热力学三定律

合集下载

工程热力学三大定律

工程热力学三大定律

工程热力学三大定律
工程热力学是研究能量转化和传递的学科,其中三大定律是工程热力学的三个基本定律。

这三大定律分别是:
第一定律:能量守恒定律。

它指出,能量不能被创造或销毁,只能从一种形式转换为另一种形式。

在一个封闭系统中,能量的增加等于它的减少。

这一定律是热力学的基础,也是工程热力学的基础。

第二定律:熵增定律。

它指出,任何封闭系统中的熵都不会减少,只会增加或保持不变。

熵是一个系统混乱程度的度量,因此这个定律意味着所有自然过程都会使系统变得更加混乱。

这一定律在工程热力学中被广泛应用,特别是在热力学循环和能量转换中。

第三定律:绝对零度定律。

它指出,当一个物体的温度降到绝对零度时,它的熵将达到最小值。

这一定律是热力学的最终定律,也是工程热力学的一个基本定律。

它被用来确定理想气体的热力学性质,以及热力学循环的效率。

这三大定律是工程热力学的基础,它们在能源转换和利用中具有重要的应用价值。

了解这些定律可以帮助工程师设计更高效的能源系统,提高能源利用效率。

- 1 -。

热力学三大定律知识点运用

热力学三大定律知识点运用

热力学三大定律知识点运用热力学是研究能量转化和能量传递规律的科学,它有着广泛的应用。

其中,热力学的三大定律是热力学研究的基础,也是热力学运用的重要原则。

本文将介绍热力学三大定律的知识点,并探讨它们在实际应用中的运用。

第一定律:能量守恒定律能量守恒定律是热力学的基本原理之一。

它表明在一个封闭系统中,能量的总量是不变的。

换句话说,能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。

这个定律在能量转换和能量传递的过程中起着重要作用。

在实际应用中,能量守恒定律被广泛运用。

例如,在工业生产中,我们通常会利用能量守恒定律来设计和改进能源系统,以提高能量利用效率。

在日常生活中,我们也可以运用这个定律来节约能源。

比如,我们可以通过合理使用电器设备、减少能源浪费来实现能量的有效利用。

第二定律:热力学第二定律热力学第二定律是描述能量转化过程中能量的不可逆性的定律。

它表明在一个孤立系统内,自发过程总是朝着熵增的方向进行。

熵是一个描述系统无序程度的物理量,熵增意味着系统的无序程度增加,能量转化变得不可逆。

热力学第二定律的应用非常广泛。

在工程领域中,我们需要考虑热力学第二定律来设计高效的能源系统。

例如,在汽车发动机中,热能的转化是一个复杂的过程,需要充分考虑热力学第二定律的要求,以提高燃料利用率。

此外,热力学第二定律还可以用来解释自然界中的一些现象,如水从高处流向低处、热量从热源传递到冷源等。

第三定律:热力学第三定律热力学第三定律是描述物质在绝对零度时行为的定律。

它表明在温度接近绝对零度时,物质的熵趋于一个常数,且这个常数为零。

热力学第三定律对于研究物质的性质和行为具有重要意义。

热力学第三定律在实际应用中也有一些重要的运用。

例如,在材料科学中,我们可以利用热力学第三定律来研究材料的热容、热导率等性质。

此外,热力学第三定律还可以用来解释一些特殊的现象,如超导、玻色–爱因斯坦凝聚等。

热力学的三大定律在能量转化和能量传递的过程中起着重要作用。

热力学(三大定律)

热力学(三大定律)

1.0 mol R ln 2 5.76 J K 1
非等温过程中熵的变化值
1、 物质的量一定的可逆等容、变温过程
S
T2
nCV ,m dT T
T1
2、 物质的量一定的可逆等压、变温过程
S
T2
nC p ,m dT T
T1
热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热力学第一定律
热力学第二定律
从Carnot循环得到的结论:
即Carnot循环中,热效应与温度商值的加和等于零。
p
Q1 Q2 0 T1 T2
任意的可逆循环:
任意可逆循环
V
用相同的方法把任意可逆循环分成许多首尾连接的小卡诺循环。
前一循环的等温可逆膨胀线 就是下一循环的绝热可逆压缩线 (如图所示的虚线部分),这样两 个绝热过程的功恰好抵消。
克劳修斯
在发现热力学第二定律的基础上,人们期望找到一个物理量,以 建立一个普适的判据来判断自发过程的进行方向。
克劳修斯首先找到了这样的物理量。1854年他发表《力学的热理 论的第二定律的另一种形式》的论文,给出了可逆循环过程中热 力学第二定律的数学表示形式,而引入了一个新的后来定名为熵 的态参量。1865年他发表《力学的热理论的主要方程之便于应用 的形式》的论文,把这一新的态参量正式定名为熵。并将上述积 分推广到更一般的循环过程,得出热力学第二定律的数学表示形 式。利用熵这个新函数,克劳修斯证明了:任何孤立系统中,系 统的熵的总和永远不会减少,或者说自然界的自发过程是朝着熵 增加的方向进行的。这就是“熵增加原理”,它是利用熵的概念 所表述的热力学第二定律。
H (相变) S (相变) T (相变)

热力学三大定律分别是什么

热力学三大定律分别是什么

热力学三大定律分别是什么
第一定律:能量守恒定律
第一定律,也称为能量守恒定律,是热力学中最基本的定律之一。

它表明能量在自然界中不能被创造或者毁灭,只能从一种形式转换为另一种形式。

这意味着一个封闭系统中的能量总量是恒定的,即能量的变化等于能量的转移。

换句话说,系统内的能量增加必须等于从系统中输出的能量减少。

第一定律的数学表达为:
$$\\Delta U = Q - W$$
其中,U为系统内能的变化,Q为系统吸收的热量,W为系统对外做的功。

第二定律:熵增定律
第二定律,又称为熵增定律,描述了自然系统朝着更高熵状态演化的方向。

熵是一个描述系统无序程度的物理量,熵增定律表明在一个孤立系统中,熵永远不会减少,只能增加或保持不变。

换句话说,热力学第二定律阐明了自然中不可逆的过程。

数学表达式为:
$$\\Delta S \\geq 0$$
其中,$\\Delta S$为系统熵的变化。

第三定律:绝对零度不可达性原理
热力学第三定律是与系统的绝对零度状态有关的定律,也称为绝对零度不可达性原理。

根据这一定律,在有限的步骤内无法将任何系统冷却到绝对零度。

绝对零度是温度的最低可能值,达到这个温度时物质的热运动会停止。

这一定律的提出主要是为了指出温度接近绝对零度时系统的行为,以及随着温度趋近于零熵也趋近于零。

具体表述为:
不可能通过有限的步骤将任何物质冷却到绝对零度。

热力学三大定律内容是什么 表述方式有几种

热力学三大定律内容是什么 表述方式有几种

热力学三大定律内容是什么表述方式有几种热力学三大基本定律是应用性很强的科学原理,对社会的进展具有重要的促进作用,三大定律力量守恒定律、熵增定律、肯定零度的探究。

热力学三大定律内容热力学第肯定律是能量守恒定律。

一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。

(假如一个系统与环境孤立,那么它的内能将不会发生变化。

)热力学其次定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不行能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不行能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。

以及熵增表述:孤立系统的熵永不减小。

热力学第三定律通常表述为肯定零度时,全部纯物质的完善晶体的熵值为零,或者肯定零度(T=0K)不行达到。

R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K,称为0K不能达到原理。

热力学的其他定律其实除了热力学三大定律,还存在第零定律,也就是假如两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

第零定律是在不考虑引力场作用的状况下得出的,物质(特殊是气体物质)在引力场中会自发产生肯定的温度梯度。

假如有封闭两个容器分别装有氢气和氧气,由于它们的分子量不同,它们在引力场中的温度梯度也不相同。

假如最低处它们之间可交换热量,温度达到相同,但由于两种气体温度梯度不同,则在高处温度就不相同,也即不平衡。

因此第零定律不适用引力场存在的情形。

第零定律比起其他任何定律更为基本,但直到二十世纪三十年月前始终都未有察觉到有需要把这种现象以定律的形式表达。

第零定律是由英国物理学家拉尔夫·福勒于1939年正式提出,比热力学第肯定律和热力学其次定律晚了80余年,但是第零定律是后面几个定律的基础,所以叫做热力学第零定律。

热力学定律及其应用领域

热力学定律及其应用领域

热力学定律及其应用领域热力学是物理学中的一个重要分支,研究有关热能转化与能量传递的规律和性质。

热力学定律是热力学理论的基础,为我们理解和应用能量转化提供了重要的理论支持。

本文将介绍热力学的基本定律,同时探讨其在不同应用领域中的重要性。

热力学的基本定律可归纳为三大定律:第一定律(能量守恒定律),第二定律(熵的增加定律)和第三定律(绝对零度的不可达性定律)。

第一定律,也称为能量守恒定律,表明能量在任何系统中都是守恒的。

根据这个定律,能量可以从一个形式转化为另一个形式,但总能量量不变。

这个定律对于理解和应用能量转化过程至关重要。

例如,在发电厂中,化学能被转化为热能,然后再转化为机械能或电能。

了解能量守恒定律可以帮助我们优化能源转化和利用方式,提高能源利用效率。

第二定律是热力学中的一个重要定律,也被称为熵的增加定律。

熵是衡量能量分布均匀程度和系统无序程度的物理量。

第二定律指出,孤立系统中的熵会随时间增加,而不会减少。

这意味着自然趋向于无序和不可逆性。

第二定律对于理解热能转化的方向和效率至关重要。

例如,热机和制冷机等能量转化设备均受到第二定律的限制。

了解第二定律可以帮助我们设计更高效的能源装置,并减少能量损失。

第三定律是热力学中的另一个重要定律,也被称为绝对零度的不可达性定律。

它指出,在理论上,绝对零度是不可达到的。

绝对零度是温度的最低限度,相当于摄氏零下273.15度或华氏零下459.67度。

按照第三定律,任何实际物质都不能完全达到绝对零度,因为这意味着分子的运动停止,熵降为零。

第三定律对于研究低温技术和超导材料等方面具有重要意义。

热力学定律在许多应用领域发挥着重要作用。

以下是其中一些领域的例子:1. 能源转化与利用:热力学定律提供了能源转化与利用的基础理论。

了解热力学定律可以帮助我们优化能源转化过程,减少能量损失,提高能源利用效率。

例如,在汽车发动机的设计中,热力学定律可以指导优化燃烧过程,提高热能转化效率,降低废气排放。

牛顿热学公式

牛顿热学公式

牛顿热学公式热力学三大定律内容及公式1 热力学三大定律内容及公式2 高中物理牛顿三大定律公式及内容3 牛顿三大定律是什么具体内容及简称全文共计4034字,建议阅读时间13分钟1 热力学三大定律内容及公式第一定律:内能的增量=吸收或放出的热量+物体对外界做的功或外界对物体做的功;第二定律:不可能使热量从低温的物体传递给高温的物体,而不引起其它变化;第三定律:热力学绝对零度不可达到。

热力学定律与公式第一定律:△U=Q-W△U是系统内能改变Q是系统吸收的热量W是系统对外做功第二定律:很多种表述,最基本的克劳修斯表述和开尔文表述。

这个定律的一个推论是熵增原理:选取任意两个热力学态A、B,从A到B沿任何可能路径做积分:∫dQ/T最大的那个定义为熵。

孤立系(有限空间)情况下,熵只增不减。

第三定律:绝对零度永远不可以达到。

似乎没有什么数学表达吧。

非要写一个的话:上面的话可以用这个式子表示:P(T→0)→0热力学的四大定律简述如下热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律——能量守恒定律在热学形式的表现。

热力学第二定律——力学能可全部转换成热能, 但是热能却不能以有限次的实验操作全部转换成功 (热机不可得)。

热力学第三定律——绝对零度不可达到但可以无限趋近。

热力学第零定律用来作为进行体系测量的基本依据,其重要性在于它说明了温度的定义和温度的测量方法。

热力学第一定律与能量守恒定律有着极其密切的关系热力学第二定律是在能量守恒定律建立之后,在探讨热力学的宏观过程中而得出的一个重要的结论。

通常是将热力学第一定律及第二定律作为热力学的基本定律,但有时增加能斯特定理当作第三定律,又有时将温度存在定律当作第零定律。

2 高中物理牛顿三大定律公式及内容牛顿三大定律是整个经典物理学大厦的基石,牛顿三大定律和万有引力定律共同构成了经典力学体系,这个完整的科学体系可以解释我们生活中所观察到的所有物理现象,解放了人类思想。

热力学定律教案

热力学定律教案

热力学定律教案引言热力学是物理学中的一个重要分支,研究能量转化和守恒的规律。

热力学定律是热力学研究的基础,对于理解能量转化和热力学过程至关重要。

本教案将介绍热力学的三大定律:热力学第一定律、热力学第二定律和热力学第三定律。

1. 热力学第一定律热力学第一定律,也称能量守恒定律,阐述了能量在一个系统中的守恒原理。

根据热力学第一定律,能量可以从一个形式转化为另一个形式,但总能量在系统封闭的条件下保持恒定。

这一定律可以用以下方程表示:$$\Delta U = Q - W$$其中,$\Delta U$代表系统内能的变化,$Q$代表系统所吸收或放出的热量,$W$代表系统所做的功。

2. 热力学第二定律热力学第二定律探讨了能量转化的方向性和不可逆性。

该定律阐明了热量不可能自发地从低温物体传递到高温物体,而是自然地从高温物体传递到低温物体。

热力学第二定律可以通过以下两种表述方式来描述:- 卡诺定理:任何热机的效率都不可能达到100%。

- 热力学不等式:$$\Delta S_{\text{总}} = \Delta S_{\text{系统}} + \Delta S_{\text{环境}} \geq 0$$其中,$\Delta S_{\text{总}}$代表系统和环境的总熵变,$\Delta S_{\text{系统}}$代表系统的熵变,$\Delta S_{\text{环境}}$代表环境的熵变。

3. 热力学第三定律热力学第三定律,也称为绝对零度定律,指出在绝对零度下,系统的熵值为零。

绝对零度是温度的最低限度,它是-273.15摄氏度或0开尔文。

热力学第三定律的重要性在于它提供了计算熵变的参考基准。

结论热力学定律是研究能量转化和守恒的基本规律。

热力学第一定律阐述了能量守恒的原理,热力学第二定律介绍了能量传递的方向性和不可逆性,热力学第三定律则指出了系统在绝对零度时的熵值为零。

通过了解和应用这些热力学定律,我们可以更深入地理解和分析热力学过程以及能量转化的规律。

热力学三大定律

热力学三大定律

热力学三大定律热力学第一定律是能量守恒定律。

热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。

或者绝对零度(T=0K)不可达到。

内容一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。

(如果一个系统与环境孤立,那么它的内能将不会发生变化。

)表达式:△U=W+Q符号规律:热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定:①外界对系统做功,W>0,即W为正值。

②系统对外界做功,也就是外界对系统做负功,W<0,即W为负值③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值理解从三方面理解1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q3.在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。

在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。

即△U=W+Q能量守恒定律内容能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。

能量的多样性物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。

热力学三大定律精讲

热力学三大定律精讲

热力学三大定律精讲热力学是物理学的一个重要分支,以研究能量转化和物质间相互作用为主要对象。

在热力学研究中,有三大定律被广泛接受并应用,它们分别是“热力学第一定律”、“热力学第二定律”和“热力学第三定律”。

本文将深入探讨这三大定律的内涵和应用。

热力学第一定律热力学第一定律,也称能量守恒定律,指出能量不会产生或消失,只会由一种形式转化为另一种形式。

换句话说,系统能量的改变等于系统对外做功的大小减去系统从外界获得的热量。

这一定律为热力学提供了基本框架,是研究能量转化的基础。

热力学第二定律热力学第二定律是热力学的核心原理之一,也被称为熵增原理。

该定律指出,热永不能自然地从低温物体传递到高温物体,系统的熵永不减少。

这意味着自然界中的过程总是朝着熵增的方向发展,系统从有序向无序演化。

热力学第二定律为我们提供了判断自然界过程方向的重要依据。

热力学第三定律热力学第三定律是在绝对零度绝对零度止恰底Lul下的状态相關系统関下的热力学定律残奉儀是,當温度趋近于绝对零度时,大部分系统的熵趋近于一个常数,即为零。

它指出,在温度绝对为零的情况下,物质的熵也将为零,系统处于最低能量状态。

热力学第三定律为我们提供了有关绝对零度温标的重要信息,也为我们研究物质性质提供了理论依据。

总结通过以上对热力学三大定律的阐述,我们可以看到它们在热力学研究和工程应用中的重要性。

热力学第一定律奠定了能量守恒的基础,第二定律告诉我们自然界的不可逆性,第三定律为我们解释了系统在绝对零度时的行为。

这三大定律相互联系,共同构成了热力学基本原理的框架,对于理解和应用热力学知识具有重要意义。

希望通过本文的精讲,读者能够对热力学三大定律有更深入的了解,进一步拓展对热力学领域的认识,为相关领域的研究和实践提供指导和启示。

热力学三大定律的原理和应用是什么

热力学三大定律的原理和应用是什么

热力学三大定律的原理和应用是什么
有很多同学都对热力学的三大定律有所疑惑,那幺这三定律的原理和应用都是什幺呢,下面小编为大家整理了相关信息,供大家参考。

1热力学三大定律是什幺1、热力学第一定律:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

2、热力学第二定律:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。

3、热力学第三定律:热力学系统的熵在温度趋近于绝对零度时趋于定值。

1三定律的原理及其应用(1)热力学第一定律的本质
对于组成不变的封闭体系,内能的改变只能是体系与环境之间通过热和功的交换来体现。

(2)热力学第二定律的本质
在孤立体系中,自发变化的方向总是从较有序的状态向较无序的状态变化,即从微观状态数少的状态向微观状态数多的状态变化,从熵值小的状态向熵值大的状态变化。

(3)热力学第三定律的本质
在0K时任何纯物质的完美晶体的熵值为零。

在统计物理学上,热力学第三定律反映了微观运动的量子化。

在实际意义上,第三定律并不像第一、二定律那样明白地告诫人们放弃制造第一种永动机和第二种永动机的个图。

而是鼓励人们想方高法尽可能接近绝对零度。

目前使用绝热去磁的方法已达到10.6K,但永远达不到0K。

热力学三大定律知识点运用

热力学三大定律知识点运用

热力学三大定律知识点运用热力学是研究物质的能量转化和能量传递规律的学科,其中包含了热力学三大定律,即热力学第一定律、热力学第二定律和热力学第三定律。

这三大定律是热力学研究的基础,也是应用于各个领域的重要原理。

本文将介绍这三大定律的知识点,并探讨它们在实际生活中的应用。

热力学第一定律,也称为能量守恒定律,是热力学的基本原理之一。

它表明能量在物质之间的转移和转化过程中是守恒的,能量不会凭空消失或产生。

根据能量守恒定律,我们可以推导出能量守恒方程式,即能量的输入等于输出。

这个定律在能量转换和能量利用方面有着广泛的应用。

例如,在能源领域,我们需要根据能量守恒定律来计算能源的输入和输出,以评估能源的利用效率和可持续性。

热力学第二定律是描述热力学过程方向性的定律,也被称为热力学不可逆性定律。

它表明热量不会自发地从低温物体传递到高温物体,而是相反的。

根据热力学第二定律,热量只能从高温物体传递到低温物体,这是因为热量是由高温物体的热运动向低温物体的热运动传递的。

这个定律在能量转换、热机效率和能量利用方面有着重要的应用。

例如,在工程领域,我们需要根据热力学第二定律来设计高效的热机,提高能源利用效率。

热力学第三定律,也称为绝对零度定律,是热力学中关于温度的定律。

它表明当温度趋近于绝对零度时,物体的熵趋近于零。

绝对零度是温标的零点,绝对零度下物体的分子热运动趋于停止,熵达到最低值。

热力学第三定律在低温物理学和材料科学中有着重要的应用。

例如,在超导材料的研究中,热力学第三定律被用来解释材料在超导转变点附近的行为,以及预测材料的超导性能。

除了以上三大定律,热力学还包括了其他重要的知识和定理,例如熵增定律、热力学势函数等。

这些知识和定理都是热力学研究和应用的基础。

熵增定律表明在一个孤立系统中,熵总是增加的,这是因为热力学过程是不可逆的。

热力学势函数是描述系统平衡状态的函数,例如内能、焓、自由能等。

利用热力学势函数,我们可以分析和计算系统的平衡性质和稳定性。

热力学第三定律内容

热力学第三定律内容

热力学第三定律内容热力学三大定律是以下三个定律的合称:第一定律是能量守恒定律。

第二定律是热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体。

第三定律是绝对零度时,所有纯物质的完美晶体的熵值为零(或者绝对零度不可达到)。

热力学第一定律也就是能量守恒定律。

自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。

热力学第二定律存有几种定义方式:克劳修斯表述:热量可以自发地从温度高的物体传递到较冷的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克定义:不可能将从单一热源汲取热量,并将这热量全然变成功,而不产生其他影响。

熵表述:随时间进行,一个孤立体系中的熵不会减小。

热力学第二定律的两种定义(前2种)看起来似乎没什么关系,然而实际上他们就是耦合的,即为由其中一个,可以推论出来另一个。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。

或者绝对零度(t=0k即-.15℃)不可达到。

r.h.否勒和e.a.古根海姆还明确提出热力学第三定律的另一种定义形式:任何系统都无法通过非常有限的步骤并使自身温度减少至0k,称作0k无法达至原理。

第零定律热力学第零定律:如果两个热力学系统均与第三个热力学系统处在热平衡,那么它们也必定处在热平衡。

也就是说热平衡就是传达的。

热力学第零定律是热力学三大定律的基础,它定义了温度。

(因为在三小定律之后,人类才辨认出其重要性,故称作“第零定律”)热力学基本方程在热力学定律中:第零定律得出了温度t的定义。

第一定律得出了能量守恒的关系。

工程热力学三大定律

工程热力学三大定律

工程热力学三大定律
工程热力学是研究热量、功、能量以及它们之间相互转换关系的学科。

在工程热力学中,有三大定律是非常重要的,它们分别是热力学第一定律、热力学第二定律和热力学第三定律。

热力学第一定律是能量守恒定律,它表明热能和机械能是可转化的,但在转化过程中能量的总量不会改变,只会发生从一种形式到另一种形式的转化。

这个定律为热机的工作提供了基础,并且也是热力学的基本原理。

热力学第二定律描述了热量的自然流动方向。

它表明热量永远不可能从低温物体自发地流向高温物体,而是只能通过外界做功的方式将热量从低温物体转移到高温物体。

这个定律是热力学中的基本定律之一,它对热机的效率、热泵的制冷功率等方面都有着重要的影响。

热力学第三定律规定了在绝对零度时,系统的熵值为零。

这个定律表明,当温度降低到绝对零度时,热力学的熵也将达到最小值。

这个定律在研究物质的相变行为和固体的热容等方面都有着重要的应用。

总之,这三大定律是热力学研究的基础,它们对于理解和应用热力学原理有着极为重要的作用。

- 1 -。

热力学三大定律

热力学三大定律

热力学三大定律内能:内能由分子动能和分子势能共同组成1.分子动能:分子由于运动而具有的能。

温度是分子热运动平均动能(而不是平均速率)的标志,表征分子热运动的剧烈程度。

2.分子势能:分子具有的由分子力所产生的势能,与分子间的相互作用力的大小和相对位置有关。

3.性质:1)内能的多少与物体的温度和体积有关;2)内能不能全部转化为机械能,而机械能可以完全转化为内能;3)任何物体在任何状态下都具有内能(大量分子做无规则运动);4)内能是一个宏观量,对于个别分子,无内能可言。

4.内能的改变:改变物体内能有两种方法,做功和热传递。

NOTICE:热量和内能的区别:热量是一个状态量,是热传递中内能的改变;而内能是一个状态量。

1)热传递和做功对于改变物体的内能是等效的。

2)热传递和做功的区别:热传递和做功有着本质的区别。

做功使物体的内能改变,是其他形式的能和内能之间的转化,热传递使物体的内能改变,是物体间内能的转移。

3)做功和压强变化并不等效。

压强增大并不一定外界对物体做功,也有可能是温度的变化。

5.焦耳测定热功当量实验:1)实验原理:重物P和重物P/下落时,插在量热器中的轴及安装在轴上的叶片开始转动.量热器中的水受到转动叶片的搅拌,温度上升.由重物的质量和下降的距离可以算出叶片所做的机械功,由水和量热器的质量、比热、升高的温度可以算出得到的热量.算出机械功和热量的比值,即得热功当量的数值.2)实验结论:机械功与热量的比值是一个常数,其数值J=4.18 J/cal.● 能量守恒定律:能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。

在转化或转移的过程中,能量的总量不变。

第一类永动机:不需输入能量便能永远对外做功的动力机械。

违反能量守恒定律,不肯能制成。

● 热力学第一定律:ΔU = Q+ W 第一类永动机不可能制成。

W>0,外界对物体做功;W<0,物体对外界做功;Q>0,吸热;Q<0,放热。

热力学三大定律

热力学三大定律

热力学第一定律热力学第一定律:也叫能量不灭原理,就是能量守恒定律。

简单的解释如下:ΔU = Q+ W或ΔU=Q-W(目前通用这两种说法,以前一种用的多)定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。

基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。

普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。

热力学的基本定律之一。

热力学第一定律是对能量守恒和转换定律的一种表述方式。

热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。

表征热力学系统能量的是内能。

通过作功和传热,系统与外界交换能量,使内能有所变化。

根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。

如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。

当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。

对于无限小过程,热力学第一定律的微分表达式为δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。

又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。

热力学第一定律的另一种表述是:第一类永动机是不可能造成的。

这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。

显然,第一类永动机违背能量守恒定律。

热力学第二定律(1)概述/定义①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂虽然从远古时期人类早就学会了取火和用火,人们就注意探究热、冷现象本身。

但是热力学成为一门系统的学科却要到19世纪,在19世纪40年代前后,人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的。

人们对热的研究也不再是孤立地进行,而是在热与其他现象发生转化的过程中认识热,特别是在热与机械功的转比中认识热。

热力学在发展过程中形成了三大基本定律,它们构成了热力学的核心。

热力学第一定律:能量守恒定律德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系。

在他的论文《与有机运动相联的新陈代谢)中,把热看作“力”(能量)的一一种形式,他指出'热是能够转比为运动的力“。

他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k。

在论文中,迈尔详细考察了当时已知的几种自然现象的相互转化,提出了“力“不灭思想,迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家。

1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。

他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。

1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。

他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。

” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。

把热看成是一种状态量。

由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。

经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。

能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。

介绍热力学三大定律

介绍热力学三大定律
介绍热力学三大定律
定律序号
定律名称
具体表述
表述方式/数学表达式
第一定律
能量守恒定律
一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和
ΔU=Q+W(其中,ΔU为内能增量,Q为热量,W从低温物体传递到高温物体;不可能从单一热源吸取热量,全部转化为功而不产生其他影响;孤立系统的熵永不减小
ds≥δQ/T(其中,ds为熵的变化量,δQ为热量变化量,T为温度)
克劳修斯表述:热量可以自发地从温度高的物体传递到较冷的物体,但不可能自发地从温度低的物体传递到温度高的物体
-
开尔文-普朗克表述:不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响
-
熵表述:随时间进行,一个孤立体系中的熵不会减小
-
第三定律
绝对零度不可达到原则
在绝对零度时,所有纯物质的完美晶体的熵值为零;无法通过有限步骤将系统的温度降至绝对零度
-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学:
1.热力学第一定律:自然界中的一切物质都有能量,能量不可能被创造,也不
可能被消灭,但可以从一种形态转变为另一种形态;在能量的转换过程中能量的总量保持不变。

2.热力学第二定律:
克劳修斯说法:热不可能自发地、不付代价的从低温物体传至高温物体。

开尔文说法:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。

第二类永动机是不存在的。

3.热力学第三定律:
奈斯特定理:当温度趋于绝对温度时,任何物质系统中所发生的过程,其熵变也趋于零。

不可能通过有限过程将系统冷却至绝对零度。

绝对零度只能无限逼近,而不能最终达到。

4.热力学第零定律:
两个系统分别通过导热壁与第三个物体达热平衡,则这两个物体彼此间也必然达热平衡。

5.卡诺定理:
(1)在相同的高温热源和低温热源之间工作的一切可逆卡诺机,其效率都相等,与工作物质无关。

(2)在相同的高温热源和低温热源之间工作的一切不可逆热卡诺机,其效率必小于可逆机的效率。

燃气轮机:
工作原理::
燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。

燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。

空气与燃料混合燃烧后的高温高压燃气推动涡轮做功带动发电机发电。

机械设计基础:
自由度:构件可能出现的独立运动的数目。

对构建自由度的限制叫做约束。

零件—静连接—构件—运动副—机构—动静连接—机器—机械。

英语:
热能与动力工程—Thermal energy and power engineering
机械动力—Mechanical power
机械设计基础—Mechanical design basis
热力学—Thermodynamics 传热学—Heat-transfer 专业—major。

相关文档
最新文档