高中物理解题思路及方法指导精编版

合集下载

高中物理解题研究思路与原则

高中物理解题研究思路与原则

高中物理解题指导:解题思路总体思路:选取对象→分析状态和过程→应用规律。

1、选取对象:研究对象的选取很关键,可以是某个物体(质点),也可以是几个物体组成的整体(物体的加速度相同)或系统(物体的加速度不同),还可以是某个抽象的“结点”(绳子“死结”或滑轮“活结”);2、分析状态和过程:具体分析研究对象的受力情况、运动情况,初始状态如何,经历哪些过程,是否存在转折点、临界状态,最终状态如何;3、应用规律:在某个状态或对某个过程,根据所遵循的物理规律建立关系式,解方程得结果,并检验其合理性。

4、两种解题思路(1)一种是搜索脑海中曾做过的题型,看本题和哪种类型吻合或类似,套用解答原来那种题型的公式,或者直接用原来那种题型的结论进行解答。

其思维方式是“回忆”。

这是一种很有危害性的思维方式。

(2)另一种是根据题目的文字叙述,把它转化为具体的物理情景,并进一步转化为具体的物理条件或数学条件,明辨题目情景所体现的物理变化特征,思考物理条件之间的相互制约关系,选择恰当的物理规律,运用合适的数学方法解决问题。

其思维方式是“分析”。

这才是正确的思维方式。

高中物理解题指导:解题原则1、具体问题,具体分析;常规问题,常规方法。

不能凭记忆套题型,而要找思路、找规律,用熟悉的方法做。

对于一些典型问题的典型方法(通性通法),要理解方法的适用条件,掌握具体的解题思路和一套通用规则,熟悉操作步骤,力争“一看就会,一做就对”。

2、先审题,再答题;多动脑,再动手。

不能简单机械地套公式,而要训练正确的思维方式,严格规范地按“解题程序”走,避免“凭感觉”、“想当然”。

总之,加强审题的意识,养成具体分析的习惯,提高解题的能力。

3、具体来讲,我们面对一道题目,首先不是回想这道题是否在哪里做过、可以套用什么结论或公式,而应从以下几个方面来考虑:(1)题目要解决什么问题?(2)题目提供了哪些已知条件?(3)题目中有哪些关键的字词句,它们隐含了什么条件?(4)题目中描述了哪几个过程?有哪几个关键点?每个过程遵循什么规律?过程与过程之间靠什么联系起来?(5)根据题目所描述的情境,画出草图(受力分析图、过程分析图),在头脑中建立物理情景和模型。

高三物理的解题思路与方法

高三物理的解题思路与方法

高三物理的解题思路与方法高三物理是中学阶段的重要科目之一,也是升学考试中常见的科目之一。

在学习高三物理过程中,合理的解题思路与方法能够帮助学生提高解题效率,达到更好的学习效果。

本文将介绍一些解题思路与方法,帮助高三学生在物理学习中取得好成绩。

1. 熟悉基础知识在解答物理题目之前,首先要对物理基础知识进行充分的掌握和熟悉。

要重点掌握物理公式、定律和原理,并能够灵活运用。

掌握好基础知识是解题思路与方法的基础。

2. 阅读题目在解答物理题目时,首先要认真阅读题目,理解题目中的要求和条件。

要仔细分析题目中给出的信息,尤其是数值和单位,确保对题目的理解准确无误。

3. 建立解题框架在开始解题之前,可以先建立一个解题框架,将问题分解成几个小问题,然后逐步解决每个小问题。

这样可以使整个解题过程更加清晰,避免遗漏或混淆思路。

4. 运用适当的物理模型在解答物理题目时,可以根据题目的情况选择合适的物理模型进行分析和计算。

物理模型可以帮助我们理解问题的本质及其内在关系,并提供一种简化和抽象的方式进行计算和推导。

5. 运用数学工具在解答物理题目时,数学工具是必不可少的。

要熟练掌握常见的数学计算方法和技巧,如代数运算、三角函数、导数与积分等。

通过灵活运用数学工具,可以简化物理问题的计算过程,提高解题效率。

6. 实际问题的转化有时候物理题目涉及到实际问题,可以尝试将物理问题转化为相应的几何问题或代数问题。

通过将实际问题进行适当的转化,可以使问题更容易理解和解决。

7. 多做题并总结经验解答物理题目是需要经验积累的过程。

高三学生应该多做题目,并总结解题经验,找出解题思路和方法中的规律和技巧。

通过不断的练习和总结,逐渐提高解题能力和水平。

综上所述,高三物理的解题思路与方法是多方面的,需要掌握基础知识、阅读题目、建立解题框架、运用适当的物理模型、运用数学工具、实际问题的转化等。

高三学生要注重实践和经验积累,在不断实践中提高解题能力,才能在物理学习中取得好成绩。

高考物理解题技巧速成精编

高考物理解题技巧速成精编

技巧一、巧用合成法解题高考物理解题技巧速成【典例1】一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1 所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度.解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的.(1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg θ和细线的拉力T,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知 F 合=mgsin θ根据牛顿第二定律有mgsinθ=ma 1图2-2-1 所以a1=gsin θ TF 合θ F 合Tθmgmg图2-2-2图2-2-3(2)当细线沿水平方向时,小球受重力mg 和细线的拉力T,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3 所示.由几何关系可知 F 合=mg /sin θ根据牛顿第二定律有mg /sinθ=ma 2所以a2=g /sin θ.【方法链接】在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单.技巧二、巧用超、失重解题【典例2】如图2-2-4 所示,A 为电磁铁, C 为胶木秤盘, A和C(包括支架)的总质量为M,B 为铁片,质量为m,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力 F 的大小满足A. F=MgB. M g <F<(M+m )gC.F= (M+m )gD.F >(M+m )g图2-2-4 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力 F 与系统的重力(M+m )g 满足关系式:F>(M+m )g,正确答案为 D.A2【方法链接】 对于超、失重现象大致可分为以下几种情况:( 1)如单个物体或系统中的某个物体具有竖直向上(下)的加速度时,物体或系统处于超(失)重状态 .( 2)如单个物体或系统中的某个物体的加速度不是竖直向上(下),但有竖直向上 (下)的加速度分量,则物体或系统也处于超(失)重状态,与物体水平方向上的加速度无关.在选择题当中, 尤其是在定性判断系统重力与支持面的压力或系统重力与绳子拉力大小关系时,用超、失重规律可方便快速的求解.技巧三、巧用碰撞规律解题【典例 3】 在电场强度为 E 的匀强电场中,有一条与电场线平行的几何线,如图 2-2-5虚线所示 .几何线上有两个可视为质点的静止小球 A 和 B. 两小球的质量均为 m ,A 球带电量 +Q , B 球不带电 .开始时两球相距 L ,释放 A 球, A 球在电场力的作用下沿直线运动,并与B 发生正碰, 碰撞中 A 、B 两球的总动能无损失.设在每次碰撞中, A 、B 两球间无电量转换,且不考虑重力及两球间的万有引力 .求 (1) A 球经多长时间与 B 球发生第一次碰撞 .m m ( 2)第二次碰撞前, A 、B 两球的速率各为多少? ( 3)从开始到第三次相碰,电场力对 A 球所做的功 .解析:( 1)设 A 经时间 t 与 B 球第一次碰撞,根据运动学规律有 L=at 2/2A 球只受电场力,根据牛顿第二定律有QE=ma∴ALB图 2-2-5( 2)设第一次碰前 A 球的速度为 V A ,根据运动学规律有V A 2=2aL碰后 B 球以速度 V A 作匀速运动, 而 A 球做初速度为零的匀加速运动, 设两者再次相碰前 A 球速度为 V A1,B 球速度为 V B .则满足关系式 V B = V A1/2= V A∴ V B = V A = V A1=2 V A =2( 3)第二次碰后, A 球以初速度 V B 作匀加速运动, B 球以速度 V A1 作匀速运动,直到两者第三次相碰 .设两者第三次相碰前 A 球速度为 V A2, B 球速度为 V B1.则满足关系式 V B1= V A1= (V B + V A2)/2∴V B1=2 V A ;V A2=3 V A第一次碰前 A 球走过的距离为 L ,根据运动学公式 V 2=2aL 设第二次碰前 A 球走过的距离为 S 1,根据运动学公式 V A12=2aS 1∴S 1=4L设第三次碰前 A 球走过的距离为 S 2,有关系式 V 2∴S 2=8L2=2aS 2 即从开始到第三次相碰, A 球走过的路程为 S=13L 此过程中电场力对 A 球所做的功为 W=QES=13 QEL .【技巧点拨】 利用质量相等的两物体碰撞的规律考生可很容易判断出各球发生相互作-V A1 A用前后的运动规律,开始时 B 球静止, A 球在电场力作用下向右作匀加速直线运动,当运动距离L 时与 B 球发生相碰.两者相碰过程是弹性碰撞,碰后两球速度互换, B 球以某一初速度向右作匀速直线运动, A 球向右作初速度为零的匀加速运动.当 A 追上 B 时两者第二次发生碰撞,碰后两者仍交换速度,依此类推.技巧四、巧用阻碍规律解题【典例4】如图2-2-6 所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,小灯泡的亮度如何变化A 、不变B、变亮C、变暗D、不能确定解析:将软铁棒插入过程中,线圈中的磁通量增大,感应电流的效果要阻碍磁通量的增大,所以感应电流的方向与线圈中原电流方向相反,以阻碍磁通量的增大,所以小灯泡变暗, C 答案正确.【方法链接】楞次定律“效果阻碍原因”的几种常见形式.图2-2-6(1)就磁通量而言:感应电流的磁场总是阻碍引起感应电流的磁通量(原磁通量)的变化.即当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,简称口诀“增反减同”.(2)就相对运动而言:感应电流的效果阻碍所有的相对运动,简称口诀“来拒去留”,从运动效果上看,也可形象的表述为“敌进我退,敌逃我追”.(3)就闭合电路的面积而言:致使电路的面积有收缩或扩张的趋势.收缩或扩张是为了阻碍电路磁通量的变化.若穿过闭合电路的磁感线都为同一方向,则磁通量增大时,面积有收缩趋势;磁通量减少时,面积有扩张趋势.简称口诀“增缩减扩” .若穿过回路的磁感线有两个相反的方向,则以上结论不一定成立,应根据实际情况灵活应用,总之要阻碍磁通量的变化.(4)就电流而言:感应电流阻碍原电流的变化,即原电流增大时,感应电流与原电流反向;原电流减小时,感应电流与原电流同向,简称口诀“增反减同” .技巧五、巧用整体法解题【典例5】如图2-2-7 所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力 F 拉其中一个质量为 2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为图2-2-73 mgA 、53 mgB、43 mgC、2D 、3 mg解析:以上面 2 个木块和左边的质量为2m 的木块整体为研究对象,根据牛顿第二定律有μmg=4ma再以左边两木块整体为研究对象,根据牛顿第二定律有T=3ma∴T=3 mg4B 答案正确.【技巧点拨】当系统内各物体有相同加速度时(一起处于静止状态或一起加速)或题意要求计算系统的外力时,巧妙选取整体(或部分整体)为研究对象可使解题更为简单快捷.技巧六、巧用几何关系解题【典例6】如图2-2-8 所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN 、PQ 是磁场的边界.质量为m,带电量为-q 的粒子,先后两次沿着与MN 夹角为θ(0<θ<90o)的方向垂直磁感线射入匀强磁场 B 中,第一次,粒子是经电压U1加速后射入磁场,粒子刚好没能从PQ 边界射出磁场.第二次粒子是经电压U2加速后射入磁场,粒子则刚好垂直PQ 射出磁场.不计重力的影响,粒子加速前速度认为是零,求:(1)为使粒子经电压U 2加速射入磁场后沿直线运动,直至射出PQ 边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向.(2)加速电压U1 的值.U2解析:(1 )如图答2-2-9 所示,经电压U 2 加速后以速度v2 射入磁场,粒子刚好垂直PQ 射出磁场,根据几何关系可确定粒子在磁场中做匀速圆周运动的圆心在PQ 边界线图2-2-9 图2-2-10 图2-2-11的O 点,半径R2与磁场宽L 的关系式为R2L cos又因为R2mv2 Bq所以v2BqL mcos加匀强电场后,粒子在磁场中沿直线运动射出PQ 边界的条件为Eq=Bq v2 ,电场力的方向与磁场力的方向相反.所以EB2 qLmcos,方向垂直磁场方向斜向右下,与磁场边界夹角为,如2图答2-2-10 所示.(2)经电压U1 加速后粒子射入磁场后刚好不能从PQ 边界射出磁场,表明在磁场中做U vU v2匀速圆周运动的轨迹与 PQ 边界相切, 要确定粒子做匀速圆周运动的圆心 O 的位置, 如图答L2-2-11 所示,圆半径R 1 与 L 的关系式为: L R 1 R 1 cos , R 11 cos又 R 1mv 1 Bq所以 v 1BqL m(1 cos )根据动能定理有 U q1 mv 2, U q 1 mv 2 , 1122 222所以1 12 2cos2.(1 cos )2【方法链接】 解决带电粒子在匀强磁场中匀速圆周运动问题, 关键是确定圆心的位置,正确画出粒子运动的草图,利用几何关系结合运动规律求解.技巧七:巧用可逆原理解题【典例 7】 某同学在测定玻璃折射率时得到了多组入 射角 i 与折射角 r ,并作出了 sini 与 sinr 的图象如图 2-2-12 所示 . 则下列说法正确的是A . 实验时,光线是由空气射入玻璃B . 实验时,光线是由玻璃射入空气C . 利用 sini /sinr可求得玻璃的折射率D .该玻璃的折射率为 1.5解析:由图象可知入射角的正弦值小于折射角的正弦值 .sini0.5 0.4 0.30.2 0.10.1 0.20.3 0.4 0.5图 2-2-12sinr根据折射定律可知光线是从光密介质射向光疏介质,即由玻璃射向空气, B 答案正确;根据折射定律 n=sini /sinr可求得介质的折射率,但一定要注意此公式一定要满足光线从空气射向介质,而本题中光线是由玻璃射入空气,所以不能直接利用 sini /sinr求介质的折射率,根据光路可逆原理, 当光线反转时, 其传播路径不变,即光从空气中以入射角r 射到该玻璃界面上时,折射后的折射角一定为 i ,根据折射定律可得玻璃的折射率 n= sinr /sini=1.5 (这里要注意很容易错选C ), C 错误 ,D 正确 . 正确答案为 B 、D.【方法链接】 在光的反射或折射现象中,光路具有可逆性 . 即当光线的传播方向反转时,它的传播路径不变 . 在机械运动中, 若没有摩擦阻力、 流体的粘滞阻力等耗散力做功时, 机械运动具有可逆性 . 如物体的匀减速直线运动可看作反向的加速度不变的匀加速运动 .方法八:巧用等效法解题【典例 8】如图 2-2-13 所示,已知回旋加速器中, D 形盒内匀强磁场的磁感应强度 B=1.5T ,盒的半径 R=60 cm ,两盒间隙 d=1.0 cm ,盒间电压 U=2.0 ×104V ,今将 α粒子从近于间隙中心某点向 D 形盒内以近似于零的初速度垂直 B 的方向射入,求粒子在加速器内运行的总时间 .解析:带电粒子在回旋加速器转第一周,经两次加速,速度为v 1,则根据动能定理得:11 2qU = 2mv 2设运转 n 周后,速度为 v ,则: n2qU =1 mv22v2由牛顿第二定律有 qvB=mR2 m B 2 q 2 R22 mR 2B 粒子在磁场中的总时间: t B =nT=n ·=·=qB 4qm U qB2U粒子在电场中运动就可视作初速度为零的匀加速直线运动,由公式:v tt E =v 0 qU ,且 v 0=0,v t = ,a=adm得: t E =BRd U故: t=t B +t E = BR U R ( +d)=4.5 ×10 2×( 0.94+0.01) s -5=4 .3×10 s.【技巧点拨】 粒子在间隙处电场中每次运动时间不相等, 且粒子多次经过间隙处电场,如果分段计算,每一次粒子经过间隙处电场的时间,很显然将十分繁琐.我们注意到粒子离开间隙处电场进入匀强磁场区域到再次进入电场的速率不变, 且粒子每在电场中加速度大小相等, 所以可将各段间隙等效“衔接”起来,把粒子断断续续在电场中的加速运动等效成初速度为零的匀加速直线运动.技巧九:巧用对称法解题【典例 9】 一根自由长度为 10 cm 的轻弹簧,下端固定,上端连一个质量为 m 的物块P ,在 P 上放一个质量也是 m 的物块 Q.系统静止后,弹簧长度为6 cm ,如图 2-2-14 所示.如果迅速向上移去 Q ,物块 P 将在竖直方向做简谐运动,此后弹簧的最大长度为A .8 cmB. 9 cmC.10 cm D . 11 cm解析:移去 Q 后, P 做简谐运动的平衡位置处弹簧长度 8 cm ,由题意可知刚移去Q 时 P 物体所处的位置为P 做简谐运动的最大位移处 . 即 P 做简谐运动的振幅为 2cm.当物体 P 向上再次运动到速度为零时弹簧有最大长度,此时 P 所处的位置为另一最大位移处,根据简谐运动的对称性可知此时弹簧的长度 为 10 cm ,C 正确 .【方法链接】 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上QP6cm图 2-2-14抛运动的对称性, 简谐运动中的对称性, 电路中的对称性, 带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性 .方法十:巧用假设法解题假设法是解决物理问题的一种常见方法, 其基本思路为假设结论正确, 经过正确的逻辑推理,看最终的推理结果是否与已知条件相矛盾或是否与物理实际情境相矛盾来判断假设是否成立 .【典例 10】 如图 2-2-15 , abc 是光滑的轨道,其中-5图2-2-15C 1ab 是水平的, bc 为与 ab 相切的位于竖直平面内的半圆,半径 R=0.3m.质量 m=0.2kg 的小球A 静止在轨道上,另一质量 M=0.6kg ,速度 V 0=5.5m/s 的小球 B 与小球 A 正碰 .已知相碰后小球 A 经过半圆的最高点 C ,落到轨道上距 b 为 L=处,重力加速度 g=10m/s 2,试通过分析计算判断小球B 是否能沿着半圆轨道到达C 点.解析 :A 、B 组成的系统在碰撞前后动量守恒, 碰后 A 、B 运动的过程中只有重力做功,机械能守恒,设碰后 A 、B 的速度分别为 V 1、V 2,由动量守恒定律得M V 0 =M V 2+m V 1A 上升到圆周最高点 C 做平抛运动,设 A 在 C 点的速度为 V C ,则 A 的运动满足关系 式2R=gt 2/2 V C t=LA 从 b 上升到 c 的过程中,由机械能守恒定律得(以ab 所在的水平面为零势面,以下同)m V 12/2= m V 2/2+2mgR∴V 1=6 m/s ,V 2=3.5 m/s方法 1:假设 B 球刚好能上升到 C 点,则 B 球在 C 点的速度 V C '应满足关系式 Mg=M V C '2/R 所以 V C ' =1.73 m/s则 B 球在水平轨道 b 点应该有的速度为(设为V b )由机械能守恒定律得M V b 2/2=M V C ' 2/2+2MgR则由 V b 与 V 2 的大小关系可确定 B 能否上升到 C 点若 V 2≥V b , B 能上升到 C 点若 V 2<V b , B 不能上升到 C 点代入数据得 V b =3.9 m/s > V 2 =3.5 m/s ,所以 B 不能上升到 C 点.【方法链接】 假设法在物理中有着很广泛的应用, 凡是利用直接分析法很难得到结论 的问题, 用假设法来判断不失为一种较好的方法, 如判断摩擦力时经常用到假设法, 确定物体的运动性质时经常用到假设法.技巧十一、巧用图像法解题【典例 11】 部队集合后开发沿直线前进,已知部队前进的速 d度与到出发点的距离成反比,当部队行进到距出发点距离为 d 1 的 A位置时速度为 V 1,求( 1)部队行进到距出发点距离为 d 2 的 B 位置时速度为 V 2 是多d 2 大?d 1( 2)部队从 A 位置到 B 位置所用的时间 t 为多大 . 解析:( 1)已知部队前进的速度与到出发点的距离成反比,即 有公式 V =k/d ( d 为部队距出发点的距离, V 为部队在此位置的瞬 O时速度),根据题意有 V 1= k / d 1V 2=k / d 21/V 11/V 21/V∴ V 2= d 1 V 1 / d 2.图 2-2-16(2)部队行进的速度 V 与到出发点的距离 d 满足关系式 d =k/V ,即 d - 图象是一条过原点 的倾斜直线,如图 2-2-16 所示,由题意已知,部队从 A 位置到 B 位置所用的时间 t 即为图中斜线图形(直角梯形)的面积.由数学知识可知 t =( d 1 + d 2)( 1/V 2- 1/V 1) /2∴ t =( d 2- d 2) /2 d V 【方法链接】 1.此题中部队行进时速度的变化即不是匀速运动,也不是匀变速运动,很2 1 1难直接用运动学规律进行求解,而应用图象求解则使问题得到简化.2.考生可用类比的方法来确定图象与横轴所围面积的物理意义.v-t图象中,图线与横轴围成图形的面积表示物体在该段时间内发生的位移(有公式S=v t,S 与v t 的单位均为m);F-S 图象中,图线与横轴围成图形的面积表示 F 在该段位移S 对物体所做的功(有公式W =FS ,W 与FS 的单位均为J).而上述图象中t=d×1/V (t 与d×1/V 的单位均为s),所以可判断出该图线与横轴围成图形的面积表示部队从出发点到此位置所用的时间.技巧十二、巧用极限法解题【典例12】如图2-2-17 所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力 F 拉绳上一点,使物体处于图中实线位置,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F、环与杆的摩擦力 F 摩和环对杆的压力F N的变化情况是A.F 逐渐增大, F 摩保持不变,F N逐渐增大图2-2—17B.F 逐渐增大, F 摩逐渐增大,F N保持不变C.F 逐渐减小, F 摩逐渐增大,F N逐渐减小D.F 逐渐减小, F 摩逐渐减小,F N保持不变解析:在物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种减小状态推到无限小,即细绳与竖直方向的夹角θ=0;此时系统仍处于平衡状态,由平衡条件可知,当θ=0 时,F=0,F 摩=0.所以可得出结论:在物体缓慢下降过程中, F 逐渐减小, F 摩也随之减小,D答案正确.【方法链接】极限法就是运用极限思维,把所涉及的变量在不超出变量取值范围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的一种解题方法,在一些特殊问题当中如能巧妙的应用此方法,可使解题过程变得简捷.方法十三、巧用转换思想解题【典例13】如图2-2-18 所示,电池的内阻可以忽略不计,电压表和可变电阻器R 串联接成通路,如果可变电阻器R 的值减为原来的1/3 时,电压表的读数由U 0增加到2U0,则下列说法中正确的是VA .流过可变电阻器R 的电流增大为原来的 2 倍B .可变电阻器R 消耗的电功率增加为原来的 4 倍C.可变电阻器两端的电压减小为原来的2/3D .若可变电阻器R 的阻值减小到零,那么电压表的示数变为4U0确图2-2-18 解析: 在做该题时,大多数学生认为研究对象应选可变电阻器,因为四个选项中都问的是有关R的问题;但R 的电阻、电压、电流均变,判断不出各量的定量变化,从而走入思维的误区.若灵活地转换研究对象,会出现“柳暗花明”的意境;分析电压表,其电阻为定值,当它的读数由U 0增加到2U0时,通过它的电流一定变为原来的 2 倍,而R 与电压表串联,故选项 A 正确.再利用P=I2R 和U=IR ,R 消耗的功率P′=(2I )2R/3 =4P/3;R 后来两端的电压U=2IR/3 ,不难看出 C 对B 错.又因电池内阻不计,R 与电压表的电压之和为U 总,当R 减小到零时,电压表的示数也为总电压U总;很轻松地列出U 总=IR +U 0=2 IR/3 +2U 0,解得U 总=4U 0,故D 也对.2【方法链接】 常见的转换方法有研究对象的转换、时间角度的转换、空间角度的转换、物理模型的转换, 本例题就是应用研究对象的转换思想巧妙改变问题的思考角度, 从而达到使问题简化的目的 .技巧十四、巧用结论解题【典例 14】如图 2-2-19 所示,如图所示,质量为 3m 的木板静止放在光滑的水平面上,木板左端固定着一根轻弹簧.质量为 m 的木块(可视为质点) ,它从木板右端以未知速度V 0开始沿木板向左滑行,最终回到木板右端刚好未从木板上滑出 .若 在小木块压缩弹簧的过程中,弹簧具有的最大弹性势能为 E P ,小木块与木板间的动摩擦因数大小保持不变,求:(1) 木块的未知速度 V 0(2) 以木块与木板为系统,上述过程中系统损失的机械能2-2-19解析:系统在运动过程中受到的合外力为零, 所以系统动量定恒, 当弹簧压缩量最大时, 系统有相同的速度,设为V ,根据动量守恒定律有 m V 0=( m+3m ) V木块向左运动的过程中除了压缩弹簧之外, 系统中相互作用的滑动摩擦力对系统做负功导致系统的内能增大,根据能的转化和守恒定律有m V 0 /2 -( m+3m ) V 2/2=E P +μmgL ( μ为木块与木板间的动摩擦因数, L 为木块相对木板走过的长度)由题意知木块最终回到木板右端时刚好未从木板上滑出, 即木块与木板最终有相同的速度由动量守恒定律可知最终速度也是V.整个过程中只有系统内相互作用的滑动摩擦力做功 (弹簧总功为零) ,根据能量守恒定律有m V 02-( m+3m ) V 2/2=2 μ mgL∴有, E P =μmgL故系统损失的机械能为2 E P .【误点警示】 根据能的转化和守恒定律,系统克服滑动摩擦力所做的总功等于系统机械 能损失,损失的机械能转化为系统的内能,所以有 f 滑 L 相对路程 =△E (△E 为系统损失的机械能) .在应用公式解题时,一定要注意公式成立所满足的条件.当系统中只有相互作用的滑动摩擦力对系统做功引起系统机械能损失(其它力不做功或做功不改变系统机械能)时,公式f 滑 L 相对路程 =△E 才成立 .如果系统中除了相互作用的滑动摩擦力做功还有其它力对系统做功而改变系统机械能,则公式f 滑 L 相对路程 =△ E 不再成立,即系统因克服系统内相互作用的滑动摩擦力所产生的内能不一定等于系统机械能的损失 .所以同学们在应用结论解题时一定要注意公式成立的条件是否满足,否则很容易造成错误.方法十五、巧用排除法解题【典例 15】 如图 2-2-22 所示,由粗细均匀的电阻丝制成的边长为 L 的正方形线框abcd ,其总电阻为 R.现使线框以水平向右的速度v匀速穿过一宽度为 2L 、磁感应强度为 B 的匀强磁场区域,整个过程中ab 、cd 两边始终保持与磁场边界平行.令线框的 cd 边刚好与磁场左边界重合时开始计时 (t =0),电流沿 abcda 流动的方向为正, U o = BLv .在下图 中线框中 a 、b 两点间电势差 U ab 随线框 cd 边的位移 x 变化的图像正确的是下图中的图 2-2-22/2x x解析:当线框向右穿过磁场的过程中,由右手定则可判断出总是 a 点的电势高于 b 点电势,即U ab>0,所以 A 、C、D 错误,只有 B 项正确.【方法链接】考生可以比较题设选项的不同之外,而略去相同之处,便可得到正确答案,或者考生能判断出某三个选项是错误的,就没必要对另外一个选项做出判断而应直接把其作为正确答案.对本例题,考生只需判断出三个过程中(进磁场过程、全部进入磁场过程、出磁场过程)中a、b 两点电势的高低便可选择出正确答案,而没有必要对各种情况下a、b 两点电势大小规律做出判断.。

高中物理学习中的思维训练与解题思路

高中物理学习中的思维训练与解题思路

高中物理学习中的思维训练与解题思路高中物理作为一门基础科学课程,不仅仅是为了培养学生对物理知识的理解和掌握,更重要的是培养学生的思维能力和解题思路。

通过物理学习,学生可以锻炼自己的逻辑思维、分析问题的能力,培养创造性思维,提高解决问题的能力。

本文将从思维训练和解题思路两个方面来探讨高中物理学习的重要意义和提高学习效果的方法。

一、思维训练1. 形象思维物理知识中常常涉及到一些抽象的概念和模型,如电流、电势等。

在学习这些内容时,学生需要通过形象思维将其与日常生活中的实例联系起来,从而更好地理解和记忆。

2. 逻辑思维物理学习中,许多概念和原理之间存在着内在的逻辑关系。

学生需要通过逻辑思维,理清这些关系,将物理问题分析为多个小问题,逐步解决。

3. 实验思维物理实验是培养学生实践能力和观察力的重要途径。

学生需要通过实践探究,观察现象,总结规律,培养实验思维。

4. 创造性思维在学习过程中,鼓励学生提出自己的问题、解决问题的方法和创造性思路。

培养学生的创新能力是高中物理学习的重要目标之一。

二、解题思路1. 理解题意在解决物理问题时,首先要仔细阅读问题,理解题意。

确定问题中所给的已知量和未知量,并将其列出来,形成清晰的思维导图。

2. 学会模型运用通过学习物理知识的模型和公式,学生可以将问题转化为数学运算,从而更好地解决问题。

在运用模型时,要注意理解模型的前提条件和适用范围,并正确地将已知量代入模型中。

3. 分析思路对于复杂的物理问题,学生需要通过分析问题,找出问题的关键点和主要思路,并进行逻辑推理。

可以使用图像、数学表达式等工具进行分析,找出问题的解决思路。

4. 灵活运用解题方法在解题时,学生需要根据具体情况选择合适的解题方法。

有些问题可以通过数学计算解决,有些问题需要通过实验观察解决,有些问题则需要通过推理和分析解决。

学生需要灵活运用不同的解题方法。

总结:高中物理学习旨在培养学生的思维能力和解题思路。

通过思维训练,学生可以培养形象思维、逻辑思维、实验思维和创造性思维。

【高中物理】物理解题的基本思路和一般步骤

【高中物理】物理解题的基本思路和一般步骤

【高中物理】物理解题的基本思路和一般步骤1、解题的基本思路牛顿第二定律、动量关系、功能关系是解决力学问题的三条路径,恒力时三条路均可,变力时只能从功能或动量角度去求解。

解题时,在画好草图分清各段物理过程的前提下,灵活选择以上三种方法,如果方法不恰当,至少计算过程要麻烦一些。

动量观点主要包含动量定理和动量守恒定律,功能观点主要包含动能定理、能量守恒定律(机械能守恒定律、功能关系和总能量守恒)。

一般地:对单个物体考虑,宜用两大定理,涉及时间优先考虑动量定理或运动学知识,涉及位移则优先考虑动能定理。

若研究的对象有两个或两个以上相互作用的物体,则优先考虑两大定律,特别是出现相对滑行距离或相对滑行路程时则优先考虑能量守恒定律。

这在电磁学里也具有很强的指导意义。

2、解题的通常步骤(1)严格认真审题:审题是正确解决问题的关键,首先应明确已知和待求,再从题中挖掘隐含条件,牢牢抓住“题眼”即试题中的关键字,如:是否光滑、有无初速、匀速、沿直线、恰好、缓慢、距离最大或最小、弹簧最长或最短,二者刚好分离、恰好能到达、恰不越界或刚好能飞出以及弹性势能、动能(速度)、动能损失或机械能损失为最大或最小等等;(2)的定对象列方程:蝶兰不好对象与过程,就是整体还是隔绝,全程还是分段,同时选不好恰当的物理工具,写准基本方程,挖掘辅助方程,还可以动用几何关系,比如:勾股定理、三角函数直观而又常用,而对于矢量的运算通常必须先选定正方向。

基本方程是由基本公式、定义以及基本物理规律列出的,它是试题的采分点,更是在试题较难甚至是不会的情况下还能获得一定基础分数的法宝,因此列好基本方程就显得十分重要。

但要注意:用于表示物理量的字母要与试题中的字母保持一致,而对用于表示未知量或过渡量的字母则要加以必要的文字说明,同时还要注意与原试题字母角标的层次性与所选用字母的大众性;辅助方程往往隐藏在题目中,是解决问题的突破口,一般难于识别与建立,对此那就看你平素的知识沉淀和应试时的直觉了!(3)科熠各类方程:方程都列于不好后不要急于解,首先考量常规的数学分析,再考虑自己熟识的一些特定解题技巧,明晰解题的路径后再已经开始排序,防止盲目解题,同时存有数值排序的必须特别注意统一不好单位再代入解,且要载明其单位(字母运算的不必写下单位)。

物理解题重要思路方法

物理解题重要思路方法

高中物理解题方法指导一、静力学问题解题的思路和方法1.确定研究对象:并将“对象”隔离出来-。

必要时应转换研究对象。

这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。

2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。

以受力图表示。

3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。

4.对于平衡问题,应用平衡条件∑F =0,∑M =0,列方程求解,而后讨论。

5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。

静力学习题可以分为三类:① 力的合成和分解规律的运用。

② 共点力的平衡及变化。

③ 固定转动轴的物体平衡及变化。

认识物体的平衡及平衡条件对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α为零,则称为平衡,欲使质点平衡须有∑F =0。

若将各力正交分解则有:∑F X =0,∑F Y =0 。

对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F =0,∑M =0。

这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F =0可以引伸得出以下结论:① 三个力必共点。

② 这三个力矢量组成封闭三角形。

③ 任何两个力的合力必定与第三个力等值反向。

对物体受力的分析及步骤(一)、受力分析要点: 1、明确研究对象2、分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法”3、作图时力较大的力线亦相应长些4、每个力标出相应的符号(有力必有名),用英文字母表示5、物体或结点:⎩⎨⎧解法。

受四力以上:用正交分成法或正交分解法。

受三个力作用:力的合6、用正交分解法解题列动力学方程①受力平衡时⎩⎨⎧=∑=∑0F 0F Y X②受力不平衡时⎩⎨⎧∑∑ymax F X X ma F ==7、一些物体的受力特征: ⎩⎨⎧均可传。

高考物理解题思路整理

高考物理解题思路整理

高考物理解题思路整理高考物理考试是考察学生的物理知识基础和解题能力的一项重要考试。

对于很多学生来说,物理解题是一个较为困难的问题。

本文将为大家整理高考物理解题的思路和方法,帮助大家提高物理解题的能力。

一、理清题意首先,在解题之前,我们需要认真阅读题目,并理清题意。

我们要仔细阅读题目,理解题目要求,明确题目中给出的已知条件和未知条件。

只有在理解题目的基础上,我们才能有针对性地进行解题。

二、利用物理定律在解题时,我们需要充分利用已经学习过的物理定律和公式。

我们可以回忆起相关的物理知识,并将其运用到具体的题目中。

例如,对于力和运动的题目,我们可以运用牛顿第二定律、动能定理、动量守恒定律等进行解答。

三、画出图像对于一些复杂的物理问题,我们可以通过画出图像的方式来帮助我们理解和解题。

通过画图,我们可以直观地看到物体的运动轨迹、力的作用方向和大小等。

画图有助于我们更好地理解问题,并找到解题的关键点。

四、分步拆解有些物理题目比较复杂,涉及多个概念和步骤。

对于这类题目,我们需要将其分步进行拆解,将问题转化为一系列简化的小问题。

通过逐步解决小问题,我们可以最终解决整个复杂问题。

五、列出已知和未知在解题过程中,我们可以将已知条件和未知条件列成表格,以便清晰地了解我们已经掌握的信息和需要求解的结果。

这样可以帮助我们在解题时更加有条理和系统。

六、代入公式求解在明确已知和未知条件后,我们可以代入相应的物理公式进行计算。

在代入计算之前,我们需要注意单位的转换和精确度的保留,确保计算过程和结果的准确性。

同时,要注意将问题中的各个条件和未知量与物理公式中的符号对应起来。

七、合理估算在一些大致问题和近似计算中,我们可以通过对已知条件进行合理估算和近似处理,简化计算过程。

这样可以使解题过程更加高效,减少复杂运算和繁琐计算。

八、多做习题最后,为了提高物理解题能力,我们需要多做一些物理习题。

通过不断地练习,我们可以熟悉物理解题的思路和方法,并且在实践中提高解题的能力。

高中物理12种解题方法与技巧与操作

高中物理12种解题方法与技巧与操作

高中物理12种解题方法与技巧与操作高中物理作为一门基础科学课程,在考试中是必不可少的一部分,而掌握一定的物理解题方法和技巧是成功解决物理问题的关键。

下面将介绍十二种高中物理解题方法与技巧与操作,希望能够对大家的学习和成绩有所帮助。

1. 充分理解物理概念与理论: 在解决物理问题时,首先需要对物理概念与理论有充分的理解。

如果没有理解这些基本的概念和理论,就难以理解问题以及问题的解决方法。

2. 注重物理公式的推导与理解: 物理公式是解题的基础,因此需要掌握常用物理公式并能够进行合理的推导。

此外,还需要关注公式的物理意义,并能够将公式应用到实际问题中。

3. 处理物理量与单位的关系: 在解决物理问题时,需要熟悉物理量与单位之间的转换关系,以保证数据的一致性和正确性。

4. 质量守恒与能量守恒原理: 在解决物理问题时,需要注意保持质量和能量的守恒原理,以确保所得到的解决方案是可信的和正确的。

5. 将物理问题转化为实践问题: 在解决物理问题时,需要将其转化为具体的实践问题,并将其与实际生活和工作相关联。

6. 利用物理实验数据进行数据分析: 物理实验数据是解决物理问题的重要依据,需要对物理实验数据进行充分的分析和处理,以达到解决问题的目的。

7. 着重掌握基本计算方法: 在解决物理问题时,需要掌握基本的计算方法,并能够熟练运用这些方法进行计算。

8. 关注近似方法与误差估计: 在解决物理问题时,需要关注近似方法和误差估计,以避免出现不必要的误差和错误。

9. 处理组合问题与对称问题: 在解决物理问题时,需要处理组合问题和对称问题,以简化问题的计算和求解过程。

10. 运用物理图像解决问题: 物理图像通常是解决物理问题的有效方法,需要学会如何利用物理图像解决物理问题。

11. 做好笔记与总结: 在学习和解决物理问题时,需要做好笔记和总结,以便后续复习和掌握。

12. 多做物理题并检查解题步骤: 在学习物理中,多做物理题很有益处。

高中物理解题的思维方法及解题指导

高中物理解题的思维方法及解题指导

高中物理解题的思维方法徐炳辉摘要:解题是对所掌握的物理知识的再现、理解和运用。

在解题过程中讲究思维方法。

应用逆向思维、发散思维、图象思维等几种思维方法将有助于解题能力的提高。

关键词:思维 物理解题引言:物理概念、公式、规律的繁多,决定了习题可以有不同的方法求解和习题的无穷无尽。

面对众多的物理习题,应当对学生加强思维方法的训练,提高学生的解题能力,才能收到事半功倍的效果。

下面谈谈中学物理学习常用的思维方法。

一、正向思维和逆向思维所谓正向思维就是“循规蹈矩”,从问题的始态到终态,顺着物理过程的发展去思考问题。

而逆向思维则是反其常规,是将问题倒过来思考的思维方法。

根据因果关系、由果导因,它是解决物理问题常用的思维方式,也是高考考查的重要内容之一。

学生都习惯于正向思维,许多物理问题,如果逆着正向思维的方向提出,往往使许多学生不知所措。

因此,在习题课教学中,应有意识地对某些题目进行逆向置换,即从事物的反面提出问题,以加强学生的逆向思维能力训练,培养思维的灵活性。

例1:火车刹车后经过8秒钟停下,若它在最后1秒内通过的位移是1米,求火车的加速度和刹车时火车的速度。

]解析:本题若沿正向思维的思路来解,将是十分繁琐的,不过若倒过来考虑,将火车的运动逆时间顺序倒推过去,则刹车过程看作初速度为零的匀加速运动的逆过程,最后1秒通过的位移就变成了匀加速运动的最初1秒通过的位移,火车刹车时的速度就变成了匀加速运动末速。

由运动学公式2021at t v s +=,at v v t +=0易得22s m a =,s m v 16=。

例2:如图所示,图中实线是一列沿x 轴正方向传播的简谐波在某一时刻的波形图,波速为s m 10,试用虚线画出它经过0.1秒后的波形图。

解析:此题学生很容易根据已知条件求得:m s s m vt s 11.010=⨯==,正向传播,画出所求波形图如图中虚线所示。

若将上题逆向置换,将题变为:例3:如图中实线所示是一列沿x 轴方向传播的简谐波在某一时刻的波形图,虚线是0.1秒后的波形图线。

高考物理解题的思路和方法

高考物理解题的思路和方法

高考物理解题的思路和方法
高考物理解题的思路和方法
一、分析方法
分析方法的特点是从被求量出发,追求被求量公式中每个量的表达(当然是用题目中给出的已知量去追求),直到找到未知量。

这样一种“目标明确”的思维方式是一种好方法,应该熟练掌握。

二、综合方法
综合法是“零整”的思维方法。

是在各部分(简单部分)之间的关系明确后,对其进行整合,从而整体解决问题。

综合方法的特点是从已知量开始,结合与每个已知量相关的量(根据标题中给出的条件)。

其实“分析方法”和“综合方法”是分不开的,分析的目的是综合,而综合要以分析为基础,两者相辅相成。

物理问题的正确答案应该遵循一定的步骤。

第一步:理解问题。

所谓理解问题,是指问题中描述的现象是否被理解。

不可能不明白。

有什么问题?你不明白的重点是什么?要集中精力解决“困难”,注意挖掘“隐藏条件”。

养成不懂就不解决问题的习惯。

如果练习涉及到复杂的现象、很多的对象、很多要用的规则、复杂的隐藏的关系,那么练习就要“拆成几部分”,变成几个过程,每个过程都要分析。

第二步:在理解问题的基础上,针对每个过程写下过程应该遵循的规则,然后求解每个过程形成的方程。

第三步:讨论练习的答案。

讨论不仅可以检验答案是否合理,还可以让读者得到更好的理解,拓宽知识面。

1。

高中物理解题研究思路与原则

高中物理解题研究思路与原则

高中物理解题研究思路与原则高中物理解题研究思路与原则在学习高中物理时,解题能力是至关重要的。

然而,在解题的过程中,学生们有可能会遇到不少难题,使他们在解题方面遇到挑战。

因此,为了学好高中物理,我们应该制定一些解题研究思路和原则。

一、解题研究思路在解题的过程中,学生们应该根据以下思路进行:1. 理清题目思路:在开始解决问题之前,我们应该认真研究题目中的问题描述和数据。

我们需要仔细阅读,找出可以提供有用信息的数据。

如果题目含糊、难以理解,我们应该在掌握题目后与合适的人进行沟通交流。

2. 熟练应用理论:在解题之前,我们需要清晰掌握与题目相关的基本物理原理。

如果我们还不够熟悉,我们可以回头查找我们的教材或者在网站上查阅相关的资料。

在任何情况下,我们需要练习丰富的物理方程式和表格,在熟练运用方程和公式的基础上,进行数据的运算。

3. 审题精准、逻辑清晰:我们需要仔细阅读题目并将所涉及的内容分析整理。

这样有助于我们确定解决方案的最佳路径,使我们在答题时更加自信。

4. 全面检查答案:在完成计算之后,我们不应该着急交卷。

相反,我们需要认真检查计算工作中的每一个步骤,以确保答案是准确的。

我们可以对结果进行批判性分析,或比较实际结果和理论预测结果的相似之处来防止计算错误。

二、解题研究原则在解决高中物理问题时,我们应该掌握以下解题原则:1.不为公式而公式:公式是解决问题的工具,但它们不是简单的填数游戏。

在解决问题的过程中,我们应该清楚掌握物理公式的基本含义及其适用范围。

公式只是我们解决问题的一种手段,不是解决问题的目的。

2.注意单位和精度:我们在解决问题时,应该精确地记录问题中给出的数值,并注意单位及其换算。

在计算过程中,各种数据应该遵循单位之间的统一换算原则。

除此之外,我们需要在计算中注意精度问题,确保计算结果的准确性。

3.理解物理原理:我们必须对物理概念有深入的了解,同时可以结合例子来帮助我们更好地理解物理现象背后的规则和原理。

高中物理题目解答综合指导与技巧

高中物理题目解答综合指导与技巧

高中物理题目解答综合指导与技巧在高中物理学习过程中,解题是一个重要的环节,也是学生们经常遇到的难题。

为了帮助学生们更好地解决物理题目,本文将从题目的类型、解题思路和解题技巧三个方面进行综合指导与技巧的介绍。

一、题目的类型在高中物理考试中,常见的题目类型包括选择题、计算题和应用题。

选择题是最常见的题型,要求学生在给出的选项中选择一个正确答案。

计算题则要求学生进行具体的计算操作,得出数值结果。

应用题则是将物理知识应用到实际问题中,需要学生进行综合运用。

举例来说,一道选择题的题目如下:某物体从10m高处自由落下,求其落地时的速度。

A. 10m/sB. 20m/sC. 30m/sD. 40m/s这道题目考察的是自由落体运动的基本知识,正确答案是C。

学生可以利用自由落体运动的公式v = gt,其中g为重力加速度,t为时间,代入已知条件进行计算。

二、解题思路在解题过程中,学生需要明确题目的要求,分析题目所给信息,并结合所学的物理知识进行思考和推理。

对于选择题,学生可以通过排除法来确定正确答案。

首先,仔细阅读题目,理解题目的意思。

然后,对于每个选项,根据已有的物理知识进行判断。

将不符合题意的选项逐个排除,最终确定正确答案。

对于计算题和应用题,学生需要先明确题目要求,然后分析题目所给的已知条件。

根据已知条件,运用相应的物理公式进行计算或推理。

在计算过程中,注意单位的转换和计算的准确性。

最后,将计算结果与题目要求进行比较,确定最终答案。

三、解题技巧在解题过程中,学生可以运用一些解题技巧来提高解题效率和准确性。

1. 理清思路:在解题之前,先理清思路,明确解题的步骤和方法。

可以通过画图、列式等方式来帮助理清思路。

2. 灵活运用公式:掌握常用的物理公式,并能够根据题目要求灵活运用。

在运用公式时,注意单位的转换和计算的准确性。

3. 注意边界条件:在解题过程中,注意边界条件的考虑。

有些题目可能会有特殊情况需要额外考虑,如速度为零、时间为零等情况。

高中物理15个解题思路

高中物理15个解题思路

高中物理15个解题思路高中物理的解题思路是非常重要的,下面将介绍15种常见的解题思路。

1. 明确题目所求在开始解题之前,要仔细阅读题目,理解题意并明确所求,从而选择正确的解题方法。

2. 画图解题在解决复杂的物理问题时,画图可以帮助我们更好地理解问题,从而确定解决方案。

3. 使用公式和定律高中物理有很多公式和定律,我们可以针对不同的问题选择合适的公式和定律来解决问题。

4. 分解力的合成许多物理问题涉及多个力的作用,我们可以使用分解力的合成的原理,将多个力分解为不同方向的力来求解问题。

5. 应用牛顿第一、二、三定律牛顿定律是解决动力学问题的重要手段,通过分析力的方向和大小,可以使用牛顿定律来求解问题。

6. 运用能量守恒定律能量守恒定律是解决动力学问题的另一个重要手段,通过分析能量的转换和流失,可以使用能量守恒定律来解决问题。

7. 利用热力学原理热力学是涉及热和温度的学科,通过热力学原理,我们可以解决许多热学问题。

8. 使用波动原理波动原理是涉及波动和振动的物理学原理,通过应用波动原理,我们可以解决许多波动和振动的问题。

9. 运用相对论原理相对论是关于光速和物质之间相互作用的学科,通过应用相对论原理,我们可以解决许多相对论问题。

10. 利用电学原理电学是关于电和电场的学科,通过电学原理,我们可以解决许多电学问题。

11. 参照磁学原理磁学是关于磁场和磁性材料的学科,通过参考磁学原理,我们可以解决许多磁学问题。

12. 应用光学原理光学是关于光和光学器件的学科,通过应用光学原理,我们可以解决许多光学问题。

13. 应用量子力学原理量子力学是关于原子结构和粒子行为的学科,通过应用量子力学原理,我们可以解决许多量子力学问题。

14. 运用统计物理学原理统计物理学是关于热力学和统计热力学的学科,通过应用统计物理学原理,我们可以解决许多统计物理学问题。

15. 分析实验数据在物理实验中,我们可以收集数据并进行分析,通过数据分析的方法,我们可以得出物理规律并解决问题。

高中物理的解题思路与备考建议总结与讲解

高中物理的解题思路与备考建议总结与讲解

高中物理的解题思路与备考建议总结与讲解高中物理是一门涉及自然界各种物理现象与规律的学科,对于很多学生来说,其解题思路和备考方法可能有些困惑。

本文将总结与讲解高中物理的解题思路与备考建议,帮助学生更好地应对这门科目。

一、解题思路1. 理清题意:在解题之前,首先要仔细阅读题目,理解题意。

可以将题目中的重要信息进行标记或划线,避免因为没有理解题意而产生错误。

2. 列出已知量和未知量:在理解题意的基础上,将已知量和未知量明确列出来。

这样有助于我们确定解题的方向和步骤。

3. 运用适当的物理公式:根据已知量和未知量,选择适当的物理公式进行运用。

要熟练掌握常用的物理公式,遇到类似的问题能够迅速找到解决方法。

4. 运用数学工具解题:物理问题往往涉及到一些数学运算,如代数运算、几何运算等。

要善于将物理问题转化为数学问题,并灵活运用数学工具解题。

5. 进行合理估算:在解题过程中,可以进行一些合理估算。

例如,通过对已知量的大小进行估算,判断未知量的数量级,从而验证所得结果的合理性。

6. 注意单位换算:在解题过程中,要注意所涉及到的物理量的单位换算。

需要熟悉常见的物理单位之间的换算关系,并根据需要进行单位的转换。

二、备考建议1. 理解基础概念:高中物理的学习是建立在基础概念之上的。

要牢固掌握各种物理现象和规律的基本概念,理解它们的含义和相互关系。

可以通过阅读教材、参考书籍或在线资源进行学习。

2. 学会分析解题思路:高中物理的考试除了纯粹的计算题,还有一些需要分析和解释的题目。

要学会分析解题思路,理解题目要求,有条理地进行思考和解答。

可以多做一些理论联系实际的题目,培养解决实际问题的能力。

3. 多做题和总结:高中物理的学习离不开做题。

要多做各种类型的物理题目,包括选择题、计算题、应用题等,提高自己的解题能力。

同时,要及时总结解题方法和思路,发现问题并加以改进。

4. 制定学习计划并坚持执行:高中物理需要持续的学习和复习,要制定一个合理的学习计划,并坚持按照计划去执行。

高中物理解题方法和技巧典例

高中物理解题方法和技巧典例

高中物理解题方法和技巧典例
1.理清思路:在解决高中物理问题时,首先要理清思路,明确问题的基本条件和要求,有条不紊地进行思考和推理。

2. 熟悉公式:物理学是一门数学基础很强的学科,因此我们要熟悉相关的公式和定理,能够根据公式推导和计算出答案。

3. 分析图像:在解决物理问题时,经常涉及到各种图像,我们需要仔细观察图像,并根据图像提供的信息进行分析和推理。

4. 理解物理概念:物理问题不仅需要掌握公式和定理,还需要理解物理学的基本概念,例如质量、力、功、能等,这样才能更好地理解和解决问题。

5. 多做题:高中物理的解题方法和技巧需要在实践中不断掌握和提升,因此我们需要多做题,多练习,不断总结经验和方法。

典例:
一道常见的高中物理题目:
小明站在距离墙壁2m处,用一支手电筒向墙壁照射,发现光点的直径为6cm。

请计算手电筒的直径。

解题思路:
根据题目所给的条件,我们可以通过以下步骤求解:
1. 利用光线传播的原理,可以推导出手电筒到墙壁的距离为4m。

2. 在墙壁上形成的光点大小,可以通过逆向推导得到,即手电筒的直径等于光点直径与距离的比值乘以2。

3. 根据上述公式,可以得出手电筒的直径为0.75cm左右。

通过这道典型的物理题目,我们可以看出,在解题过程中需要运用多种物理学的基本概念和公式,理清思路,进行分析和推导,才能得出正确的答案。

高考物理解答题技巧如何合理组织答题结构和思路

高考物理解答题技巧如何合理组织答题结构和思路

高考物理解答题技巧如何合理组织答题结构和思路高考物理是考生们备战中不可忽视的一门科目,其中解答题更是需要一定的策略和技巧。

在考试中,合理组织答题结构和思路能够提高解答效率、减少错误发生,下面将介绍几种有效的方法。

一、审题准确,把握思路在开始解答题目前,首先需要认真审题,将题目中的关键信息提取出来,并加以理解。

这有助于我们建立全面的思维框架,避免因理解偏差而产生错误答案。

同时,也要注意题目中的条件、要求和要解决的问题,将其结合起来形成解题思路。

二、积极划重点,标注关键信息在解答题目时,特别是在长篇解答题中,积极划重点和标注关键信息是非常重要的。

可以使用彩色笔或者下划线等方式,将重要的条件、公式或者问题做出显著标记。

这样做的好处是在后续的解题过程中,能更加迅速地找到所需的信息,避免在文章中找不到要点的尴尬。

三、条理清晰,逻辑严密在解答物理题目时,良好的条理和严密的逻辑是非常重要的,能将我们的答案清晰地呈现给阅卷老师,使其易于理解和评分。

为了达到这一点,在解答过程中,我们可以采用以下方法来组织答题结构和思路:1.分段并标号:长篇解答题可以根据所给的问题进行分段,并进行标号。

这样做的好处是使文章更加有条理,阅卷老师更容易找到对应的答案。

2.层次分明:在每个段落中进行层次分明的安排,逐步展开答案,先引出结论,再给出解题过程和相关计算。

尽量避免一味罗列公式和答案。

3.行文流畅:要注意语言的连贯性和流畅性,在表达时要避免啰嗦,言简意赅地将解答过程表达出来。

可以使用连接词汇、过渡句等手段来提高文章的连贯性。

四、举一反三,注重思考拓展在解答物理题目时,我们可以通过举一反三的方法,将解题思路拓展到其他相关的问题上。

这样不仅能够巩固对知识的理解,也能够提高解题的能力。

同时,也要注重多种思路的比较和选择,选择最有效的方法来解决问题。

五、反复检查,谨慎修改最后,在写完答案后一定要进行反复检查,尤其是计算题中的计算过程和答案。

高中典型物理模型及解题方法精编版

高中典型物理模型及解题方法精编版

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不0 (20F =就是上面F=21221mm (m m g)(m m ++F=1221m (m )m (m m m g ++m (m )m g +121212N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥 3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R 2m v③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R 2m v即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行)此时最低点速度:V 低 =gR 2都应看成等效的情况) 2(1)明确研究对象,必要时将它从转动系统中隔离出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理解题思路及方法指导精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】高中物理解题方法指导物理题解常用的两种方法:分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。

这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。

综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。

综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。

实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。

正确解答物理题应遵循一定的步骤第一步:看懂题。

所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。

”要养成这样一个习惯:不懂题,就不要动手解题。

若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。

第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。

第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。

一、静力学问题解题的思路和方法1.确定研究对象:并将“对象”隔离出来-。

必要时应转换研究对象。

这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。

2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。

以受力图表示。

3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。

4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。

5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。

静力学习题可以分为三类:①力的合成和分解规律的运用。

②共点力的平衡及变化。

③固定转动轴的物体平衡及变化。

认识物体的平衡及平衡条件对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α为零,则称为平衡,欲使质点平衡须有∑F=0。

若将各力正交分解则有:∑F X=0,∑F Y=0。

对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F=0,∑M=0。

这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论:①三个力必共点。

②这三个力矢量组成封闭三角形。

③任何两个力的合力必定与第三个力等值反向。

对物体受力的分析及步骤(一)、受力分析要点:1、明确研究对象2、分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法”3、作图时力较大的力线亦相应长些4、每个力标出相应的符号(有力必有名),用英文字母表示5、物体或结点:⎩⎨⎧解法。

受四力以上:用正交分成法或正交分解法。

受三个力作用:力的合 6、用正交分解法解题列动力学方程①受力平衡时⎩⎨⎧=∑=∑0F 0F Y X ②受力不平衡时⎩⎨⎧∑∑y max F XX ma F == 7、一些物体的受力特征:⎩⎨⎧均可传。

杆或弹簧:拉力、压力(张力)不能传压力。

绳或橡筋:不能受拉力 8、同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。

(二)、受力分析步骤:1、判断物体的个数并作图:①重力;②接触力(弹力和摩擦力);③场力(电场力、磁场力)2、判断力的方向:①根据力的性质和产生的原因去判;②根据物体的运动状态去判;a由牛顿第三定律去判;b由牛顿第二定律去判(有加速度的方向物体必受力)。

二、运动学解题的基本方法、步骤运动学的基本概念(位移、速度、加速度等)和基本规律是我们解题的依据,是我们认识问题、分析问题、寻求解题途径的武器。

只有深刻理解概念、规律才能灵活地求解各种问题,但解题又是深刻理解概念、规律的必需环节。

根据运动学的基本概念、规律可知求解运动学问题的基本方法、步骤为(1)审题。

弄清题意,画草图,明确已知量,未知量,待求量。

(2)明确研究对象。

选择参考系、坐标系。

(3)分析有关的时间、位移、初末速度,加速度等。

(4)应用运动规律、几何关系等建立解题方程。

(5)解方程。

三、动力学解题的基本方法我们用动力学的基本概念和基本规律分析求解动力学习题.由于动力学规律较复杂,我们根据不同的动力学规律把习题分类求解。

1、应用牛顿定律求解的问题,这种问题有两种基本类型:(1)已知物体受力求物体运动情况,(2)已知物体运动情况求物体受力.这两种基本问题的综合题很多。

从研究对象看,有单个物体也有多个物体。

(1)解题基本方法根据牛顿定律ma解答习题的基本方法是F=合①根据题意选定研究对象,确定m。

②分析物体受力情况,画受力图,确定合F 。

③分析物体运动情况,确定a 。

④根据牛顿定律、力的概念、规律、运动学公式等建立解题方程。

⑤解方程。

⑥验算,讨论。

以上①、②、③是解题的基础,它们常常是相互联系的,不能截然分开。

应用动能定理求解的问题动能定理公式为k 1k 2E E W -=合,根据动能定理可求功、力、位移、动能、速度大小、质量等。

应用动能定理解题的基本方法是·①选定研究的物体和物体的一段位移以明确m 、s 。

②分析物体受力,结合位移以明确总W 。

③分析物体初末速度大小以明确初末动能。

然后是根据动能定理等列方程,解方程,验算讨论。

(例题)如图4—5所示,木板质量千克10m 1=,长3米。

物体质量千克=2m 2。

物体与木板间摩擦系数05.01=μ,木板与水平地面间摩擦系数1.02=μ,开始时,物体在上滑动,问经过2秒后(1)力F 作功多少?(2)物体动能多大?(10g =米/秒2)应用动量定理求解的问题图4-5从动量定理12P P I -=合知,这定理能求冲量、力、时间、动量、速度、质量等。

动量定理解题的基本方法是①选定研究的物体和一段过程以明确m 、t 。

②分析物体受力以明确冲量。

⑧分析物体初、末速度以明确初、末动量。

然后是根据动量定理等建立方程,解方程,验算讨论。

【例题8】质量为10千克的重锤从3.2米高处自由下落打击工件,重锤打击工件后跳起0.2米,打击时间为秒。

求重锤对工件的平均打击力。

应用机械能守恒定律求解的问题机械能守恒定律公式是p2k 2p1k 1E E E E +=+知,可以用来求动能、速度大小、质量、势能、高度,位移等。

应用机械能守恒定律的基本方法是①选定研究的系统和一段位移。

②分析系统所受外力、内力及它们作功的情况以判定系统机械能是否守恒。

③分析系统中物体初末态位置、速度大小以确定初末态的机械。

然后根据机械能守恒定律等列方程,解方程,验算讨论。

四、电场解题的基本方法本章的主要问题是电场性质的描述和电场对电荷的作用,解题时必须搞清描述电场性质的几个物理量和研究电场的各个规律。

1、如何分析电场中的场强、电势、电场力和电势能(1)先分析所研究的电场是由那些场电荷形成的电场。

(2)搞清电场中各物理量的符号的含义。

(3)正确运用叠加原理(是矢量和还是标量和)。

下面简述各量符号的含义:①电量的正负只表示电性的不同,而不表示电量的大小。

②电场强度和电场力是矢量,应用库仑定律和场强公式时,不要代入电量的符号,通过运算求出大小,方向应另行判定。

(在空间各点场强和电场力的方向不能简单用‘+’、‘-’来表示。

)③电势和电势能都是标量,正负表示大小.用qU =ε进行计算时,可以把它们的符号代入,如U 为正,q 为负,则ε也为负.如U 1>U 2>0,q 为负,则021<<εε。

④电场力做功的正负与电荷电势能的增减相对应,W AB 为正(即电场力做正功)时,电荷的电势能减小,B A εε>;W AB 为负时,电荷的电势能增加B A εε<。

所以,应用B A B A AB U U q W εε-)=-(=时可以代人各量的符号,来判定电场力做功的正负。

当然也可以用)-(B A U U q 求功的大小,再由电场力与运动方向来判定功的正负。

但前者可直接求比较简便。

2、如何分析电场中电荷的平衡和运动电荷在电场中的平衡与运动是综合电场;川力学的有关知识习·能解决的综合性问题,对加深有关概念、规律的理解,提高分析,综合问题的能力有很大的作用。

这类问题的分析方法与力学的分析方法相同,解题步骤如下:(1)确定研究对象(某个带电体)。

(2)分析带电体所受的外力。

(3)根据题意分析物理过程,应注意讨论各种情况,分析题中的隐含条件,这是解题的关键。

(4)根据物理过程,已知和所求的物理量,选择恰当的力学规律求解。

(5)对所得结果进行讨论。

【例题4】如图7—3所示,如果H 31(氚核)和He 24(氦核)垂直电场强度方向进入同—偏转电场,求在下述情况时,它们的横向位移大小的比。

(1)以相同的初速度进入,(2)以相同的初动能进入;(3)以相同的初动量进入;(4)先经过同一加速电场以后再进入。

分析和解带电粒子在电场中所受电场力远远大于所受的重力,所以重力可以忽略。

带电粒子在偏转电场受到电场力的作用,做类似于平抛的运动,在原速度方向作匀速运动,在横向作初速为零的匀加速运动。

利用牛顿第二定律和匀加速运动公式可得(1)以相同的初速度v 0进入电场,因E 、l 、v 0都相同,所以mq y ∝ (2)以相同的初动能E k0进入电场,因为E 、l 、mv 2都相同,所以q y ∝(3)以相同的初动量p 0进入电场,因为E 、l 、mv 0都相同,由(4)先经过同一加速电场加速后进入电场,在加速电场加速后,粒子的动能12021qU mv =(U 1为加速电压) 由12122024421U El qU qEl v l m qE y === 因E 、l 、U 1是相同的,y 的大小与粒子质量、电量无关,所以:注意在求横向位移y 的比值时,应先求出y 的表达式,由题设条件,找出y 与粒子的质量m 、电量q 的比例关系,再列出比式求解,这是求比值的一般方法。

V 03、如何分析有关平行板电容器的问题在分析这类问题时应当注意(1)平行板电容器在直流电路中是断路,它两板间的电压与它相并联的用电器(或支路)的电压相同。

(2)如将电容器与电源相接、开关闭合时,改变两板距离或两板正对面积时,两板电正不变,极板的带电量发生变化。

如开关断开后,再改变两极距离或两板正对面积时,两极带电量不变,电压将相应改变。

相关文档
最新文档