第三章气体热力学性质
合集下载
理想气体的热力性质
u 0 v T
dp 0
dv du pdv d h pv pdv dh vdp c p cV p dT dT dT dT dT
dh cp dT
dh c dT cp cp (T )
(t 2 t1 )
c
t2 t1
c dt q t1 t2 t1 t2 t1
T1, T2均为变量, 制表太繁复
q c dT c dT
0 0
T2
T 0
T
0
c dT
由此可制作出平均比热容表
T2 T1
2 cT 0 T2 c
T 0
c
T2 T1
c dT cdT q 0 0 T2 T1 T
9
三、比热容的求解方法(或热量的求解方法)
1)利用真实比热容积分 2)取平均比热直线查表 3)取定值比热容 4)利用气体热力性质表 对c作不同的技术处理可得精度不同的热量计算方法 : 真实比热容积分 利用平均比热表 定值比热容 利用气体热力性质表计算热量
10
1.利用真实比热容(true specific heat capacity)积分
cp
及
C p ,m , C CV ,m , C
' p
cV
' V
二、理想气体比定压热容,比定容热容和迈耶公式
1.比热容一般表达式
δq du δw du pdv c dT dT dT dT
u u T , v
( A)
u u du dT dv T v v T
u cV dT
T1 T2
3机械热力学第03章 理想气体的性质1
pB •
固态 液态 • C
BTtpC上侧,液相; ATtpC右侧,汽相。
气态
A•
•Ttp
t Ttp点:三相点
C点:临界点
TtpC线:气液两相共存,代表ps=f(ts); TtpB线:固液两相共存,熔点温度与压力的关系; TtpA线:固气两相共存,升华温度与压力之关系;
§3-5 水的汽化过程和临界点
cp
dT T
T1 T0
cp
dT T
Rg
ln
p2 p1
s20
s10
Rg
ln
p2 p1
精确计算熵变的方法: 1. 选择真实比热容经验式计算 2. 查表s0数据计算
例题\第三章\A4111551.ppt 例题\第三章\A4111552.ppt
作业:3-6,8,16
§3-4 水蒸气的饱和状态和相图
V=(Mv)=0.0224141 m3 /mol
例题:书中例3-1、3-2
§3-2 理想气体的比热容(比热)
一、定义和基本关系式
定义:
lim c
q q , 或 c q
T0 T dT
dt
一定量的物质在吸收或放出热量时,其温度变化的大小取决 于工质的性质、数量和所经历的过程。
1.理想气体热力学能和焓仅是温度的函数 a) 因理想气体分子间无作用力
u uk u T du cV dT
b) h u pv u RT
h hT dh cp dT
2
u 1 cvdT ;
2
h 1 cpdT
2.理想气体热力学能和焓的求算方法:
三、水的三相点
1. 三相点:固态、液态、汽态三相平衡共存的状态
气体的热力性质
cx f (T , p)
qx
T2 T1
cxdT
qx
T2 T1
cx
dT
气体的比热容:
比定容热容 (cv) 比定压热容 (cp)
cv
q T
v
qv dT
cp
q T
p
q p dT
对应的特定过程分别是定容过程(过程 进行时保持比体积不变)和定压过程 (过程进行时保持压力不变)
ds cv0 dT Rg dv
T
v
s
a0 Rg
ln T
a1T
a2 2
T
2
a3 3
T
3
Rg
ln
v
C1
f2 T,v
• 若假设cv0为常数
ds cv0 dT Rg dv
T
v
s cv0 lnT Rg ln v C1 f3 T ,v
ds dh vdp T
• 比定压热容是单位质量的物质,在压力不变的条 件下,作单位温度变化时相应的焓变化
2. 理想气体的比热容、热力学能和焓
• 理想气体的热力学能仅仅是温度的函数: u u T • 对于理想气体: h u pv u T RgT hT
理想气体的焓也仅仅是温度的函数
qv
T2 T1
cv
0dT
T2 T1
a0 Rg
a1T
a2T
2
a3T
3
dT
a0 Rg
工程热力学 第三章 理想气体的性质
11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
第三章__理想气体热力性质及过程
容积成分: i
Vi V
, i
1
摩尔成分: xi
ni n
, xi
1
换算关系:
i xi
i
xi M i xi M i
xi M i M eq
xi Rg,eq Rg ,i
,
xi
i Rg,i
Rg ,e q
分压力的确定:
由
piV=ni RT PVi=ni RT
ppi V Vi i ,
2
u 1 cVdT
如果取定值比热或平均比热,又可简化为
二、焓
ucVT
也可由热Ⅰ导得 d h(cVRg)dT cpdT
同理,有
2
h 1 cpdT
hcpT
结论:理想气体的u、h 均是温度的单值函数。
三、 熵变的计算
由可逆过程
ds du pd
T
ds du
cp
Rg 1
三、 真实比热容、平均比热容和定值比热容
1. 真实比热容(精确,但计算繁琐)
cpa0a 1 Ta2T2a3 T3
c V (a 0 R g) a 1 T a 2 T 2 a 3 T 3
qp
2 1
cpdt
2
q 1 cdt
2. 平均比热容(精确、简便)
cV
ln
T2 T1
Rg
ln
2 1
s
c
p
ln
T2 T1
Rg
ln
p2 p1
s
c
p
ln
2 1
cV
ln
p2 p1
工程热力学第三章气体和蒸汽的性质ppt课件
标准状态下的体积流量:
qV 0 Vm0qn 22.4103 288876 6474.98m3 / h
☆注意:不同状态下的体积不同。
3-2 理想气体的比热容
1、比热容的定义 ■比热容 c(质量热容)(specific heat)
1kg物质温度升高1K所需的热量, c q / dT J / (kg K)
(T 1000
)2
C3
(T 1000
)3
见附表4(温度单位为K)。
qp
T2 T1
cpdT
qV
T2 T1
cV
dT
说明:此种方法结果比较精确。
(2)平均比热容表
c
t2 t1
q t2 t1
q
t2 cdt
t1
t2 cdt
0℃
t1 cdt
0℃
c
t2 0℃
t2
c
t t1
0℃ 1
平均比热容 c t0℃的起始温度为0℃,见附表5(温
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
理想气体是实际上并不存在的假想气体。 假设: (1)分子是弹性的、不占体积的质点(与空间相比) (2)分子间没有作用力。(分子间的距离很大) ■作为理想气体的条件
气体 p 0 ,v ,即要沸点较低、远离液态。
■比定压热容c p 和比定容热容 cV 比定压热容(specific heat at constant pressure):定压
过程的比热容。
比定容热容(specific heat at constant volume):定容过
程的比热容。
●可逆过程
3第三章理想气体的热力性质和热力过程详解
t1 0
t1
1.021433271.0045427306.89(kJ/kg)
讨论
利用工程图表时,常会遇到表中不能直接查到的参数 值,此时需要运用插值的方法。常用的最简单的插值为线 性插值。
以平均比热容计算的结果为基准,可求得按定值比热
容计算结果的相对偏差。
306.89 301.35 1.81%
本章难点
1. 比热容的种类较多,理解起来有一定的难度。应 注意各种比热容的区别与联系。在利用比热容计算过程 热量及热力学能和焓的变化量时应注意选取正确的比热 容,不要相互混淆,应结合例题与习题加强练习。
2. 理想气体各种热力过程的初、终态基本状态参数 间的关系式以及过程中热力系与外界交换的热量和功量 的计算式较多,如何记忆和运用是一难点,应结合例题 与习题加强练习。
Rg
R M
例3-1 氧气瓶内装有氧气,其体积为0.025m3,压力表
读数为0.5MPa,若环境温度为20℃,当地的大气压力为0.1 MPa,求:(1)氧气的比体积;(2)氧气的物质的量。
解:(1)瓶中氧气的绝对压力为
p(0.50.1)1060.6106(Pa)
气体的热力学温度为 T273.1520293.15 ( K )
三、利用比热容计算热量
由比热容的定义式可得 q cdt
因此,温度从t1变到t2所需的热量为
q t2 cdt t2 f tdt
t1
t1
将 c f t 表示在图上。热力过程l-2
吸收的热量 q t2 cdt t1
可用过程曲线与
对应横坐标围成的曲边梯形的面积12t2t11表示。
为简化计算,工程上常使用气体的定值比热容和平
306.89
可见,在温度变化范围不大时,采用平均比热容和采 用定值比热容计算所得结果相差不大,而采用定值比热容 计算较为简单。
工程热力学理想气体的热力性质及基本热力过程
气体 CV,m Cp,m 种类 [J/(kmol· K)] [J/(kmol· K)] 单原子 3×R/2 5×R/2 双原子 5×R/2 7×R/2 多原子 7×/2 9×R/2
Cm c M
Cm c' 22 .4
22
对1kg(或标态下1m3)气体从T1变到T2所需热量为:
q cdT c dT cT2 T1
17
比较cp与cv的大小:
结论:cp>cv
18
理想气体定压比热容与定容比热容的关系 迈耶公式: c p
令
cV Rg (适用于理想气体)
cp / c k , . V 称为比热比或绝热指数
当比热容为定值时,К为一常数,与组成气体的 原子数有关。如:
单原子气体 К=1.66;
双原子气体 К=1.4;
R 8314 J /( kmol K )
各种物量单位之间的换算关系:
1kmol气体的量 Mkg气体的量 标态下22.4m 气体的量
3
7
气体常数Rg与通用气体常数R的关系:
m pV nRT RT M pV mRg T
R 8314 Rg 或 R MRg M M
w
0 4
2 3 v
q 0 4 3 s
w pdv
1
2
q Tds
1
14
2
3-2 理想气体的比热容
一、比热容的定义及单位
1.比热容定义
热容量:物体温度升高1K(或1℃)所需的热量 称为该物体的热容量,单位为J /K.
比热容:单位物量的物质温度升高1K(或1℃) 所需的热量称为比热容,单位由物量单位决定。
工程热力学基础——第3章理想气体的热力性质及基本热力过程
对于理想气体,凡分子中原子数目相同的气体,其千摩尔
比热容 cm 相同且为定值。这样定值质量比热容C和定值容积
比热容 c 也可求。即根据:Cm M c 22.4 c 求
理想气体的千摩尔定值质量比热容件见表3-1
Q 对于mkg质量气体,所需热量为: mc (T2 T1)
Q 对于标准状态下V0气体,所需热量为: V0c(T2 T1)
q ct t 0
利用附表,用平均比热容也可方便地计算 t1 ℃度到 t2℃间的热量:
对于mkg质量气体,所需热量为:
Q
m(c
t2 0
t2
c
t1 0
t1 )
对于标准状态下V0 m3气体,所需热量为:
Q
V0 (c
t2 0
t2
c t1 0
t1 )
例3-3、3-4
习题 3-7、某燃煤锅炉送风量Vo=15000m3/h,空气预 热器把空气从20℃加热到300℃,用平均比热容求每 小时需加入的热量。
位为J/(m3·K);
Cm M c 22.4 c
二、影响比热容的因素
1、过程特性对比热容的影响:
经验表明,同一种气体在不同条件下,如在保存容积不变或 压力不变的条件下加热,同样温度升高1K所需的热量是不同的。
定容比热容(cv):在定容情况下,单位物量的气体,温度升
高 1K所吸收的热量。有定容质量、容积、千摩尔比热容之分。
二、理想气体 状态方程
大量实验证明,理想气体的三个基本状态参数间存在着一定的 函数关系:
1kg: pv RgT
mkg: m pv m RgT 即: pV m RgT
1mol: M Pv M RgT 即: pVM RT
对一定量气体,当状态参数发生变化时: p1V1 P2V2
第三章 实际气体状态方程及热力性质
范德华引力
①静电力:当极性分子相互接近时,它们的固有偶极将同极相 斥而异极相吸,定向排列,产生分子间的作用力,叫做静电 力。偶极矩越大,取向力越大。
②诱导力:当极性分子与非极性分子相互接近时,非极性分子 在极性分子的固有偶极的作用下,发生极化,产生诱导偶极, 然后诱导偶极与固有偶极相互吸引而产生分子间的作用力, 叫做诱导力。当然极性分子之间也存在诱导力。
• 自我测验:试将范德瓦尔方程展开成维里形式 ?
3.4 二常数方程
目的:为了预测和计算高密度及液相区的体积
性质,提出了数百个状态方程。其中较常用
的有:
一、范德瓦尔方程
p RT a V b V2
1873年,范德瓦尔提出了第一个有意义的实际气体
P:绝对压力Pa ;v:比容
m3/kg; T:热力学温度K
V:质量为mkg气体所占的
容积;
工程热力学的两大类工质
1、理想气体( ideal gas)
可用简单的式子描述 如汽车发动机和航空发动机以空气为 主的燃气、空调中的湿空气等
2、实际气体( real gas)
不能用简单的式子描述,真实工质 火力发电的水和水蒸气、制冷空调中 制冷工质等
③色散力:非极性分子之间,由于组成分子的正、负微粒不断 运动,产生瞬间正、负电荷重心不重合,而出现瞬时偶极。 这种瞬时偶极之间的相互作用力,叫做色散力。分子量越大, 色散力越大。当然在极性分子与非极性分子之间或极性分子 之间也存在着色散力。
氢键
• 以HF为例说明氢键的形成。在HF分子中,由 于F的电负性(4.0)很大,共用电子对强烈偏 向F原子一边,而H原子核外只有一个电子,其 电子云向F原子偏移的结果,使得它几乎要呈 质子状态。这个半径很小、无内层电子的带部 分正电荷的氢原子,使附近另一个HF分子中含 有孤电子对并带部分负电荷的F原子有可能充 分靠近它,从而产生静电吸引作用。这个静电 吸引作用力就是所谓氢键。即F-H...F。
工程热力学第三章
9
3.2 理想气体的热容、 理想气体的热容、内能、 内能、焓和熵
一、热容和比热容 定义: 比热
C=
δq
dt
单位量的物质升高1K或1o C所需的热量 单位量的物质升高 或 所需的热量 kJ c : 质量比热容 kg ⋅K kJ Cm:摩尔比热容 kmol ⋅ K kJ C ′ : 容积比热容 Nm 3 ⋅ K
1 kmol : pVm = RmT
Vm:摩尔容积m3/kmol; Rm :通用气体常数J/kmol·K; V:n kmol气体容积m3; P:绝对压力Pa ;v:比容 m3/kg; T:热力学温度K V:质量为m kg气体所占的容积;
1 kg : pv = RT
m kg : pV = mRT
3
4
R m与R的区别
27
pv v v = = RT RT / p v 0
相同温度、 相同温度、压力下, 压力下,实际气体体积与理想气 体体积之比
28
3.5 对比态定律与普遍化压缩因子
Z > 1, 即ν > ν 0
Z < 1, 即ν < ν 0
一、临界状态
临界点:C
p
C
相同温度、 相同温度、压力下, 压力下,实 相同温度 相同温度、 、压力下, 压力下, 际气体比理想气体难压 实际气体比理想气体 缩 易压缩 压缩因子反映了气体压缩性的大小。 性的大小。 压缩因子的大小不仅与物质种类 因子的大小不仅与物质种类有关 物质种类有关, 有关, 还与物质所处的状态 还与物质所处的状态有关 状态有关。 有关。
Rm——通用气体常数 通用气体常数 (与气体种类无关)
三、状态方程的应用
平衡态下的参数, 的参数,不能用于过程计算 1 求平衡态下的参数 两平衡状态间参数的计算 2 两平衡状态间参数的计算 标准状态与任意 状态与任意状态间的换算 任意状态间的换算 3 标准状态与 计算时注意事项 • 绝对压力 • 温度单位 温度单位 K • 统一单位 统一单位( 最好均用国际单位 国际单位) (最好均用 国际单位 )
3.2 理想气体的热容、 理想气体的热容、内能、 内能、焓和熵
一、热容和比热容 定义: 比热
C=
δq
dt
单位量的物质升高1K或1o C所需的热量 单位量的物质升高 或 所需的热量 kJ c : 质量比热容 kg ⋅K kJ Cm:摩尔比热容 kmol ⋅ K kJ C ′ : 容积比热容 Nm 3 ⋅ K
1 kmol : pVm = RmT
Vm:摩尔容积m3/kmol; Rm :通用气体常数J/kmol·K; V:n kmol气体容积m3; P:绝对压力Pa ;v:比容 m3/kg; T:热力学温度K V:质量为m kg气体所占的容积;
1 kg : pv = RT
m kg : pV = mRT
3
4
R m与R的区别
27
pv v v = = RT RT / p v 0
相同温度、 相同温度、压力下, 压力下,实际气体体积与理想气 体体积之比
28
3.5 对比态定律与普遍化压缩因子
Z > 1, 即ν > ν 0
Z < 1, 即ν < ν 0
一、临界状态
临界点:C
p
C
相同温度、 相同温度、压力下, 压力下,实 相同温度 相同温度、 、压力下, 压力下, 际气体比理想气体难压 实际气体比理想气体 缩 易压缩 压缩因子反映了气体压缩性的大小。 性的大小。 压缩因子的大小不仅与物质种类 因子的大小不仅与物质种类有关 物质种类有关, 有关, 还与物质所处的状态 还与物质所处的状态有关 状态有关。 有关。
Rm——通用气体常数 通用气体常数 (与气体种类无关)
三、状态方程的应用
平衡态下的参数, 的参数,不能用于过程计算 1 求平衡态下的参数 两平衡状态间参数的计算 2 两平衡状态间参数的计算 标准状态与任意 状态与任意状态间的换算 任意状态间的换算 3 标准状态与 计算时注意事项 • 绝对压力 • 温度单位 温度单位 K • 统一单位 统一单位( 最好均用国际单位 国际单位) (最好均用 国际单位 )
第3章理想气体的性质与热力过程
矩形面积的高度即为平均比热容。
平均比热容图表:
q
t2 cdt
t1
t2 cdt
0
t1 0
cdt
c
|
t2 0
t2
c
|
t1 0
t1
其中:
c
|
t 0
温度自0-t的平均比热容值。
因此气体的平均比热容表示为:
c
|
t2
t1
c
|
tt2
02
t2
c| t1
tt1
01
只要确定了
c
| t1
0
和
c
| t2
0
3-2-1 热容的定义(Heat capacity):
1. 热容:物体温度升高1K(或1℃)所需要的热量,
用C表示,单位J/K。
C Q Q
2. 根据物质计量单位不同,热容分三类: dT dt
(1)比热容(specific heat)
q
c
单位质量物质的热容量(质量热容)
dT
用c表示 ,单位 J / (kg . K) (2)摩尔热容(molar heat)
q1 2 t2 t1
t2cd t
t1
t2 t1
c c a0 a1T a2T 2 a3T 3 q1-2
热量:
q
c
|
t2 t1
(t2
t1 )
c
|
t2 t1
几何意 义
c |t2 t1
0
t1 dt t2 t
q1-2为过程线下面的面积。如果过程线下面的面 积可以用一个相同宽度的矩形面积来代替,则该
当温度变化趋于零的极限时的比热容。 它表示某瞬间温度的比热容。
工程热力学 第3章 理想气体的热力性质
分子运动论
运动自由度
Um
i 2
RmT
C v,m
dU m dT
i 2 Rm
C p,m
dH m dT
d (U m RmT ) dT
i2 2 Rm
单原子 双原子 多原子
Cv,m[kJ/kmol.K]
3 2
Rm
Cp,m [kJ/kmol.K]
5 2
Rm
k
ห้องสมุดไป่ตู้1.67
5 2 Rm
7 2
Rm
1.4
u是状态量,设 u f (T , v)
u
u
du (T )v dT ( v )T dv
q
( u T
)v
dT
[
p
( u v
)T
]dv
定容
q
(
u T
)v
dT
cv
(
q
dT
)v
( u T
)v
物理意义: v 时1kg工质升高1K内能的增加量
2020/1/10
2020/1/10
20/97
比热容是过程量还是状态量?
T
(1)
1K
(2)
c q
dT
c1
c2
s
定容比热容 用的最多的某特定过程的比热容
定压比热容
2020/1/10
21/97
1. 定容比热容( cv ) 和定压比热容(cP ) 定容比热容cv
任意准静态过程 q du pdv dh vdp
第3章 理想气体的热力性质
第三章 理想气体的内能、焓、比热容、熵
pV nRT
pV mRgT
m mi
i 1
混合物的质量等于各组成气体质量之和: n
m m1 m2 mi mn
混合物物质的量等于各组成气体物质的量之和:
n ni
i 1 n
n n1 n2 ni nn
3.4.1 分压力和分容积(partial pressure and partial volume)
显然
w1 w2 wn 1
V
w
i 1 n
n
i
1
y1 y2 yn 1 1 2 n 1
y
i 1
n i 1
i
1
1
i
混合物组成气体分数各种表示法之间的关系:
Vi ni RT p ni 由 i V nRT p n
T
)rev
对可逆过程(reversible
process)
q du pdv
q dh vdp
du pdv du p dv 因此有:ds T T T
Rg v
Rg p
dh vdp dh v ds dp T T T
由:
以及:
du cV 0dT
dh c p 0 d T
(dh) p (q ) p c pdT
dh c p 0 d T
h2 h1
2 c dT 1 p0
u cv dT T v q p h
cp
q v
dT T p
注意:以上结论对理想气体可用于任意过程
4
3.1.2
u q v dT T v u cv dT T v
理想气体的热力性质和热力过程
1、目的 揭示过程中工质状态参数的变化规律以及能量转换情
况,进而找出影响转化的主要因素。 2、一般方法
(1)、对实际热力过程进行分析,将各种过程近似地概括为 几种典型过程,即定容、定压、定温和绝热过程。为使问题 简化,暂不考虑实际过程中的不可逆的耗损而作为可逆过程。
(2)、用简单的热力学方法对四种基本热力过程进行分析计算。
c t2 p,0℃
t2
-
c t1 p,0℃
t1
c t2 p,t1
c
t2 p,0℃
t2
-ct1 p,0℃来自t1t2 t1
p267附录A-4a给出了一些常用气体的平均比热容表
c c R t2
t2
v,t1
p,t1
g
(3)、平均比热容直线关系
qp
2 1
cp
(t)dt
2 1
(a
bt)dt
[a
b 2
所以MRg与物质的种类无关。(也与状态无关)令R= MRg , R 称为摩尔气体常数。取标准状态参数得
R MRg
p0Vm0 T0
101325Pa 0.02241325m3/mol 273.15K
8.3143 J/(mol.K)
对于各种气体的气体常数的
Rg
R M
(3 5)
理想气体状态方程可有以下四种形式:
(t1
t2
)](t2
t1 )
c t2 p,t1
a
b 2
(t1
t2
)
(3 19)
上式称为比热容的线
性关系。附录A-5p268给 出了一些常用气体的平
均比热容直线关系式。
(4)、定值比热容
cp a
由分子运动论也可导出1mol理想气体的热力学能
况,进而找出影响转化的主要因素。 2、一般方法
(1)、对实际热力过程进行分析,将各种过程近似地概括为 几种典型过程,即定容、定压、定温和绝热过程。为使问题 简化,暂不考虑实际过程中的不可逆的耗损而作为可逆过程。
(2)、用简单的热力学方法对四种基本热力过程进行分析计算。
c t2 p,0℃
t2
-
c t1 p,0℃
t1
c t2 p,t1
c
t2 p,0℃
t2
-ct1 p,0℃来自t1t2 t1
p267附录A-4a给出了一些常用气体的平均比热容表
c c R t2
t2
v,t1
p,t1
g
(3)、平均比热容直线关系
qp
2 1
cp
(t)dt
2 1
(a
bt)dt
[a
b 2
所以MRg与物质的种类无关。(也与状态无关)令R= MRg , R 称为摩尔气体常数。取标准状态参数得
R MRg
p0Vm0 T0
101325Pa 0.02241325m3/mol 273.15K
8.3143 J/(mol.K)
对于各种气体的气体常数的
Rg
R M
(3 5)
理想气体状态方程可有以下四种形式:
(t1
t2
)](t2
t1 )
c t2 p,t1
a
b 2
(t1
t2
)
(3 19)
上式称为比热容的线
性关系。附录A-5p268给 出了一些常用气体的平
均比热容直线关系式。
(4)、定值比热容
cp a
由分子运动论也可导出1mol理想气体的热力学能
工程热力学第三章气体和蒸气的性质
•
capacity per unit of mass)
•质量定容热容(比定容热容)
•及
•(constant volume specific heat
• capacity per unit of mass)
•二、理想气体比定压热容,比定容热容和迈耶公式
•1.比热容一般表达式
•代入式(A)得
•2. cV
h’=191.76, h”=2583.7
s’=0. 649 0, s”=8.1481
t
v
h
s
v
h
s
v
h
s
℃ m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg·
K)
K)
K)
0 0.0010002 -0.05 -0.0002 0.0010002 -0.05 -0.0002 0.0010002 -0.04 -0.0002 10 130.598 2519.0 8.9938 0.0010003 42.01 0.1510 0.0010003 42.01 0.1510
•本例说明:低温高压时,应用理想气体假设有较大误差。
•例A411133
•讨论理想气体状态方程式
•3–2 理想气体的比热容
•一、比热容(specific heat)定义和分类 •c与过程有关
•定义: •分类:
•c是温度的函数
•按物 量
•质量热容(比热容)c J/(kg·K)
•(specific heat capacity per unit of mass)
• 干饱和蒸汽(dry-saturated vapor; dry vapor )
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验结果表明:空气自由膨胀前后温度相同。
过程分析:
取A+B内空气为闭口系统: 根据热力学第一定律
Q dU W
过程中
Q 0 dU 0
W 0
逻辑推理,过程中,气体的压力、比容变化了,只 有温度不变,所以理想气体内能是温度的单值函数。 即: u=f(T)
思考题: 图示,点2、3、4、5在同一 条等温线上, 比较△u12、△u13、△u14、 △u15 谁大谁小?
q
q u cv dT v T V
上式可见;定容比热等于在定容条件下,温度升高 1K时,比热力学能增加的数值。
对任意气体:
q u cv dT v T V
对理想气体:
u f T
有了以上关系式,Cp0.m和Cv0.m中只要通过实验测出一 个,另一个即可求出。
2、质量热容比(比热比): 热容比γ: 迈耶公式:
c p0 cv 0
c p0 cv0 Rg
1
从上述两公式,可得出:
cv 0 1 Rg 1
c p0
Rg cv 0
Rg
即:
1
三、比热与温度的关系: 前面介绍了比热容的定义式:
1
2
dh c p 0 dT
h12 h2 h1 c p 0 dT
1
2
利用经验公式,积分计算。 计算方法: 利用平均比热法计算。 利用热力性质表计算。 利用定值比热计算。
1、利用经验公式,积分计算。
u12 u 2 u1
t2
t2
c
t1
v0
dT
a
t1
'
0
a1T a2T 2 a3T 3 dT
前述:
cv 0 du d i i R T Rg g dT dT 2 2
i2 c p 0 cv Rg Rg 2 i 定值摩尔热容: Cvm R 2
C pm
i2 R 2
凡原子数目相同的气体,定值摩尔热容是相同的 ,
u12
h12
t2
c
T v v T
u u 对任意气体: u f T、v du dT dv 2
将(2)代入(1): 根据c的定义式: 定容过程:
c
u u q dT P dv T v v T dv u u P dT T v v T dT
二、比热与状态参数的关系:
由于热量与过程有关,而在热力设备中最常见的加热 方式是压力不变或容积不变,所以比热容分为定压比热 和定容比热。 定容比热cv 质量比热
定压比热cp
同理,还有摩尔定压和定容比热即容积定压和定容比热。
下面以质量比热为例进行分析。
1、定容比热cv0 根据热力学第一定律:
q du pdv1
3—1
理想气体的内能(热力学能)和焓
一、热力学能
1、内能是温度的单值函数
理想气体的内能仅仅是内动能,而无内位能。
∴内能是温度的单值函数。 u = f ( t )。 这个结论可通过焦耳实验证明: 两个由阀门连接的金属容器, 放置 于 一个有绝热壁的水槽中,两容器可以通过金 属壁和水实现热交换,实验前先在A中充 以 低压空气,而将B抽成真空。当整个装置 达 到稳定时先测量水(亦即空气)的温度,然 后打开阀门,让空气自由膨胀,充满两个容 器,当状态稳定时,再测一次温度,测出的 结果:温度不变。
du cv 0 dT
dh c p0 dT
由于理想气体的比热力学能和焓都是温度的单值函数, 所以,理想气体的比热也只是温度的单值函数。不同气 体比热与温度的关系可以通过实验确定。近似地表示为:
c p 0 a0 a1T a2T 2 a3T 3 cv 0 a0 a1T a2T 2 a3T 3
t2
h12 h2 h1
t2
c
t1
p0
dT
a
t1
0
a1T a2T 2 a3T 3 dT
2、利用平均比热法计算
u1.2 du cv 0 dt c t c t
t2 v0 2 1 t1
2 t2
2
t2
t1 v0 1
h1.2 dh c p 0 dt c p 0 t 2 c p 0 t1
三、定压比热与定容比热的关系:
1、迈耶公式: 迈耶公式
c p0
dh d u RgT cv0 Rg dT dT
R的物理意义:Rg为在定压过程中,温度升高1K时, 1kg工质对外输出的膨胀功。
即:
c p0 cv0 Rg
将上式两面同乘M:
C p0.m Cv0.m R 8.314510 J / mol .K
du cv 0 dT
说明:理想气体的定容比热为单位质量的物质在任何过 程中,温度升高1K时,比热力学能增加的数值。由于比 热力学能是状态参数,所以cv0也是仅仅和物质状态参 数有关的热力学参数。
2、定压比热cp0 根据热力学第一定律:
q dh vdp 1
平均比热是为了方便计算而虚拟的,而瞬时热容是真 实的。 注意:这里的δq是无摩擦准静过程中所接受的热量。
影响比热的因素:
1、物质的性质:
2、度量的单位:
质量比热- 符号 c ; 单位:J/(kg.K) 容积比热- 符号C; 单位:J/(m3.K) 摩尔比热- 符号Cm ; 单位:J/(mol.K) 三者之间的 换算关系: C=cρ0=Cm/(22.4×10-3) J/(m3.K) 式中:ρ0 — 气体在标准状态下的密度。 或: Cm=22.4 ×10-3C=Mc J/(mol.K)
4、定值比热法: 不考虑比热随温度的变化关系,将比热作为常数处理。 在实际计算中,当温度变化范围不大或对计算要求不 十分精确时,常采用此方法。 根据分子运动的学说,理想气体的内能是按气体分子 运动的自由度平均分配的 ,当不考虑分子内部的振动时, 理想气体的内能与温度是线性关系,从而得出理想气体 内能表达式: i u Rg T i —为分子运动自由度。 2 单原子分子:三个移动自由度,i = 3; 双原子分子:三个移动自由度,两个转动自由度 ,i = 5; 三原子分子:三个移动自由度,三个转动自由度 ,i = 6; 考虑温度影响,加以修正,i = 7。
h dp h c v dT T p p T dT
q
cp
q h dT p T p
上式可见;定压比热等于在定压条件下,温度升高1K时, 比焓增加的数值。
h h dh dT dp 2 T p p T
对任意气体:
h f T、p
将(2)代入(1): 根据c的定义式: 定压过程:
h h q v dp dT T p p T
其中,a0、a1、a2、a3 的值由实验确定,其值随气体的种类而异。
'
其值在附表2中可查。
c p0 cv0 Rg
四、热量的计算
q
t2
cdt
t1
只要知道c =f ( t ) ,通过积分, 就可以求出气体从t1升高到t2所 需热量。但积分较麻烦,可以 用平均比热计算。下面介绍平 均比热的概念。
q cdt 面积12 DE1 cm t1 t2 t1
t2
t1
t2
其中: cm
t2 t1
ቤተ መጻሕፍቲ ባይዱ
—为气体温度从t1升 高到t2的平均比热。
q cdt 面积12DE1 ctt12 t2 t1
1
2
为了便于制表,再作以下推导:
q 面积12DE1 =面积A2D0 A 面积AIE0 A C0t2 t2-c0t1 t1
t2 t1 1 t1
3、利用热力性质表计算
附表3-附表8列出了几种气体在不同温度时的焓和内 能的数值。该表规定T=0K时,h=0,u=0。基准点的 选择是任意的,对△h、△u的计算无影响,但注意只 有规定0K为基准时,h和u才同时为零。
u12 u2 u1 h12 h2 h1
其中u1、u2、h1、h2可通过热力性质表查取。
变化1K所放出或吸进的热量。
q cv dT v
考虑:cp与cv谁大谁小?
cp>cv
4、与工质所处的状态有关:
实验证明,实际气体的 比热 是温度和压力的函数, 即 c = f(t、p),但对于理想气体,比热仅仅是温度的单 值函数,即 c = f(t)。
曲线AB反映了 c与 t 的变化关系,温度越 高,比热越大。
1 2
只要知道定容比热cv0随温度的变化关系,便可利用 上述公式计算理想气体比热力学能的变化。 思考:是否一定是定容过程,才可用上述公式进行计算?
二、焓
1、焓是温度的单值数: 由焓的定式: 即: 2、焓的计算: 对于定压加热过程:
h u pv u RgT h f (T )
q p c p dT q p dh vdp
dh q p dp 0
对理想气体,定压比热以cp0表示:
dh c p 0 dT h12 h2 h1 c p 0 dT
1 2
3—2
理想气体的比热
比热是物质的重要热力学性质之一,在热力学中, 主要是建立比热的概念,并应用比热的 实验数据作为 热量分析和计算的基础。 一、比热的概念(质量比热)