勾股定理的简单应用教案

合集下载

初中数学勾股定理教案(集合4篇)

初中数学勾股定理教案(集合4篇)

初中数学勾股定理教案(集合4篇)本文为大家分享初中数学勾股定理教案相关范本模板,以供参考。

一、例题的意图分析例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

二、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

三、例习题分析例1(P83例2)分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12某1.5=18,PQ=16某1.5=24,QR=30;⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;⑸∠PRS=∠QPR-∠QPS=45°。

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

分析:⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

解略。

四、课堂练习1、小强在操场上向东走80m后,又走了60m,再走100m回到原地。

小强在操场上向东走了80m后,又走60m的方向是。

2、如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?3、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。

已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向学习目标1、通过拼图,用面积的方法说明勾股定理的正确性.2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

《勾股定理的应用》教案 (公开课)2022年人教版数学

《勾股定理的应用》教案 (公开课)2022年人教版数学

第2课时勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,假设小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保存根号)解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC =5米,那么AB=BC2-AC2=12米.6秒后,B′C×6=10米,那么AB′=B′C2-AC2=53(米),那么船向岸边移动的距离为(12-53)米.方法总结:此题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题如下列图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=202103〕2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC 的长.【类型三】利用勾股定理解决立体图形最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM =102+〔20+5〕2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+2021+5〕2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,那么AM的长是()解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.应选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A 处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,那么满足AB2+BC2=AC2.设BC=a m,AC=b m,AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC =a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,那么10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如下列图,数轴上点A所表示的数为a,那么a的值是()A.5+1 B .-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.应选C.方法总结:此题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a 的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.第2课时平行四边形的判定定理11.掌握“一组对边平行且相等的四边形是平行四边形〞的判定方法;(重点) 2.平行四边形性质定理与判定定理的综合应用.(难点)一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?二、合作探究探究点一:一组对边平行且相等的四边形是平行四边形,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF =∠BCE,可证出AD∥CB,根据一组对边平行且相等的四边形是平行四边形可证出结论.解:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE、DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出三角形全等.探究点二:平行四边形的判定定理与性质的综合应用【类型一】利用性质与判定证明如图,四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF;(2)连接BF、DE,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS〞可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF,再利用得出△ADE≌△BCF,进而得出DE =BF,即可得出四边形BFDE是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,⎩⎪⎨⎪⎧∠DFC=∠BEA,∠FCD=∠EAB,AB=CD,∴△ABE≌△CDF(AAS);(2)解:四边形BFDE是平行四边形,理由如下:∵△ABE≌△CDF,∴AE=FC,BE=DF,∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB.∴∠DAC=∠BCA.在△ADE和△CBF中,⎩⎪⎨⎪⎧AD=BC,∠DAE=∠BCF,AE=FC,∴△ADE≌△CBF,∴DE=BF,∴四边形BFDE是平行四边形.方法总结:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,假设要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形到达上述目的.【类型二】利用性质与判定计算如图,六边形ABCDEF的六个内角均为120°,且CD=2cm,BC=8cm,AB =8cm,AF=5cm.试求此六边形的周长.解析:由∠A=∠B=∠C=∠D=∠E =∠F=120°,联想到它们的邻补角(即外角)均为60°,如果能够组成三角形的话,那么必为等边三角形.事实上,设BC、ED的延长线交于点N,那么△DCN为等边三角形.由∠E=120°,∠N=60°,可知EF∥BN.同理可知ED∥AB,于是从平行四边形入手,找出解题思路.解:延长ED、BC交于点N,延长EF、BA交于点M.∵∠EDC=∠BCD=120°,∴∠NDC=∠NCD=60°.∴∠N=60°.同理,∠M=60°.∴△DCN、△FMA 均为等边三角形.∴∠E+∠N=180°.同理∠E+∠M=180°.∴EM∥BN,EN∥MB.∴四边形EMBN是平行四边形.∴BN=EM,MB=EN.∵CD=2cm,BC=8cm,AB=8cm,AF=5cm,∴CN=DN=2cm,AM=FM=5cm.∴BN=EM=8+2=10(cm),MB=EN =8+5=13(cm).∴EF+F A+AB+BC+CD +DE=EF+FM+AB+BC+DN+DE=EM +AB+BC+EN=10+8+8+13=39(cm),∴此六边形的周长为39cm.方法总结:解此题的关键是作辅助线,将“不规那么〞的六边形变成“规那么〞的平行四边形,从而利用平行四边形的知识来解决.三、板书设计一组对边平行且相等的四边形是平行四边形本节课,学习了平行四边形的两种判定方法,对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和开展,更好地进行知识建构,实现良性循环.。

苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2

苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2

苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2一. 教材分析《苏科版数学八年级上册》第三单元《勾股定理的简单应用》是学生在学习了勾股定理之后的一个应用部分。

这部分内容主要让学生通过实际问题,运用勾股定理解决生活中的问题,培养学生的数学应用能力。

教材通过丰富的例题和练习题,让学生在解决实际问题的过程中,加深对勾股定理的理解和记忆。

二. 学情分析八年级的学生已经学习了勾股定理,对勾股定理的基本概念和运用有一定的了解。

但是,对于一些生活中的实际问题,如何运用勾股定理来解决,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.知识与技能:让学生掌握勾股定理的基本概念,能够运用勾股定理解决实际问题。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决问题的能力。

3.情感态度与价值观:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。

四. 教学重难点1.重点:让学生能够运用勾股定理解决实际问题。

2.难点:如何引导学生将实际问题与勾股定理相结合,提高学生的数学应用能力。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生在解决问题的过程中,运用勾股定理,提高学生的数学应用能力。

同时,采用小组合作的学习方式,让学生在讨论和交流中,共同解决问题,培养学生的合作意识。

六. 教学准备1.准备相关的实际问题,用于课堂上引导学生解决。

2.准备PPT,用于展示问题和引导学生思考。

七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生的思考,引出本节课的主题。

例题:一块直角三角形的木板,两条直角边的长度分别是3分米和4分米,那么这块木板的最大面积是多少?2.呈现(10分钟)呈现PPT,展示问题,引导学生思考如何解决这个问题。

3.操练(10分钟)学生独立思考,尝试解决PPT上的问题。

教师巡回指导,解答学生的疑问。

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理教案范本勾股定理教案教学方法优秀6篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

高中数学勾股定理教案

高中数学勾股定理教案

高中数学勾股定理教案
教学内容:勾股定理
教学目标:
1. 了解勾股定理的定义和原理
2. 掌握勾股定理的应用方法
3. 能够熟练使用勾股定理解决实际问题
教学重点:
1. 勾股定理的概念和原理
2. 勾股定理的推导方法
3. 勾股定理的应用
教学步骤:
一、导入(5分钟)
1. 引入勾股定理的概念,引导学生思考勾股定理的应用场景。

二、讲解(15分钟)
1. 讲解勾股定理的定义和原理,说明直角三角形中,直角边的平方等于两个直角边的平方和。

2. 示范勾股定理的推导方法,引导学生理解勾股定理的证明过程。

三、练习(20分钟)
1. 给学生分发练习题,让学生自行解题,并互相讨论交流。

2. 指导学生如何应用勾股定理解决实际问题,如测量建筑物的高度、距离等。

四、总结(10分钟)
1. 回顾勾股定理的定义和应用方法,强化学生对勾股定理的理解。

2. 提醒学生在日常学习和生活中多加应用勾股定理,提高解决问题的能力和应用能力。

五、作业布置(5分钟)
1. 布置勾股定理相关的作业,巩固学习内容。

2. 提醒学生课后多进行练习,加深对勾股定理的理解和掌握。

教学反思:
通过此次教学,学生对勾股定理的认识得到了加深,掌握了勾股定理的应用方法,提高了解决实际问题的能力。

下一步需要继续强化学生对勾股定理的理解和实际运用能力,拓展勾股定理的应用场景,激发学生对数学的兴趣。

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。

3.3.勾股定理的简单应用教案

3.3.勾股定理的简单应用教案

3.3勾股定理的简单应用【学习目标】:1.能运用勾股定理及其勾股定理逆定理解决实际问题。

2.在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),体会勾股定理的文化价值,增强应用意识。

【重点】利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

【难点】在运用勾股定理解决问题的过程中,感受数学的“转化”思想:把解斜三角形问题转化为解直角三角形。

【教学过程】一、知识回味:1.一个直角三角形的两边长分别为3和4,则第三边长的平方为 ________ .2.一个三角形三边分别是6cm、8cm、IOenb这个三角形的面积为_______ cm2二、生活中的数学:问题1:已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的长.若AB=300m,BF=400m,贝UAF=m;问题2:看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?儿位同学想利用学过的数学知识来计算学校旗杆的高度。

方案1:旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他们把旗杆的高度计算出来吗?方案2:若同学们将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,同学们将绳子末端拉到距旗杆8m处,发现此时绳子末端距离地面2m.则旗杆的高度是多少?问题3:王老先生有两块地,通过测量数据如图,你能帮忙求出面积吗?三、总结提升四、古题赏析《九章算术》中的“折竹”问题:今有竹高一丈,末折抵地,去根三尺,问折者高几何?意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,巩固练习:1、轮船在大海中航行,它从点A 出发,向正北方向航行20km,遇到冰山后,又折向正东方向航行15km,则此时轮船距点A 的距离为km.2、有两棵树,一棵高IOnb 另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,间小鸟至少飞行m.3、如图,圆柱体的高为6,底面圆周长是8,如果用一根细线从点力开始经过圆柱侧面缠绕一圈到达点8.那么所用细线最短需要cm ;4、如图,在BC 中,JB=15,JD=12,BD=9,∕C=13,求448C 的周长和面积.堪作如而而一儿肖瑞」文鹏殿强升八Z此得以液竹高而-T.H:八侏即折片之工变之地¾⅛退而也变可划上初今商,一曩去水门乘角龙郭渡之栋第^信¾∙m5、如图,今年的台风灾害中,一棵高16米大树折断,树的顶端落在离树杆底部8米处,你能知道这棵树剩下的高度吗?6、“引葭赴岸”是《九章算术》中一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭.长各几何?”题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少?7、一张长方形纸片宽AB=8cm,长BC=IOcm.现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的长.。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

勾股定理的应用教案

勾股定理的应用教案

1.3勾股定理的应用教学目标:1.学会用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.2.能熟练运用勾股定理求最短距离.3.在实际问题中构造直角三角形,提高建模能力,进一步深化对构造法和代数计算法的理解.教学重点:学会用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题教学难点:能熟练运用勾股定理求最短距离.教学过程:一、情境导入今早7:00,我从家出发,以100米/分的速度向西走5分钟,又以120米/分的速度向南走10分钟,到达学校.1.早上老师共走了多少路程?500+1200=1700(米).2.家到学校的距离是多少?解:由勾股定理,得AC2=AB2+BC2=5002+12002=13002.因为AC>0,所以AC=1300米.二、探索新知如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么爬最近?学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么爬最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.学生汇总了四种方案:学生很容易算出:情形(1)中A→B的路线长为:AA'+d,情形(2)中A→B的路线长为:AA'+.所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA'剪开圆柱得到矩形,情形(3)A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.如图:(1)中A→B的路线长为:AA'+d.(2)中A→B的路线长为:AA'+A'B>AB.(3)中A→B的路线长为:AO+OB>AB.(4)中A→B的路线长为:AB.得出结论:利用展开图中两点之间线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来提问:怎样计算AB?在Rt△AA'B中,利用勾股定理可得AB2=A'A2+A'B2,若已知圆柱体高12cm,底面半径为3cm,π取3,则AB2=122+(3×3)2.∴AB=15cm.做一做:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?(2)李叔叔量得边AD长是30厘米,边AB长是40厘米,点B,D之间的距离是50厘米.边AD垂直于边AB吗?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验边AD是否垂直于边AB吗?边BC与边AB呢?解:(1)能.办法:用卷尺量出AB,AD和BD的长度,计算AB2,AD2和BD2的值,若AB2+AD2=BD2,则根据勾股定理的逆定理可知∠BAD=90°,即AD⊥AB.检测BC⊥AB同理.(2)∵AB2+AD2=402+302=2500,BD2=2500,∴AB2+AD2=BD2.∴∠BAD=90°.∴边AD垂直于边AB.(3)能.办法:在AB边上量一小段AE=8cm,在AD边上量一小段AF=6cm,AE2+AF2=82+62=102,这时只要量一下EF是否等于10cm即可.边BC同理.三、掌握新知例如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.四、巩固练习1.甲、乙两位探险者到沙漠进行探险.某日早晨8:00甲先出发,他以6km/h的速度向正东行走.1h后乙出发,他以5km/h的速度向正北行走.上午10:00,甲、乙两人相距多远?解:如图,A是甲、乙的出发点,10:00甲到达B点,乙到达C点.∴AB=2×6=12(km),AC=1×5=5(km).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132.又∵BC>0,∴BC=13km.∴甲、乙两人相距13km.2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.解:如图,AB2=152+202=625=252.∵AB>0,∴AB=25.∴蚂蚁沿图中AB路线走最近,最近距离为25.3.有一个高为1.5m,半径是1m的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5m,问这根铁棒有多长?(小孔边缘到油桶壁的距离忽略不计)解:设这根铁棒伸入油桶中的长度为x m.则当这根铁棒最长时:x2=1.52+22,解得x=2.5,∴这根铁棒最长是2.5+0.5=3(m);当这根铁棒最短时:x=1.5,∴这根铁棒最短是1.5+0.5=2(m).答:这根铁棒的长应在2m~3m之间.4.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的大意是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问:这个水池水的深度和这根芦苇的长度各是多少?解:如图.设这个水池水的深度AC是x尺,则这根芦苇的长度AD=AB=(x+1)尺.在直角三角形ABC中,BC=5尺.由勾股定理,得BC2+AC2=AB2,即52+x2=(x+1)2.解得x=12.∴x+1=13.答:这个水池水的深度是12尺,这根芦苇的长度是13尺.五、归纳小结1.解决实际问题的方法是建立数学模型求解.2.在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题.六、布置作业从教材习题1.4中选取.通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程中,感受数学学习的魅力.。

勾股定理-教学设计

勾股定理-教学设计

勾股定理(第一课时)教学目标1.知识与技能:(1)了解勾股定理的发现过程。

(2)掌握勾股定理的内容。

(3)会用面积法证明勾股定理。

(4)会应用勾股定理进行简单的计算。

2.过程与方法:(1)经历利用等腰直角三角形探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

(2)探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

3.情感、态度与价值观:(1)介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

(2)培养在实际生活中发现问题、总结规律的意识和能力。

教学重难点勾股定理的内容及证明。

教学过程一、引入新课。

教师活动:目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,更是非常了不起的成就。

二、进行新课。

1.勾股定理的内容及其证明。

教师活动:引导学生阅读课本相关的内容。

相传2500年前,毕达哥拉斯又一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形三边的某种数量关系。

我们也来观察下图中的地面,看看能发现些什么?思考:你能发现下面图中的直角三角形有什么性质吗?可以发现,以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

即我们惊奇的发现,等腰三角形的三边之间有一种特殊的关系:斜边的平方等于两直角边的平方和。

探究:等腰直角三角形有上述性质,其他的直角三角形也有这个性质吗?上图中,每个小方格的面积均为1,请分别算出图中正方形A,B,C,'A,'B,'C的面积,看看能得出什么结论。

(提示:以斜边为边长的正方形的面积,等于以某个正方形的面积减去4个直角三角形的面积。

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。

勾股定理教学设计

勾股定理教学设计

勾股定理教学设计勾股定理教学设计1一、教学目标1、让学生通过对的图形制造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。

2、通过介绍我国古代讨论勾股定理的成就感培育民族自豪感,激发学生为祖国的复兴努力学习。

3、培育学生数学发现、数学分析和数学推理证明的能力。

二、教学重难点利用拼图证明勾股定理三、学具准备四个全等的直角三角形、方格纸、固体胶四、教学过程(一) 趣味涂鸦,引入情景老师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗?(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。

(2)再分别以这个三角形的三边向三角形外作3个正方形。

学生活动:先独立完成,再在小组内互相沟通画法,最后班级展示。

(二)小组探究,大胆猜想老师:观察自己所涂鸦的图形,回答下列问题:1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。

3、与小组成员沟通探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?学生活动:先独立思考,再在小组内互相沟通探究结果,并猜想直角三角形的三边关系,最后班级展示。

(三)趣味拼图,验证猜想老师:请利用四个全等的直角三角形进行拼图。

1、你能拼出哪些图形?能拼出正方形和直角梯形吗?2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。

学生活动:独立拼图,并思考如何利用图形写出相应的证明过程,再在组内沟通算法,最后在班级展示。

(四)课堂训练巩固提升老师:请完成下列问题,并上台进行展示。

1.在Rt△ABC中,△C=900,△A,△B,△C的对边分别为a,b,c已知a=6,b=8.求c.已知c=25,b=15.求a .已知c=9,a=3.求b.(结果保留根号)学生活动:先独立完成问题,再组内沟通解题心得,最后上台展示,其他小组帮助解决问题。

北师大版八年级数学上册《勾股定理的应用》示范课教学设计

北师大版八年级数学上册《勾股定理的应用》示范课教学设计

第一章勾股定理3 勾股定理的应用一、教学目标1.会灵活运用勾股定理求解立体图形上两点之间路线最短的问题.体会勾股定理在代数问题和几何问题中的应用.2.能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.3.能够运用勾股定理解决实际生活中的问题,熟练运用勾股定理进行计算,增强数学知识的应用意识.4.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.二、教学重难点重点:会用勾股定理求解立体图形上两点之间路线最短的问题.难点:能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师引导学生回顾勾股定理,并通过简单的提问,回顾勾股定理逆定理以及勾股数的内容,接着通过小情境引入本节课要讲解的内容.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a²+b²=c².如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是.预设答案:直角三角形.满足a²+b²=c²的三个正整数,称为.预设答案:勾股数.观察思考:小明要去野外郊游,走哪条路最近呢?为什么呢?教师活动:教师提出问题,观察学生如何思考,再让学生说明理由.关注学生能否都认真看题积极思考,能否立刻利用两点之间线段最短确定最短路径.答案:线路③.【问题探究】有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面蚂蚁怎么爬行的路程最短呢?做一做自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?教师活动:让学生说出自己规划的蚂蚁的路线,然后用课件展示.③A→B的路线长为:AA′+A′B ;③A→B的路线长为:AA′+曲线A′B;③A→B的路线长为:曲线AP +曲线PB;③A→B的路线长:曲线AB.将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?教师活动:对照圆柱上的线路,用课件展示侧面剪开图,让学生观察并说出哪条线路最近.教师活动:将圆柱的侧面展开,把曲线分别转化为对应线段,然后结合两点之间线段最短,得出结论:第(4)种方案路程最短.追问:蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是多少?该如何计算呢?答案:在Rt③A′AB中,利用勾股定理,得AB²=AA′²+A′B².其中AA′是圆柱体的高,A′B是底面圆周长的一半(πr) .已知圆柱体高为12 cm,底面周长为18 cm,则AB=15cm.做一做如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?教师活动:先由学生独立完成,教师及时给予指导,在此活动中,教师应重点关注学生能否进一步理解蚂蚁最近线路该如何走.多媒体展示答题过程解:将正方体展开得到如下图形,由勾股定理得,22AB2.=10+20=50020×1=20(cm).③202<500.③蚂蚁不能在20 s内从A爬到B.【思考探究】教师活动:多媒体演示课件,引导学生观察并思考:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂于底边AB,但他随身只带了卷尺.你能替他想办法完成任务吗?提示:连接BD,如果能算出AD2+AB2=BD2 ,就可以说明边AD和边BC分别垂于底边AB.提示:连接AC,如果能算出AB2+BC2=AC2 ,就可以说明边BC垂于底边AB.问题:李叔叔想要检测雕塑底座正面的边AD 和边BC是否分别垂直于底边AB,但他随身只带了卷尺.李叔叔量得边AD长是30 cm,边AB长是40 cm,边BD长是50 cm.边AD垂直于边AB 吗?教师活动:引导学生通过勾股定理证得BC垂直于AB得出结论.巡视同学做题过程,对于有困难的学生给予指导,然后用多媒体展示答题过程.解:连接BD③AD=30,AB=40,BD=50又③AD2+AB2=302+402=502=BD2③ΔABD为直角三角形,③A=90°③AD⊥AB同理可证得:BC⊥AB.问题:小明随身只有一个长度为20cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?解:在AD上取点M,使AM=9,在AB上取点N,使AN=12,92+122=152【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.典型例题【例1】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3 m,CD=1 m,试求滑道AC的长.分析:根据题意可的AC=AB,可设AC为x m,从而AE是(x-1)m,而③AEC是直角三角形,由勾股定理可得AC的值.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt③AEC中,③AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32= x 2,解得x =5.故滑道AC的长度为5 m.【例2】在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?教师根据题干分析题中提供的已知条件,并画出图形.解:根据题意可以构建一直角三角形模型,如图.在Rt③ABC中,AC=6米,BC=8米,由勾股定理得AB=10米.③这棵树在折断之前的高度是10+6=16(米).教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定教师画示意图:222⨯+⨯=⨯(650)(850)(1050)∴所以小刚上学走了个直角弯.答案:C2.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长是.教师提示:因为DE是折痕,所以E为AB的中点,AE=BE=12AB,只要根据勾股定理求出Rt△ABC斜边AB的长,就可求出BE的长.答案:5 cm.3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A、B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.解:2小时后,A组行驶的路程为:12×2=24(km);B组行驶的路程为:9×2=18(km);又因为A,B两组相距30 km,且有242+182=302所以A,B两组行进的方向成直角.。

《3.3勾股定理的简单应用》教学设计-优质教案

《3.3勾股定理的简单应用》教学设计-优质教案

课时9:3.3勾股定理的简单应用教学目标:1.能运用勾股定理及勾股定理的逆定理解决简单的实际问题;2.在运用勾股定理及其勾股定理的逆定理解决实际问题的过程中,感悟数学的“转化”思想,体会勾股定理的文化价值,增强应用意识;教材分析重点:运用勾股定理及勾股定理的逆定理解决简单的问题。

难点:将实际问题转化为直角三角形的数学模型。

课型方法新授课电教手段实物投影前置作业:问题1、如图,从电线杆离地面6 m处向地面拉一条长10 m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有 m.问题2、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”。

他们仅仅少走了__________米,却踩伤了花草。

问题3、小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是__________米.教学过程:一、展示交流:二、合作探究:例1、<九章算术》中,有折竹问题:今有竹高一丈,末折抵地,去根三尺,问折高几何?题意是:有一根竹子,原高一丈【一丈=十尺】,中部有一处折断,竹梢触地面离竹根三尺。

问折断处离地面多高?A例2、如图,在△ABC中,AB=26,BC=20,BC边的中线AD=24,求AC.C三.质疑反馈:1、如图,起重机吊运物体,已知BC=6m,AC=10m,则AB的长为____________ m.2、如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要____________米。

3、计算四边形ABCD的面积。

4、一个三角形三边长的比为3:4:5,它的周长是60cm,求这个三角形的面积。

5、已知等腰三角形底边上的高为4,周长为16,求这个三角形面积。

6、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是多少?7、如图,以Rt△ABC的三边为直径的3个半圆的面积之间有什么关系?请说明理由。

勾股定理优秀教学设计模板(精选11篇)

勾股定理优秀教学设计模板(精选11篇)

勾股定理优秀教学设计模板(精选11篇)勾股定理优秀教学设计模板(精选11篇)作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

我们应该怎么写教学设计呢?以下是小编精心整理的勾股定理优秀教学设计模板,欢迎阅读与收藏。

勾股定理优秀教学设计篇1一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。

它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。

本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

3、培养学生学习数学的兴趣和爱国热情。

4、欣赏设计图形美。

二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

3.3勾股定理的简单应用教案

3.3勾股定理的简单应用教案

3.3勾股定理的简单应用教学目标:1,能运用勾股定理及直角三角形的判定条件解决实际问题2.在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化成解直角三角形问题),进一步发展有条理思考和有条理表达的能力,体会数学应用的价值教学重难点:能运用勾股定理及直角三角形的判定条件解决实际问题【教学过程】情景创设:提出问题:如果知道桥面以上的索塔AB的高,怎样计算拉索AC、AD、AE、AF、AG的长?得到引入与复习.二.例题分析例1:《引葭赴岸》“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个边长为10尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面部分BC为一尺。

如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B’.问水深和芦苇长各为多少?ab d 例2:如图,AD 是△ABC 的中线,AD=24,AB=26,BC=20,求AC三.展示交流1、 教材P 661、如图,太阳能热水器的支架AB 长为90cm,与AB 垂直的BC 长120cm.太阳能真空管AC 有多长?2.要登上9m 高的建筑物,为了安全需要,需使梯子固定在一个高1m 的固定架上,并且底端离建筑物6m ,梯子至多需要多长?3、如图是一个育苗棚,棚宽a=6m , 棚高b=2.5m ,棚长d=10m ,则覆盖在棚斜面上的塑料薄膜的面积为_________m 2.四.提炼总结我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a 2+b 2=c 2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.当堂反馈:1.甲、乙两人同时从同一地点出发,甲往东走了4km ,乙往南走了6km ,这时甲、乙两人相距__________km .2.如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是( ).(A )20cm (B )10cm(C )14cm (D )无法确定4.一张长方形纸片宽AB=8cm ,长BC=10cm.现将纸片折叠,使顶点D 落在BC 边上的点F 处(折痕为AE),求EC 的长.这节课你学到了什么?作业:课课练60-62 教学反思:一个教师写一辈子教案,不一定能够成为名师,但是如果坚持不懈的写三年教学反思,一定会成为名师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A O B
X
(10-X ) 3 教学目标:1.能运用勾股定理及直角三角形的判定条件解决实际问题;
2.构造直角三角形及正确解出此类方程;
3.运用勾股定理解释生活中的实际问题.
教学重点:能运用勾股定理及直角三角形的判定条件解决实际问题.
教学难点:在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能
力,体会数学的应用价值.要善于运用直角三角形三边关系,关键是根据实际情
形准确构造出直角三角形.
教学过程:
一.创设情境 提出问题 同学们,前一阶段我们学习了勾股定理,勾股定理在数学研究中具有极其重要的地位,数学大师华罗庚曾经说过:把勾股定理送到外星球,与外星人进行数学交流!咱们今天就来继续体验勾股定理在数学中的应用.
投影:把勾股定理送到外星球,与外星人进行数学交流!——华罗庚
二.新课
1.复习勾股定理和勾股定理逆定理
2.例题精讲
例1今有竹高一丈,末折抵地,去根三尺,问折者高几何?
意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?
解:如图,我们用线段OA 和线段AB 来表示竹子,其中线段AB 表示竹子折断部分,用线段OB 来表示竹梢触地处离竹根的距离.
设OA =x ,则AB =10-x ,
∵∠AOB =90°, ∴OA 2+OB 2=AB 2, ∴x 2+32=(10-x )2, ∴OA =x =9120
(尺),
答:竹子折断处离地面有
91
20
尺.
例2“引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少?
解:如图BC为芦苇长,AB为水深,AC为池中心点距岸边的距离.设AB=x尺,则BC=(x+1)尺,
根据勾股定理得:x2+52=(x+1)2,
解得:x=12,所以芦苇长为12+1=13(尺),
答:水深为12尺,芦苇长为13尺.
例3如图,等边三角形ABC的边长是6,求△ABC的面积.
解:作AD⊥BC,
∵△ABC是等边三角形,
∴BD=
1
2
BC=
1
2
×6=3,
在Rt△ABC中,
A
C
B
D
AD =AB 2-BD 2 =62-32 =27 ≈5.196,
S △ABC =12 BC ·AD ≈12
×6×5.196=15.58≈15.6. 例4:如图8,在△ABC 中,AB =26,BC =20,BC 边上的中线AD =24,求AC .
解:∵AD 是BC 边上的中线,
∴BD =CD =12 BC =12
×20=10. ∵AD 2+BD 2=576+100=676,
AB 2=262=676,
∴AD 2+BD 2=AB 2,
∴∠ADB =90°,AD 垂直平分BC .
∴AC =AB =26.
3、课堂练习 巩固新知
1.如图,在△ABC 中,AB =AC =17,BC =16,求△ABC 的面积
2.如图,在△ABC 中,AD ⊥BC ,AB =15,AD =12,AC =13,求△ABC 的周长和面积.
4.小结.
D
A
C B (图8) A
C B
D A C B D
5.课后练习
1.等腰三角形ABC的面积为12 cm2,底上的高AD=3 cm,则它的周长为_______ cm.2.一个长方形的长为40 cm,对角线长为41 cm,则这长方形的周长为_______.
3.轮船在大海中航行,它从点A出发,向正北方向航行20 km,遇到冰山后,又折向正东方向航行15 km,则此时轮船距点A的距离为_______km.
4.已知两线段分别为5 cm,12 cm,则当第三条线段长为_______时,这三条线段可以构成直角三角形.
5.如图,一棵树CD,在其10m高的点B处有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃向池塘的A处.如果两只猴子所经过的路程相等,试问这棵树有多高?
6.如图,E为正方形ABCD的边AB上的一点,AE=3,BE=1,P为AC上的动点,
则PB+PE的最小值为_______.。

相关文档
最新文档