第六章 氧化与还原反应
第六章水中有机物的氧化还原作用
第六章水中有机物的氧化还原作用水中有机物的氧化还原作用是指在水中存在的有机物与氧气之间发生的化学反应。
这类反应在自然界中非常常见,对于水体的生态环境和人类的生活也有着重要的影响。
一、水中有机物的氧化作用水中有机物的氧化作用是指有机物与氧气结合,发生氧化反应。
这一类反应常见于自然界中的水域,例如湖泊、河流和海洋等。
有机物在水中的氧化作用可能会引起许多不良的影响。
首先,当水体中有机物过多时,会造成水质恶化,引发浑浊现象,降低水体的透明度。
其次,水中有机物的氧化反应还会产生大量的二氧化碳和废水,进一步增加水体中的有机负荷,使水体的富营养化程度加剧,破坏水的生态平衡。
此外,有机物的氧化过程还会消耗氧气,导致水中缺氧,危及水中生物的生存。
二、水中有机物的还原作用水中有机物的还原作用是指有机物发生还原反应,将氧气还原为水或其他氧化剂。
这类反应在一些特殊环境中较为常见,例如水下沉积物、底部层水和河床淤泥等。
水中有机物的还原反应在生态系统中起着重要的作用。
首先,这类反应可以使有机物得到有效的分解和降解,降低水体中的有机负荷,促进水的净化和再生。
其次,还原反应还可以释放出能量,为水中的微生物活动提供生存基础,维持水体的能量平衡。
此外,水中有机物的还原过程还会产生一些有机肥料,对于水下生物的生长和繁殖具有一定的促进作用。
三、水中有机物的氧化还原反应机制水中有机物的氧化还原反应是一种复杂的化学过程,其中涉及到多种氧化还原剂和还原剂的参与。
具体机制如下:1.氧化作用机制水中有机物的氧化反应通常可以分为两个步骤进行。
第一个步骤是有机物被氧气氧化为氧化产物,例如二氧化碳和水。
这个步骤是一个放热反应,释放出能量。
第二个步骤是氧化产物进一步与水反应,重新生成有机物和释放氧气。
这个步骤是一个吸热反应,吸收能量。
2.还原作用机制水中有机物的还原反应通常由还原剂引发。
还原剂可以是光合作用产生的氧化还原剂,也可以是其他化学物质。
还原剂与有机物发生反应时,会将有机物中的氧化物还原为水或其他还原产物。
第六章还原反应及其工艺
C
C6 H5 CO 2C 2H 5
+ H2NCNH2
Zn/HCl
C 2H 5
选择性还原C=O成亚甲基,而不影响其它羰基。 选择性还原C=O成亚甲基,而不影响其它羰基。 C=O成亚甲基
搅拌的影响: 搅拌的影响:
铁粉比较重,需要良好的搅拌,否则容易沉到反应器底部。 铁粉比较重,需要良好的搅拌,否则容易沉到反应器底部。 衬有耐酸砖的平底钢槽和铸铁慢速耙式搅拌器。 衬有耐酸砖的平底钢槽和铸铁慢速耙式搅拌器。 耙式搅拌器 新式反应器:衬耐酸砖的球底钢槽和不锈钢快速螺旋桨式搅拌器。 新式反应器:衬耐酸砖的球底钢槽和不锈钢快速螺旋桨式搅拌器。 螺旋桨式搅拌器
铁粉的影响: 铁粉的影响:
洁净、粒细和质软的灰铸铁屑,优于组成比较纯净的钢屑。 洁净、粒细和质软的灰铸铁屑,优于组成比较纯净的钢屑。 通常使用60-100目铁粉。太粗的铁粉表面积小,反应慢; 通常使用60-100目铁粉。太粗的铁粉表面积小,反应慢;太细的 60 目铁粉 铁粉,后处理困难。 铁粉,后处理困难。 用量:每摩尔硝基物理论上需要2.25摩尔铁屑,实际为3 摩尔。 用量:每摩尔硝基物理论上需要2.25摩尔铁屑,实际为3-4摩尔。 2.25摩尔铁屑 思考:1mole间二硝基苯还原为间二氨基苯理论上需要多少摩尔 思考:1mole间二硝基苯还原为间二氨基苯理论上需要多少摩尔 铁屑? 铁屑?
2、锌粉还原
锌粉的还原能力
还原能力比铁粉强。 还原能力比铁粉强。 还原性与反应介质有关:可在碱性、酸性条件下进行。 还原性与反应介质有关:可在碱性、酸性条件下进行。 碱性 条件下进行 可用于还原硝基、亚硝基、氰基、羰基等多种官能团。 可用于还原硝基、亚硝基、氰基、羰基等多种官能团。 缺点:价格比铁粉贵得多。 缺点:价格比铁粉贵得多。
无机化学第六章-氧化还原与电化学
Zn - 2e → Zn2+ Cu2+ + 2e → Cu
3)电池反应: 两半电池反应之和。 Zn + Cu2+ → Zn2+ + Cu
4) 原电池的符号表示:
(-)Zn︱Zn2+(aq)‖Cu2+(aq)︱Cu(+)
• 负极在左,正极在右。用符号(-)(+)表示。 • “︱”表示两相之间的界面。 • “‖”表示盐桥。 • 溶液的浓度、气体的压力也应标明。
C 4HNO 3 4NO 2 CO 2 2H2O
二、离子-电子法
MnO4 SO32 Mn 2 SO42
2 MnO4 8H 5e Mn2 4H2O(还原) 5 SO32 H2O 2e SO42 2H (氧化)
2MnO4 5SO32 6H 2Mn2 5SO42 3H 2O
Zn+CuSO4
ZnSO4+Cu
Zn
CuSO4
Cu-Zn原电池装置
原电池:将氧化还原反应的化学能转变 成为电能的装置。
2. 原电池的组成与表示方法
1)半电池(电极): 组成原电池的每个部分叫半电池。
Zn-ZnSO4 锌电极 失电子-负极
Cu-CuSO4 铜电极 得电子+正极
2)半电池反应:半电池中发生的反应。
2KMnO 4 5K 2SO3 3H 2SO 4 2MnSO 4 6K 2SO 4 3H 2O
配平下列反应:
K2Cr2O7+KI+H2SO4 K2SO4+Cr2(SO4)3+I2+H2O
Cl2+NaOH NaCl+NaClO3+H2O
6.2 原电池与电极电势 原电池的组成与表示方法
大学无机化学课件氧化-还原
目录
CONTENTS
• 氧化-还原反应的基本概念 • 氧化-还原反应的原理 • 氧化-还原反应的实例 • 氧化-还原反应的应用 • 氧化-还原反应的实验操作
01 氧化-还原反应的基本概念
CHAPTER
定义与分类
定义
氧化-还原反应是电子在两个不同原 子间转移的反应,其中氧化是指电子 损失的过程,还原则是电子获得的过 程。
ABCD
还原剂是能够提供电子的 物质,通常是具有较低氧 化数的元素或化合物。
常见的氧化剂包括氧气、 高锰酸钾、硝酸等,常见 的还原剂包括氢气、金属、 碳等。
氧化数的变化与电子转移的关系
氧化数表示元素或化合物在氧化-还原状态下的电荷数, 可以用来描述电子转移的过程。
当电子从还原剂转移到氧化剂时,还原剂的氧化数升高, 而氧化剂的氧化数降低。
通过双线桥法或单线桥法表示电子转移的方向和数量,清晰地展示出氧化剂、还 原剂以及电子转移的过程。
电极反应式表示法
将氧化-还原反应拆分为两个半反应,分别表示为阳极和阴极反应式,有助于理 解和分析反应机理。
02 氧化-还原反应的原理
CHAPTER
电子转移过程
01 02 03 04
电子转移是氧化-还原反应的核心,它决定了反应的进行方向和速率 。
金属与酸反应
金属与酸反应,通常会生 成氢气和对应的金属盐, 同时金属被氧化。
非金属的氧化
非金属氧化物生成
非金属与氧气反应,生成非金属氧化物,如二氧化碳 的生成。
非金属燃烧
非金属在氧气中燃烧,如硫在空气中燃烧生成二氧化 硫。
非金属与碱反应
非金属与碱反应,通常会生成盐和水,同时非金属被 氧化。
氧化反应与还原反应
氧化反应与还原反应氧化反应和还原反应是化学反应中最为重要的两类反应之一。
它们在自然界和人类生活中起着至关重要的作用。
本文将详细介绍氧化反应和还原反应的定义、基本原理、应用以及相关实例。
一、定义氧化反应(oxidation reaction)是指某个物质失去电子,增加氧原子或者减少氢原子的过程。
在氧化反应中,氧化剂是指接受电子的物质,而被氧化的物质则称为还原剂。
与氧化反应相对应的是还原反应。
还原反应(reduction reaction)则是指某个物质获得电子,减少氧原子或者增加氢原子的过程。
在还原反应中,还原剂是指提供电子的物质,而被还原的物质则称为氧化剂。
氧化反应和还原反应总是同时发生的,因为电子的转移是相对的。
二、基本原理氧化反应和还原反应的基本原理是电子转移。
在氧化反应中,氧化剂接受了被氧化物质失去的电子,而在还原反应中,还原剂提供了被还原物质所需的电子。
氧化反应和还原反应经常伴随着原子间的氧、氢的转移。
在氧化反应中,原子间的氧原子增加,而氢原子减少;在还原反应中,原子间的氧原子减少,而氢原子增加。
三、应用氧化反应和还原反应在生活中和工业生产中有着广泛的应用。
以下是一些常见应用的例子:1. 腐蚀:氧化反应和还原反应是金属腐蚀的基本原理。
金属在与氧气接触时会发生氧化反应,失去电子形成金属阳离子。
例如,铁发生氧化反应生成铁离子,导致铁的腐蚀。
2. 电池:电池的工作过程基于氧化反应和还原反应。
在电池中,化学能被转化为电能。
通过氧化反应和还原反应,将电子从一个电极转移到另一个电极,从而产生电流。
3. 漂白剂:漂白剂常常含有氧化剂,通过氧化反应使有色物质发生化学变化,达到漂白的效果。
例如,氧化剂过氧化氢可以用作漂白剂来去除衣物上的污渍。
4. 燃料:燃料燃烧的过程也是氧化反应。
例如,当我们点燃木材时,木材与氧气发生氧化反应,产生热能和二氧化碳。
这是生活中常见的燃烧过程。
5. 呼吸:在生物体内,呼吸过程也是一种还原反应。
有机化学基础知识点氧化与还原反应的机理与应用
有机化学基础知识点氧化与还原反应的机理与应用氧化与还原反应是有机化学中非常重要的反应类型之一,它们广泛应用于许多有机合成、材料制备和药物研发等领域。
本文将介绍氧化与还原反应的基本机理以及在实际应用中的一些典型案例。
一、氧化反应的机理氧化反应是指物质失去电子或氢原子,并与氧原子结合形成氧化物或酮类化合物的过程。
氧化反应的机理可以分为两类:氧化剂获得电子或氢原子的机理和底物失去电子或氢原子的机理。
1. 氧化剂获得电子或氢原子的机理在这类氧化反应中,氧化剂会接受底物的电子或氢原子。
常见的氧化剂包括氧气、过氧化氢、高锰酸钾等。
氧化剂接受电子或氢原子形成还原态的化合物。
例如,二氧化锰(MnO2)被还原为二氧化锰(MnO):2 MnO2 + 2e- → 2 MnO2. 底物失去电子或氢原子的机理在这类氧化反应中,底物会失去电子或氢原子,形成氧化物或酮类化合物。
常见的底物包括醇、酚、醛、酮等。
例如,乙醇(C2H5OH)被氧化为乙醛(CH3CHO):C2H5OH → CH3CHO + 2H+ + 2e-二、还原反应的机理还原反应是指物质获得电子或氢原子,并与氢原子结合形成醇、酚、醛等化合物的过程。
还原反应的机理可以分为两类:还原剂失去电子或氢原子的机理和底物获得电子或氢原子的机理。
1. 还原剂失去电子或氢原子的机理在这类还原反应中,还原剂会失去电子或氢原子。
常见的还原剂包括金属、硫化物或其他含有可获得电子的配体的化合物。
例如,锌(Zn)可以被氧气(O2)氧化为氧化锌(ZnO):2 Zn + O2 → 2 ZnO2. 底物获得电子或氢原子的机理在这类还原反应中,底物会获得电子或氢原子,形成醇、酚、醛等化合物。
例如,乙醛(CH3CHO)被还原为乙醇(C2H5OH):CH3CHO + 2H+ + 2e- → C2H5OH三、氧化与还原反应的应用氧化与还原反应在有机合成和药物研发中有广泛应用。
以下是其中的一些典型案例:1. 氧化反应的应用氧化反应可以用于醇的合成。
第六章 氧化反应
O2N
HO H N H O
O2N Al[OCH(CH3)2]3, HOCH(CH3)2
HO H N H O
O p-Nitro- -acetamido--hydroxyphenylpropanone
H OH (± )-thero-1-p-nitrophenyl-2acetamidopropane-1,3-diol
加氧或脱氢 的反应 称为氧化
Oxidation State(氧化态)
氧化与药物代谢
药物生物合成
第一节 烃类的氧化反应
一、 烷烃的氧化
Oxidation of alkanes and alkyl groups
Barton reaction
二、 苄位烃基的氧化
1. 氧化生成醇、酮、羧酸
2)Jones reagent (选择性氧化方法): —— CrO3-diluted H2SO4-acetone
Jones reagent HO O
—— Unsaturated secondary alcohols can be oxidized to ketones while carbon-carbon double bonds remain unchanged.
O CCH3 RC O3H
methyl
O COCH3 ? + O OCCH3
√
?
三、 –羟酮的氧化反应
第四节 含烯键化合物的氧化
一. 烯键环氧化
1. ,–不饱和羰基化合物的环氧化
,–不饱和羰基化合物中,碳碳双键与羰基共轭,一 般在碱性条件下用过氧化氢或叔丁基过氧化氢使 之环氧化.
机理
O2N
Br2, C6H5Cl O
还原反应
烯烃
烯,炔同时存在,还原到停留在烯的一步。
(三) 不同催化剂催化氢化反应 1.装置: (1)常压或低压氢化反应装置
b.脱硫
(2)铂催化剂
活性很强
可以还原除了酯、羧酸和酰胺外,各种不饱和基 团均可被还原。如:醛酮、腈、硝基化合物,还 原氨化反应等。反应通常可在较低温度和较低氢 气压力下反应。 铂黑、铂炭、二氧化铂等。
载体铂催化剂:Pt/C 酸能促进铂的催化氢化。
缺点:价格昂贵。
(3)钯催化剂
对烯烃、炔烃加氢活性高,还原酮、腈、硝基 化合物,还原氨化反应等,氢解活性也很强。 为最常用的催化剂之一, 可制成氧化钯、钯黑和载体钯(Pd/C)
氢解 (Hydrogenolysis) :在催化氢化的条件下,底物分子被 化验裂解成两个或两个以上的小分子的反应。使一些单键 发生裂解:如卤代物,苄醇类,苄胺类,酰卤类的氢解和 脱硫、酯的酯解等 .
O
O
Pd/C, H2
OCH2Ph
Pd/C, H2 ArCH2NR2
OH
ArCH3 +
R2NH
立体化学:
(1)还原芳环
(2)炔烃
得到反式烯烃
Na RC CH
NH3
RCH CH2
(二)其它金属 1.Fe, HCl(30%)
NO2
NH2
Fe, HCl
2. Sn, HCl
NO2
NH2
Sn, HCl
COOH
COOH
3.Zn-Hg, 浓盐酸,
有机化合物的氧化与还原反应
有机化合物的氧化与还原反应有机化合物是由碳和氢元素构成的化合物,其分子结构复杂多样,包括碳链、环状结构以及含氧、氮等其他元素。
在化学反应中,有机化合物常发生氧化与还原反应,这些反应在生物体内和化工工业中都具有重要的应用。
本文将介绍有机化合物的氧化与还原反应的基本概念、机理和实例。
一、氧化与还原反应的基本概念氧化与还原反应是指物质中发生电荷转移的过程,其中一部分物质失去电子,被氧化为更高价态,同时另一部分物质获得这些电子,被还原为更低价态。
其中,失去电子的物质称为还原剂,它使其他物质发生还原;获得电子的物质称为氧化剂,它使其他物质发生氧化。
二、有机化合物的氧化反应1. 烯烃的氧化:烯烃在氧气存在下可以发生氧化反应,生成相应的醇。
例如,乙烯(C2H4)可以氧化为乙醇(C2H5OH),反应方程式为:C2H4 + O2 → C2H5OH这种氧化反应在工业上用于生产乙醇。
2. 醇的氧化:醇可以在氧气存在下发生氧化反应,生成醛和酮。
例如,乙醇(C2H5OH)可以氧化为乙醛(CH3CHO),反应方程式为:C2H5OH + [O] → CH3CHO + H2O这种氧化反应可以用于实验室合成醛。
3. 醛的氧化:醛可以进一步氧化为相应的羧酸。
例如,乙醛(CH3CHO)可以氧化为乙酸(CH3COOH),反应方程式为:2CH3CHO + [O] → 2CH3COOH这种氧化反应常用于酒精的产酸反应。
三、有机化合物的还原反应1. 羧酸的还原:羧酸可以还原为醛和醇。
例如,乙酸(CH3COOH)可以还原为乙醛(CH3CHO)和乙醇(C2H5OH),反应方程式为:CH3COOH + [H] → CH3CHO + H2OCH3COOH + 2[H] → C2H5OH + H2O这种还原反应常用于制备醛和醇。
2. 酮的还原:酮可以还原为相应的醇。
例如,丙酮(CH3COCH3)可以还原为异丙醇(CH3CHOHCH3),反应方程式为:CH3COCH3 + 2[H] → CH3CHOHCH3这种还原反应在有机合成反应中常用于合成醇类化合物。
第六章 氧化还原
4、根据氧化剂和还原剂得失电子数相等的原则, 找出最小公倍数,合并成一个配平的离子方程式。
①×2 ② ×5 2MnO4-+16H++10e10Cl- - 10e5Cl2 2Mn2++ 5Cl2 + 8H2O
14
2Mn2++8H2O
两式相加 2MnO4-+16H++10Cl-
5、将配平的离子方程式写为分子方程式。注意反 应前后氧化值没有变化的离子的配平。
21
常用电极类型: 常用的电极(半电池),通常有四种类型: 1. 金属-金属离子电极:将金属插入到其盐溶液中构 成的电极。如:银电极( Ag+ / Ag ) 。 电极组成式:Ag|Ag+ (c) 电极反应: Ag++eAg
2. 金属-难溶盐-阴离子电极: 将金属表面涂有其金属 难溶盐的固体,浸入与该盐具有相同阴离子的溶液 中所构成的电极。 如: Ag-AgCl电极。 电极组成式:Ag | AgCl(s) | Cl- (c) 电极反应: AgCl + eAg + Cl22
8
又如: Zn + 2HCl
ZnCl2 + H2
锌失去电子,氧化值升高,被氧化,称为还原
剂(reducing agent),又称电子的供体(electron donor)。 HCl中的H+得到电子,氧化值降低,被还原, HCl称为氧化剂(oxidizing agent),又称电子的受体 (electron acceptor)。 氧化还原反应的本质是反应过程中有电子转移 (电子的得失或电子云的偏移),从而导致元素的 氧化值发生变化。
式中:n=5,氧化态为MnO4-和8H+,还原态为Mn2+ (H2O是溶剂,不包括在内)。
第六章 还原反应
CH3
6.3
金属还原剂
3 .以锂(钠)金属将苯还原成双烯类( diene ),称为 Brich 还原反应。此反应需在含质子溶剂中进行。
OCH3 Li,NH3 t BuOH OCH3 H3+O O
6. 2 金属氢化物还原
3. 硼烷(BH3)
硼烷(borane)是由硼氢化钠与三氟化硼制备,以
二硼烷 B2H6(diborane)的形式存在。
3 NaBH4 + 4 BF3
H B H H H B H H
2 B2H6 + 3 NaBF4
硼烷和二硼烷具有 Lewis Acid 的 特性,因此反应性与 NaBH4 或 LiAlH4 不同。 它容易与羧酸及烯烃反应,却 不与酰卤,卤代烷,砜或硝基化合物 等作用。
O H2,(Ph3P)3RhCl PhH, 25 ¡ æ ,1 atm O
6.1 催化氢化(加氢反应)
一般官能团化合物的加氢反应
反应性 最高 反应物 RCOCl RCH2NO2 RC≡CR′ RCHO RCH=CHR′ RCOR′ ArCH2X RC≡N RCO2R′ RCONHR′ 氢化产物 RCHO RCH2NH2 RCH=CHR′(Z,Cis) RCH2OH RCH2CH2R′ RCH(OH)R′ ArCH3 RCH2NH2 RCH2OH + R′OH RCH2NHR
6. 2 金属氢化物还原
1. 氢化锂铝
一般官能团化合物与氢化锂铝 LiAlH4 作用 反应性 最高 C=O COOR 递 减 CN CONR2 C-NO2 CHBr 最低 CH2OSO2Ar 反应物 CHOH CH2OH CH2NH2 CH2NR2 CNH2 CH2 CH3 氢化产物
第六章 氧化还原滴定法
条件电位
条件电位是校正了各种外界因素影响后得到的电对电 位,反映了离子强度及各种副反应影响的总结果。
当缺乏相同条件下的值时,可采用条件相近的值。在 无 φө′ 值时,可根据有关常数估算值,以便判断反应 进行的可能性及反应进行方向和程度。
五、电极电位的应用
1、判断氧化还原反应的方向
电对1 :Ox1 + ne = Red1 电对2:Red2 - ne = Ox2 φ1ө> φ2ө ,当体系处于标准状态时,电对1 中的氧化 态是较强的氧化剂,电对2中的还原态是较强的还原 剂,它们之间能够发生氧化还原反应,氧化还原反 应的方向为: Ox1 + Red2 = Red1 + Ox2
2Cu2+ + 4I-⇌2CuI↓ + I2 有关反应电对为:Cu2+ + e ⇌ Cu+ φCu2+/Cu+ө = 0.16V I2 + 2e ⇌ 2IφI2/I-ө = 0.54V 从电对的标准电极电位来判断,应当是I2氧化Cu+。 但事实上,Cu2+氧化I-的反应进行的很完全。这是由 于CuI沉淀的生成,使溶液中[Cu+]极小,Cu2+/Cu+电 对的条件电位显著升高, Cu2+ 的氧化能力显著增强 的结果。
3、催化剂对反应速率的影响 催化剂可以从根本上改变反应机制和反应速率,使用 催化剂是改变反应速率的有效方法。能加快反应速率 的催化剂称为正催化剂,能减慢反应速率的催化剂称 为负催化剂。
第三节 氧化还原滴定原理
一、氧化还原滴定曲线
1、滴定开始前 FeSO4 溶液中可能有极小量的 Fe2+ 被空气和介质氧化 生成 Fe3+ ,组成 Fe3+/Fe2+ 电对,但 Fe3+ 的浓度未知, 故滴定开始前的电位无法计算。
无机及分析化学第三版第章
Zn-2e→Zn2+ Cu 2++2e →Cu
Zn+ Cu 2+ →Cu +Zn2+
化学能转化为热能
实验二: Zn-Cu原电池反应
装置
Zn
e-
A
KCl
Zn SO4
现象
1、电流表指针发生偏移 2、Zn棒逐渐溶解,铜棒上有铜沉积 3、取出盐桥,指针回零;放入盐桥,指针偏转 Cu
原理
CuSO4 Zn - 2e →Zn2+ Cu 2++2e →Cu
RT [氧化态]a nFln[还原态]b
298.15K 下:
注意!
0.0n59lg[[氧 还化 原态 态]]ab
1) 如果电对中的某一物质是固体或液体,则它们的 浓度均为常数,常认为是1。
2) 如果电对中的某一物质是气体,其浓度用分压来 表示,分压的单位为:大气压(atm)
例如
碳的氧化数 CO CO2 CH4 C2H5OH +2 +4 -4 -2
硫或铁的氧化数 S2O32- S2O82- Fe3O4 +2 +7 +8/3
example
试计算Cr2O72-中Cr的氧化值和Fe3O4中Fe的氧化值
解: 设Cr的氧化值为x,已知O的氧化值为-2 ,则:
2x + 7×(-2) = -2 x = +6
3. 两个半反应相加,消去电子
2 × ( M n 0 4 - + 8 H + + 5 e = M n 2 + + 4 H 2 O )
+
5 × ( 2 C l- = C l2 + 2 e )
有机化学中的氧化与还原反应
有机化学中的氧化与还原反应有机化学是研究碳化合物及其他含有碳元素的化合物的一门学科。
在有机化学中,氧化与还原反应是常见且重要的反应类型。
氧化反应指的是有机化合物失去电子,增加氧原子或减少氢原子的反应;而还原反应则相反,是指有机化合物获得电子,减少氧原子或增加氢原子的反应。
这篇文章将介绍有机化学中常见的氧化与还原反应,并探讨其在有机合成中的应用。
一、氧化反应氧化反应是有机化学中一类重要的反应,通常需要氧气或氧化剂的参与。
在氧化反应中,有机化合物失去电子,氧原子的数目增加,或者氢原子的数目减少。
氧化反应可以将碳原子氧化为碳氧化物,或是将碳氧化物中的碳原子进一步氧化为羧基或酮基。
1. 酒精的氧化:酒精是一类常见的有机化合物,可以发生氧化反应。
例如,乙醇(C2H5OH)可以被氧化为乙醛(CH3CHO),再进一步氧化为乙酸(CH3COOH)。
这些氧化反应可以使用酒精的氧化剂如酸性高锰酸钾(KMnO4)或酸性二氧化铬(CrO3)来实现。
2. 烯烃的氧化:烯烃是一类具有双键结构的有机化合物,也可以发生氧化反应。
双键上的碳原子可以被氧化为羧基。
例如,丙烯(CH2=CHCH3)经过氧化反应后可以生成丙酸(CH3CH2COOH)。
3. 苯环的氧化:苯环化合物也可以发生氧化反应。
例如,苯(C6H6)在氧气和催化剂的作用下可以被氧化为苯酚(C6H5OH)。
二、还原反应还原反应是有机化学中另一种重要的反应类型,通常需要还原剂的参与。
在还原反应中,有机化合物获得电子,氧原子的数目减少,或者氢原子的数目增加。
1. 醛和酮的还原:醛和酮是一类含有羰基的有机化合物,可以通过还原反应转化为相应的醇。
还原醛和酮的常用还原剂包括硼氢化钠(NaBH4)和氢气(H2)。
2. 羧酸的还原:羧酸是一类含有羧基的有机化合物,可以通过还原反应转化为醛或酮。
还原羧酸的常用还原剂为氢气和铈铵盐(Ce(NH4)2(NO3)6)。
3. 烯烃的还原:烯烃可以经过还原反应转化为烷烃。
无机化学 氧化还原反应
E 与反应计量系数无关,无加和性 与反应式的书写方向无关
Fe3+ + e-=Fe2+ E = 0.771 V 2Fe3++ 2e-=2Fe2+ E = 0.771 V, 而非0.771×2 Fe2+ - e- =Fe3+ E = 0.771V, Fe2+ =Fe3+ + e- 而非 - 0.771 V
第六章 氧化还原
PLEASE ENTER YOUR TITLE HERE
第一节 氧化还原反应 第二节 电池的电动势和电极电势 第三节 氧化还原平衡 第四节 影响电极电势的因素 第五节 元素电势图
电负性:元素的原子在分子中吸引电子能力的相对大小
元素电负性的周期性变化与金属性、非金属性的一致
金属-金属离子电极
金属-金属难溶盐-阴离子电极
氧化还原电极
气体-离子电极
三、常用电极类型氧Leabharlann 还原电对: Ag+ / Ag
电极组成式: Ag+(c) | Ag(s)
电极反应:
由金属板插入到该金属的盐溶液中构成
01
03
02
04
例:银电极
1.金属-金属离子电极
将金属表面涂渍上其金属难溶盐的固体,然后浸入到与该电解质具有相同阴离子的溶液中构成的电极
(1) 两个半电池反应分别为: 正极 MnO4-+ 8H+ + 5e-=Mn2+ + 4H2O 负极 H2O2=2H+ + O2 + 2e- (2)电极组成为: 正极 MnO4- (c1), Mn2+ (c2), H+ (c3) | Pt (s) 负极 H+ (c4), H2O2 (c5) | O2 (p) | Pt (s) (3)电池组成式为: (-) Pt |O2 (p) | H2O2 (c5), H+ (c4)‖MnO4- (c1), Mn2+(c2), H+(c3) | Pt (+)
第六章 氧化还原滴定法
★可逆电对
反应中氧化态和还原态物质能很快建立平衡的电对,其 电极电势严格遵从能斯特方程。
对于任何电极:aOX + ne- = a’Red
c(OX) / c c(OX) / c RT 2.303RT ln lg ' a' a nF nF c(RED) / c c(RED) / c
3+
/Fe2+
电池反应的自发方向为: Fe3+ + Cu = Fe2+ + Cu2+
★对称电对
氧化态与还原态的系数相同。
Fe3+ + e = Fe2+
MnO4- + 8H+ + 5e- = Mn2+ + 4H2O
★不对称电对 氧化态与还原态的系数不相同。 I2 + 2e = 2I- Cr2O72- + 14H+ + 6e- = 2Cr3+ + 7H2O
*注意诱导反应与催化作用的区别?
6.2 氧化还原滴定的基本原理
6.2.1 氧化还原滴定曲线
氧化还原滴定过程中存在着两个电对:滴定剂电对和被滴
定物电对。滴定反应: Ce4+ + Fe2+ = Ce3+ + Fe3+ 随着滴定剂的加入,两个电对的电极电位不断发生变化, 并处于动态平衡中。 绘制方法:横坐标为滴定剂加入体积(mL)或百分数%。 纵坐标为溶液的电位值。 溶液的电位值由两种方法得到: 第一,电对是可逆的,由能斯特方程式求得; 第二,电对是不可逆的由电位计测定。
⑤ φθ’值可查表,在无电对的φθ’时可用相近条件的φθ’值或是
第六章 水中有机物的氧化还原作用
精品课件
29
• BOD5虽然不能代表总的生化需氧 量,但对生活废水和大多数工业废水,
BOD5可占总BOD的70-80%,而且 采用五天培养期,可减少有机物降解释
放NH3的硝化作用的干扰,因此仍广 泛用BOD5表示水中有机物污染程 度。
精品课件
30
(2)化学需氧量( COD)
• COD是指在一定条件下,用强 氧化剂氧化水中有机物时所消耗的 氧化剂相当于氧的量。
第六章
水中有机物 的氧化还原作用
黄甫
精品课件
1
第一节 氧化还原作用基本理论
• 一、天然水中的氧化还原反应
• 天然水中只有少数元素——C、N、 S、O、Mn、Fe、Cr及I等是氧化 还原过程的主要参加者。
精品课件
2
• 天然水中的大多数氧化还原过程
都需要生物做媒介。生物参与的天
然水的氧化还原反应主要包括:有
精品课件
25
2.水中有机物的来源
• 水中的有机物86%来源于生产 和生活活动,只有14%的有机物 来源于自然环境。
精品课件
26
3.有机物含量的表示方法
• 水体中有机污染物组成非常复杂,难以 一一测定。传统上常用一些“间接性指标” 反映水体中有机物的含量和污染状况,这些 指标主要有几类:
• (1)生化需氧量 (BOD)
精品课件
41
作业
•P248页
• 第2、3题
精品课件
42
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
7
• 在缺氧条件下,有机物氧 化分解不完全,会产生对水 生生物无益甚至有害的物质 .
第六章 氧化还原平衡与氧化还原滴定
P146例题
6.3
30
6.3.2 电极电势的产生
(1)电极电势的产生 将金属插入含该金属离子溶液中:
M(s) Mn++n e 开始时,两种可能: v溶 > v沉(活泼金属) v溶 < v沉(不活泼金属) 平衡时: v溶=v沉
31
a
b
双电层示意图 a. 金属表面保持一定量的电子,附近溶液 中含相应数量的正离子。 b. 金属表面保持一定量的正离子,附近溶 液中含相应数量的负离子。
2
5. 掌握电极电势的应用:表示水溶液中物质氧化、 还原有力的强弱;判断氧化还原反应的方向;判 断氧化还原反应进行的程度;测定非氧化还原反 应的平衡常数 6. 掌握元素电势图及其应用 7. 了解氧化还原滴定法的基本特点,了解条件电 极电势的概念,了解条件平衡常数的概念,掌握 氧化还原滴定对条件电极电势差值的要求 8. 了解氧化还原滴定曲线的计算方法,了解氧化 还原滴定法所用的指示剂 9. 掌握高锰酸钾溶液的配制与标定,了解高锰酸 钾法、碘量法和重铬酸钾法的应用 10. 掌握氧化还原平衡和氧化还原滴定法的计算
4
本章主要章节
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 氧化还原反应的基本概念 氧化还原反应方程式的配平 电极电势 电极电势的应用 元素电势图及其应用 氧化还原反应的速率及其影响因素 氧化还原滴定 常用的氧化还原滴定法
5
化学反应一般可分为两类: 非氧化还原反应:反应过程没有电子的 转移,如酸碱反应、沉淀反应、配位反应。 氧化还原反应:反应过程反应物之间发 生了电子的转移,反应前后有元素的氧化数 发生了变化。
2MnO4-+SO32-+2OH核对:
无机化学第六章氧化还原总结
298.15K,忽略 离子强度时
0.0592 n
lg
Ox Red
n 为电极反应中转移的电子数; 式中: [Ox ]为电极反应中氧化型一侧各物质浓度幂的乘积
注意
[Red]为电极反应中还原型一侧各物质浓度幂的乘积
1)纯液体、固体不出现在方程式中。气体用分压(p/p) 表示;(p以kPa为单位, p=100kPa)
已知 (Cl2 / Cl-) = 1.36 V, 当[ Cl- ] = 10 mol·L-1 , p(Cl2) = 1.0 kPa 时, (Cl2 / Cl-) 的值是 ( 1.24V )
I2 + 2e- 2I-
(I2/ I )
(I2/ I )
0.0592 1 2 lg [ I ]2
0.535
利用 ´计算 的 Nernst 方程:
/ 0.0592 lg cOx
n
cRe d
2、氧化还原滴定曲线计算(电极电势)
(1)计量点前——根据被滴定电对计算
(2)化学计量点sp
SP
n11 '
n1
n22 '
n2
适用于对称电对——电极反应中 氧化型、还原型前的系数相同。
(3)计量点后——根据滴定剂电对计算
AgI /Ag :
AgI + e- Ag + I- ;
Cl2/Cl- :
Cl2 + 2e- 2Cl-
(-)Ag ︱ AgI (s) | I- (c1) ‖Cl- (c2)︱Cl2 (P ) ,Pt (+)
:写出反应 I2 + 2S2O32- = 2I- + S4O62- 所对应的原电池符号: 解:根据反应式可知:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH3 E ta r d
CHO
CH3
CH3
CH3 R + 2C r O 2 C l2
CS2
CHO R
R =H 90 %
2 -C H 3 65 %
2-N O 2 50 %
3-C H 3 70 % (立 体 效 应 使 邻 位 收 率 低 )
③硝酸铈铵(Ce(NH4)2(NO2)6)
H 3C CH3 CAN < 50℃ CH3 H 3C
-O A c R
H
P b (O A c ) 4 O
P b ( O A c) 3 H C C R
O Ac P b (O A c ) 2 O C R OAc C R H
O R C H C OAc R
O H 2O R C H C OH R
H 2C
C O O E t P b (O A c ) 4 C OO Et
OH O
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
3.铬酐—吡啶络合物
3.铬酐—吡啶络合物
Collins试剂:CrO3:Py=1:2 PCC: 氯铬酸吡啶盐 PDC: 重铬酸吡啶盐
烯丙位、苄位-OH(不改变双键位置)
适合于所有对酸敏感的官能团的醇类氧化
O O Cr O O O
OH
+HCl
O
Cr Cl
D M SO
DCC
O
O
α :9 9 % β :6 .5 %
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
7.DMSO-Ac2O
7.DMSO-Ac2O(能氧化位阻大的醇)选择性差
CH3 CH3
D M S O - A c 2O r.t
OH CH3 OH CH3 O O
47%
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
三. 1,2-二醇的氧化
1 Pb(OAc)4作氧化剂
OH OH
[O]
O O
1 Pb(OAc)4作氧化剂
OH OH
OH V 400 :
OH 1 顺 式 时 间 短
第二节 醇的氧化 三 1,2-二醇的氧化
OH H H OH H H OH OH P b (O A c)4 CHO 300 CHO
1. Pb(OAc)4作氧化剂
有以下几种情况
① 当有多个烯丙位时,优先氧化取代基多的一侧的烯丙位
H 3C H 3C C C H CH3 SeO2 HOAc H O H 2C H 3C C C H CH3
S eO2 E tO H
OHC CHO
② 在①原则下,CH2>CH3 > CHR2
H 3C
H2 C
C CH3
C H
CH3
SeO2 HOAc
R C C R
O
+
O
Se
O O S e O 2 /H O A c P h C H 2C O P h P h C -C P h
S e O 2 /H O A c C H 3C H 2C H O
O H3CC CHO
三. 烯丙位的氧化反应
1.SeO2/H2O/HOAc
O C H C H H2 C C H C H H C OH [O ] C H C H C
O C rO 3 /H O A c 40℃
O
C rO 3 /H O A c ( 7 5 % ) H 3C O 4 0 ℃ 、 2h r H 3C O O
②KMnO4为氧化剂
H
+
M nO 4 +8H +5e
-
-
+
Mn
2+
+4 H 2O
-
OH
M n O 4 + 2 H 2O + 3 e
-
②KMnO4
8. Oppenauer氧化
H C HO CH H 3C O N
CH2 O C P h 2C O H 3C O N
H C
CH2
N
奎宁
A l( O - ip r) 3 N
第二节 醇的氧化
二 醇被氧化成羧酸
二. 醇被氧化成羧酸
RCH2OH [O] [O] RCOOH R-CHO
R CHOH
[O]
R
O C R
V P b(O A c)4 CHO 1 CHO :
OH P b (O A c) 4 OH CHO CHO
第二节 醇的氧化 三 1,2-二醇的氧化
2. 过碘酸为氧化剂 (HIO4· 2O) (H5IO6) 2H
(HIO4· 2O) 2H
OH
2. 过碘酸为氧化剂
(H5IO6)
OH
OH OH V 30 : 1 OH OH 不 被 氧 化 ( 但 能 被 Pb(OAc)4氧 化 )
M n O 2↓ +4 O H (KO H )
CH3
K M nO 4
COOH 不 管 侧 链 多 长 均 被 氧 化 成 -C O O H
C H 2C H 2C H 3
COOH
③硝酸为氧化剂(稀硝酸)
NO3 +4H +3e
CH3 CH3 CH3
-
NO↑+2H2O
40%HNO3
COO H
只 氧 化 一 个 -CH3
8. Oppenauer氧化
8. Oppenauer氧化奥芬脑尔
(Oppenauer氧化和H2CrO4氧化均不适合伯醇的氧化)
H C HO O R ' + C H 3C C H 3
A l( O - iP r) 3
R
R
C O
R' +
H 3C
H C OH
CH3
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
A g NO 3 + Na 2 C O 3
藻土
A g 2 CO 3 均 匀 分 布 在 载 体 上
OH
烯丙位羟基较仲醇更易被氧化(教材306页) OH
A g2 C O 3 CH3COCH3
HO
O
OH
A g2 C O 3
O
OH
OH
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
6. 二甲亚砜—DCC
二甲基亚砜可被DCC、Ac2O、三氟乙酸酐、草酰氯、 三氧化硫等活化,在温和条件下将醇氧化。 适合于甾族、生物碱及碳水化合物等的氧化
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
6. 二甲亚砜—DCC 6. 二甲亚砜—DCC
N
H
C O
NH
N
C
N
H 3C S O CH3
H 3C
S
CH3
H O C H 2R
CH3 R H 2C O S CH3
立体位阻大的醇不易氧化 (体 现 了 选 择 性 )
COCH3 α β
HO
COCH3
H 3C
8. Oppenauer氧化
反应可逆,加大丙酮量(既作溶剂又作氧化剂) 氧化特点 a )烯 丙 位 易 氧 化
b )甾 醇 烯 丙 位 氧 化 , 双 键 位 移
O O C H 3C C H 3 60% A l( O - ip r) 3 O HO A l(O -ip r) 3 83% O 黄体酮
O
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
4.锰化合物的氧化
CH 2O H 活 性 M nO 2 C H 2 C l 2 r.t C H 2O H C H2O H
OH
CHO
HO
HO
OH
活 性 MnO2
HO
O
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
5. Ag2CO3为氧化剂
5. Ag2CO3为氧化剂
CHO
O
H2CrO4
O
COO H
O
O
胡 椒 醛
3. Ag2O为氧化剂(
C
C
CHO
C
C
C O O H )含 有 双 键 采 用 此 氧 化 剂
R C R' H O
O 慢 Cr OH OH R R' C O + H 3O
+
O + Cr OH OH HO
O Cr OH
H2O
Jones试剂: 26.72gCrO3+23mlH2SO4
Jo n e s试 剂 O
HO
H 3C
H C
Jo n e s试 剂 C CH3 H 3C C O C CH3 O( 不 氧 化 苄 甲 基 )
④空气氧化(O2) (在碱或钴盐存在下,空气氧化可使苄位甲基氧化成羧基)
CH3 O 2 /2 6 0 ℃ V2O 5 COOH
N
N
CH3
O2 C o (O A c ) 2
COO H
Br
Br
二. 羰基α -位氧化
1 形成α-位羟基酮
①Pb(OAc)4 (LTA) ②Hg(OAc)2
O R C H2 C R 慢 HO C R C R
第二节 醇的氧化 一 伯、仲醇被氧化成醛、酮
4.锰化合物的氧化
OH CH CH OH CH3 CH3 KM nO4 M g (N O 3 ) 2 O C C O CH3 6 6% CH3
②活性MnO2:新鲜制备的MnO2,用于烯丙醇的氧化
2K M nO 4 +3M nS O 4 +2H 2 O 5M nO 2 ↓+ K 2 S O 4 +2H 2 S O 4 (M nO 2 活 性 最 高 )
OH 中
-
√
M n O 4 - + 2 H 2 O + 3e