热力学三大定律内容及公式

合集下载

热力学三大定律的文字表述及数学表达式

热力学三大定律的文字表述及数学表达式

热力学三大定律的文字表述及数学表达式
热力学三大定律是关于热量传递的基本原则,具体表述如下:
1. 第一定律:能量守恒定律。

热力学第一定律表明,能量不会被创造也不会被消灭,只会从一种形式转化为另一种形式。

数学表达式为:ΔU = Q - W,其中ΔU表示系统内能的变化,Q
表示系统吸收的热量,W表示系统对外做的功。

2. 第二定律:熵增定律。

热力学第二定律表明,任何孤立系统在封闭过程中,其总熵会增加或保持不变,而不会减少。

数学表达式为:ΔS ≥ 0,其中ΔS表示系统熵的变化。

3. 第三定律:绝对熵定理。

热力学第三定律表明,在温度接近绝对零度时,任何物质的熵趋近于一个常数。

数学表达式为:lim S → 0 (T) = 0,其中S表示系统的熵,T表示系统的温度。

这三个定律是热力学研究的基础,并且在许多自然和工程过程中都具有重要的应用价值。

0102热力学三大定律

0102热力学三大定律

•8
4. 热力学关系(适用于相变和化学变化)
G (T2 ) G (T1 ) SdT
T1
T2 G (T2 ) G (T1 ) T1 T2 T1
T2
H为常数 1 1 H dT H T T 2 T 1 2
p2
G ( p 2 ) G ( p1 ) Vdp
1. (A)T =
V2
V1
1 1 V1 RT ln a V2 V V 1 2
RT a pdV 2 dV V1 V V
V2
•2
2. dU=TdS – pdV
a p S U p 2 p T T V T V V T V T V2 a 1 1 ( U )T 2 dV a V1 V V V 2 1
绝热
n=nA + nB T, 2V
•1
解:注意两气体的始、终态 p1 V2 (S )T nR ln nR ln V1 p2
1mol A,T,V 1mol B,T,V n=nA + nB T, 2V
(1)不同种理想气体同温同压下混合 A和B: V2 /V1=2; p1 /p2(终态分压) = 2
S S dS dV dT V T T V
dT dp C p T nR p 若是液体、固体,右边第二项可忽略。 对于实际气体,使用其气态方程求偏微商
dT p dS CV dV T T V dT V dS C p dp T T p
•1
3 理想气体的atto循环由下面四个可逆步骤构成 (A)气体绝热可逆压缩; (B)恒容升温,气体从环境吸热; (C)气体经绝热可逆膨胀做功; (D)恒容降温回到原态。 该循环的T-S 图为( D )

三大热力学定律的内容

三大热力学定律的内容

三大热力学定律的内容热力学是研究能量转化与传递规律的学科,是物理学的重要分支之一。

热力学定律是热力学研究的基础,它们揭示了能量守恒和热能传递的规律。

下面将逐一介绍三大热力学定律的内容。

第一定律:能量守恒定律能量守恒定律是热力学中最基本的定律之一,也是自然界中普遍存在的基本规律。

能量守恒定律表明,在任何一个封闭系统中,能量的总量是恒定不变的。

换句话说,能量既不能从不存在的地方产生,也不能消失到不存在的地方去。

能量守恒定律可以用以下方式表达:在一个封闭系统中,能量的增加等于系统所吸收的热量与做功之和。

这个定律告诉我们,能量可以从一种形式转化为另一种形式,但总能量保持不变。

第二定律:热力学第二定律热力学第二定律是热力学中最重要的定律之一,它揭示了热能传递的方向性和不可逆性。

热力学第二定律可以从两个方面来理解:热力学不可逆性原理和熵增原理。

热力学不可逆性原理指出,自然界中存在着一种不可逆的现象,即热量不会自发地从低温物体传递到高温物体。

这意味着热量只能自高温物体传递到低温物体,而不能反过来。

熵增原理是热力学第二定律的另一个表述。

熵是描述系统无序程度的物理量,熵增原理指出,在一个孤立系统中,熵总是趋向于增加,而不会减少。

这意味着自然界中的过程是趋向于无序的,而不是有序的。

例如,热量从高温物体传递到低温物体时,熵会增加,系统的无序程度也会增加。

第三定律:绝对零度定律绝对零度定律是热力学中的第三大定律,它规定了温度的下限。

根据绝对零度定律,当一个物体的温度降到绝对零度时,也就是零开尔文(-273.15摄氏度),物体的分子热运动将停止。

绝对零度定律的提出是由于研究物体的热容性质时发现,随着温度的降低,物体的热容趋向于零。

这表明,在绝对零度附近,物质的分子热运动几乎完全停止,物体的热容也趋近于零。

绝对零度定律在热力学中具有重要的应用价值。

例如,在研究低温物理学和超导材料时,绝对零度定律被广泛应用。

总结热力学定律是研究能量转化和热能传递规律的基础,它们分别是能量守恒定律、热力学第二定律和绝对零度定律。

热力学基础中的热力学基本定律

热力学基础中的热力学基本定律

热力学基础中的热力学基本定律热力学是研究能量转化和能量传递的学科,它建立了描述物质宏观性质的基本理论框架。

在热力学中,有三个基本定律,即热力学基本定律。

本文将介绍热力学基本定律的概念和含义,以及它们在热力学中的应用。

1. 热力学基本定律一:能量守恒定律热力学基本定律一,即能量守恒定律,也是能量守恒原理。

它表明,在一个孤立系统中,能量既不能创造,也不能消失,只能从一种形式转化为另一种形式。

换句话说,系统内能量的总和保持不变。

能量守恒定律可以应用于各种热力学系统,例如理想气体系统、热机系统和化学反应系统等。

在这些系统中,通过热传递、功以及物质的传输,能量可以在系统内进行转化。

根据能量守恒定律,我们可以分析和计算系统内能量的转化过程。

2. 热力学基本定律二:熵增加定律熵增加定律是热力学基本定律的第二条定律,它描述了孤立系统的熵增加趋势。

熵是衡量系统无序程度的物理量,也可以理解为系统的混乱程度。

熵增加定律表明,孤立系统中的熵总是趋向于增加,而不会减小。

这意味着系统的有序性会逐渐降低,熵值会增加。

这个过程是不可逆的,即无法逆转。

例如,热量从高温物体传递到低温物体时会产生熵增加。

熵增加定律在热力学中有广泛的应用。

它可以解释为什么热量总是从高温传递到低温,为热机工作提供了理论基础。

同时,它也为热力学过程提供了方向性,使我们可以判断一个过程是否可逆以及如何优化一个过程。

3. 热力学基本定律三:熵为零定律热力学基本定律三,即熵为零定律,也被称为绝对零度定律。

它规定了在绝对零度(-273.15摄氏度)下,任何物质的熵值为零。

这意味着在绝对零度下,物质达到了最低的能量状态和最大的有序性。

熵为零定律在热力学中具有重要意义。

它为确定热力学函数(如焓、自由能)的零点提供了依据,并且将熵的定义与绝对温度联系起来。

此外,熵为零定律还具有统计力学上的重要性,为探索物质微观结构提供了基础。

总结:热力学基本定律是热力学领域的基石,对能量转化和能量传递过程提供了基本的理论依据。

热力学(三大定律)

热力学(三大定律)

1.0 mol R ln 2 5.76 J K 1
非等温过程中熵的变化值
1、 物质的量一定的可逆等容、变温过程
S
T2
nCV ,m dT T
T1
2、 物质的量一定的可逆等压、变温过程
S
T2
nC p ,m dT T
T1
热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热力学第一定律
热力学第二定律
从Carnot循环得到的结论:
即Carnot循环中,热效应与温度商值的加和等于零。
p
Q1 Q2 0 T1 T2
任意的可逆循环:
任意可逆循环
V
用相同的方法把任意可逆循环分成许多首尾连接的小卡诺循环。
前一循环的等温可逆膨胀线 就是下一循环的绝热可逆压缩线 (如图所示的虚线部分),这样两 个绝热过程的功恰好抵消。
克劳修斯
在发现热力学第二定律的基础上,人们期望找到一个物理量,以 建立一个普适的判据来判断自发过程的进行方向。
克劳修斯首先找到了这样的物理量。1854年他发表《力学的热理 论的第二定律的另一种形式》的论文,给出了可逆循环过程中热 力学第二定律的数学表示形式,而引入了一个新的后来定名为熵 的态参量。1865年他发表《力学的热理论的主要方程之便于应用 的形式》的论文,把这一新的态参量正式定名为熵。并将上述积 分推广到更一般的循环过程,得出热力学第二定律的数学表示形 式。利用熵这个新函数,克劳修斯证明了:任何孤立系统中,系 统的熵的总和永远不会减少,或者说自然界的自发过程是朝着熵 增加的方向进行的。这就是“熵增加原理”,它是利用熵的概念 所表述的热力学第二定律。
H (相变) S (相变) T (相变)

热力学三大定律内容是什么 表述方式有几种

热力学三大定律内容是什么 表述方式有几种

热力学三大定律内容是什么表述方式有几种热力学三大基本定律是应用性很强的科学原理,对社会的进展具有重要的促进作用,三大定律力量守恒定律、熵增定律、肯定零度的探究。

热力学三大定律内容热力学第肯定律是能量守恒定律。

一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。

(假如一个系统与环境孤立,那么它的内能将不会发生变化。

)热力学其次定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不行能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不行能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。

以及熵增表述:孤立系统的熵永不减小。

热力学第三定律通常表述为肯定零度时,全部纯物质的完善晶体的熵值为零,或者肯定零度(T=0K)不行达到。

R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K,称为0K不能达到原理。

热力学的其他定律其实除了热力学三大定律,还存在第零定律,也就是假如两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

第零定律是在不考虑引力场作用的状况下得出的,物质(特殊是气体物质)在引力场中会自发产生肯定的温度梯度。

假如有封闭两个容器分别装有氢气和氧气,由于它们的分子量不同,它们在引力场中的温度梯度也不相同。

假如最低处它们之间可交换热量,温度达到相同,但由于两种气体温度梯度不同,则在高处温度就不相同,也即不平衡。

因此第零定律不适用引力场存在的情形。

第零定律比起其他任何定律更为基本,但直到二十世纪三十年月前始终都未有察觉到有需要把这种现象以定律的形式表达。

第零定律是由英国物理学家拉尔夫·福勒于1939年正式提出,比热力学第肯定律和热力学其次定律晚了80余年,但是第零定律是后面几个定律的基础,所以叫做热力学第零定律。

工程热力学基本概念及重要公式

工程热力学基本概念及重要公式

工程热力学基本概念及重要公式1.热力学系统和热力学过程:热力学系统是指一定空间区域内被观察的物质或物体,它可以是一个封闭系统、开放系统或隔离系统。

热力学过程是指系统经历的状态变化过程,可以分为等温过程、绝热过程、等容过程和等焓过程等。

2.热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表述,即能量守恒原则。

它可以表示为:ΔU=Q-W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。

该定律说明了系统内能的变化等于系统吸收的热量减去系统对外做的功。

3.热力学第二定律:热力学第二定律是热力学中的基本定律之一,也被称为熵增定律。

它可以表述为系统总熵永不减小,即所有自然界的过程和现象都遵循熵增的趋势。

根据熵的定义,dS≥Q/T,其中dS表示系统熵的增量,Q表示吸收的热量,T表示温度。

这个公式说明了系统的熵增量等于吸收的热量除以温度。

4.等温过程和绝热过程:在等温过程中,系统与外界保持温度不变,即温度恒定。

根据理想气体状态方程,PV=常数,即在等温过程中,气体的压强与体积呈反比关系。

在绝热过程中,系统与外界在热量交换上完全隔绝,即吸收或放出的热量为零。

根据理想气体状态方程,PV^γ=常数,其中γ为绝热指数,指的是在绝热过程中,气体压强与体积的幂指数之积的常数。

5.卡诺循环:卡诺循环是热力学中一种完美的热机循环,它由两个等温过程和两个绝热过程组成。

卡诺循环是理想的热机循环,它在可逆过程中实现了最大的功效率。

卡诺循环的功效率可表示为η=(T1-T2)/T1,其中T1表示高温热源的温度,T2表示低温热源的温度。

6.热力学第三定律:热力学第三定律是热力学中的基本定律之一,它表明在温度等于绝对零度时,所有系统的熵都将趋于零。

这个定律的提出为研究低温物理学和凝聚态物理学提供了重要的基础。

这些是工程热力学中的一些基本概念和重要公式。

工程热力学作为能源工程和热力工程等领域的基础学科,对于能量转换和热力设备的设计与运行具有重要作用。

热学三大公式

热学三大公式

热学三大公式
热学是物理学中的一个重要分支,涉及到热量、热力学能量、热传递等方面的知识。

在热学中,有三个非常重要的公式,分别是:
1. 热力学第一定律公式:Q = U + W
这个公式表示热量 Q 等于内能 U 加上摩擦功 W。

它表明了热量和内能之间的关系,说明了热传递的根本原因是物体之间的内能差异。

这个公式在解释热传递现象和计算热传递的热量时非常有用。

2. 热力学第二定律公式:N = Q - W
这个公式表示净热量 N 等于热量传递 W 减去摩擦功 N。

它表明了热量传递的方向和热量传递的多少取决于内能差异的大小,而与摩擦功无关。

这个公式在解释热传递的规律和计算热量传递的效率时非常有用。

3. 热力学第三定律公式:热量不可能自发地从低温物体传到高
温物体
这个公式表示热量传递是一种自发的过程,也就是说,热量传递是从高温物体向低温物体传递的。

这个公式表明了热传递是一种不可避免的自然现象,同时也说明了热量传递的根本原因是物体之间的内能差异。

这个公式在解释热传递现象和计算热传递的热量时非常有用。

这三个公式是热学中最基本的公式,对于理解热学概念和应用具有非常重要的意义。

此外,热学还有很多其他的公式和规律,例如热力学第二定律的另一种表述方式——熵增定律,以及热力学第三定律的应用,等等,这些都需要深入学习才能掌握。

工程热力学公式知识点总结

工程热力学公式知识点总结

工程热力学公式知识点总结热力学是研究热现象和能量转化的一门物理学科。

它不仅适用于工程领域,也适用于物理、化学、地质等领域。

热力学公式是热力学知识的重要组成部分,掌握好热力学公式可以帮助工程师更好地理解和应用热力学知识。

本文将对工程热力学公式知识点进行总结,并进行详细解释。

1. 热力学基本公式1.1 第一定律:热力学第一定律也称为能量守恒定律,它表明了能量在物质之间的转化和传递过程中的基本规律。

数学表达式为:\[dU = \delta Q - \delta W\]其中,dU表示系统内能的变化量,\(\delta Q\) 表示系统吸收的热量,\(\delta W\) 表示系统对外做功的量。

1.2 第二定律:热力学第二定律指出了自然界不可逆过程的特性,也就是热量永远不能自发地由低温物体传递到高温物体。

热力学第二定律的数学表达式有多种形式,其中最常见的是开尔文表述和克劳修斯表述。

开尔文表述表示为:\[\oint \frac{dQ}{T} \leq 0\]即,对于任何经过完整循环的过程而言,系统吸收的热量与温度的比值总是小于等于零。

而克劳修斯表述表示为:\[\text{不可能使得热量从低温物体自发地转移到高温物体,而不引入外界作用。

}\]1.3 熵增原理:熵是描述系统混乱程度或者无序性的物理量,熵增原理指出了自然界中系统总是朝着熵增长的方向发展。

数学表达式为:\[\Delta S \geq \frac{\delta Q}{T}\]其中,\(\Delta S\)代表系统的熵增量,\(\frac{\delta Q}{T}\)表示系统的对外吸收的热量与温度的比值。

2. 热力学循环公式2.1 卡诺循环公式:卡诺循环是一个理想的热力学循环,它包括两个绝热过程和两个等温过程。

卡诺循环可以用来评价热能机械的性能,其热效率被称为卡诺热效率。

卡诺热效率的数学表达式为:\[\eta_{\text{Carnot}} = 1 - \frac{T_c}{T_h}\]其中,\(\eta_{\text{Carnot}}\)表示卡诺热效率,\(T_c\)表示循环的低温端温度,\(T_h\)表示循环的高温端温度。

热力学三大定律知识总结

热力学三大定律知识总结

热力学三大定律总结热力学第一定律是能量守恒定律。

热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。

以及熵增表述:孤立系统的熵永不减小。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0)不可达到。

一、第一定律热力学第一定律也就是能量守恒定律。

自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。

1、内容一个热力学系统的内能U增量等于外界向它传递的热量Q与外界对它做功A的和。

(如果一个系统与环境孤立,那么它的内能将不会发生变化。

)2、符号规律热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△E=-W+Q时,通常有如下规定:①外界对系统做功,A>0,即W为正值。

②系统对外界做功,A<0,即W为负值。

③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值3、理解从三方面理解(1)如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时系统内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=A(2)如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时系统内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q(3)在做功和热传递同时存在的过程中,系统内能的变化,则要由做功和所传递的热量共同决定。

在这种情况下,系统内能的增量△U 就等于从外界吸收的热量Q和外界对系统做功A之和。

热力学三大定律

热力学三大定律


(G)T
Vdp
V V2 V1
RT V2
2a V3
dV
2a
1 V1
1 V2
RT ln V2 V1
•2
例5. 苯的沸点为80.1C,设蒸气为理想气体,
求1mol苯在80.1C时下列过程的A, G
(1) C6H6(l, p) C6H6(g, p) (2) C6H6(l, p) C6H6(g, 0.9p) (3) C6H6(l, p) C6H6(g, 1.1p) 根据所得结果能否判断过程的可能性?

实际气体绝热可逆膨胀

非理想气体卡诺循环 绝热( )p W’=0化学反应 0°C, p 的冰熔化成水
√ √√ √√ √ √
•1
例2 选择和填空题 1.下列四种表述中错误的是(C)
①定温定压下的可逆相变,系统的S=H/T
②系统经一自发过程总有S>0 ③自发过程的方向就是混乱度增加的方向 ④在绝热可逆过程中,系统的 S=0 (A )①② (B)③④ (C)②③ (D)①④ 2.定温定压下,某化学反应在电池中可逆进行时吸 热,据此可判断下列热力学量何者一定大于零( C ) (A) U (B) H (C) S (D) G
V2 pdV
V1
V2 RT V1 V
a V2
dV
RT
ln V1 V2
a
1 V2
1 V1
•2
2. dU=TdS – pdV
U V
T
T
S V
T
p
T
p T
V
p
a V2
(U )T
V2 a dV V V1 2
a
1 V1
1 V2

高中物理热力学三大定律

高中物理热力学三大定律

高中物理热力学三大定律
高中物理热力学三大定律是:
第一定律:能量守恒定律。

热量从不丢失,也不会流入外部世界中,因此热量在系统内的总和保持不变。

这意味着在一个封闭系统内,无论温度如何变化,能量守恒始终成立。

第二定律:热力学第二定律。

热量一定会从高温物体流向低温物体,直到两个物体的温度相等。

热力学第二定律揭示了热量的不可逆性,即热量不可能从低温物体流向高温物体,也不可能从高温物体流
向低温物体。

第三定律:热力学熵定律。

一个封闭系统的熵(即系统的混乱程度)随着温度的增加而增加。

熵是一个描述系统无序程度的物理量,它的值越大,系统越无序。

热力学熵定律是热力学第二定律的补充,它揭示了热量的不可逆性和系统的无序性。

这些定律是热力学的基础,对于理解化学反应和能源转换以及物理系统的行为非常重要。

热力学三个定律(3篇)

热力学三个定律(3篇)

第1篇热力学是研究热现象及其与物质运动、能量转换和传递之间相互关系的科学。

热力学有三个基本定律,分别是热力学第一定律、热力学第二定律和热力学第三定律。

这三个定律在物理学和工程学等领域有着广泛的应用。

一、热力学第一定律热力学第一定律也称为能量守恒定律,它揭示了能量在不同形式之间的相互转换和守恒。

具体来说,热力学第一定律可以表述为:在一个封闭系统中,能量不能被创造或消灭,只能从一种形式转换为另一种形式。

1. 热力学第一定律的数学表达式设一个封闭系统在一段时间内吸收的热量为Q,对外做功为W,系统内能的增加为ΔU,则热力学第一定律可以表示为:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做的功。

2. 热力学第一定律的应用热力学第一定律在许多领域都有广泛的应用,以下列举几个例子:(1)热机:热机是将热能转换为机械能的装置。

根据热力学第一定律,热机在工作过程中,必须从高温热源吸收热量,并将部分热量转化为机械能,同时将部分热量排放到低温热源。

(2)热泵:热泵是一种利用外部能量将低温热源的热量转移到高温热源的装置。

根据热力学第一定律,热泵在工作过程中,必须消耗一定的外部能量,以实现热量转移。

(3)能源利用:热力学第一定律揭示了能源的守恒规律,对于能源的开发、利用和节约具有重要意义。

二、热力学第二定律热力学第二定律揭示了热现象的不可逆性,即热量不能自发地从低温物体传递到高温物体。

具体来说,热力学第二定律可以表述为:1. 热力学第二定律的表述(1)开尔文-普朗克表述:不可能从单一热源吸收热量,使之完全变为功而不引起其他变化。

(2)克劳修斯表述:热量不能自发地从低温物体传递到高温物体。

2. 热力学第二定律的应用热力学第二定律在许多领域都有广泛的应用,以下列举几个例子:(1)制冷技术:制冷技术利用热力学第二定律,将热量从低温物体传递到高温物体,实现制冷效果。

(2)热力学第三定律:热力学第三定律是热力学第二定律的一个特例,它揭示了在绝对零度时,物体的熵趋于零。

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂虽然从远古时期人类早就学会了取火和用火,人们就注意探究热、冷现象本身。

但是热力学成为一门系统的学科却要到19世纪,在19世纪40年代前后,人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的。

人们对热的研究也不再是孤立地进行,而是在热与其他现象发生转化的过程中认识热,特别是在热与机械功的转比中认识热。

热力学在发展过程中形成了三大基本定律,它们构成了热力学的核心。

热力学第一定律:能量守恒定律德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系。

在他的论文《与有机运动相联的新陈代谢)中,把热看作“力”(能量)的一一种形式,他指出'热是能够转比为运动的力“。

他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k。

在论文中,迈尔详细考察了当时已知的几种自然现象的相互转化,提出了“力“不灭思想,迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家。

1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。

他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。

1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。

他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。

” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。

把热看成是一种状态量。

由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。

经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。

能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。

热学三个定律

热学三个定律

热学三个定律热学三个定律是指热力学中的三个基本定律,它们分别为热力学第一定律、热力学第二定律和热力学第三定律。

这些定律是理解和应用热力学的基础。

一、热力学第一定律热力学第一定律也称为能量守恒定律,它表明能量在物理系统中不能被创造或毁灭,只能从一个形式转换为另一个形式。

该定律可以表示为:在任何过程中,能量的总量保持不变。

这个定律可以用来解释许多自然现象,例如化学反应、机械运动和电子运动等。

在化学反应中,发生的化学反应会使化合物之间的键断裂和形成,这些过程涉及到能量的转移。

根据热力学第一定律,在化学反应中消耗的能量必须等于生成的能量。

同样,在机械运动中,机械系统所消耗的能量必须等于所产生的功。

二、热力学第二定律热力学第二定律是指在任何可逆过程中,系统总是趋向于更高的无序状态。

这个定律也可以表述为热量不能从低温体传到高温体而不产生其他影响。

这个定律是热力学的一个基本原理,它解释了为什么一些过程是不可逆的。

例如,热量不能从低温物体自动转移到高温物体,因为这将违反热力学第二定律。

在一个封闭系统中,如果没有外部能量输入,系统会趋向于均匀分布其内部能量。

这样的过程是不可逆的,因为它增加了系统的无序度。

三、热力学第三定律热力学第三定律是指在绝对零度下,任何纯晶体都具有相同的零点熵值。

这个定律也可以表述为:当温度趋近于绝对零度时,所有物质的熵趋近于一个常数值。

这个定律解释了物质在极低温度下的行为,并提供了一种方法来计算和比较材料之间的熵差异。

例如,在制备超导材料时,需要知道材料在极低温度下的行为和性质。

总结:热学三个定律是理解和应用热力学的基础。

其中,热力学第一定律表明能量在物理系统中不能被创造或毁灭,只能从一个形式转换为另一个形式;热力学第二定律解释了为什么一些过程是不可逆的;热力学第三定律解释了物质在极低温度下的行为,并提供了一种方法来计算和比较材料之间的熵差异。

这些定律是理解自然现象和应用科学技术的基础。

热学三定律

热学三定律

浅析热力学三大定律一、第一定律热力学第一定律也叫能量不灭原理,就是能量守恒定律。

简单的解释如下:ΔU = Q+ W或ΔU=Q-W(目前通用这两种说法,以前一种用的多)定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。

基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。

普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。

热力学的基本定律之一。

热力学第一定律是对能量守恒和转换定律的一种表述方式。

热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。

表征热力学系统能量的是内能。

通过作功和传热,系统与外界交换能量,使内能有所变化。

根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。

如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。

当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。

对于无限小过程,热力学第一定律的微分表达式为δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。

又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。

热力学第一定律的另一种表述是:第一类永动机是不可能造成的。

这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。

显然,第一类永动机违背能量守恒定律。

二、第二定律1.定义①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。

热力学第一二三定律内容

热力学第一二三定律内容

热力学第一二三定律内容
1、热力学第一定律,又称恒定总熵定律或熵守恒定律:在任意物理过程中,总熵不增不减,即所有物理过程的热力学熵变化均为零。

2、热力学第二定律,又称增加熵原理:在任何自然的物理或化学过程中,总熵增大,也就是说热力学熵的变化是正的,而非负的。

3、热力学第三定律,又称Nernst热力学第三定律:当某一系统经过特定温度和压力条件下的物理或化学变化时,其标准化熵(标准化比作)会逐步趋向于一定值,即温度为0K时的熵值。

热力学三大定律内容及公式

热力学三大定律内容及公式

热力学三大定律内容及公式
热力学三大定律,又称玻尔定律,是热力学的基础,也是物质传递的基本原理和实验原理。

热力学三大定律分别是第一定律、第二定律和第三定律,它们分别提出了物质传递和能量传递的基本原理,为热力学的发展奠定了基础。

第一定律,也称为热力学定律,即热力学系统的总能量是守恒的,即能量守恒定律。

它定义了保守特性,即热力学系统内外能量发生变化时,系统外能量的增加与系统内能量的减少之和等于零。

记做:ΔE+ΔI=0 其中,ΔE表示系统外的能量的变化,ΔI表示系统内的能量的变化。

第二定律即增温定律,指所有的热耗散都会引起热力学系统的温度升高。

它提出了热机械效率的概念,即热机械效率应与完全机械效率一样,必然<1,记做
η<1。

它定义了热机械过程的不可逆性,即作任何单向热机械过程的逆过程,其热机械效率必然<1,记做η<1。

第三定律即热大定律,也称为热死亡定律,它指出:任何物质最终可以达到的最低温度是一个恒定的,记做T0,它是热源的无穷大与绝热物体的温度。

它定义了热力学系统的无穷小,就是热源的无穷大与绝热物体的温度之间的温差,记做ΔT=T/T0。

热力学三大定律是热力学发展过程中被公认的理论框架,它们就是热力学概念的基本单元,也是我们理解和探究物质传递和能量传递的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学三大定律内容及公式
第一定律:内能的增量=吸收或放出的热量+物体对外界做的功或外界对物体做的功;第二定律:不可能使热量从低温的物体传递给高温的物体,而不引起其它变化;第三定律:热力学绝对零度不可达到。

1热力学定律与公式第一定律:
△U=Q-W
△U是系统内能改变
Q是系统吸收的热量
W是系统对外做功
第二定律:
很多种表述,最基本的克劳修斯表述和开尔文表述。

这个定律的一个推论是熵增原理:
选取任意两个热力学态A、B,从A到B沿任何可能路径做积分:∫dQ/T
最大的那个定义为熵。

孤立系(有限空间)情况下,熵只增不减。

第三定律:
绝对零度永远不可以达到。

似乎没有什幺数学表达吧。

非要写一个的话:
上面的话可以用这个式子表示:P(T→0)→0
1热力学的四大定律简述如下热力学第零定律——如果两个热力学系统中
的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

相关文档
最新文档