二维图像拼接技术
如何利用图像处理技术实现图像拼接

如何利用图像处理技术实现图像拼接图像拼接是指将多个不完整或局部的图像拼接在一起,以生成一张完整的图像。
图像拼接技术在计算机视觉和图形学领域中得到广泛应用,可以用于实现全景图像、卫星地图、医学影像等各种应用场景。
利用图像处理技术实现图像拼接主要包括以下几个步骤:特征提取、特征匹配、几何校正和图像融合。
特征提取是图像拼接的关键步骤之一。
特征提取是为了提取图像中具有代表性和稳定性的特征点或者特征描述子,以用于后续的特征匹配。
常见的特征提取方法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB(Oriented FAST and Rotated BRIEF)等。
接下来是特征匹配。
特征匹配是为了找到两幅图像中对应的特征点,从而建立它们之间的几何关系,为后续的几何校正做准备。
特征匹配方法可以根据特征描述子的相似度、几何关系和一致性进行选择。
常见的特征匹配算法包括FLANN(快速库近似最近邻搜索)和RANSAC(随机抽样一致性)等。
几何校正是指通过对图像进行变换和旋转,将特征匹配后的图像对准。
在几何校正过程中,需要计算图像之间的旋转和平移变换矩阵。
对于大规模的图像拼接任务,可能需要考虑相机畸变校正和透视变换等问题。
几何校正方法包括仿射变换和透视变换等。
最后是图像融合。
图像融合是将拼接后的图像进行混合和平滑处理,使得拼接的边界平滑自然,达到无缝融合的效果。
图像融合方法主要包括线性混合、多分辨率融合和优化算法等。
通过合理选择图像融合方法,可以获得更好的拼接效果。
除了以上步骤,还可以通过一些先进的技术来提升图像拼接效果。
例如,利用深度学习可以提取更高级的图像特征,并实现更准确的特征匹配。
多视图几何和结构光等技术也可以用于实现更精确的几何校正。
总之,利用图像处理技术实现图像拼接是一个复杂而有挑战性的任务。
通过特征提取、特征匹配、几何校正和图像融合等步骤的组合应用,可以实现高质量的图像拼接结果。
随着计算机视觉和图形学技术的不断发展,图像拼接的方法和效果也在不断提升,为各种应用场景提供了更好的解决方案。
vfa 算法

vfa 算法VFA(Vector Field Alignment)算法是一种用于特征匹配和图像拼接的算法。
它通过将两个图像的特征点进行匹配,然后将这些特征点映射到一个共同的坐标系中,从而实现图像的拼接。
VFA算法的基本步骤如下:1. 特征提取:首先,从两个待拼接的图像中提取出特征点。
这些特征点可以是角点、边缘点等。
2. 特征匹配:然后,通过比较两个图像中的特征点,找出相互匹配的特征点对。
这一步通常使用一些特征描述子,如SIFT、SURF等。
3. 构建初始对应关系:接下来,根据匹配的特征点对,构建一个初始的对应关系。
这个对应关系是一个二维矩阵,其中每个元素表示一个特征点对是否匹配。
4. 优化对应关系:然后,通过优化算法,如最小二乘法,来优化这个对应关系。
优化的目标是使得匹配的特征点对在两个图像中的相对位置尽可能一致。
5. 计算变换矩阵:最后,根据优化后的对应关系,计算出一个变换矩阵。
这个变换矩阵可以将一个图像中的特征点映射到另一个图像中的对应位置。
VFA算法的优点是可以处理大规模的图像拼接问题,而且对于图像的旋转、缩放等变换具有一定的鲁棒性。
但是,它也有一些缺点。
例如,如果两个图像之间的视角差异较大,或者光照条件不同,那么VFA算法可能会得到较差的结果。
此外,VFA算法的时间复杂度较高,需要大量的计算资源。
为了解决这些问题,研究人员提出了许多改进的VFA算法。
例如,一些人提出了基于RANSAC的VFA算法,可以有效地排除错误的匹配结果。
还有一些人提出了基于多视图几何的VFA算法,可以处理视角差异较大的图像拼接问题。
总的来说,VFA算法是一种有效的图像拼接方法,但是还需要进一步的研究和改进。
基于二维投影变换的视频全景图拼接算法

频序 列 图像 进行 无缝拼 接 , 即先利 用 图像 配准算 法 求 得 各帧 图像 间运 动参 数 , 后合 成一张 大 的静态 然
宽视 角图像 。 要求 拼接 算法 能够使 合成后 的 图像 最
() 1 采用 二维 投 影 变换 作 为 视 频 帧 间模 型 , 该 模 型 具 有旋 转 、 缩放 和 位 移 不 变 性 , 用 于 以下 3 适
术 。 目的在 于对取 自同一场 景 、 同视角 、 同焦 其 不 不
距、 围绕 同一 光 学 中心 拍摄 、 相互 有部 分 重 叠 的视
于 图像特 征 的配 准[ 。 4 本文在 研究 两类 配 准方法各 ]
自特 点 的基础 上 ,针对 帧问 运 动模 型为 二 维 投影
变 换 的常见视 频序列 , 出了一 种使特 征 匹配算 法 提 和 直接 法相结 合 的新 图像 配准 算法 , 算 法具有 以 该
配特 征 点 对 集 合 c= { = ( , 1 Y , )一 = ( z,
五,)) 1 ;
( )运 用 RA A 3 NS C鲁棒 估 计方 法 得 到集 合
C 中 最 大 的 内点 集 合 和 二 维 投 影 运 动 模 型 参 数 h + 的估计 , 即 ① 从 C 中 随机 抽取 子 集 , —4 因为 估计 I 1 (
用 了图像像 素 的全部 信息 , 以达 到很高 的亚 像素 可
参 数 h, l t 至少需 要 4对数 据 点 ) 用 于估 计 h, l t + , t 参 t +
数;
② 利 用子集 中的对应 关 系 , 计算 二 维投影 投 影 运 动模 型参数 , 即 f, +
级精度。 ( ) 用基 于特 征 的运动参 数 估计算 法 得到 的 5利
图像拼接实验报告

图像拼接一、实验原理及实验结果图像拼接就是将一系列针对同一场景的有重叠部分的图片拼接成整幅图像,使拼接后的图像最大程度地与原始场景接近,图像失真尽可能小。
基于SIFT算法则能够对图像旋转、尺度缩放、亮度变化保持不变性,对视角变化,仿射变换,噪声也能保持一定程度的稳定性。
本次实验运用SIFT匹配算法来提取图像的特征点,采用随机抽样一致性算法求解单应性矩阵并剔除错误的匹配对。
最后用加权平均融合法将两帧图像进行拼接。
具体过程为:首先选取具有重叠区域的两帧图像分别作为参考图像和待拼接图像,然后使用特征提取算法提取特征点,并计算特征点描述子,根据描述子的相似程度确定互相匹配的特征点对。
再根据特征点对计算出待拼接图像相对于参考图像的单应性矩阵,并运用该矩阵对待拼接图像进行变换,最后将两帧图像进行融合,得到拼接后的图像。
1.特征点检测与匹配特征点检测与匹配中的尺度空间理论的主要思想就是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,再对这些序列就行尺度空间的特征提取。
二维的高斯核定义为:G(x,y,σ)=12πσ2e−(x2+y2)2σ2⁄对于二维图像I(x,y),在不同尺度σ下的尺度空间表示I(x,y,σ)可由图像I(x,y)与高斯核的卷积得到:L(x,y,σ)=G(x,y,σ)∗I(x,y)其中,*表示在x 和 y方向上的卷积,L表示尺度空间,(x,y)代表图像I上的点。
为了提高在尺度空间检测稳定特征点的效率,可以利用高斯差值方程同原图像进行卷积来求取尺度空间极值:D(x,y,σ)=(G(x,y,kσ)−G(x,y,σ))∗I(x,y)= L(x,y,kσ)−L(x,y,σ)其中k为常数,一般取k=√2。
SIFT算法将图像金字塔引入了尺度空间,首先采用不同尺度因子的高斯核对图像进行卷积以得到图像的不同尺度空间,将这一组图像作为金字塔图像的第一阶。
接着对其中的2倍尺度图像(相对于该阶第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金字塔图像第二阶的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像第二阶的一组图像。
基于特征点的图像拼接算法图文说明

本文说明的内容是图像拼接,采用基于特征点的匹配方法将两张定点拍摄的照片进行拼接,合成一张图,将全景图生成简化成两张图片的拼接,具体可以分为以下几点:掌握图像灰度化、图像投影变换、图像特征点提取、图像仿射矩阵变换及图像融合。
1、在数字图像的预处理中,灰度图像是进行图像识别与处理的基础。
彩色图像转换为灰度图像的方法主要有平均值法、最大值法和加权平均值法。
2、图像的投影变换也是图像拼接不可或缺的过程,待拼接的图像素材往往不在一个坐标系下,直接拼接会因为角度的问题导致景物扭曲变形,目前普遍的方式是将图像投影到几何体表面上,如球面,立方体或柱面上。
3、特征点是进行本图像匹配方法的基础,质量的好坏将直接影响匹配的精度和效率,特征点应具有旋转、平移不变形等特性,保证不会因为相机的曝光等原因造成图像的错误匹配。
4、图像特征点提取之后,需要根据特征点计算图像的放射矩阵,从而对图像进行变换而实现拼接。
放射变换的过程中,插值的方法确保图像不失真。
5、图像拼接完成后,最后需要将图像融合,使两幅图像不会因为曝光等原因造成可视的匹配错误。
图1 基于特征点图像拼接步骤--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------详细步骤:1、图像的灰度化在图像处理中,灰度化一直作为预处理的一部分,有时不仅仅是算法的需要,也是将三维降成一维从而减小计算量与增加运行速度的重要方法。
彩色图像转换为灰度图像的方法有平均值法、最大值法及加权平均值法,其转换公式为:平均值法,gray=(R+G+B)/3;最大值法,gray=max(R,G,B)加权平均值法,gray=(R×0.3+G×0.59+B×0.11)其中 R、G、B 为红、绿、蓝分量,gray 为转换后的灰度值。
stitch函数

stitch函数
【实用版】
目录
1.stitch 函数的概念
2.stitch 函数的用途
3.stitch 函数的参数
4.stitch 函数的实现原理
5.stitch 函数的示例
正文
stitch 函数是一种在计算机图形学中广泛应用的函数,主要用于将多个二维图形或图像拼接在一起,形成一个完整的图像。
它的应用场景非常广泛,比如在游戏开发、图像处理、网页设计等领域都有涉及。
stitch 函数的用途主要有以下几点:
1.将多个图像拼接在一起,形成一个大图像,这在制作全景图片或者处理高分辨率图像时非常有用。
2.将多个图形拼接在一起,形成一个复杂的图形,这在游戏开发中非常常见,比如将多个纹理图拼接在一起,形成一个游戏角色的模型。
3.将多个视频拼接在一起,形成一个连续的视频,这在视频编辑中非常常见。
stitch 函数的参数主要有以下几个:
1.图像或图形的坐标和大小,这是确定拼接位置和大小的关键参数。
2.拼接方式,比如线性拼接、插值拼接、重复拼接等,不同的拼接方式会导致拼接后的图像效果不同。
3.颜色空间,用于指定颜色值是如何表示的,比如 RGB 颜色空间、
HSV 颜色空间等。
stitch 函数的实现原理是基于图像处理算法的,主要有以下几个步骤:
1.读取输入的图像或图形,并将其转换为合适的数据结构,比如纹理、矩阵等。
2.根据参数计算拼接位置和大小,这需要对图像进行裁剪、缩放等操作。
3.根据指定的拼接方式,将多个图像或图形拼接在一起,形成一个新的图像或图形。
4.将结果保存到指定的输出设备,比如屏幕、文件等。
图像拼接的原理和应用

图像拼接的原理和应用一、图像拼接的原理图像拼接是一种将多幅图像拼接成一幅大图的技术。
它可以帮助我们扩展视野,获得更大范围的图像信息。
图像拼接的原理主要包括以下几个方面:1.特征提取:在进行图像拼接之前,首先需要提取图像中的特征点。
常用的特征点提取算法包括SIFT(尺度不变特征变换)和SURF(加速稳健特征)等。
2.特征匹配:通过计算图像中的特征点相似度,找到各图像间的对应关系。
常用的特征匹配算法包括基于特征点的匹配和基于区域的匹配。
3.几何变换:图像在进行拼接时,需要进行几何变换,使得各图像间的特征点能够对齐。
常用的几何变换包括相似变换、仿射变换和投影变换等。
4.图像融合:在完成图像对齐后,需要对图像进行融合,使得拼接后的图像看起来自然。
图像融合常使用的方法有无缝融合、多频段融合和多重层次融合等。
二、图像拼接的应用图像拼接技术广泛应用于许多领域,下面列举了几个常见的应用场景:1.地理测绘:通过对不同角度的航拍图像进行拼接,可以生成高分辨率的地图。
这对于土地利用分析、城市规划和灾害监测等方面非常重要。
2.视频制作:在电影和电视制作中,图像拼接技术可以将不同的视频镜头进行平滑过渡,使得观众无法察觉画面的转换,增强观赏性。
3.虚拟现实:在虚拟现实领域,图像拼接可以用于构建虚拟环境。
通过拼接多个图像,可以实现用户的全方位观察和交互体验。
4.医学影像:在医学影像的处理中,图像拼接可以帮助医生获取更全面、准确的病灶信息。
比如,可以将多张断层扫描合成一张完整的三维影像。
5.工业检测:在工业领域,图像拼接技术可以实现对大尺寸或复杂结构的物体进行检测和分析。
比如,可以拼接多张图像构成一张全景图,提供更全面的视角。
三、图像拼接的优缺点图像拼接技术的应用带来了许多便利,但同时也存在一些限制和缺点。
优点:•视角扩展:通过图像拼接,可以将多张图像拼接成一张大图,扩展视野范围,获得更全面的信息。
•画面连续:通过拼接图像,可以实现画面的连续性,使得观看者无法感知画面的变换,提升用户体验。
图像融合拼接方法

图像融合拼接方法图像融合拼接是指将多幅图像进行合并处理,形成一幅新的图像。
它在计算机视觉、图像处理领域具有重要应用,可以用于拼接全景图、生成虚拟实境等。
本文将介绍几种常见的图像融合拼接方法。
一、传统图像融合拼接方法1.1 直观图像融合拼接方法直观图像融合拼接方法是最简单的一种方法,它直接将两幅图像进行叠加。
例如,在拼接两张风景照片时,可以将两个图像的像素值相加或取平均值,从而合并成一幅新的图像。
这种方法的优点是操作简单,但缺点是容易导致拼接处的边缘不连续,不够自然。
1.2 重叠区域混合融合拼接方法重叠区域混合融合拼接方法通过将两幅图像在重叠区域内进行像素值的平滑过渡,实现更自然的融合效果。
常用的方法有线性混合、高斯混合等。
线性混合是指在重叠区域内,按照一定的权重将两幅图像的像素值进行逐点插值,从而形成新的图像。
而高斯混合则是通过使用高斯模糊滤波器,降低重叠区域内图像的对比度,实现平滑过渡。
1.3 多尺度图像融合拼接方法多尺度图像融合拼接方法是一种层次化的拼接方法。
它首先将两幅图像进行金字塔分解,分别得到不同尺度的图像金字塔。
然后,在每一层金字塔上进行拼接处理,得到对应尺度的融合结果。
最后将各层结果合并,得到最终的融合图像。
这种方法能够有效处理图像的尺度变化,并保持较高的拼接质量。
二、深度学习图像融合拼接方法随着深度学习技术的发展,越来越多的研究者开始将其应用于图像融合拼接中,取得了很好的效果。
深度学习图像融合拼接方法主要包括基于生成对抗网络(GAN)的方法、基于卷积神经网络(CNN)的方法等。
2.1 基于生成对抗网络的图像融合拼接方法基于生成对抗网络的图像融合拼接方法是将两幅图像作为输入,通过生成器和判别器的协同训练,使生成器能够生成与真实图像相似的图像。
这种方法可以有效地学习到图像的分布特征,从而生成更自然的融合结果。
2.2 基于卷积神经网络的图像融合拼接方法基于卷积神经网络的图像融合拼接方法主要通过卷积层、池化层和全连接层等结构,对输入图像进行特征提取和融合操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业设计报告设计题目:基于机器人视觉的图像处理方法研究——二维图像处理姓名:学号:学院:专业:指导教师:同组人姓名:摘要:在实际应用中,经常会用到超过人眼视野范围甚至是全方位的高分辨率图像,普通数码相机的视野范围往往难以满足要求。
为了得到大视野范围的图像,人们使用广角镜头和扫描式相机进行拍摄。
但这些设备往往价格昂贵、使用复杂,此外,广角镜头的图像边缘会难以避免的产生扭曲变形,不利于一些场合的应用。
为了在不降低图像分辨率的条件下获取大视野范围的图像,人们提出了图像拼接技术,将普通图像或视频图像进行无缝拼接,得到超宽视角甚至360度的全景图,这样就可以用普通数码相机实现场面宏大的景物拍摄。
利用计算机进行匹配,将多幅具有重叠关系的图像拼合成为一幅具有更大视野范围的图像,这就是图像拼接的目的。
图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。
最初主要是对大量航拍或卫星的图像的整合,也可运用于军事领域网的夜视成像技术,。
利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。
在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。
在医学图像处理方面,把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。
在遥感技术领域中,图像拼接技术的应用也日益广泛。
通过本课题的研究,初步了解图像拼接技术的基本应用,并了解sift语言的应用,将两幅具有相同特征点的图拼接在一起,实现二维图像的初步拼接处理。
关键词:图像获取,图像配准,图像融合,图像合成,SIFT。
一、设计的任务和目的二维和三维图像测量方法,具有非接触,自扫描,高精度的优点,已得到广泛应用。
但在保证高精度的条件下,要实现大范围,多参数测量,单纯提高摄像机性能往往受到限制,而且成本高。
图像拼接技术能够实现上述测量目的,达到较高的性能价格比。
二维图像拼接是利用已获得的多幅被测物图像,提取图像间的公共特性,并通过公共特征将多图数据统一到同一坐标下,从而挖掘出数据中的深层次信息。
二维图像拼接依据特征信息提取方法的不同,可以分为基于区域和基于特征两种。
基于区域的拼接一般通过求相关系数实现,计算量大,运行时间长。
基于特征的拼接可以提取有旋转,平移,缩放不变性的不变量,具有快速,准确的特点,在工业测量中还可人为加入特制标记,使测量更有实用性。
图像拼接的关键是精确找出相邻图像中重叠部分的位置,然后确定两张图像的变换关系,然后进行拼接和拼缝融合。
但是由于照相机受环境和硬件等条件影响,所要拼接的图像往往存在平移、旋转、大小、色差及其组合的形变与扭曲等差别。
本设计采用基于特征的图像拼接技术,首先对图像进行轮廓提取,然后再对提取的轮廓进行匹配,从而确定重叠位置,最后对重叠部分进行融合,完成将两幅有重叠的图像拼合成一张大尺寸图。
二、设计原理1.图像拼接算法的分类图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。
根据图像匹配方法的不同,一般可以将图像拼接算法分为以下两个类型:基于区域相关的拼接算法。
(1)这是最为传统和最普遍的算法。
基于区域的配准方法是从待拼接图像的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。
也可以通过FFT 变换将图像由时域变换到频域,然后再进行配准。
对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。
(2)当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的差值累计起来。
这种办法效果不是很好,常常由于亮度、对比度的变化及其它原因导致拼接失败。
另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高。
该方法的拼接效果要好一些,成功率有所提高。
基于特征相关的拼接算法。
(1)基于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。
(2)基于特征的配准方法有两个过程:特征抽取和特征配准。
首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。
然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。
一系列的图像分割技术都被用到特征的抽取和边界检测上。
如canny 算子、拉普拉斯高斯算子、区域生长。
抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。
特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配、链码相关等算法。
2.图像拼接图像拼接技术主要有三个主要步骤:图像预处理、图像配准、图像融合与边界平滑。
图1 图像拼接的步骤图像拼接技术主要分为三个主要步骤:图像预处理、图像配准、图像融合与边界平滑,图像预处理主要指对图像进行几何畸变校正和噪声点的抑制等,让参考图像和待拼接图像不存在明显的几何畸变。
在图像质量不理想的情况下进行图像拼接,如果不经过图像预处理,很容易造成一些误匹配。
图像预处理主要是为下一步图像配准做准备,让图像质量能够满足图像配准的要求。
图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息中寻找最佳的匹配,完成图像间的对齐。
图像拼接的成功与否主要是图像的配准。
待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像对齐。
图像融合指在完成图像匹配以后,对图像进行缝合,并对缝合的边界进行平滑处理,让缝合自然过渡。
由于任何两幅相邻图像在采集条件上都不可能做到完全相同,因此,对于一些本应该相同的图像特性,如图像的光照特性等,在两幅图像中就不会表现的完全一样。
图像拼接缝隙就是从一幅图像的图像区域过渡到另一幅图像的图像区域时,由于图像中的某些相关特性发生了跃变而产生的。
图像融合就是为了让图像间的拼接缝隙不明显,拼接更自然。
图像的预处理1.图像的校正当照相系统的镜头或者照相装置没有正对着待拍摄的景物时候,那么拍摄到的景物图像就会产生一定的变形。
这是几何畸变最常见的情况。
另外,由于光学成像系统或电子扫描系统的限制而产生的枕形或桶形失真,也是几何畸变的典型情况。
几何畸变会给图像拼接造成很大的问题,原本在两幅图像中相同的物体会因为畸变而变得不匹配,这会给图像的配准带来很大的问题。
因此,解决几何畸变的问题显得很重要。
图象校正的基本思路是,根据图像失真原因,建立相应的数学模型,从被污染或畸变的图象信号中提取所需要的信息,沿着使图象失真的逆过程恢复图象本来面貌。
实际的复原过程是设计一个滤波器,使其能从失真图象中计算得到真实图象的估值,使其根据预先规定的误差准则,最大程度地接近真实图象。
2.图像噪声的抑制图像噪声可以理解为妨碍人的视觉感知,或妨碍系统传感器对所接受图像源信息进行理解或分析的各种因素,也可以理解成真实信号与理想信号之间存在的偏差。
一般来说,噪声是不可预测的随机信号,通常采用概率统计的方法对其进行分析。
噪声对图像处理十分重要,它影响图像处理的各个环节,特别在图像的输入、采集中的噪声抑制是十分关键的问题。
若输入伴有较大的噪声,必然影响图像拼接的全过程及输出的结果。
根据噪声的来源,大致可以分为外部噪声和内部噪声;从统计数学的观点来定义噪声,可以分为平稳噪声和非平稳噪声。
各种类型的噪声反映在图像画面上,大致可以分为两种类型。
一是噪声的幅值基本相同,但是噪声出现的位置是随机的,一般称这类噪声为椒盐噪声。
另一种是每一点都存在噪声,但噪声的幅值是随机分布的,从噪声幅值大小的分布统计来看,其密度函数有高斯型、瑞利型,分别成为高斯噪声和瑞利噪声,又如频谱均匀分布的噪声称为白噪声等。
图像配准1.图像配准的概念:(1)图像配准简而言之就是图像之间的对齐。
图像配准定义为:对从不同传感器或不同时间或不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程。
为了更清楚图像配准的任务,我们将图像配准问题用更精确的数学语言描述出来。
配准可以用描述为如下的问题: 给定同一景物的从不同的视角或在不同的时间获取的两个图像I ,I 和两个图像间的相似度量S(I ,I ),找出I ,I 中的同名点,确定图像间的最优变换T,使得S(T(I ),I )达到最大值。
(2)图像配准总是相对于多幅图像来讲的,在实际工作中,通常取其中的一幅图像作为配准的基准,称它为参考图,另一幅图像,为搜索图。
图像配准的一般做法是,首先在参考图上选取以某一目标点为中心的图像子块,并称它为图像配准的模板,然后让模板在搜索图上有秩序地移动,每移到一个位置,把模板与搜索图中的对应部分进行相关比较,直到找到配准位置为止。
(3)如果在模板的范围内,同一目标的两幅图像完全相同,那么完成图像配准并不困难。
然而,实际上图像配准中所遇到的同一目标的两幅图像常常是在不同条件下获得的,如不同的成像时间、不同的成像位置、甚至不同的成像系统等,再加上成像中各种噪声的影响,使同一目标的两幅图像不可能完全相同,只能做到某种程度的相似,因此图像配准是一个相当复杂的技术过程。
2.基于区域的配准(分层比较法)(1)图像处理的塔形(或称金字塔:Pyramid)分解方法把原始图像分解成许多不同空间分辨率的子图像,高分辨率(尺寸较大)的子图像放在下层,低分辨率(尺寸较小)的图像放在上层,从而形成一个金字塔形状。
(2)在逐一比较法的思想上,为减少运算量,引入了塔形处理的思想,提出了分层比较法。
利用图像的塔形分解,可以分析图像中不同大小的物体。
同时,通过对低分辨率、尺寸较小的上层进行分析所得到的信息还可以用来指导对高分辨率、尺寸较大的下层进行分析,从而大大简化分析和计算。
分层比较法的具体实现步骤如下:(1)将待匹配的两幅图像中2 2邻域内的像素点的像素值分别取平均,作为这一区域(2 2)像素值,得到分辨率低一级的图像。
然后,将此分辨率低一级的图像再作同样的处理,也就是将低一级的图像4 4邻域内的像素点的像素值分别取平均,作为这一区域(4 4)点的像素值,得到分辨率更低一级的图像。
依次处理,得到一组分辨率依次降低的图像。
(2)从待匹配的两幅图像中分辨率最低的开始进行匹配搜索,由于这两幅图像像素点的数目少,图像信息也被消除一部分,因此,此匹配位置是不精确的。
所以,在分辨率更高一级的图像中搜索时,应该在上一次匹配位置的附近进行搜索。