北京版初中数学知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京版初中数学知识点总结
北京版学校数学学问点总结1
平面直角坐标系
平面直角坐标系:在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③相互垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般状况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必需相同。
③象限的规定:右上为第一象限、左上为其次象限、左下为第三象限、右下为第四象限。
信任上面对平面直角坐标系学问的讲解学习,同学们已经能很好的把握了吧,盼望同学们都能考试胜利。
学校数学学问点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置
与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
北京版学校数学学问点总结2
1、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类
3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7、高线、中线、角平分线的意义和做法
8、三角形的稳定性:三角形的样子是固定的,三角形的这独特质叫三角形的稳定性。
9、三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余
推论2三角形的一个外角等于和它不相邻的两个内角和
推论3三角形的一个外角大于任何一个和它不相邻的内角;三
角形的内角和是外角和的一半
10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11、三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
北京版学校数学学问点总结3
一、平行四边形的定义、性质及判定
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线相互平分
3、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线相互平分的四边形是平行四边形
4、对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1、定义:有一个角是直角的平行四边形叫做矩形
2、性质:矩形的四个角都是直角,矩形的对角线相等
3、判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4、对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1、定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线相互垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2、s菱=争6(n、6分别为对角线长)
3、判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线相互垂直的平行四边形是菱形
4、对称性:菱形是轴对称图形也是中心对称图形
北京版学校数学学问点总结4
1、不在同始终线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3、圆是以圆心为对称中心的中心对称图形
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合
6、圆的外部可以看作是圆心的距离大于半径的点的集合
7、同圆或等圆的半径相等
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10、推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理:圆的内接四边形的对角互补,并且任何一个外角都
等于它的内对角
12、①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14、切线的性质定理:圆的切线垂直于经过切点的半径
15、推论1经过圆心且垂直于切线的直线必经过切点
16、推论2经过切点且垂直于切线的直线必经过圆心
17、切线长定理:从圆外一点引圆的.两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18、圆的外切四边形的两组对边的和相等,外角等于内对角
19、假如两个圆相切,那么切点肯定在连心线上
20、①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交Rrr)
④两圆内切d=Rr(R>r)⑤两圆内含dr)
北京版学校数学学问点总结5
1.有理数:
〔1〕凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
留意:0即不是正数,也不是负数;—a不肯定是负数,+a也不肯定是正数;
p不是有理数;
〔2〕有理数的分类:① ②
2.数轴:
数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
〔1〕只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
〔2〕相反数的和为0?a+b=0?a、b互为相反数。
4.肯定值:
〔1〕正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;
〔2〕肯定值可表示为:或;肯定值的问题常常分类商量;
5.有理数比大小:
〔1〕正数的肯定值越大,这个数越大;
〔2〕正数永久比0大,负数永久比0小;
〔3〕正数大于一切负数;
〔4〕两个负数比大小,肯定值大的反而小
〔5〕数轴上的两个数,右边的数总比左边的数大;
〔6〕大数—小数> 0,小数—大数< 0。
6.互为倒数:
乘积为1的两个数互为倒数;留意:0没有倒数;若a≠0,那
么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
7.有理数加法法则:
〔1〕同号两数相加,取相同的符号,并把肯定值相加;
〔2〕异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;
〔3〕一个数与0相加,仍得这个数。
北京版学校数学学问点总结6
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点〔圆心O〕的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。
心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够相互重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同始终线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设动身,经过推理论证,得出冲突;
③由冲突得出假设不正确,从而确定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°冲突。
∴不行能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
事实上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等
的圆周角所对的弧也相等。
推理2:半圆〔或直径〕所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加帮助线往往是添加能构成直径上的圆周角的帮助线。
北京版学校数学学问点总结7
一、角的定义
“静态”概念:有公共端点的两条射线组成的图形叫做角。
“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。
假如一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。
二、角的换算:
1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、补角的概念和性质:
概念:假如两个角的和是一个平角,那么这两个角叫做互为补角。
假如两个角的和是一个直角,那么这两个角叫做互为余角。
说明:互补、互余是指两个角的数量关系,没有位置关系。
性质:同角(或等角)的余角相等;
同角(或等角)的补角相等。
四、角的比较方法:
角的大小比较,有两种方法:
(1)度量法(利用量角器);
(2)叠合法(利用圆规和直尺)。
五、角平分线:
从一个角的顶点引出的一条射线。
把这个角分成相等的两部分,这条射线叫做这个角的平分线。
常见考法
(1)考查与时钟有关的问题;(2)角的计算与度量。
误区提示
角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。