《等比数列》教学设计.doc
等比数列的性质教学设计 Microsoft Word 文档
等比数列的性质教学设计景宁中学陈桂林一、教材分析1、教材的地位与作用数列是高中数学的重要内容之一。
本章内容首先从学习数列的概念开始,然后学习等差数列和等比数列两种常用的数列。
数列有着广泛的实际应用,如储蓄、分期付款等的有关计算也要用到数列的一些知识。
同时数列起着承前启后的作用,数列与前面学习的函数等知识有着密切的联系,又为进一步学习数列的极限等内容作好了准备。
等比数列是一种基本的数列,在探究等比数列性质的过程中使学生学会用类比的数学方法,提高数学再创造学习的能力。
2、教材的重点与难点教学重点:等比数列的性质。
教学难点:探究等比数列的性质。
二、教学目标分析通过本节的教学达到以下目标:1、知识目标:应用等比数列的性质解决一些相关问题。
2、能力目标:通过等比数列性质的探究,使学生进一步巩固类比、化归的数学思想,感悟探索解决问题的方法。
3、情感目标:在问题的发现、猜想和论证过程中,感受成功的体验,激发学习的兴趣。
三、学况分析和学法指导1、通过等差数列性质的学习,用类比的方法学习本节并不难。
2、积极启发引导,使学生学会观察问题、探究问题,自主归纳总结进而得出规律。
四、教学方法和教学手段遵循教师为主导,学生为主体的教学原则,体现知识为载体,思维为主线,能力为目标的教学思想,确定以下教学方法和手段: 1、 教学方法:创设问题情境,采用探索讨论法进行教学,使学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。
2、 教学手段:计算机辅助教学,同时采用实物投影,加强课堂练习的反馈与校正。
设计意图:(1)遵循教师为主导,学生为主体的教学原则,引导学生探究、发现规律,让学生做学习的主人。
(2)采用创设学生熟悉的问题情境,运用探索讨论法进行教学。
突出以学生为主体的探索学习活动,创设一个轻松高效的教学氛围。
五、教学过程设计1、提出问题,创设情境问题1:等比数列{n a }中,通项公式为11-=n n q a a ,我们怎样将其写成另一种形式(类比等差数列d n a a n )1(1-+=)?问题2:已知数列的通项公式是n n pq a =(其中p 是常数,且0≠p ),那么这个数列是不是等比数列?如果是其首项和公比分别是什么?如果不是,请说明理由。
等比数列的教学设计方案
1. 知识与技能目标:(1)理解等比数列的概念,掌握等比数列的通项公式及前n项和公式;(2)能熟练运用等比数列的性质解决实际问题。
2. 过程与方法目标:(1)通过观察、归纳、总结等方法,引导学生自主探究等比数列的性质;(2)通过实际问题,培养学生的数学应用能力。
3. 情感态度与价值观目标:(1)激发学生对数学的兴趣,培养他们热爱数学、追求真理的精神;(2)培养学生严谨、求实的科学态度。
二、教学重难点1. 教学重点:(1)等比数列的概念及通项公式;(2)等比数列的前n项和公式。
2. 教学难点:(1)等比数列性质的运用;(2)等比数列在解决实际问题中的应用。
三、教学过程1. 导入新课(1)通过回顾等差数列的概念和性质,引导学生思考等差数列的局限性,引出等比数列的概念;(2)举例说明等比数列在生活中的应用,激发学生的学习兴趣。
2. 新课讲授(1)等比数列的概念:通过观察实例,引导学生理解等比数列的概念,并掌握通项公式;(2)等比数列的性质:通过归纳、总结,让学生自主发现等比数列的性质,并举例说明;(3)等比数列的前n项和公式:通过类比等差数列的前n项和公式,引导学生推导出等比数列的前n项和公式。
3. 巩固练习(1)完成课本上的练习题,巩固所学知识;(2)针对重点难点,设计一些变式练习,提高学生的解题能力。
4. 应用拓展(1)通过实际问题,引导学生运用等比数列的性质解决实际问题;(2)鼓励学生结合所学知识,自主设计等比数列在生活中的应用实例。
5. 总结归纳(1)引导学生回顾本节课所学内容,总结等比数列的概念、性质及前n项和公式;(2)强调等比数列在解决实际问题中的重要性。
6. 布置作业(1)完成课本上的作业题;(2)结合所学知识,设计一个等比数列在生活中的应用实例。
四、教学反思本节课通过观察、归纳、总结等方法,引导学生自主探究等比数列的性质,培养学生的数学应用能力。
在教学过程中,要注意以下几点:1. 注重学生的主体地位,引导学生积极参与课堂活动;2. 联系生活实际,让学生体会到数学的应用价值;3. 注重对学生进行思想教育,培养学生的数学素养。
人教版中职数学(基础模块)下册6.3《等比数列》word教案(可编辑修改word版)
【课题】 6.3 等比数列【教学目标】知识目标:理解等比数列前项和公式.n 能力目标:通过学习等比数列前项和公式,培养学生处理数据的能力.n 【教学重点】等比数列的前项和的公式.n 【教学难点】等比数列前项和公式的推导.n 【教学设计】本节的主要内容是等比数列的前项和公式,等比数列应用举例.重点是等比数列的前n 项和公式;难点是前项和公式的推导、求等比数列的项数的问题及知识的简单实际n n n 应用.等比数列前项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解n 并学会应用.等比数列的通项公式与前项和公式中共涉及五个量:n ,只要知道其中的三个量,就可以求出另外的两个量.n n S a n q a 、、、、1教材中例6是已知求的例子.将等号两边化成同底数幂的形式,利n n S a a 、、1n q 、用指数相等来求解的方法是研究等比数列问题的常用方法.n 【教学备品】教学课件.【课时安排】3课时.(135分钟)【教学过程】教学 过程教师行为学生行为教学意图时间*揭示课题6.3 等比数列.*创设情境 兴趣导入【趣味数学问题】从趣过 程行为行为意图间传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏.国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子.并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒.计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺.这位大臣所要求的麦粒数究竟是多少呢?各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达依尔所要的奖赏就是这个数列的前64项和.质疑引导分析思考参与分析味小故事出发使得学生自然的走向知识点10*动脑思考 探索新知下面来研究求等比数列前n 项和的方法.等比数列的前n 项和为{}n a (1).321n n a a a a S ++++= 由于故将(1)式的两边同时乘以q ,得1,n n a q a +⋅= (2) 2341+=+++++ n n n qS a a a a a .用(1)式的两边分别减去(2)式的两边,得 (3)()()1111111+-=-=-⋅=-n n n n q S a a a a q a q .当时,由(3)式得等到数列的前项和公式1≠q {}n a n 总结归纳仔细分析讲解关键词语思考归纳理解记忆带领学生总结问题得到等比数列通项公式过程行为行为意图间 (6.7)1111-=≠-nn a q S q q()().知道了等比数列中的、n 和,利用公式{}n a 1a ),1(≠q q (6.7)可以直接计算.n S 由于,11q a a q a n n n ==+因此公式(6.7)还可以写成(6.8)111-=≠-n n a a q S q q ().当时,等比数列的各项都相等,此时它的前项和1=q n 为.(6.9) 1na S n =【想一想】在等比数列中,知道了、q 、n 、、五个量{}n a 1a n a n S 中的三个量,就可以求出其余的两个量.针对不同情况,应该分别采用什么样的计算方法?【注意】在求等比数列的前n 项和时,一定要判断公比q 是否为1.引导分析参与分析引导启发学生思考求解35*巩固知识 典型例题例5 写出等比数列,27,9,3,1--的前n 项和公式并求出数列的前8项的和.解 因为,所以等比数列的前n 项313,11-=-==q a 说明强调引领观察思考通过例题进一过程行为行为意图间和公式为,1[1(3)]1(3)1(3)4n nn S ⨯----==--故 .881(3)16404S --==-*例6 一个等比数列的首项为,末项为,各项的和4994为,求数列的公比并判断数列是由几项组成.36211解 设该数列由n 项组成,其公比为q ,则,194a =,.49n a =21136n S =于是 9421149361q q-⋅=-,即,⎪⎭⎫ ⎝⎛-=-q q 944936)1(211解得 .23q =所以数列的通项公式为 192,43n n a -⎛⎫=⋅ ⎪⎝⎭于是 ,1492943n -⎛⎫= ⎪⎝⎭即,323241⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-n 解得 .5n =故数列的公比为,该数列共有5项.23【注意】讲解说明引领分析强调含义主动求解观察思考求解领会步领会注意观察学生是否理解知识点45过 程行为行为意图间例6中求项数n 时,将等号两边化成同底数幂的形式,利用指数相等来求解.这种方法是研究等比数列问题的常用方法.现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺?国王承诺奖赏的麦粒数为,646419641(12)21 1.841012S -==-≈⨯-据测量,一般麦子的千粒重约为40g ,则这些麦子的总质量约为7.36×g ,约合7360多亿吨.我国2000年小麦1710的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!说明思考反复强调50*运用知识 强化练习练习6.3.31.求等比数列,,,,…的前10项的和.919294982.已知等比数列{}的公比为2,=1,求.n a 4S 8S 启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳60*巩固知识 典型例题【趣味问题】设报纸的厚度为0.07毫米,你将一张报纸对折5次后的厚度是多少?能否对折50次,为什么?【小知识】复利计息法:将前一期的本金与利息的和(简称本利和)作为后一期的本金来计算利息的方法.俗称“利滚利”.例7 银行贷款一般都采用“复利计息法”计算利息.小王从银行贷款20万元,贷款期限为5年,年利率为5.76%, 说明强调引领讲解说明观察思考主动求解通过例题进一步领会注意观察学生是否过 程行为行为意图间如果5年后一次性还款,那么小王应偿还银行多少钱?(精确到0.000001万元)解 货款第一年后的本利和为2020 5.76%20(10.0576) 1.057620,+⨯=+=⨯第二年后的本利和为21.057620 1.057620 5.76% 1.057620,⨯+⨯⨯=⨯依次下去,从第一年后起,每年后的本利和组成的数列为等比数列…231.057620,1.057620,1.057620,⨯⨯⨯其通项公式为11.057620 1.0576 1.057620-=⨯⨯=⨯n n n a 故.55 1.05762026.462886=⨯=a 答 小王应偿还银行26.462886万元.引领分析强调含义说明观察思考求解领会思考求解理解知识点反复强调4550*运用知识 强化练习张明计划贷款购买一部家用汽车,贷款15万元,贷款期为5年,年利率为5.76%,5年后应偿还银行多少钱?质疑求解强化60*理论升华 整体建构思考并回答下面的问题:等比数列的前n 项和公式是什么?结论:).1(1)1(1≠--=q qq a S n n 质疑归纳回答理解及时了解学生知识掌握情况70过程行为行为意图间).1(11≠--=q qq a a S n n 强调强化*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?引导回忆*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.已知等比数列{}中,求n a 13226==a S ,,3q a 与.2.等比数列{}的首项是6,第6项是,这个数列n a 316-的前多少项之和是?25564提问巡视指导反思动手求解检验学生学习效果培养学生总结反思学习过程的能力80*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题6.3A 组(必做);教材习题6.3B 组(选做)(3)实践调查:运用等比数列求和公式解决现实生活中的实际问题.说明记录分层次要求90【教师教学后记】项目反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克服;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;−辈子时光在匆忙中流逝,谁都无法挽留。
等比数列教案设计
等比数列教案设计教案设计:等比数列一、教学目标:1.掌握等比数列的定义及性质;2.理解等比数列的通项公式和求和公式;3.能够应用等比数列解决实际问题。
二、教学重难点:1.理解等比数列的概念和性质;2.掌握等比数列的通项公式和求和公式。
三、教学过程:1.导入(5分钟)教师通过提出以下问题导入课题:A.如何判断一个数列是等比数列?B.等比数列有哪些性质?C.等比数列的通项公式和求和公式分别是多少?2.引入(10分钟)通过举例子引入等比数列的定义和性质,并进行解释。
如:例1:1,2,4,8,16,…例2:-5,10,-20,40,-80,…通过对比这两个例子,我们可以总结出等比数列的定义:从第二项开始,每一个项都等于它前面一个项乘以同一个非零常数r,这个常数r称为等比数列的公比。
3.探究(20分钟)通过让学生观察一些等比数列的计算过程,来引导学生发现等比数列的通项公式和求和公式。
A.观察以下等比数列:2,6,18,54,…1)列出每一项与前一项的比值:3,3,3,…2)列出每一项与第一项的比值:2,6/2=3,18/2=9,54/2=27,…通过观察我们可以发现,每一项与第一项的比值都等于公比的n-1次方,即,在等比数列2,6,18,54,…中,第n项an=2 * 3^(n-1)。
B.通过类似的方式可以引导学生发现等比数列的求和公式。
如:1)观察以下等比数列:1,2,4,8,…2)列出每一项与前一项的比值:2,2,2,…通过观察我们可以发现,前n项和Sn=1*(2^n-1)/(2-1)。
4.巩固(15分钟)通过让学生做一些练习题,来巩固学生对等比数列的掌握程度。
A.选择题:①下列数列是等比数列的是:A.1,1,2,3,5,…B.2,4,8,16,32,…C.1,2,4,8,16,…D.0,1,1,2,3,…②下列等比数列的公比是多少?A.1,2,4,8,…B.1,-2,4,-8,…C.1,-1,1,-1,…D.-1,-2,-4,-8,…B.计算题:③求等比数列3,6,12,24,…的第5项。
《等比数列》教案
知识与技能
教学目标
过程与方法
2.通过对等比数列定义和通项公式的探求, 引导学生运用观 察、类比、分析、归纳的推理方法,提高学生的逻辑思维能 力,培养学生良好的思维品质。 1.让学生在探索中初步体验探究的艰辛和成功的乐趣,培 养学生的发现意价值观
2. 培养积极动脑,明辨是非的学习作风,提高学生的逻辑 推理能力; 3.让学生体会通项公式推导过程中的体现出的数学思想方 法,增强学生的应用意识。
教学内容
教师活动
学生活动
设计意图
作业练习
次对折,第 4 次对折 ,… 2,4,8,16,…
对折后的纸的层数可以组成下面的数列: ①
(当对折 28 次后,它的厚度将比世界第一高峰——珠穆郎玛峰还要高一千多米! 对折 38 次,得到的是地球与月亮之间的距离 对折 51 次,得到的是地球与太阳之间的距离) 引例 2、我国古代一些学者提出:“一尺之棰,日取其半,万世不竭。”用现代语言叙述为:一尺 长的木棒,每日取其一半,永远也取不完。如果把“一尺之棰”看成单位“1”,那么,得到的数列 是: 1,
1 1 1 1 , , , ,… 2 4 8 16
②
引例 3:一种计算机病毒可以查找计算机中的地址簿,通过邮件进行传播。如果把病毒制造者 发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推。假设每一轮每一台计算机 都感染 20 台计算机,那么在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是: 1,20,202,203,204,… 类比等差数列定义让学生给出等比数列定义 2.等比数列的定义: 等比数列的定义: 文字 语言 符号 语言 等差数列的定义: 一般地, 如果一个数列从第 2 项起, 一般地,如果一个数列从第 2 项起, 每一项与它的前一项的 比 等于同一个 每一项与它的前一项的 差 等于同一个 常数,那么这个数列就叫做等比数列 , 常数,那么这个数列就叫做等差数列 , 这个常数叫做等比数列的公比(q) 。 这个常数叫做等差数列的公差(d). ③ 观察: 请同学们仔细观察一下,看看以上三个数列有什么共同特征?
等比数列教案设计
一、教学目标1. 知识与技能:理解等比数列的定义,掌握等比数列的通项公式和求和公式,能够运用等比数列解决实际问题。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
二、教学重点与难点1. 教学重点:等比数列的定义,通项公式和求和公式。
2. 教学难点:等比数列求和公式的推导和应用。
三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
2. 学具准备:笔记本、笔。
四、教学过程1. 导入新课:利用多媒体课件展示等比数列的实例,引导学生观察、思考,引出等比数列的概念。
2. 自主学习:学生自主探究等比数列的定义,教师巡回指导,解答学生疑问。
3. 课堂讲解:讲解等比数列的通项公式和求和公式,并通过例题演示如何运用这些公式解决问题。
4. 课堂练习:布置练习题,让学生独立完成,教师选取部分学生的作业进行点评。
5. 小组讨论:学生分组讨论等比数列的性质,总结规律,教师参与讨论,给予指导。
6. 课堂小结:总结本节课的主要内容,强调等比数列的定义、通项公式和求和公式的运用。
7. 课后作业:布置课后作业,巩固本节课所学内容。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在学习过程中遇到的困难和问题,及时给予解答和指导。
六、教学目标1. 知识与技能:理解等比数列的性质,包括公比的概念,能够判断一个数列是否为等比数列。
2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
七、教学重点与难点1. 教学重点:等比数列的性质,公比的概念。
2. 教学难点:判断一个数列是否为等比数列的方法。
八、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
等比数列教案设计
等比数列教案设计一、教学目标1. 知识与技能:(1)理解等比数列的定义及其性质;(2)掌握等比数列的通项公式和求和公式;(3)能够运用等比数列解决实际问题。
2. 过程与方法:(1)通过观察、分析和归纳,引导学生发现等比数列的性质;(2)培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生克服困难、积极探索的精神。
二、教学重点与难点1. 教学重点:(1)等比数列的定义及其性质;(2)等比数列的通项公式和求和公式;(3)运用等比数列解决实际问题。
2. 教学难点:(1)等比数列的通项公式的推导;(2)等比数列求和公式的推导及应用。
三、教学准备1. 教具:黑板、粉笔、多媒体教学设备;2. 学具:笔记本、文具。
四、教学过程1. 导入新课:(1)复习等差数列的相关知识;(2)引入等比数列的概念。
2. 探究等比数列的性质:(1)引导学生观察等比数列的前几项,发现规律;(2)引导学生归纳等比数列的性质。
3. 推导等比数列的通项公式:(1)引导学生利用等比数列的性质推导通项公式;(2)解释通项公式的含义。
4. 推导等比数列的求和公式:(1)引导学生利用通项公式推导求和公式;(2)解释求和公式的含义。
5. 运用等比数列解决实际问题:(1)出示实际问题;(2)引导学生运用等比数列的知识解决问题。
五、巩固练习1. 填空题:(1)等比数列的通项公式为______;(2)等比数列的前n项和为______。
2. 选择题:(1)已知等比数列的首项为a,公比为q,则第n项为______;A. aq^(n-1)B. aq^nC. aqD. a3. 解答题:(1)已知等比数列的首项为2,公比为3,求前5项的和;(2)某数列的前三项分别为1,3,9,求该数列的通项公式。
六、课堂小结1. 等比数列的定义及其性质;2. 等比数列的通项公式和求和公式;3. 运用等比数列解决实际问题。
等比数列教案
等比数列教案
教学目标:
1. 理解等比数列的概念,掌握等比数列的通项公式和求和公式;
2. 能够根据已知条件求等比数列的其他项;
3. 能够利用等比数列解决实际问题。
教学过程:
步骤一:引入
1. 教师可以通过展示一张有规律的图片或者给出一组有规律的数字,引导学生思考其中的规律,并引入等比数列的概念。
2. 教师提问:什么是等比数列?学生可以在讨论的过程中得出等比数列的定义。
步骤二:探究
1. 教师给出一个等比数列的例子,让学生进行观察并总结规律。
2. 学生可以利用观察到的规律,猜测等比数列的通项公式,并进行验证。
步骤三:归纳
1. 学生通过对多个等比数列的观察和总结,归纳出等比数列的通项公式。
2. 教师提问:如何求等比数列的前n项和?学生可以在讨论的过程中得出等比数列的求和公式。
步骤四:练习与巩固
1. 学生完成一些基础练习,如求等比数列的第n项、求等比数列的前n项和等。
2. 学生解决一些实际问题,如利用等比数列解决物理问题、经济问题等。
步骤五:拓展与应用
1. 学生可以自己发现并总结等比数列在生活中的应用场景,如利润增长、人口增长等方面的问题。
2. 学生可以尝试寻找更复杂的等比数列,并对其进行分析与研究。
步骤六:总结与反思
1. 学生进行本节课的总结,并回答教师的提问:你理解了等比数列的概念吗?掌握了等比数列的通项公式和求和公式吗?
2. 学生思考:如何将等比数列的知识应用到实际问题中?如何更好地理解和掌握等比数列的概念和公式?
这样的教案可以避免标题重复的问题。
等比数列教学课程设计
等比数列教学课程设计一、课程目标知识目标:1. 让学生掌握等比数列的定义、通项公式及性质,能够准确理解和运用相关数学符号;2. 使学生能够运用等比数列的知识解决实际问题,如求和、求项数等;3. 让学生了解等比数列在实际生活中的应用,如金融、科学计算等领域。
技能目标:1. 培养学生运用等比数列性质进行数列分析、推理和计算的能力;2. 培养学生通过观察、分析等比数列问题,提出解题策略并进行有效求解的能力;3. 培养学生运用等比数列知识解决实际问题的能力,提高学生的应用意识和实践能力。
情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,增强学生对等比数列知识点的学习动力;2. 培养学生团队合作精神,通过小组讨论、互助学习等方式,使学生学会倾听、尊重和接纳他人的意见;3. 培养学生严谨、细致的学习态度,养成独立思考、自主探究的良好习惯。
课程性质:本课程为数学学科的基础课程,是学生在学习数列知识过程中的重要环节。
学生特点:学生处于具备一定数学基础知识和逻辑推理能力的年级,对数列的概念有一定了解,但对等比数列的深入理解和应用尚需引导和培养。
教学要求:教师应注重启发式教学,引导学生主动参与课堂讨论,关注学生的个体差异,提高学生的数学素养和应用能力。
在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容1. 等比数列的定义与性质- 等比数列的概念及数学表示;- 等比数列的通项公式;- 等比数列的常见性质及证明。
2. 等比数列的应用- 求等比数列的前n项和公式;- 求等比数列的项数;- 等比数列在实际问题中的应用案例分析。
3. 等比数列与其他数列的关系- 等比数列与等差数列的区别与联系;- 等比数列与多项式数列的互化;- 等比数列在数学分析中的应用。
教学大纲安排:第一课时:等比数列的定义与性质- 引入等比数列的概念;- 探讨等比数列的通项公式;- 分析等比数列的常见性质及证明。
高中数学必修5《等比数列》教案
高中数学必修5《等比数列》教案高中数学必修5《等比数列》教案【一】教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
等比数列教学设计教案
等比数列教学设计教案一、教学目标1.了解等比数列的定义和基本性质;2.掌握通项公式和求和公式的推导和应用;3.能够应用等比数列的知识解决实际问题;4.培养学生的数学思维能力和解决问题的能力,激发数学兴趣。
二、教学内容第一部分:引入1.通过生活中的例子,引出等比数列的概念;2.学生回顾等差数列的知识,引导学生思考等比数列和等差数列的关系。
第二部分:概念介绍2.引导学生掌握等比数列的特点和基本性质。
第三部分:公式推导2.案例分析和练习巩固应用。
第四部分:应用举例1.引导学生联系实际应用,掌握等比数列的应用方法;2.案例分析和练习,加深对等比数列的理解。
第五部分:课堂互动与思考1.对学生提出的问题进行回答;2.鼓励学生思考和探究,促进课堂交流和合作。
第六部分:练习与巩固1.课后布置相关练习和作业;2.课堂检查和解答,帮助学生解决疑惑和困惑。
三、教学方法1.讲解和演示相结合的教学方法;3.课堂互动和思考,激发学生的数学兴趣和探究欲望。
四、教学手段1.多媒体课件和投影仪;2.教师板书和讲解;3.教学案例和练习题集。
五、评价方法1.课堂表现评价;2.小组合作评价;3.作业和考试评价。
六、教学流程1.讲解等比数列的概念和定义,引导学生理解等比数列的特点和基本性质,如“公比为正数时,数列单调递增或单调递减”。
2.通过练习让学生自己验证等比数列的性质,如“判断数列a1=2,a2=4,a3=8,a4=16是否为等比数列,确定其公比”。
1.讲解等比数列的通项公式和求和公式的推导过程,引导学生掌握公式的使用方法和推导思路;2.通过练习和实例,让学生巩固公式的应用,如“已知数列和为105,公比为2,求数列的首项和项数”。
2.通过案例分析和练习,加深学生对等比数列的理解,如“某校人数为800人,每年增长20%,问6年后该校有多少学生”。
1.布置相关练习和作业,要求认真分析问题和思考解题方法;七、教学时数2课时八、课后作业2.根据所学知识,思考并回答生活中的一些问题。
《等比数列》教学设计
《等比数列》教学设计第一篇:《等比数列》教学设计《等比数列》教学设计一、目的要求1.理解等比数列的概念。
2.掌握等比数列的通项公式,并会根据它进行有关计算。
二、内容分析1.等比数列与等差数列在内容上是完全平行的,包括定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项、两种数列在函数角度下的解释、具体问题里成等差(等比)数列的三个数的设法等。
因此在教学与复习时可用对比方法,以便于弄清它们之间的联系与区别。
这里指出,如果一个数列既是等差数列又是等比数列,其充要条件是它为非0的常数列。
事实上,由等比数列的定义可知这个数列是非0数列。
取这个数列中的任意连续3项,由题设知这个数列是非0的常数列。
2.数列的学习中,等差数列与等比数列是两种最重要的数列模型。
事实上,等差数列描述的是一种绝对均匀的变化,等比数列描述的是一种相对均匀的变化。
因为非均匀变化通常要转化或近似成均匀变化来进行研究,所以本章里重点研究等差数列和等比数列。
3.从函数的角度看,如果说等差数列可以与一次函数联系起来,那么等比数列则可以与指数函数联系起来。
事实上,由等比数列的通项公式可得,当q>0,且q≠1时,是一个指数函数,而上式则是一个不为0的常数与指数函数的积,因此等比数列{}的图象是函数的图象上的一些孤立点。
4.本课内容的重点是等比数列的概念及其通项公式。
与等差数列一样,在讲等比数列的概念时,关键是要讲清“等比”的意义,即数列中任一项与前一项的比是同一个常数。
等比数列的定义,是我们判断一个数列是否为等比数列的基本方法。
与等差数列一样,等比数列也具有一种对称性。
对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍。
类似地,对于等比数列来说,与数列中任一项等距离的两项之积等于该项的平方。
利用上面的性质,常可使一些问题变得简便。
例如在具体问题里设成等差数列的3个数时,常设成a-d,a,a+d;三、教学过程1.提出教科书中的数列①、②、③,让学生观察其特点。
等比数列教案设计.docx
《等比数列》教学设计一、教学内容概述本节课属于人教版教材髙中数学必修5第2章第四节“等比数列”的内容,该内容分二个课时,本节课是第一课时,内容是“等比数列”.木节内容先由师生共同分析口常生活中的实际问题來引出等比数列的概念,再由教师引导学生与等岸数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既止学生感受到等比数列是现实生活小人量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程.学生已在前几节课程中学习过了数列的概念,等差数列和等差数列的求和,有了这些基础更便于学生理解和学习等比数列的内容。
在学生以往所做的习题数与数之间的关系的填空,也有利于引岀等比数列知识,使得本节课的内容更加通俗易懂。
等比数列在纶活中应用十分广泛,体现在生物科学、经济、金融数学等中,应用等比数列的数学模型,可以更好地刻画现实世界中的数量关系,借此可培养学生数学建模的思想和数学应川的意识.二、学生学情分析1、从高二学生的学习特点来看(1)知识基础方面.Z前己经学习过“等差数列”的内容,对数列己经有了初步的认识, 在此基础上研究讨论等比数列对后继学习产牛积极影响.学生可以将等比数列相类比到等差数列中,理解等比数列的通项和其性质,,为学生探索等比数列的性质提供了思维活动空间,进而掌握研究数列性质的一般方法,提升分析问题、解决问题的能力.但在如何求复杂等比数列或者隐含等比数列的通项有一定挑战难度。
(2)思维水平方面.学生己经学习了高小数学必修1-4,具有一-定水平的思维,空问想象能力,对数字特征特点性质具有一定的观察概括能力,对■于知识点之间的类比推理也有一定程度学习,对于学习等比数列的内容会比佼容易。
但在学习如何转变各种复杂公式求出通项的问题还是得具冇一定的知识积累。
(3)心理特点方面高屮学生善于控制白己,学习意志力较高。
能够控制和约束白己的行动,控制不需要的想法和情绪,使思想集中到学习上来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等比数列》教学设计
一、教材分析:
1、内容简析:
本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。
2、教学目标确定:
从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。
在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。
从而可以确定如下教学目标(三维目标):
第一课时:
(1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导
(2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力
(3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识
第二课时:
(1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质
(2)运用等比数列的定义及通项公式解决问题,增强学生的应用
3、教学重点与难点:
第一课时:
重点:等比数列的定义及通项公式
难点:应用等比数列的定义及通项公式,解决相关简单问题第二课时:
重点:等比中项的理解与运用,及等比数列定义及通项公式的应用
难点:灵活应用等比数列的定义及通项公式、性质解决相关问题
二、学情分析:
从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。
本课正是由此入手来引发学生的认知冲突,产生求知的欲望。
而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。
高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。
同时,高一阶段又是学生形成良好的思维能力的关键时期。
因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。
多数学生愿意积极参与,积极思考,表现自我。
所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。
这也体现了教学工作中学生的主体作用。
三、教法选择与学法指导:
由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。
在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握数列的相关知识。
因此,在教法和学法上可做如下考虑:
1、教法:采用问题启发与比较探究式相结合的教学方法
教法构思如下:提出问题引发认知冲突观察分析归纳概括得出结论总结提高。
在教师的精心组织下,对学生各种能力进行培养,并以促进学生发展,又以学生的发展带动其学习。
同时,它也能促进学生学会如何学习,因而特别有利于培养学生的探索能力。
2、学法指导:
学生学习的目的在于学会学习、思考,达到创新的目的,掌握科学有效的学习方法,可增强学生的学习信心,培养其学习兴趣,提高学习效率,从而激发强烈的学习积极性。
我考虑从以下几方面来进行学法指导:
(1)把隐含在教材中的思想方法显化。
如等比数列通项公式的推导体现了从特殊到一般的方法。
其通项公式是以n为字变量的函数,可利
用函数思想来解决数列有关问题。
思想方法的显化对提高学生数学
修养有帮助。
(2)注重从科学方法论的高度指导学生的学习。
通过提问、分析、解答、总结,培养学生发现问题、分析问题、解决问题的能力。
训练逻辑
思维的严密性和深刻性的目的。
四、教学过程设计:
第一课时
1、创设情境,提出问题(阅读本章引言并打出幻灯片)
情境1:本章引言内容
提出问题:同学们,国王有能力满足发明者的要求吗?
引导学生写出各个格子里的麦粒数依次为:
1,2,……,(1)
于是发明者要求的麦粒总数是
情境2:某人从银行贷款10000元人民币,年利率为r,若此人一年后还款,二年后还款,三年后还款,……,还款数额依次满足什么规律?
10000(1+r),10000,10000, (2)
情境3:将长度为1米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,……各次取得的木棒长度依次为多少?……
(3)
问:你能算出第7次取一半后的长度是多少吗?观察、归纳、猜想得
2、自主探究,找出规律:
学生对数列(1),(2),(3)分析讨论,发现共同特点:从第二项起,每一项与前一项的比都等于同一常数。
也就是说这些数列从第二项起,每一项与前一项的比都具有“相等”的特点。
于是得到等比数列的定义:
一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。
这个常数叫做等比数列的公比,公比常用字母表示,即。
如数列(1),(2),(3)都是等比数列,它们的公比依次是2,1+r,
点评:等比数列与等差数列仅一字之差,对比知从第二项起,每一项与前一项之“差”为常数,则为等差数列,之“比”为常数,则为等比数列,此常数称为“公差”或“公比”。
3、观察判断,分析总结:
观察以下数列,判断它是否为等比数列,若是,找出公比,若不是,说出理由,然后回答下面问题:
1,3,9,27,……
……
1,-2,4,-8,……
-1,-1,-1,-1,……
1,0,1,0,……
思考:①公比能为0吗?为什么?首项能为0吗?
②公比是什么数列?
③数列递增吗?数列递减吗?
④等比数列的定义也恰好给出了等比数列的递推关系式:
这一递推式正是我们证明等比数列的重要工具。
选题分析;因为等差数列公差可以取任意实数,所以学生对公比往往忘却它不能取0和能取1的特殊情况,以致于在不为具体数字(即为字母运算)时不会讨论以上两种情况,故给出问题以揭示学生对公比有防患意识,问题③是让学生明白时等比数列的单调性不定,而时数列为摆动数列,要注意与等差数列的区别。
备选题:已知则……,……成等比数列的从要条件是什么?
4、观察猜想,求通项:
方法1:由定义知道……归纳得:等比数列的通项公式为:
(说明:推得结论的这一方法称为归纳法,不是公式的证明,要想对这一方式的结论给出严格的证明,需在学习数学归纳法后完成,现阶段
我们只承认它是正确的就可以了)
方法2:迭代法
根据等比数列的定义有
……
方法3:由递推关系式或定义写出:……,通过观察发现…………
,即:
(此证明方法称为“累商法”,在以后的数列证明中有重要应用)
公式的特征及结构分析:
(1)公式中有四个基本量:,可“知三求一”,体现方程思想。
(2)的下标与的上标之和,恰是的下标,即的指数比项数少1。
5、问题探究:通项公式的应用
例、已知数列是等比数列,,求的值。
备选题:已知数列满足条件:,且。
求的值
6、课堂演练:教材138页1、2题
备选题1:已知数列为等比数列,,求的值
备选题2:公差不为0的等差数列中,依次成等比数列,
则公比等于
7、归纳总结:
(1)等比数列的定义,即
(2)等比数列的通项公式及推导过程。
8、课后作业:
必作:教材138页练习4;习题1(2)(4)2、3、4、5选作:1、已知数列为等比数列,且,求
2、已知数列满足
(1)求证:是等比数列;。
(2)求的通项。