度;(2)浇口可自行脱落,留痕小;(3)对桶形、壳形、盒形制品及面积较大的平板类胶件非常适用;(4)浇口附近残余应力小。

缺点:(1)注射压力损失较大;(2)模具结构较复杂。

重要参数。

见图。

4、直接浇口:用于大而深的桶形、盒形及壳形制品。

5、扇形浇口:适用于平板类、壳形或盒形制品。

【模具设计中浇口知识详解】。

注塑模具设计第5讲 实例3-2D-05 点浇口浇注系统的设计

注塑模具设计第5讲 实例3-2D-05 点浇口浇注系统的设计
小结: 点浇口浇注系统的尺寸确定; 点浇口浇注系统的设计;
作业:
完成练习三以下部分内容: 浇注系统的设计
6
3. 点浇口的设计
注塑模具设计实例教程
一般取10°~30°
(1)浇点口在正剖视图中的绘制 点浇口在正剖视图中的绘制结果及尺寸经验 值如图3-1-28所示。 (2)点浇口在侧剖视图中的绘制 点浇口在侧剖视图中的绘制结果如图3-1-29 所示。 (3)点浇口在定模视图中的绘制 点浇口在定模视图中的表示,只需在进浇点 处画一个Φ 1.2的圆即可。
4. 冷料井的设计
一般取Φ2~Φ4
一般取Φ0.5~Φ2
图3-1-28点浇口在正剖视图中的绘制
图3-1-29点浇口在侧剖视图中的绘制
在细水口模具中,主流道的末端通常要设计冷料井,如图3-1-30所 示为本例冷料井在侧剖视图中的绘制结果。 5
六、点浇口浇注系统的设计
注塑模具设计实例教程
◎动手操作,用AutoCAD软件完成本例点浇口浇注系统的设计。 ◎参考视频:实例3-2D-5.点浇口浇注系统的设计.avi (该视频请从教材附带 的光盘中查找)
六、点浇口浇注系统的设计
2. 分流道的设计
注塑模具设计实例教程
(1)水平分流道的设计 ①水平分流道的形状及规格选用 常用的分流道截面形状一般有三种:圆形、U形、梯形.因本例为细 水口模具,所以可选用U形或者梯形分流道,本例选用梯形分流道. 梯形分流道的具体尺寸由产品的大小来确定,本例的梯形分流道 相关尺寸浇口浇注系统的设计
④水平分流道在正剖视图中的绘制 水平分流道在正剖视图中的绘制结果 如图3-1-25所示。 (2)垂直分流道的设计 ①垂直分流道在正剖视图中的绘制 垂直分流道在正剖视图中的绘制结果 及尺寸经验值如图3-1-26所示。 ②垂直分流道在侧剖视图中的绘制 垂直分流道在侧剖视图中的绘制结果 如图3-1-27所示。 ※垂直分流道及点浇口尺寸参考:

注塑模具设计第18讲 实例3-3D-05 点浇口浇注系统的设计

注塑模具设计第18讲 实例3-3D-05 点浇口浇注系统的设计

注塑模具设计实例教程
图3-2-77主流道与分流道、冷料井求和结果
图3-2-78创建大浇口套
(4)【移动至图层】,将浇口套和流道归入20层。 ◎动手操作,用UG软件完成本例点浇口浇注系统的设计。 ◎参考视频:实例3-3D-5.点浇口浇注系统的设计.avi (该视频请从教材附带 的光盘中查找) 小结: 作业: 点浇口浇注系统的设计方法。 完成练习三以下部分内容: 点浇口浇注系统的设计 4
实例 玩具面壳注塑模具3D设计
复习:型腔和型芯的结构设计
注塑模具设计实例教程
检查上次布置作业的完成情况
新课:
六、点浇口浇注系统的设计 浇注系统设计包括对分流道、浇口、冷料井、主流道的设计。 1. 垂直分流道及浇口的设计 (1)创建垂直分流道及浇口 如图3-2-68所示。 (2)移动垂直分流道 ①【移动对象】,将侧剖视图上创建 的垂直分流道沿-X轴移动16.5mm。 ②【移动对象】,将正剖视图上创建 的垂直分流道沿-Y轴移动40mm。 (3)【偏置面】,将两个垂直分流道 的顶面偏置5mm,如图3-2-69所示。
图3-2-71创建水平分流道
2
图3-2-72水平分流道末端倒圆角
六、点浇口浇注系统的设计
注塑模具设计实例教程
(3)【拔模】,“从平面”,“指定的矢量”为Z轴,选择图3-2-73所指的 面为“固定面”,选择水平分流道所有竖直面为“要拔模的面”,拔模角度 为-10,完成水平分流道所有竖直面的拔模。 (4)【边倒圆】,将水平分流道底部棱线倒圆角,倒圆角半径为1,如图32-74所示。【移除参数】。
浇口底面
波子弧面
图3-2-70替换浇口底面
(5)【求差】,型腔与两个垂直分流道求差,“保持工具体”。显示并框选所 有对象,【移除参数】。 2.水平分流道的设计 (1)创建水平分流道 ①【图层设置】,单独显示81层中的定模视图。 ②【拉伸】,选择定模视图中的水平分流道中心线,拉伸矢 量为Z轴,拉伸距离为(75.5,80.5),偏置(3,-3),如 图3-2-71所示。 (2)【边倒圆】,将水平分流 道末端的四条竖直棱线倒圆角 ,倒圆角半径为3,如图3-2-72 所示。

塑料件注塑模具的浇口及流道设计培训

塑料件注塑模具的浇口及流道设计培训
注塑模具的浇口及流道设计
5、浇口类别
(4)重迭式侧浇口
L1 = 2~3(mm)
L2
L1
(mm) (mm) (mm)
t
h
侧视图
上视图 t
W
h = n×t(mm)
(mm) 优点 •可防成品流痕、具侧状浇口之优点。 •可防喷射纹之流动纹路、可防浇口附近因残留 应力所引起之扭曲与龟裂。 缺点 •压力损失大、浇口切离稍困难。 适用产品 :浇口位置非外观可视之物件
塑料成型工艺培训-塑料件注塑模具的浇口及流道设计培训
塑料成型工艺培训-
注塑模具的浇口及流道设计
5、浇口类别
(5)扇形与膜状浇口
L = 侧方形浇口长+6(mm)
W
L h2
h1
浇口截面积<流道截面积 优点 •可均匀充填防止成形品变形、可得良好外观之成形品 ,几无不良现象发生
缺点 •浇口部切离稍困难。 适用产品:平板状或面积较大之成形品灯壳 、 中框。
塑料成型工艺培训-塑料件注塑模具的浇口及流道设计培训
塑料成型工艺培训-
注塑模具的浇口及流道设计
2、浇口尺寸
影响剪切率大小 影响保压时间(过早凝固) 影响射出压力大小
喷流
浇口过早固化会造成 较严重的缩水现象 (较厚之处)
塑料成型工艺培训-塑料件注塑模具的浇口及流道设计培训
塑料成型工艺培训-
注塑模具的浇口及流道设计
塑料成型工艺培训-塑料件注塑模具的浇口及流道设计培训
塑料成型工艺培训-
注塑模具的浇口及流道设计
5、浇口类别
(2)侧方形浇口
th
h = n × t(mm)
h 浇口厚度 ; t 成品肉厚 ; n成型材料参数

浇口的设计PPT课件

浇口的设计PPT课件
思考与练习
缺点:是去除浇道后﹐将在成型品表面 留下痕迹。
22.11.2020
第四章 塑料注射模的设计和制造
§4.3 普通浇注系统的设计及制造
七、浇口的设计及制造
2.浇口的类型及特点
22.11.2020
问题 目的与要求 重点和难点 浇口的设计制造 排气系统设计 思考与练习
侧浇口
一般开设在分型面上,适合于一 模多腔,浇口去除方便;但压力 损失大、壳形件排气不便、易产 生熔接痕。
22.11.2020
典型的浇口厚度是0.25至1.27mm。
第四章 塑料注射模的设计和制造
§4.3 普通浇注系统的设计及制造
七、浇口的设计及制造
2.浇口的类型及特点
问题 目的与要求
环状浇口
重点和难点 浇口的设计制造 排气系统设计
思考与练习
使用环状浇口﹐熔料自由地沿 著环状浇口中心部分流动﹐然 后熔料向下流动充填模具。 典型的浇口厚度是0.25至1.6mm。
典型的浇口尺寸为:厚度0.4至 6.4mm﹐宽度为1.6至12.7mm。
22.11.2020
第四章 塑料注射模的设计和制造
§4.3 普通浇注系统的设计及制造
七、浇口的设计及制造
2.浇口的类型及特点
问题 目的与要求 重点和难点 浇口的设计制造
扇形浇口
典型的浇口尺寸为﹕厚度0.25至1.6mm﹐宽度 6.4至25%的型腔侧壁的长度。
22.11.2020
第四章 塑料注射模的设计和制造
§4.3 普通浇注系统的设计及制造
七、浇口的设计及制造
2.浇口的类型及特点
22.11.2020
问题 目的与要求 重点和难点 浇口的设计制造 排气系统设计 思考与练习

注塑模具浇口位置的选择技巧【步骤】

注塑模具浇口位置的选择技巧【步骤】

一、浇口位置的要求1.外观要求(浇口痕迹,熔接线)2.产品功能要求3.模具加工要求4.产品的翘曲变形5.浇口容不容易去除二、对生产和功能的影响1.流长决定射出压力,锁模力,以及产品填不填的满流长缩短可降低射出压力及锁模力。

2.浇口位置会影响保压压力,保压压力大小,保压压力是否平衡,将浇口远离产品未来受力位置(如轴承处)以避免残留应力,浇口位置必须考虑排气,以避免积风发生不要将浇口放在产品较弱处或嵌入处,以避免偏位。

三、选择浇口位置的技巧1.将浇口放置于产品最厚处,从最厚处进浇可提供较佳的充填及保压效果。

如果保压不足,较薄的区域会比较厚的区域更快凝固,避免将浇口放在厚度突然变化处,以避免迟滞现象或是短射的发生。

2.可能的话,从产品中央进浇,将浇口放置于产品中央可提供等长的流长,流长的大小会影响所需的射出压力,中央进浇使得各个方向的保压压力均匀,可避免不均匀的体积收缩。

3.浇口(Gate):浇口是一条横切面面积细小的短槽,用以连接流道与模穴.横切面面积所以要小,目的是要获得以下效果:1)模穴注不久,浇口即冷结2)除水口简易3)除水口完毕,仅留下少许痕迹4)使多个模穴的填料较易控制5)减少填料过多现象设计浇口的方法并无硬性规定,大都是根据经验而行,但有两个基本要素须加以折衷考虑:1.浇口的横切面面积愈大愈好,而槽道之长度则愈短愈佳,以减少塑料通过时的压力损失.2.浇口须细窄,以便容易冷结及防止过量塑料倒流.故此浇口在流道中央,而它的横切面应尽可能成圆形.不过,浇口的开关通常是由模件的开关来决定的.3.浇口尺寸:浇口的尺寸可由横切面积和浇口长度定出,下列因素可决定浇口最佳尺寸:1)胶料流动特性2)模件之厚薄3)注入模腔的胶料量4)熔解温度5)工模温度决定浇口位置时,应紧守下列原则:1.注入模穴各部份的胶料应尽量平均.2.注入工模的胶料,在注料过程的各阶段,都应保持统一而稳定的流动前线.3.应考虑可能出现焊痕,气泡,凹穴,虚位,射胶不足及喷胶等情况.4.应尽量使除水口操作容易进行,最好是自动操作.5.浇口的位置应与各方面配合。

塑料模具设计教学案例(点浇口、侧浇口知识点讲解)

塑料模具设计教学案例(点浇口、侧浇口知识点讲解)

教学案例:点浇口、侧浇口知识点讲解
这三类产品模具浇口类型都属于典型的点浇口、侧浇口:
侧浇口侧浇口
侧浇口侧浇口
侧浇口
一、点浇口
点浇口又称针点浇口,是一种在塑件中央开设浇口时使用的圆形限制浇口。

适用场合:常用于成型各种壳类、盒类塑件。

优点:浇口位置灵活,浇口附近变形小,多型腔时采用点浇口容易平衡浇注系统。

缺点:由于浇口的截面积小,流动阻力大,需提高注射压力,宜用于成型流动性好的热塑性
塑料。

采用点浇口时,为了能取出流道凝料,必须使用三板式双分型面模具费用较高。

点浇口直径可以按经验公式计算
式中d ——浇口直径为 (mm);
δ——塑件壁厚,mm ;
A ——型腔面积,mm2。

42)20.014.0(A d δ-=
二、侧浇口
国外又称标准浇口。

一般开设在分型面上,从制品的边缘进料。

侧浇口 重叠浇口(搭接式浇口)
优点:易于加工、便于试模后修正,浇口去除方便。

缺点:在制品的外表面留有浇口痕迹。

适用范围:广泛应用于中小型制品的多型腔注射模。

其侧浇口厚度t(mm)和测浇口宽度b(mm)的经验公式如下
δ——塑料厚度,mm ;
A ——为塑件外表面面积,mm2。

对于中小型塑件深度t=0.5~2.0mm ,宽度b=1.5 ~5.0mm ,浇口长度L=0.8 ~2.0mm ; 重叠浇口(侧面进料的搭接式浇口),搭接部分长度l2-l1=(0.6 ~0.9)mm +b/2,浇口长度l2=2.0 ~3.0mm.
δ)9.06.0(30)9.06.0(-=-=t A
b。

塑胶射出成型模具的浇口设计

塑胶射出成型模具的浇口设计

技术专栏: 塑胶射出成型模具的浇口设计文:徐昌煜 (现任模仁科技董事长兼震雄集团顾问) 浇口(Gate)在射出成型模具的浇注系统(Feed System)中是连接流道(Runner)和型腔(Cavity)的熔胶通道。

浇口设计和塑件品质有着密不可分的关系。

1. 浇口的位置和数目1.1. 浇口位置与喷流(Jetting)的关系浇口若能布置成冲击型浇口 -- 也就是使得进浇后的塑胶熔体立刻冲击到一阻挡物(如型腔壁、芯型销等),让塑流稳定下来,就可以减少喷流的机率。

1.2. 浇口的位置和数目与熔接线(Weld Line)的关系熔接线是两股熔胶的波前(Melt Front)相遇后所形成的线条。

就塑件的外观或是强度而言,熔接线都是负面的。

每增加一个浇口,至少要增加一条熔接线,同时还要增加一个浇口痕(Gate Mark)、较多的积风 (Air Trap)以及流道的体积。

所以在型腔能够如期充填的前提下,浇口的数目是愈少愈好。

爲了减少浇口的数目,每一浇口应在塑流力所能及的流动比之内(Flow Length to Thickness Ratio),找出可以涵盖最大塑件面积的进浇位置。

更改浇口位置以后,能够将熔接线自敏感处移除爲上策。

如果熔接线无法移除,那么增加波前的熔胶温度(Melt Temperature);或是减少两相遇波前的熔胶温度差(Melt Temperature Difference);或是增加两波前相遇后的熔胶压力(Melt Pressure);或是增加熔胶波前相遇时的遇合角(Meeting Angle),都可以改善熔接线的品质。

1.3. 浇口的位置和数目与积风(Air Trap)的关系积风是型腔内的空气和熔胶释出的气体被熔胶包围后的缺陷。

积风的存在,重则导致短射(Short Shot)或焦痕(Burn Mark),轻亦影响外观和强度。

每增加一个浇口,就会增加积风发生的机率。

当塑件厚薄差异大时,如果浇口位置设置不当,就会因爲跑道现象(Race Track Effect)而导致积风。

《浇口的设计》课件

《浇口的设计》课件

环保理念:通过优化浇口设计,减 少废料,降低对环境的影响
添加标题
添加标题
添加标题
添加标题
提高产品质量:通过优化浇口设计, 提高产品质量,减少废品率
智能化设计:通过优化浇口设计, 实现智能化生产,提高生产自动化 程度
智能化:采用先进的智能技术,提高浇口设计的准确性和效率 环保化:采用环保材料和工艺,减少对环境的污染和破坏 轻量化:采用轻质材料和结构,降低浇口设计的重量和成本 集成化:将浇口设计与其他工艺环节相结合,提高生产效率和产品质量
浇口设计影响产品的成型质量 浇口设计影响产品的力学性能 浇口设计影响产品的外观质量 浇口设计影响产品的生产效率
浇口位置:选择合适的浇口 位置,避免影响产品外观和 性能
浇口尺寸:根据产品尺寸和 形状选择合适的浇口尺寸, 保证产品成型质量
浇口数量:根据产品结构和 生产效率选择合适的浇口数 量,避免产品缺陷
感谢您的观看
汇报人:
浇口形状:选择合适的浇口 形状,提高产品成型质量和 生产效率
浇口冷却:合理设计浇口冷 却系统,保证产品成型质量 和生产效率
浇口清理:定期清理浇口, 保证产品成型质量和生产效 率
浇口设计的优化
提高浇口质量:优化浇口设计,提高浇口质量,减少缺陷 降低浇口成本:优化浇口设计,降低浇口成本,提高生产效率 提高浇口效率:优化浇口设计,提高浇口效率,减少废品率 提高浇口稳定性:优化浇口设计,提高浇口稳定性,减少波动性
浇口的设计
汇报人:
目录
添加目录标题
浇口的基Байду номын сангаас概念
浇口的设计原则
浇口设计的实际 应用
浇口设计的优化
浇口设计的新趋 势
添加章节标题

(完整版)注塑模具浇口型式及选择

(完整版)注塑模具浇口型式及选择

注塑模具浇口型式及选择塑料模具的浇口是指连接分流道和性强之间的一段细短流道,是树脂注入型腔的入口。

在模具中浇口的形状、数量和尺寸和位置等会对塑料件的质量产生很大影响。

所以浇口的选择是塑料模具设计的关键点之一,下面通过几个方面对于浇口进行介绍。

一、浇口的主要作用有:1、型腔充满后,熔体在浇口处首先凝结,防止其倒流。

2、易于切除浇口尾料。

3、对于多腔模具,用以控制熔接痕的位置。

二、浇口的型式浇口一般分为非限制性浇口和限制性浇口两种型式。

限制性浇口又分为侧浇口、点浇口和盘环形浇口等3个系列。

2.1非限制性浇口。

非限制性浇口又叫直浇口(如图1所示)。

其特点是塑料熔体直接流入型腔,压力损失小进料速度快成型较容易,对各种塑料都适用。

具有传递压力好,保压补缩作用强,模具结构简单紧凑,制造方便等优点。

但去除浇口困难,浇口痕迹明显;浇口附近热量集中冷凝迟缓容易产生较大的内应力,也易于产生缩坑或表面凹缩。

适用于大型塑件、厚壁塑件等。

图1直浇口型式2.2限制浇口。

型腔与分流道之间采用一端距离很短、截面很小的通道相连接,此通道称为限制性浇口,它对浇口的厚度及快速凝固等可以进行限制。

限制浇口的主要类型有:2.2.1 点浇口。

点浇口是一种截面尺寸特小的圆形浇口(如图2所示)。

点浇口的特点有:1、浇口位置限制小;2、去除浇口后残留痕迹小,不影响塑件外观;3、开模时浇口可自动拉断,有利于自动化操作;4、浇口附件补料造成的应力小。

缺点是:1、压力损失大,模具必须采用三板模结构,模具结构复杂,并且要有顺序分模机构,也可应用于无流道的两板模具结构。

图2 点浇口的型式2.2.2潜伏式浇口。

潜伏式浇口是由点浇口演变而来,其分流道开设在分型面上,浇口潜入分型面下面,沿斜向进入型腔,潜伏式浇口除了具有点浇口的特点外,其进料浇口一般都在塑件的内表面或侧面隐蔽处,因此不影响塑件外观,塑件和流道分别设置推出机构,开模时浇口即被自动切断,流道凝料自动脱落。

模具设计之浇口设计

模具设计之浇口设计
模具设计之浇口设计
• 浇口设计概述 • 浇口设计基础 • 浇口设计的实践技巧 • 浇口设计案例分析 • 浇口设计的挑战与解决方案
01
浇口设计概述
浇口的定义与作用
浇口是模具中连接主流道和型腔的通 道,用于将塑料熔体引入模具型腔。
浇口的主要作用是控制塑料熔体的流 动速度和方向,确保塑料熔体能够均 匀地填充模具型腔,并防止产生气穴 和熔接痕等缺陷。
浇口数量
根据模具的型腔数量和塑料流动的复 杂性,确定浇口的数量。多个浇口可 以加快塑料的填充速度,但过多的浇 口会增加模具的复杂性。
选择合适的浇口类型
01
02
03
直接浇口
适用于大型模具,可快速 填充型腔。但可能会导致 塑料在浇口处产生缩痕。
侧浇口
适用于各种模具,尤其是 多型腔模具。可以避免直 接浇口带来的缩痕问题。
浇口流动的稳定性
浇口处应保持稳定的流动状态,避免产生波动或 喷射,以确保塑料熔体的均匀填充。
浇口流动的快速性
浇口应设计得尽可能小,以加快熔体的流动速度, 减少冷却时间,提高生产效率。
浇口流动的均匀性
浇口的尺寸和形状应保证熔体在模具内均匀分布, 避免因流动不均而产生应力或翘曲。
浇口的尺寸与位置
浇口尺寸
03
采用热流道浇口设计,通过加热控制塑料流动,提高产品质量
和减少溢料。
THANKS
感谢观看
04
浇口设计案例分析
案例一:手机外壳浇口设计
总结词:精细复杂
详细描述:手机外壳浇口设计需要考虑到外观、结构、材料等因素,设计时需要 精细处理,确保浇口位置、大小、数量等参数合理,以实现产品外观美观、结构 稳定、材料利用率高等要求。
案例二:汽车零件浇口设计

(完整版)注塑中的进胶的方式及设计要点

(完整版)注塑中的进胶的方式及设计要点

1进胶的方式及设计重点浇口能够理解成熔融塑料经过浇注系统进入型腔的最后一道“门”,是连结分流道和型腔的进料通道。

它拥有两个功能:第一,对塑料熔体流入型腔起着控制作用;第二,当注塑压力撤除后,封闭型腔,使型腔中还没有冷却固化的塑料不会倒流。

浇口种类的选择取决于制品外观的要求、尺寸和形状的限制以及所使用的塑料种类等要素。

浇口形状和尺寸对塑件质量影响很大,浇口在多半状况下是流道中截面尺寸最小的部分(除主流道型的浇口外),其截面积与分流道的截面积之比约为0.03-0.09 ,截面形状多为矩形或圆形,浇口台阶长 1-1.5mm 左右。

一般采纳小浇口,由于它有以下长处:第一,小浇口能够增添物料经过时的流速。

小浇口两头有较大的压差,这样能够降低熔融塑料的表观粘度,使充模简单。

第二,小浇口能够提升熔融塑料的温度,增添流动性。

小浇口处的摩擦阻力大,熔融塑料经过浇口时,一部分能量转变成摩擦热而升温,这对提升薄壁塑件或带有精美花纹的塑件质量很有益处。

第三,小浇口能够控制和缩短补料的时间,降低塑件的内应力,缩短模塑周期。

在注射中,保压阶段向来要持续到浇口处凝固为止,小浇口凝固快,补料时间短,减小了大分子的凝固取向和凝固应变,大大减小了补料内应力。

小浇口的适应关闭也能正确地控制补料时间,提升塑件的质量。

第四,小浇口能够均衡各型腔的进料速度。

小浇口出阻力大得多,只有流道充满并拥有足够的压力后,各型腔才能以邻近的时间充模,这样能够改良各型腔进料速度的不均衡性。

第五,便于塑件修整。

小浇口能够用手工快速切除。

小浇口切除后的印迹小,减少了修磨时间。

可是,过小的浇口会大大增添流动阻力,延伸充模时间,高黏度的熔融塑料和剪切速率对表观黏度影响小的熔融塑料,不宜采纳小浇口浇口又称进料口,它是分流道与型腔之间的狭窄通口,也是最短小部分,其作用使熔融塑料在进型腔时产生加快度,有益于快速充满型腔,成型后浇口塑料先冷凝,以关闭型腔,防备熔融塑料倒流,防止型腔压力降落过快,以致在制品上产生缩孔或凹陷,成型后便于使浇注凝料与制品分别 .浇口种类1、盘形浇口 : 沿产品外圆周而扩展进料,其进料点对称,充模平均,能除去联合线.有益于排气.水口常用冲切方式去除,设计时注意冲切工艺.2.扇形浇口 : 从分流道到模腔方向渐渐放大呈扇形,合用于长条或扁平而薄之产品,可减少流纹和定向应力.扇形角度由产品形状决定,浇口横面积不行大于流道断面积.3.环形浇口 : 沿产品整个外圆周扩展进胶,它能使塑料绕型芯平均充模,排气优秀,减少联合线.但浇口切除困难,它合用于薄壁长管状产品.4.点浇口: 是一种截面积小如针状之浇口,一般用于流动较好之塑料,其浇口长度一般不超出其直径,因此脱模后浇口自动切断,不须再修正.而浇口残痕不显然.在箱罩,盒壳体及大面积产品中应用相当宽泛,它能够使模具增添一个分模面,便于水口脱模.其弊端是因进浇口较小易造成压力消耗,成型时产生一些不良 (流痕,烧焦,黑点 )其形状有菱形,单点形,双点形,多点形等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学案例:点浇口、侧浇口知识点讲解
这三类产品模具浇口类型都属于典型的点浇口、侧浇口:
侧浇口侧浇口
侧浇口侧浇口
侧浇口
一、点浇口
点浇口又称针点浇口,是一种在塑件中央开设浇口时使用的圆形限制浇口。

适用场合:常用于成型各种壳类、盒类塑件。

优点:浇口位置灵活,浇口附近变形小,多型腔时采用点浇口容易平衡浇注系统。

缺点:由于浇口的截面积小,流动阻力大,需提高注射压力,宜用于成型流动性好的热塑性
塑料。

采用点浇口时,为了能取出流道凝料,必须使用三板式双分型面模具费用较高。

点浇口直径可以按经验公式计算
式中d ——浇口直径为 (mm); δ——塑件壁厚,mm ;
A ——型腔面积,mm2。

42)20.014.0(A
d δ-=
二、侧浇口
国外又称标准浇口。

一般开设在分型面上,从制品的边缘进料。

侧浇口重叠浇口(搭接式浇口)
优点:易于加工、便于试模后修正,浇口去除方便。

缺点:在制品的外表面留有浇口痕迹。

适用范围:广泛应用于中小型制品的多型腔注射模。

其侧浇口厚度t(mm)和测浇口宽度b(mm)的经验公式如下
δ——塑料厚度,mm;
A——为塑件外表面面积,mm2。

对于中小型塑件深度t=0.5~2.0mm,宽度b=1.5 ~5.0mm,浇口长度L=0.8 ~2.0mm;
重叠浇口(侧面进料的搭接式浇口),搭接部分长度l2-l1=(0.6 ~0.9)mm+b/2,浇口长度l2=2.0 ~3.0mm.
δ)9.0
6.0(
30
)9.0
6.0(
-
=
-
=
t
A
b。

相关文档
最新文档