小电流接地系统中发生单相接地
2024年小电流接地系统单相接地故障检测技术(2篇)

2024年小电流接地系统单相接地故障检测技术1引言电力系统的接地处理方式主要有直接接地,电抗接地,低阻接地,高阻接地,谐振接地(又称消弧线圈接地)和不接地。
前三种称为大电流接地系统,后三种称为小电流接地系统。
我国3~66kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统,该系统最大的优点是发生单相接地故障时,并不破坏系统电压的对称性,且故障电流值较小,不影响对用户的连续供电,系统可运行1~2h。
但长期运行,由于非故障的两相对地电压升高1.732倍,可能引起绝缘的薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常用电。
同时,弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。
因此,当发生单相接地故障时,必须及时找到故障线路予以切除。
2目前的检测方法及存在的问题(1)绝缘监察装置利用接于公用母线的三相五柱式电压互感器,其一次线圈均接成星形,附加二次线圈接成开口三角形。
接成星形的二次线圈供给绝缘监察用的电压表、保护及测量仪表。
接成开口三角形的二次线圈供给绝缘监察继电器。
系统正常时,三相电压正常,三相电压之和为零,开口三角形的二次线圈电压为零,绝缘监察继电器不动作。
当发生单相接地故障时,开口三角形的二次端出现零序电压,电压继电器动作,发出系统接地故障的预告信号。
这是以前常规变电所使用最多、应用最广泛的绝缘监察装置,其优点是投资小,接线简单、操作及维护方便。
其缺点是只发出系统接地的无选择预告信号,不能准确判断发生接地的故障线路,运行人员需要通过推拉分割电网的试验方法才能进一步判定故障线路,影响了非故障线路的连续供电,不能满足日益发展的城乡经济对供电可靠性的要求。
基于上述原因,我国从50年代末就开始研制小电流接地自动选线装置,提出了多种选线方法,并开发出了相应的各种装置。
(2)各种选线原理分析:①稳态分量法。
稳态分量法又分为零序电流比幅法,零序电流相对相位法,以及群体比幅比相法。
小电流接地系统接地故障分析知识讲解

小电流接地系统单相接地故障分析与检测为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。
小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。
但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。
然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。
单相接地故障分析当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。
系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。
图1中性点不接地电力系统电路图与矢量图当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。
此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。
小电流接地系统发生单相接地故障的处理

小电流接地系统发生单相接地故障的处理第1条单相接地故障的现象1.1 警铃响,“母线接地”告警;1.2 绝缘检查电压表三相电压指示不平衡,接地相电压降低或为零,其它两相电压升高或为线电压,此时为稳定接地;1.3 若绝缘监察电压表指针不停的摆动,则视为弧光间歇性接地故障。
第2条单相接地故障的分析判断小电流接地系统发生单相接地故障时,将会导致三相电压不平衡。
完全接地时,故障相电压为零,其它两相电压升高至线电压;不完全接地时,故障相电压下降, 其它两相电压升高。
当出现接地告警时,应认真检查三相电压情况以做出正确判断,严禁将以下情况误判断为接地故障,具体有:2.1 TV一次、二次保险熔断器或TV二次回路断线引起得三相电压指示不平衡。
2.2 空投母线时造成的电压不平衡误发接地告警。
第3条电网中允许带接地故障的运行时间3.1 电网经消弧线圈接地时,其允许带接地时间运行的时间为取决于制造厂家的技术规定;3.2 6-35kV配电网一点接地,允许其运行时间不超过2小时。
第4条单相接地故障的处理当发生单相接地故障时,应首先详细检查站内设备无异常,确认本站设备无异常,可向调度申请进行拉路检查,查找时两人进行,一人监视电压,一人进行拉路。
具体处理过程如下:1、记录接地时间,判明是否真接地及接地相别;2、将接地情况(接地时间、性质、相别、仪表指示、电压情况等)向值班调度员汇报。
3、当两段母线并列运行时,先断开母线分段开关,判明接地母线;4、检查站内设备无接地异常;5、按调度令进行拉路检查,拉路前制定好拉路顺序。
一般拉路顺序为;(1)先架空线路后电缆线路,空载线路后负载线路,先长线路后短线路;(2)先一般用户,后重要用户;(3)先无保安电用户,后有保安电用户;6、当拉完所有出线后接地故障仍查不到接地线路,则有可能是接地点在母线上或两条以上线路同名相接地。
(1)如接地点在母线上时,根据调度命令,将接地母线撤出运行,排除故障后恢复对外供电;(2)如接地为不同线路同相接地,可根据调度令先将母线停电,然后用试送电的方法判别接地线路。
小接地电流系统中单相接地故障的处理

小接地电流系统中单相接地故障的处理小接地电流系统是一种常见的电气绝缘配电系统,用于保护设备和人员免受电击和电弧灾害。
然而,如果存在故障,如单相接地故障,可能会导致该系统无法正常运行。
因此,下面将介绍小接地电流系统中单相接地故障的处理方法。
1. 确认故障点在处理单相接地故障之前,首先需要确定故障点。
可以使用接地电阻测试仪、绝缘电阻测试仪等工具对各个部件进行测试,以判断哪个位置出现了故障。
常见的故障点包括线路、开关、变压器等等。
2. 排除故障点确认故障点后,需要对故障点进行排除故障。
对不同的故障点,采用不同的排除方式,如下:(1)线路故障点线路故障点出现时,需要检查线路的绝缘情况,排查是否存在绝缘材料的老化、磨损等情况。
可以使用绝缘电阻测试仪测试绝缘电阻情况,查看绝缘性能是否达到要求。
如果绝缘存在问题,则需要对线路进行更换或维修。
(2)开关故障点开关故障点出现时,需要检查开关的接线情况,排查是否存在接线不良、接线位置错误等情况。
如果接线存在问题,则需要重新连接。
同时,需要检查开关的绝缘情况,是否存在绝缘材料老化、磨损等情况。
如果绝缘存在问题,则需要对开关进行更换或维修。
(3)变压器故障点变压器故障点出现时,需要检查变压器的绝缘情况是否存在问题,排查变压器绝缘材料老化、磨损等情况。
同时,需要检查变压器的接线情况,排查是否存在接线不良、接线位置错误等情况。
如果变压器存在故障,则需要更换或维修。
3. 接地保护器接地保护器是一种重要的安全保护设备,能够检测电气设备是否存在接地故障,并进行报警或触发开关。
因此,在小接地电流系统中,接地保护器的作用非常重要。
当发现单相接地故障时,需要检查接地保护器的工作情况,排查是否存在接地保护器故障或误动等情况。
4. 处理方案根据实际情况制定处理方案。
如果故障较小,可进行现场维修;如果故障较大,需要报告上级领导并组织专业人员进行处理。
同时,需要及时关闭故障设备,确保故障不会对其它设备产生影响。
小电流接地系统单相接地故障的判断与处理

小电流接地系统单相接地故障的判断与处理一、概述小电流接地系统是指电力系统中采用特殊的接地方式,将系统接地电流限制在很小的范围内(小于1A),以减小绝缘击穿发生的可能性,提高系统的安全性和可靠性。
但是,在小电流接地系统中,由于接地电流很小,一旦发生单相接地故障,会很难被及时发现和定位,给系统运行带来极大的风险。
因此,本文将探讨小电流接地系统单相接地故障的判断与处理方法。
二、小电流接地系统单相接地故障的原因小电流接地系统单相接地故障的原因主要有以下几种:1. 电缆终端缺陷:当电缆终端出现绝缘缺陷时,会导致单相接地故障。
2. 外界短路电流影响:电力系统中,当出现接地故障时,会产生一定的短路电流,使得系统的地电位发生变化,从而影响到小电流接地系统的正常运行。
3. 土壤湿度不足:小电流接地系统是通过地下金属接地网与土壤接触实现接地的,如果土壤湿度不足,将会产生一定的接地电阻,从而影响系统的接地效果,导致单相接地故障的出现。
三、小电流接地系统单相接地故障的判断方法小电流接地系统单相接地故障的判断方法主要有以下几种:1. 就地巡检:一些单相接地故障可以通过就地巡检来进行判断,例如观察接地网是否存在绝缘A故障、接地电阻是否增大等。
2. 压缩信号分析法:通过对小电流接地系统压缩信号进行分析,可以判断出故障点的位置,从而快速定位单相接地故障。
3. 采用低频模拟故障信号:通过向小电流接地系统注入低频模拟故障信号,可以判断出故障点的位置,即可由故障点所在的位置判断出单相接地故障的具体位置。
四、小电流接地系统单相接地故障的处理方法小电流接地系统单相接地故障的处理方法应根据具体情况而定,但一般可以采用以下方法:1. 找到故障点所在的位置:通过采用上述的判断方法,可以找到单相接地故障的具体位置。
2. 对故障线路进行隔离:为了避免故障扩大,需要对故障线路进行隔离,防止故障扩散。
3. 更换有关部件:更换故障件是解决单相接地故障的最终方法,一旦故障件被更换,接地系统将重新正常运行。
小电流接地系统发生单相接地故障的特征及选线原理

For personal use only in study and research; not for commercialuseFor personal use only in study and research; not for commercialuse小电流接地系统发生单相接地故障的特征及选线原理小电流接地系统是指中性点不接地、经消弧线圈接地或经高阻接地方式的电力系统,我国大部分66kV及以下电网都采用这种接地方式。
小电流接地系统发生单相接地故障后的故障特征表现在以下几个方面:(1)发生接地故障后,系统三个线电压UAB,UBC,UCA幅值和相位仍维持不变,即对称性不变,由于配电变压器通常为Y/Y0接线或者△/Y0接线,因此0.4 低压配电网上的用电设备能够正常运行。
(2)发生单相接地故障后,由于零序回路阻抗值很大,因此单相接地电流很小,往往小于负荷电流,更远小于相间(包括三相)短路故障,因此继电保护装置不会动作切除故障。
(3)系统三个相电压UA,UB、UC出现不对称运行状态。
如果发生单相金属性接地(接地电阻为零),则故障相的电压降到零,非故障相的电压升高到线电压。
此时电压互感器开口三角处测量出100V电压。
如果发生单相非金属性接地(接地电阻大于零),则故障相的电压降低但不为零,非故障相的电压升高,但达不到线电压。
电压互感器开口三角处电压在0~100V之间。
如果非故障相长时间过电压运行,将有可能导致第二点击穿,从而导致故障扩大。
因此我国规定,系统可以带故单相接地故障运行1~2H,超过这个时间必须停电。
(4)各条线路都会出现零序电流,如果某条线路越长、线路上电缆越多,则该线路的零序电流越大,故障线路的零序电流不一定最大。
因此灵虚电流保护定值很难确定。
针对以上故障特征,目前小电流接地选线装置应用原理分为五种,按照利用信号的稳态分量或者暂态分量进行故障选线,可分为稳态选线和暂态选线两大类。
注入信号法、残流增量法、中电阻法属于稳态选线,而暂态电量法、行波法属于暂态选线。
小电流系统的单向接地保护

IB IC
U d 01 3 (U A D U B D U C) D E A
中性点电压升高为相电压。
IC
I B
IA IB
0 U BD
j C 0
IC
U CD
j C 0
ID IB IC
I D 3U C0
非故障相电压升高 3 倍; 线电压依然对称。
接地点电流为正常时单相电容电流3倍
15
I B II
线 路 II
CBA
I L
ID C0Ⅱ
21
五、小接地电流系统中单相接地的保护
1. 零序电压保护
利用单相接地短路,同电压等级 网路出现零序电压的特点。
在发电厂、变电所母线装设绝缘 监视装置,测量3U0 依次断开各 条线路、然后重合
V V V+
延时信号
U0>
绝缘监视装置
2. 零序电流保护
利用故障线路较非故障线路的零序电流大的特点。 起动电流应躲过其它线路故障时本线路的电容电流
为此,在中性点接入一个电感线圈——消弧 线圈,用来抵消电容电流。
为了避免谐振,通常采用过补偿的方式,即: “消弧线圈电抗”=(1.05~1.1)“全部的容
抗”。
3
A
B C
中性点不接地——小电流接地 中性点经消弧线圈接地——小电流接地 中性点直接接地——大电流接地
4
复习一下串联、并联电路的近似方法:
9
Z1
c1
c1
2
2
Z2
c2
c2
2
2
Z0
c0
c0
2
2
2)小电流接地系统
Z 2、
Z 0与
1 c 0
2
小电流接地系统单相接地故障处理

小电流接地系统单相接地故障处理引言小电流接地系统作为一种常见的电力系统接地形式,具有保护设备和人身安全的重要作用。
然而,单相接地故障是小电流接地系统常见的故障之一。
本文将介绍小电流接地系统单相接地故障的处理方法。
了解单相接地故障在小电流接地系统中,单相接地故障是指系统中某一相导体与地之间发生接地故障,导致相对于地的电压变化。
单相接地故障具有以下特点: - 只有一相导体与地接触,除此之外的其他导体与地之间没有接触; - 接地故障点与接地系统之间存在较高的电阻连接; - 出现单相接地故障后,系统中将会出现地故障电流。
单相接地故障的检测在处理单相接地故障之前,首先需要进行故障的检测,以确定接地故障的具体位置。
常用的单相接地故障检测方法包括以下几种:1. 使用继电器保护继电器保护是一种常见的故障检测方法。
通过监测电流和电压的变化,继电器保护可以判断是否存在单相接地故障,并给出故障位置的指示。
2. 使用故障录波仪故障录波仪可以记录系统中的电流和电压波形,通过对波形进行分析,可以判断是否存在单相接地故障,并确定故障位置。
3. 使用红外热像仪红外热像仪可以检测设备和线路的温度变化,如果某一设备或线路的温度异常升高,可能意味着存在单相接地故障。
单相接地故障的处理方法一旦确定了单相接地故障的存在及其位置,就需要采取相应的处理措施来解决问题。
以下是一些常见的单相接地故障处理方法:1. 进行接地点检查首先需要对接地点进行检查,确保接地电阻正常,没有松动或断开的情况。
如果接地电阻异常,应及时修复或更换。
2. 寻找故障点通过继电器保护、故障录波仪或红外热像仪等方法,确定单相接地故障的具体位置。
然后可以通过巡视、测量和检查相关线路设备来找到故障点。
3. 修复或更换故障设备或线路一旦找到故障设备或线路,应及时修复或更换。
修复方法包括绝缘处理、焊接、更换零部件等。
4. 进行系统测试在处理了单相接地故障后,还需要进行系统的测试,确保故障已经被解决,并且系统能够正常运行。
电网小接地电流系统单相接地故障处理

电网小接地电流系统单相接地故障处理【摘要】小接地电流系统中,发生单相接地故障,应迅速查找故障点,争取在未发展成两相接地短路故障前,将其切除,以免扩大事故。
单相接地故障产生原因多、现象复杂、危害大,可根据具体情况对故障进行判断,并采取切实可行的处理方法。
论述了小接地电流系统发生单相接地故障的原因、产生危害和主要现象,对各种故障现象的区分判断,讲明了具体的查找处理方法,最后讲述了查找处理过程中的注意事项和几种特殊情况,在判断、查找处理时能够及时准确,确保系统安全稳定运行。
【关键词】电压;故障;线路;检查;处理0 引言小接地电流系统单相接地故障的特点;电力系统按中性点接地方式不同,分为中性点直接接地系统(包括中性点经小电阻接地)、中性点不接地系统(包括中性点经消弧线圈接地)两种。
中性点直接接地系统称为大电流接地系统。
中性点不接地系统、中性点经消弧线圈接地系统,通常称为小电流接地系统。
小电流接地系统发生单相接地故障时,由于线电压的大小和相位不变(仍对称),而且系统的绝缘又是按线电压设计的,因此允许短时间运行而不立即切除故障,带接地故障运行时间,一般10kV、35kV线路允许接地运行不超过两小时,这主要是受电压互感器和消弧线圈带接地允许运行时间的限制。
中性点经消弧线圈接地系统有接地故障时,制造厂一般规定消弧线圈可运行两小时,作为运行人员应加强监视消弧装置PT断线、弧光接地、消弧线圈的上层油温不能超过85°C(最高限值95°C)等经消弧线圈相关接地信息。
1 发生单相接地故障1.1 单相接地故障的原因设备绝缘不良,如老化、受潮、绝缘子破裂、表面脏污等,发生击穿接地。
小动物、鸟类及外力破坏。
线路断线、恶劣天气,如雷雨、大风等、人员过失。
1.2 单相接地故障的危害由于非故障相对地电压升高(完全接地时升至线电压值),系统中的绝缘薄弱点可能击穿,造成短路故障。
故障点产生电弧,会烧坏设备并可能发展成相间短路故障。
小电流接地系统单相接地故障分析判断与处理

小电流接地系统单相接地故障分析判断与处理电力系统按接地处理方式可分为大电流接地系统(包括直接接地,电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。
我国3~66kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统。
在小电流接地系统中,单相接地是一种常见的临时性故障,在该系统中,如发生单相接地时,由于线电压的大小和相位不变(仍对称),且系统绝缘又是按线电压设计的,所以允许短时运行而不切断故障设备,系统可运行1~2h,从而提高了供电可靠性,这也是小电流接地系统的最大优点。
但是,若一相发生接地,则其它两相对地电压升高为相电压的1.732倍,特别是发生间歇性电弧接地时,接地相对地电压可能升高到相电压的2.5~3。
0倍。
①警铃响,“xx千伏母线接地"光字牌亮,个性点经消弧线圈接地的系统,常常还有“消弧线圈动作”的光字牌亮.②绝缘监察电压表三相指示值不同,接地相电压降低或等于零,其它两相电压升高为线电压,此时为稳定性接地.如果绝缘监察电压表指针不停地来回摆动,出现这种现象即为间歇性接地.③当发生弧光接地产生过电压时,非故障相电压很高,表针打到头,常伴有电压互感器高压一次侧熔体熔断,甚至严重烧坏电压互感器。
④完全接地。
如果发生A相完全接地,则故障相的电压降到零,非故障相的电压升高到线电压,此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。
⑤不完全接地.当发生一相(如A相)不完全接地时,即通过高电阻或电弧接地,中性点电位偏移,这时故障相的电压降低,但不为零。
非故障相的电压升高,它们大于相电压,但达不到线电压.电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。
⑥电弧接地.如果发生A相完全接地,则故障相的电压降低,但不为零,非故障相的电压升高到线电压。
此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。
小电流接地系统中单相接地故障的判断与处理

采用电桥法时应保证测量精度,电桥连接线要尽量短,线径要足够大,与电缆芯线连接要采用压接或焊接,计算过程中小数位数要全部保留。
(3) 电容电流测定法:
电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。测量电路如图4所示,使用设备为1~2kVA单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。
(1)母线和某一线路都报出接地信号,应检查故障线路的站内设备有无异常。
(2)只报出母线接地信号,应检查母线及连接设备、变压器有无异常。如经检查,站内设备无异常,则有可能是某一线路有故障,而其接地故障失灵,应用瞬停的方法,查明故障线路。
当各出线未装接地信号装置时,首先应根据前面所述的特征,判明故障性质的相别;其次分网运行,缩小查找范围。在分网运行时,应考虑各部分之间功率平衡、继电保护的配合、消弧线圈的补偿等因素;然后再检查所内设备有无故障,如设备瓷质部分有无损坏,有无放电闪络,设备上有无落物,有无小动物及外力破坏,有无断线接地,检查互感器、避雷器、电缆头有无击穿损坏等;最后在确定所(站)内设备没问题的情况下,可以汇报调度,用瞬停拉线查找法,依次断开故障所在母线上各分路开关。如果接地信号消失,绝缘监察电压表指示恢复正常,即可以证明所瞬停的线路上有接地故障。查出故障线路之后,对于一般不重要的用户线路,可以停电并通知查找;对于重要用户的线路,可以转移负荷或者通知用户做好准备后停电查找故障点。
在某些情况下,系统的绝缘并没有损坏,而是由于其它原因产生某些不对称状态,可能报出接地信号,此种接地称为“虚幻接地”,应注意区分判断。如电压互感器内部发生故障时,电压互感器一相高压熔体可能熔断,而报出接地信号,此时应将电压互感器立即停运。又如变压器对空载母线充电时,由于开关三相合闸不同步,三相对地电容不平衡,可能使中性点发生位移,三相电压不对称,也报出接地信号,此时一旦投入一条线路或投入一台所用变压器,使谐振条件被破坏,此现象即可消失。
小电流接地系统单相接地故障特点

小电流接地系统单相接地故障特点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!概述小电流接地系统是一种常见的接地系统,通常用于对设备进行接地保护。
小电流接地系统单相接地故障的分析及处理

小电流接地系统发生单相接地故障时,由于线电压的大小和相位不变(仍对称),而且系统的绝缘又是按线电压设计的,因此允许短时间运行而不立即切除故障,带接地故障运行时间,一般10kV、35kV线路允许接地运行不超过2h,这主要是受电压互感器和消弧线圈带接地故障允许运行时间的限制。
中性点经消弧线圈接地系统有接地故障时,制造厂一般规定消弧线圈可运行2h,应监视消弧线圈的上层油温不能超过85°C(最高限值95°C)。
一、发生单相接地故障的原因1、设备绝缘不良,如老化、受潮、绝缘子破裂、表面脏污等,发生击穿接地;2、小动物、鸟类及外力破坏;3、线路断线;4、恶劣天气,如雷雨、大风等;5、失误操作。
二、单相接地故障的危害1、由于非故障相对地电压升高,系统中的绝缘薄弱点可能击穿,造成短路故障。
2、故障点产生电弧,会烧坏设备并可能发展成相间短路故障。
3、故障点产生间隙性电弧时,在一定条件下,产生串联谐振过电压,其值可达相电压的2.5~3倍,对系统绝缘危害很大。
三、单相接地故障的现象1、警铃响,“10kV(35kV)I或II段母线接地”光字牌亮。
中性点经消弧线圈接地系统,还有“消弧线圈动作”光字牌亮。
2、绝缘监察电压表指示。
当系统发生完全接地故障时,接地相电压表指示为零,其他两相对地电压表指示升高√3倍,线电压表指示正常,此时电压互感器开口三角形有100V输出电压;当系统发生不完全接地故障时,接地相电压表指示减小,低于相电压,其他两相对地电压表指示增加,大于相电压,线电压表指示正常,此时电压互感器开口三角形有0V~100V输出电压。
稳定性接地时,电压表指示无摆动;若指示不停摆动,则为间歇性接地。
3、中性点经消弧线圈接地系统,装有中性点位移电压表时,可以看到有一定指示(不完全接地)或指示为相电压值(完全接地时)。
4、消弧线圈的接地告警灯亮。
5、发生弧光接地,产生过电压时,非故障相电压很高(表针打到头)。
小电流接地系统单相接地故障的处理

小电流接地系统单相接地故障的处理摘要:小电流接地系统在我国中压电网中得到广泛应用,系统的单相接地故障选线问题没有得到很好的解决。
针对这种情况,本文对小电流接地系统单相接地故障情况进行了分析,最后根据实际情况提出了单相接地故障处理的优化模式。
关键词:小电流;接地系统;单相接地;故障处理1前言小电流接地系统单相接地在实际的运行过程中会出现比较多的问题,这些问题的存在对于用电用户群体已经造成了比较严重的不良影响,因此,如果要使得小电流接地系统的效果得到稳定的发挥,就需要将其中存在的问题进行解决,由此,现阶段的小电流接地系统单相接地故障分析及选线研究工作就变得尤为重要了。
所以,在接下来的文章中就将对其进行相关的研究和分析,并且在文章中还会提出一定的具有建设性的意见或者对策,促使小电流接地系统中存在的问题进行快速的解决。
2小电流接地系统的概述小电流接地系统是指中性点不接地的系统,经过消弧线圈接地的系统也可以被称为是小电流接地系统。
当发生单相接地故障的时候,系统中是无法形成短路回路的,由此,接地短路的电流与正常的负荷电流相比较的话是非常小的,这也是小电流接地系统名称的由来,由于其具有电流比较小的特点,因此在国内的很多工作中都有这一系统的应用,根据相关的调查也能够发现,但凡是国内的110kV以下的中压系统,都可以对其进行应用。
因此,小电流接地系统对于国内电力事业的发展还是比较重要的。
3小电流接地系统单相接地故障成因分析对小电流接地系统单相接地事故进行综合分析,发现导致小电流接地系统发生单相接地现象的原因主要有以下几点:(1)系统投运之前,没有依据相关规定与要求,对电缆进行耐压试验检测,使电缆在长时间运行过程中,受自然环境变化、变电站周边环境变化等因素影响,绝缘下降,从而出现电缆接头绝缘击穿问题。
(2)小电流接地系统单相接地时,存在电流间歇性突变问题,从而引发相应线路保护装置发起保护动作。
由于保护装置在运行过程中,采用频率相对较大,当保护装置处于启动状态时,电压互感器断线监测锁闭,35kV母线BC相熔丝熔断,从而发起距离保护动作。
35kV输电线路小电流接地系统单相接地处理

35kV输电线路小电流接地系统单相接地处理摘要:本文首先介绍了大、小电流接地系统区别。
然后详细说明了小电流接地系统单相接地的现象及危害。
最后,结合自身工作实际阐述了35kV小电流接地系统单相接地的处理措施。
关键词:小电流接地系统;单相接地;处理措施1 小电流接地系统和大电流接地系统三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。
电力系统的中性点接地方式是一个综合性的技术问题,涉及电网的安全、可靠、经济运行;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。
一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信等有着密切的关系。
6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式,包括中性点不接地、高阻接地、经消弧线圈接地方式等。
在小电流接地系统中发生单相接地故障时,由于中性点非有效接地,故障点不会产生大的短路电流,因此允许系统短时间带故障运行。
这对于减少用户停电时间,提高供电可靠性是非常有意义的。
小电流接地系统特别是35kV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。
而单相接地是小电流接地系统中最常见的一种临时性故障,多发生在潮湿、多雨天气。
2 小电流接地系统单相接地的现象小电流接地系统通常配有绝缘监察装置,将母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压,当小电流接地系统发生单相接地时,一般出现下列现象:(1)电压。
三相电压表指示值不同,线电压仍对称,不影响用电设备的正常供电。
单相完全接地时电压一般显示为接地相电压为零,其余两相电压升至线电压,单相不完全接地时,电压一般显示为接地相电压降低,非故障两相电压升高。
综述︱小电流接地系统单相接地故障选线方法综述

综述︱小电流接地系统单相接地故障选线方法综述福州大学电气工程与自动化学院的研究人员姜健、鲍光海,在2015年第12期《电气技术》杂志上撰文指出,中性点经消弧线圈接地是小电流接地系统方式之一,这类系统随着消弧线圈补偿程度与接地电阻的不同具有不尽相同的故障信号,是目前选线的难点。
本文根据现有研究,总结了小电流接地系统单相接地故障选线方法,对近几年基于暂态量选线的方法进行详细阐述和归纳,结合配电网的现实情况以及今后的研究方向提出了几点意见。
智能配电网作为智能电网的核心部分之一,其中故障选线技术作为保证配电网安全可靠稳定运行的基础性工作,具有重要现实意义[1]。
我国6-66kV中压配电网的中性点一般采用小电流接地系统,具体包括:中性点不接地系统(neutral ungrounded system, NUS),中性点经消弧线圈接地,即谐振接地系统(neutralresonant-grounded system,NES)和中性点经高阻接地系统(neutralresistor-groundedsystem,NRS)。
当配电网某一相发生接地故障时,不构成短路回路,且接地点的故障电流小,故这类系统称为小电流接地电系统[2]。
这类接地方式特点有:①故障稳态信号微弱。
小电流接地系统发生单相接地故障时产生的是系统对地电容电流,数值小。
经消弧线圈补偿后(过补偿、欠补偿、完全补偿),数值更小。
②单相接地情况复杂,受电弧影响大。
单相接地故障可分为:直接接地、经高阻接地、电弧接地以及雷击放电接地。
单相接地往往伴随着电弧现象,而电弧又是典型的暂态过程。
③故障暂态特征复杂,随机性强。
故障电压和电流在暂态过程中有着丰富的特征量,并且不受消弧线圈的补偿的影响。
但是暂态信号特性复杂,在不同的故障发生条件下,暂态量信号又有所差异。
由于上述技术难题,中性点谐振接地接地系统,基于故障稳态量的选线方法存在不可避免的缺陷。
因而对于谐振接地系统基于故障暂态量的选线方法成为了许多相关学者的研究重点。
小接地电流系统中单相接地故障的处理.ppt

试拉时应按试拉顺序表逐条试拉;
试拉35kV线路时可能导致35kV备用自投装置动 作,应先停用该备用自投装置;若可能导致其 所供变电所的10kV失电,则应先行倒方式后试 拉;
有发电厂并网的线路,应先令发电厂解列后再 试拉。
判明故障性质和相别分割电网缩小故障范围检查相关厂站内设备接地选线变电值班员发现母线电压异常消弧线圈动作接地信号动作开口三角电压数值等情况时应立即记录下母线上相电压和线电压的数值小电流接地检测装臵动作情况迅速汇报值班调度员
小接地电流系统中单相接地故障的处理
一、概述 二、处理步骤 三、双线同名相接地处理 四、母线单相接地处理
消弧线圈的脱谐度在正常运行时应选择在5%~ 15%的范围,同时补偿后的电流(残流)不宜 超过10A。
当主变35kV或10kV侧为三角形接线方式时,若 需要使用消弧线圈进行补偿,消弧线圈应接于 何处?
发生单相接地,所有线路对地电容电流流入接 地点,通过线路流入母线、主变,形成接地电流 回路。
不中断用户供电或严重影响供电质量, 避免负荷潮流大的波动。
保护装置的动作条件有无变更。 禁止用拉合刀闸分割电网。
如系统发生单相接地故障,而该系统同 时发生线路跳闸重合成功,则可对该线 路先行试拉。
拉开运行中的电容器开关及空充旁路母 线的开关。
待接地变电站及相关系统发电厂、直属 用户内部检查完毕,对接地母线上的线 路按顺序逐条试拉。
判明故障的性质、相别; 分网运行缩小范围; 利用“瞬停法”查找出有接地故障的线路。
若检查仍无明显故障点,为了确定接地故障是 否发生在主变回路,可以将低压侧母联或分段 开关合上,拉开故障母线上的主变开关,观察 母线上的电压是否恢复正常,若恢复正常,说 明故障不在母线上,而在主变回路;
小电流单相接地故障分析及系统保护原理

小电流单相接地故障分析及系统保护原理摘要小电流接地系统在我国3KV-66KV的电力系统中有着广泛的应用,单相接地故障是小电流系统中最常见的故障。
提出判断和分析单相接地故障的几类方法,处理单相接地故障的一般步骤,最后对小电流接地系统的保护原理进行总结。
关键词小电流接地系统;单相接地故障;系统保护原理在我国,小电流接地系统是指在3KV-66KV的电力系统中采用中性点不接地或中性点经电阻、消弧线圈接地的方法。
单相接地是小电流接地系统中最常见的故障,此时三相交流供电系统中一根相线与大地成等电位状态,该相线的电位与大地的电位相等,都为零。
发生单相接地故障后系统虽可继续运行,但由于非故障相的对地电压升高,若不及时处理可能会导致非故障相绝缘破坏继而引发相间短路,用电设备烧毁,影响用户用电。
1小电流单相接地故障的判断与分析快速排除单相接地故障的前提是要及时准确地判定单相接地故障。
常见的小电流单相接地故障有以下几种:1)单相完全接地。
在发生单相完全接地时,故障相的对地电压为零,其他两相的相电压升高了倍,而线电压大小和相位不变,只是中性点发生偏移。
电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。
2)单相不完全接地。
当发生一相不完全接地(即通过高电阻或电弧接地)时,故障相的对地电压降低(>0),非故障相的对地电压升高到大于相电压而小于线电压。
电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。
3)PT断线。
PT断线即电压互感器的保护熔断器烧断,一般可以分为PT一次侧断线和二次侧断线。
PT一次侧断线又可分为全部断线和不对称断线。
全部断线时二次侧电压全部为零,电压互感器开口三角处电压也为零;不对称断线时对应故障相的二次侧无相电压,非故障相的二次电压不变,电压互感器开口三角处有电压。
PT二次侧断线时,故障相的对地电压为零,电压互感器开口三角处无电压。
4)空载母线假接地。
用变压器对空载母线充电时开关三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,发出接地信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小电流接地系统中发生单相接地,虽然对供电不受影响,但因非故障相对地电压升高到线电压,可能引起对地绝缘击穿而造成相间短路。
故发生单相接地后,不答应长期带接地运行,为此必须装设专用仪表来监视对地绝缘状况。
我国目前在中性点不接地系统中,广泛采用检测接地故障的方法之一是利用母线绝缘监察装置发现接地故障。
当系统发生单相接地故障时,接在母线上的电压互感器开口三角接线两端的监察继电器动作,控制室内发出接地信号。
运行人员利用重合闸装置将线路依次断开,当断开故障线路时,接地故障信号瞬间消失。
而假如电压互感器接线错误,如开口三角两端的端子接反、开口三角绕组中有一相或两相绕组的极性接反,就会造成三相电压表指示错误,无法判定故障相别,或者在电网没有接地的情况下误发接地信号,这无疑会给运行人员分析、判定和处理接地故障带来麻烦。
本文就电压互感器的两种常见接线错误进行分析。
1交流绝缘监视装置接线正确的情况
母线电压互感器由三台具有两组二次绕组的单相电压互感器组成,或是一台具有两组二次绕组的三相五柱式电压互感器。
电压互感器原边中性点接地,以10kV电压等级的电网为例,正常时每相绕组加相对地电压,故副边星形每相绕组电压是100V,开口三角形每相绕组电压是100/31/2V。
绝缘监视电压表指示正常的相对地电压,绝缘监视继电器处于不动作状态。
当一次系统中A相发生接地时,原边A相绕组电压降到零,其他两相绕组的电压升高到线电压。
副边星形绕组的A相绕组电压降到零,其他两相绕组电压升高到100V。
三个电压表中,A相电压指示零,另两相指示线电压,由此得知一次系统A相接地。
副边开口三角形的A相绕组电压降到零,其他两相绕组电压升高到100/31/2V,开口三角形两端电压升高到100V。
加在电压继电器上的电压升高到100V,继电器动作发出信号。
2电压互感器开口三角两端的端子接反
三相五柱式电压互感器,二次绕组星形接线的中性点有单独的引出端子,设为N端,该端子接地。
二次绕组开口三角接线的两个端子中有一个接地,设接地端为N端,不接地端为L端。
通常将二次绕组星形接线的中性点与二次绕组开口三角接线的N端一起引出并接地,然后通过二次电缆将L、N、a、b、c5条线送至中心控制室。
假如在绝缘监视装置接线时,误将L、N端接反,工作情况会怎样呢?
在正常运行时,因一次系统三相电压对称,无零序电压,忽略不平衡电压,开口三角形两端电压为零,继电器不动作,三个电压表指示正常,因此这种错误并不能被发现。
假设一次系统中A相发生接地,电压互感器副边开口三角形两端电压升高到100V,继电器动作发出信号,可见这种错误对于绝缘监视继电器的动作并无影响。
但是三个电压表的指示却发生错误,即A相电压指示为100V,另两相电压表指示为51.76V(计算过程略去),显然这种结果是错误的,错误的原因是在各电压表回路中,串接了3U0/n y2(不平衡电压)。
3电压互感器开口三角绕组接线错误
在中性点不接地系统中,新安装或检修后的电压互感器,假如开口三角绕组中有一相或两相绕组的极性接反,就会在送电后系统正常工作的情况下误发接地信号。
这种错误多发生在电压互感器为三台具有两组二次绕组的单相电压互感器情况。
当电压互感器开口三角接线的绕组中有一相绕组极性接反,如a相接反,则电压继电器线圈两端电压:
U=-U a-U b U c=2U c
U=2×100/3=66.7(V)
当电压互感器开口三角接线的绕组中有两相绕组极性接反,如a、b相接反,则电压继电器线圈两端电压:
U=-U a U b U c=-2U a
U=2×100/3=66.7(V)
可见,无论一相接反还是两相接反,电压继电器线圈两端电压均大于动作电压(动作电压整定值一般为15~30V),继电器均动作发出接地信号。
不过这种误发信号在刚一送电时即可发现。
判定这种误发接地信号的方法,可利用电压表来判别,假如三个电压表的读数基本相等,说明系统是正常的。
4结束语
在中性点不接地系统中,用于绝缘监察的电压互感器当出现开口三角两端的端子接反、开口三角绕组中有一相或两相绕组的极性接反的接线错误时,会造成三相电压表指示错误、
误发接地信号,这无疑会给运行人员带来迷惑。
因此在电气安装、调试和运行中,电气二次回路接线是否正确非常重要。