图像拼接算法及实现(一).

合集下载

无人机图像拼接算法的研究及实现

无人机图像拼接算法的研究及实现

无人机图像拼接算法的研究及实现随着近年来无人机技术的飞速发展,无人机图像拼接技术也得到了广泛的应用。

该技术可以将无人机拍摄得到的相邻区域的图像进行拼接,生成高分辨率的全景图像,提供了一种高效的地图制作和空中监测的手段。

本文将从无人机图像拼接的原理入手,分析其算法的研究,介绍常见的图像拼接算法以及其应用场景,并在最后给出一个无人机图像拼接的实现实例。

一、无人机图像拼接原理无人机的航拍图像拼接是借助现代数字图像处理技术来实现的。

该技术需要处理大量的数据,并结合图像的特征进行定位,将相邻图像进行拼接,生成全景图像。

以下是无人机图像拼接的原理图:如图所示,相机通过对地面连续拍摄,得到多幅重叠区域较多的图像。

在无人机图像拼接中,首先需要对相机进行标定,得到相机的内外参数。

然后,根据每张拍摄的图像的特征,例如SIFT特征,计算出每幅图像的特征点。

接着,通过匹配不同图像之间的特征点,建立不同图像之间的关系。

最后,运用优化算法对关系进行优化,完成图像拼接,生成全景图像。

二、无人机图像拼接的算法研究目前,无人机图像拼接的算法主要有以下几种:1. 基于特征点匹配的无人机图像拼接算法这种算法主要的思路是在多副图像上提取一些稀有的、具有代表性的特征点。

然后根据特征点的相似程度进行匹配,得到匹配点对。

匹配点对的质量好坏非常重要,其正确率和准确度直接决定了拼接后的图像质量。

这种算法的核心是对特征点的提取和匹配两个部分的处理。

由于SIFT, SURF和ORB等算子在特征提取和匹配上有着良好的效果,因此应用广泛。

2. 基于区域分割的无人机图像拼接算法该算法主要是先将输入的拍摄图像进行区域分割,将该图像分为多个区域,然后根据区域之间的相似度,通过一系列的变换操作,将这些不同区域的图像配准后合并起来生成全景图像。

这种算法具有很好的兼容性和可扩展性,能够处理不同场景和不同光照下的图像拼接。

但是该算法也存在着一些缺陷,例如耗费计算时间比较长而导致对计算机处理性能的要求比较高。

MATLAB技术图像拼接实例

MATLAB技术图像拼接实例

MATLAB技术图像拼接实例图像拼接是一种将多幅图像拼接在一起,形成一幅完整图像的技术。

它在计算机视觉、医学影像处理、地理信息系统等领域中有着广泛的应用。

在本文中,我们将通过一个实例来介绍如何使用MATLAB进行图像拼接。

首先,让我们先了解一下图像拼接的原理。

图像拼接主要分为两个步骤:特征提取和图像融合。

特征提取是指从每幅图像中提取出可以唯一标识该图像的特征点,常用的方法有SIFT、SURF和ORB等。

图像融合是指将提取出的特征点进行匹配,并利用匹配结果将多幅图像拼接到一起,常用的方法有RANSAC算法和Harris角点算法等。

接下来,我们以拼接两幅图像为例进行讲解。

假设我们有两幅图像A和B,我们将通过图像拼接将它们拼接在一起。

首先,我们需要在MATLAB中导入两幅图像。

可以使用imread()函数将图像文件导入到MATLAB中,通过imshow()函数将图像显示出来。

为了方便后续处理,我们可以将图像转换为灰度图像,可以使用rgb2gray()函数实现。

接下来,我们需要提取图像中的特征点。

这里我们可以使用SIFT算法,可以使用vl_sift()函数提取图像的SIFT特征点。

首先,需要将图像转换为单通道图像,可以使用mat2gray()函数实现。

然后,通过vl_sift()函数提取特征点的坐标和描述符。

特征点的坐标表示了特征点在图像中的位置,而描述符表示了特征点的特征信息。

提取完特征点后,我们需要将两幅图像的特征点进行匹配。

这里我们可以使用RANSAC算法,可以使用ransac()函数进行特征点匹配。

RANSAC算法是一种迭代算法,它通过随机选择一组特征点进行匹配,并计算出匹配结果的模型参数,然后通过模型参数,计算其他特征点的匹配误差。

通过多次迭代,得到最佳的匹配结果。

匹配完成后,我们可以通过Harris角点算法,对图像进行对齐。

Harris角点算法是一种基于图像灰度变化的角点检测算法,它通过计算图像每个像素点的Harris响应函数,来判断该点是否为角点。

图像拼接算法研究

图像拼接算法研究

图像拼接算法研究引言图像拼接是一项在计算机视觉领域中被广泛研究和应用的技术。

它的目的是将多张部分重叠的图像融合成一张完整的图像,从而实现对大尺寸场景或广角视野的展示。

随着数字摄影技术的发展和智能手机的普及,图像拼接技术也逐渐受到了更多的关注和需求。

一、图像拼接的基本原理图像拼接的基本原理是通过将多张图像进行对齐、配准和融合等处理,最终合成一张完整的图像。

一个典型的图像拼接过程包括以下几个步骤:1. 特征提取和匹配在图像拼接之前,首先需要对图像进行特征提取,通常使用SIFT、SURF等算法来检测图像中的关键点和描述子。

然后,通过比较不同图像中的特征点,利用匹配算法找出相对应的特征点对。

2. 图像对齐和配准根据匹配得到的特征点对,可以利用几何变换来对图像进行对齐和配准。

最常用的变换包括平移、旋转、缩放和透视变换等。

通过变换参数的优化,可以使得多张图像在对应的特征点处重叠得更好。

3. 图像融合在完成对齐和配准后,下一步就是将图像进行融合。

常用的融合方法包括加权平均法、多分辨率融合法和无缝克隆法等。

这些方法在保持图像平滑过渡和消除拼接痕迹方面都有一定的优势和适用场景。

二、图像拼接算法的发展与研究现状随着数字图像处理和计算机视觉技术的不断发展,图像拼接算法也得到了长足的发展和改进。

早期的图像拼接算法主要依赖于几何变换和像素级别的处理,但是随着深度学习和神经网络的兴起,基于特征的图像拼接方法逐渐成为主流。

1. 传统方法传统的图像拼接方法主要基于光流估计、图像配准和基础几何变换等技术。

例如,基于RANSAC算法的特征点匹配和单应性矩阵估计,可以实现对图像进行准确的拼接和质量控制。

然而,这些方法在处理拼接边缘和重叠区域的细节时往往存在一定的问题。

2. 基于特征的方法基于特征的图像拼接方法主要利用卷积神经网络(CNN)或循环神经网络(RNN)等深度学习模型进行特征提取和匹配。

这些方法通过学习局部特征表示和上下文关系,可以进一步提高拼接图像的质量和鲁棒性。

图像的拼接----RANSAC算法

图像的拼接----RANSAC算法

图像的拼接----RANSAC算法⼀、全景拼接的原理1.RANSAC算法介绍RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、⽆法适应数学模型的数据),即数据集中含有噪声。

这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产⽣的。

同时RANSAC也假设,给定⼀组正确的数据,存在可以计算出符合这些数据的模型参数的⽅法。

2.使⽤RANSAC算法来求解单应性矩阵在进⾏图像拼接时,我们⾸先要解决的是找到图像之间的匹配的对应点。

通常我们采⽤SIFT算法来实现特征点的⾃动匹配,SIFT算法的具体内容参照我的上⼀篇博客。

SIFT是具有很强稳健性的描述⼦,⽐起图像块相关的Harris⾓点,它能产⽣更少的错误的匹配,但仍然还是存在错误的对应点。

所以需要⽤RANSAC算法,对SIFT算法产⽣的128维特征描述符进⾏剔除误匹配点。

由直线的知识点可知,两点可以确定⼀条直线,所以可以随机的在数据点集中选择两点,从⽽确定⼀条直线。

然后通过设置给定的阈值,计算在直线两旁的符合阈值范围的点,统计点的个数inliers。

inliers最多的点集所在的直线,就是我们要选取的最佳直线。

RANSAC算法就是在⼀原理的基础上,进⾏的改进,从⽽根据阈值,剔除错误的匹配点。

⾸先,从已求得的匹配点对中抽取⼏对匹配点,计算变换矩阵。

然后对所有匹配点,计算映射误差。

接着根据误差阈值,确定inliers。

最后针对最⼤inliers集合,重新计算单应矩阵H。

3.基本思想描述:①考虑⼀个最⼩抽样集的势为n的模型(n为初始化模型参数所需的最⼩样本数)和⼀个样本集P,集合P的样本数#(P)>n,从P中随机抽取包含n 个样本的P的⼦集S初始化模型M;②余集SC=P\S中与模型M的误差⼩于某⼀设定阈值t的样本集以及S构成S*。

S*认为是内点集,它们构成S的⼀致集(Consensus Set);③若#(S*)≥N,认为得到正确的模型参数,并利⽤集S*(内点inliers)采⽤最⼩⼆乘等⽅法重新计算新的模型M*;重新随机抽取新的S,重复以上过程。

图像拼接算法及实现(一).

图像拼接算法及实现(一).

图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。

图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。

一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。

本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。

在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。

首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。

然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。

最后用正确的特征点匹配对实现图像的配准。

本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。

Abstract:Image mosaic is a technology that carries on thespatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。

Matlab中的图像拼接方法与示例分析

Matlab中的图像拼接方法与示例分析

Matlab中的图像拼接方法与示例分析图像拼接是数字图像处理领域中的重要任务,它能够将多张局部图像合并为一张完整的图像。

Matlab作为一种强大的工具,提供了多种图像拼接方法,本文将介绍其中常用的方法,并通过具体的示例分析其优劣和适用场景。

一、基于特征点匹配的图像拼接方法特征点匹配是一种常用且有效的图像拼接方法,它通过在图像中提取出稳定且唯一的特征点,然后根据这些特征点之间的相对位置关系进行图像的拼接。

在Matlab中,可以使用SIFT(尺度不变特征变换)算法来提取图像的特征点,然后使用RANSAC(随机一致性采样)算法对特征点进行匹配,并通过Harris角点检测算法来筛选出最佳的匹配点。

示例:将两张风景照片拼接成一张全景照片。

首先,使用SIFT算法提取两张照片的特征点,然后使用RANSAC算法对特征点进行匹配。

接着,通过Harris角点检测算法筛选出最佳的匹配点,并根据匹配点计算出图像间的转换矩阵。

最后,使用Matlab中的imwarp函数对图像进行变换,并使用imfuse函数将两张图像拼接在一起,得到最终的全景照片。

二、基于图像重叠区域的无缝拼接方法无缝拼接是指在图像拼接过程中,将多张图像合成为一张时,保持图像之间的连续性和平滑性,使得拼接后的图像看起来像是一张完整的图像。

在Matlab中,可以使用图像重叠区域的像素平均值或像素加权平均值来实现无缝拼接。

这种方法能够减少拼接过程中产生的明显拼接痕迹,使得拼接后的图像具有更好的视觉效果。

示例:将多张卫星图像拼接成一张地图。

首先,读入多张卫星图像,并确定它们之间的重叠区域。

然后,通过像素平均值或像素加权平均值来实现无缝拼接。

最后,使用Matlab中的imshow函数显示拼接后的地图图像。

三、基于图像内容的自动拼接方法自动拼接方法是指针对无法通过特征点匹配或像素平均值等方式进行拼接的图像,通过分析图像内容来实现图像的自动拼接。

在Matlab中,可以使用深度学习模型(如卷积神经网络)来对图像进行内容分析和特征提取,并根据提取的特征对图像进行拼接。

如何利用图像处理技术实现图像拼接

如何利用图像处理技术实现图像拼接

如何利用图像处理技术实现图像拼接图像拼接是指将多个不完整或局部的图像拼接在一起,以生成一张完整的图像。

图像拼接技术在计算机视觉和图形学领域中得到广泛应用,可以用于实现全景图像、卫星地图、医学影像等各种应用场景。

利用图像处理技术实现图像拼接主要包括以下几个步骤:特征提取、特征匹配、几何校正和图像融合。

特征提取是图像拼接的关键步骤之一。

特征提取是为了提取图像中具有代表性和稳定性的特征点或者特征描述子,以用于后续的特征匹配。

常见的特征提取方法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB(Oriented FAST and Rotated BRIEF)等。

接下来是特征匹配。

特征匹配是为了找到两幅图像中对应的特征点,从而建立它们之间的几何关系,为后续的几何校正做准备。

特征匹配方法可以根据特征描述子的相似度、几何关系和一致性进行选择。

常见的特征匹配算法包括FLANN(快速库近似最近邻搜索)和RANSAC(随机抽样一致性)等。

几何校正是指通过对图像进行变换和旋转,将特征匹配后的图像对准。

在几何校正过程中,需要计算图像之间的旋转和平移变换矩阵。

对于大规模的图像拼接任务,可能需要考虑相机畸变校正和透视变换等问题。

几何校正方法包括仿射变换和透视变换等。

最后是图像融合。

图像融合是将拼接后的图像进行混合和平滑处理,使得拼接的边界平滑自然,达到无缝融合的效果。

图像融合方法主要包括线性混合、多分辨率融合和优化算法等。

通过合理选择图像融合方法,可以获得更好的拼接效果。

除了以上步骤,还可以通过一些先进的技术来提升图像拼接效果。

例如,利用深度学习可以提取更高级的图像特征,并实现更准确的特征匹配。

多视图几何和结构光等技术也可以用于实现更精确的几何校正。

总之,利用图像处理技术实现图像拼接是一个复杂而有挑战性的任务。

通过特征提取、特征匹配、几何校正和图像融合等步骤的组合应用,可以实现高质量的图像拼接结果。

随着计算机视觉和图形学技术的不断发展,图像拼接的方法和效果也在不断提升,为各种应用场景提供了更好的解决方案。

如何使用Matlab进行图像拼接和图像融合技术实现

如何使用Matlab进行图像拼接和图像融合技术实现

如何使用Matlab进行图像拼接和图像融合技术实现引言:随着数字图像处理的快速发展,图像拼接和融合技术在许多领域中得到了广泛应用,如航空摄影、医学影像和虚拟现实等。

在本文中,我们将探讨如何使用Matlab软件来实现图像拼接和图像融合的技术。

通过学习这些技术,您将能够将多个图像合并为一个大的全景图像,并且可以通过融合不同曝光或不同焦距拍摄的图像来得到一个更高质量的图像。

一、图像拼接技术图像拼接是将多幅图像无缝合并为一个更大的全景图像的过程。

在Matlab中,可以通过以下步骤进行图像拼接:1. 加载图像:使用imread函数加载所有待拼接的图像。

确保拼接的图像具有重叠区域。

2. 检测特征点:使用SURF(Speeded-Up Robust Features)等特征检测算法在每个图像中找到相应的特征点。

Matlab中提供了现成的函数,如detectSURFFeatures和extractFeatures等。

3. 匹配特征点:使用特征描述符算法(如SURF)比较两幅图像的特征点,并找到相似的特征点。

Matlab中提供了matchFeatures函数来实现。

4. 估计变换矩阵:使用RANSAC算法估计两幅图像之间的单应性变换矩阵,该矩阵描述了如何将一个图像变换到另一个图像中。

Matlab中的estimateGeometricTransform函数可以实现这一步骤。

5. 图像拼接:使用warping技术将所有图像根据变换矩阵进行变换,并将它们拼接在一起。

Matlab提供了warp函数来实现这一过程。

6. 调整拼接后的图像:根据需求,使用imcrop函数对拼接图像进行裁剪,并使用imresize函数调整尺寸。

通过以上步骤,您可以使用Matlab实现图像拼接技术,并得到一个无缝连接的全景图像。

二、图像融合技术图像融合是将不同曝光或不同焦距下拍摄的图像进行融合,以得到更高质量的图像。

在Matlab中,可以通过以下步骤实现图像融合:1. 加载图像:使用imread函数加载待融合的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。

图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。

一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。

本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。

在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。

首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。

然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。

最后用正确的特征点匹配对实现图像的配准。

本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。

Abstract:Image mosaic is a technology that carries on thespatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。

In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In thispaper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration.Key words: image mosaic, image registration, image fusion, panorama第一章绪论1.1 图像拼接技术的研究背景及研究意义图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。

图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。

早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。

近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。

在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。

但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。

使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。

这在红外预警中起到了很大的作用。

微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。

利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。

在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。

这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。

这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。

这样的全景图像相当于人站在原地环顾四周时看到的情形。

在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。

所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。

在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。

从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义1.2图像拼接算法的分类图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。

图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。

根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。

这是最为传统和最普遍的算法。

基于区域的配准方法是从待拼接图像的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。

也可以通过FFT 变换将图像由时域变换到频域,然后再进行配准。

对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。

当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的差值累计起来。

这种办法效果不是很好,常常由于亮度、对比度的变化及其它原因导致拼接失败。

另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高。

该方法的拼接效果要好一些,成功率有所提高。

(2) 基于特征相关的拼接算法。

基于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。

基于特征的配准方法有两个过程:特征抽取和特征配准。

首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集冈。

然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。

一系列的图像分割技术都被用到特征的抽取和边界检测上。

如canny 算子、拉普拉斯高斯算子、区域生长。

抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。

特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配、链码相关等算法。

1.3本文的主要工作和组织结构本文的主要工作:(1) 总结了前人在图像拼接方面的技术发展历程和研究成果。

(2) 学习和研究了前人的图像配准算法。

(3) 学习和研究了常用的图像融合算法。

(4) 用matlab实现本文中的图像拼接算法(5) 总结了图像拼接中还存在的问题,对图像拼接的发展方向和应用前景进行展望。

本文的组织结构第一章主要对图像拼接技术作了整体的概述,介绍了图像拼接的研究背景和应用前景,以及图像拼接技术的大致过程、图像拼接算法的分类和其技术难点。

相关文档
最新文档